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Abstract

This paper reevaluates the quantitative performance of the standard labor-market

matching model developed by Mortensen and Pissarides [28] with special attention

to the behavior of vacancies, one of the key variables in the model. I first estimate

trivariate vector autoregressions with gross worker flows and vacancies and identify

an aggregate shock by imposing only minimal sign restrictions on the responses of

worker flows and employment growth and no restrictions on the response of vacancies.

The data strongly suggest a hump-shaped and persistent response of vacancies. The

calibrated model, on the other hand, predicts that vacancies respond to aggregate

shocks with no delay and are not persistent even though an aggregate productivity

shock is assumed to be highly persistent. These problems in vacancy behavior also

cause gross flow series to exhibit counterfactual cyclical properties.

JEL codes: E24, J63, J64

Keywords: Agnostic identification, labor-market matching, unemployment, vacan-

cies, worker flows.
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1 Introduction

The labor-market matching model developed by Pissarides [30], [32], and Mortensen and

Pissarides [28] provides a coherent framework to analyze dynamic behavior of gross worker

(or job) flows, employment, and job vacancies, and thus has become popular in macro-labor

literature. Reflecting this popularity, there have been a number of attempts in the literature

to quantitatively evaluate the performance of this class of models. For example, Cole and

Rogerson [14] examine the model’s ability to deliver plausible cyclical properties of job flows

and employment in a reduced-form framework. Collard et al. [15] estimate the structural

parameters and undertake formal statistical tests of the model. Overall, the conclusion

from these studies is that the framework does a good job in explaining important empirical

regularities regarding labor-market flows and employment in the U.S. There are also attempts

that embed the labor-matching friction into dynamic stochastic general equilibrium (DSGE)

models with capital and a risk-averse household. Andolfatto [2], Merz [26], and den Haan et

al. [19] integrate the matching framework into otherwise-standard real business cycle models

and show that their extensions significantly improve the models’ performance in propagating

the underlying technology shocks. Cooley and Quadrini [16] develop a monetary DSGE

model with the matching friction and show that it helps produce realistic Phillips curve

dynamics as well as labor-market dynamics.

The main purpose of this paper is to reevaluate the model’s quantitative performance.

I show that the model encounters serious problems in its vacancy dynamics and that the

problems in vacancy behavior cause counterfactual dynamic behavior of gross flows as well.

These problems result from one of the key equilibrium conditions in this class of models:

the free-entry condition into the matching market. Although this condition is widely used

in the literature, none of the papers has paid much attention to the implications of the

condition. The free-entry condition states that firms can immediately enter the matching

market by simply posting vacancies when doing so is expected to yield positive returns. In

equilibrium, the expected returns to posting a vacancy are equalized to a vacancy posting

cost. Suppose that a negative aggregate productivity shock hits the economy. The negative

shock decreases the expected returns from posting a vacancy, and therefore, the number of

vacancies initially drops. However, the incentive to post vacancies quickly rises as the adverse

shock increases unemployment, since this raises the chance that the firm will successfully

find a worker from the pool of unemployed. The “echo effect” caused by the increases in

unemployment has several important implications for the model’s cyclical properties. A

direct implication is that vacancies in the model are not persistent even if one assumes a
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highly persistent aggregate productivity shock, such as the one used in the real business

cycle literature; the adverse effect of the low aggregate productivity on firms’ hiring effort is

mitigated by the higher probability of finding a worker. Second, the recovery of vacancies

puts upward pressures on the number of matches. Higher unemployment during a recession

directly contributes to increasing the number of matches, and this increase is enhanced by

the recovery in vacancies. Finally, the surge in firms’ hiring motivation, in turn, pushes up

the job finding rate for unemployed workers. This promotes separations of matched pairs as

it is relatively easy for separated workers to find subsequent employment opportunities.1

To test these predictions, I provide stylized facts about cyclical properties of job vacancies

and gross worker flows by estimating trivariate vector autoregressions (VARs).2 An “aggre-

gate shock” is identified by using Uhlig’s [38] agnostic Bayesian method that imposes only the

least controversial inequality constraints on the patterns of impulse responses. Specifically,

I impose only minimal and sensible restrictions on the responses of gross worker flows and

employment growth and no restrictions on the behavior of vacancies.3 One of the advantages

of this approach over the conventional exact-identification scheme is that the method allows

one to find all possible responses that satisfy the sign restrictions and thus gives us a better

sense about robustness of the empirical findings.

The main findings are as follows. While the VAR exercises show that the empirical

responses of vacancies clearly exhibit a hump-shaped pattern, the model fails to produce

this pattern. Further, even though the model matches qualitative patterns of responses of

gross flows, the model’s responses greatly exaggerate their empirical analogues. When a

recessionary shock arrives, it is the case both in the model and the data that, after an initial

decline, the creation rate surges to a level higher than the pre-shock level owing to higher

unemployment. However, the extent of the increases in the creation rate is much greater

in the model. This is because vacancies bounce back quickly in the model, while they are

persistently low in the data. Further, although the model and the data both predict a

persistently high separation rate after the recessionary shock, the model’s response is “too

persistent” compared to the empirical responses. Again, the lack of persistence in vacancies

is the source of this behavior as I described above.

1Cooley and Quadrini’s [16] results show that the productivity shock and monetary shock produce virtu-

ally the same responses of job flows and vacancies. Thus, the description in this paragraph appears to apply

to the responses to the monetary shock as well.
2Note that the behavior of stock of employment is implied by gross flows.
3Notice the contrast with the identifying assumption used in an influential paper by Blanchard and

Diamond [4]. To identify the aggregate shock, they assume that vacancies decline for nine months following

a negative aggregate shock. This is, however, not necessarily consistent with the model’s prediction.
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Another important symptom of the model’s problems with vacancy dynamics is that

correlation patterns between unemployment and vacancies are at odds with empirical evi-

dence. The U.S. data show that cyclical components of these series are strongly negatively

correlated not only contemporaneously but also at leads and lags. This relationship may be

referred to as the dynamic Beveridge curve. It is not surprising, however, that the model

fails to generate an empirically plausible dynamic Beveridge curve because of the counter-

factual behavior of vacancies. In particular, the model predicts that vacancies are positively

correlated with lagged unemployment.

A recent paper by Shimer [36] considers a version of the matching model that does not al-

low for endogenous separations, in contrast to the model considered here. He shows that his

model produces a strong contemporaneous correlation between unemployment and vacan-

cies but fails to generate sufficient volatility of unemployment and vacancies for reasonable

productivity shocks. The trivariate VAR estimates reported below, however, reveal that

the separation rate responds sharply and persistently to aggregate shocks. This raises the

question of whether Shimer’s findings depend on his counterfactual assumption of a constant

separation rate. As shown by den Haan et al. [19], endogenizing the separation rate improves

the model’s ability to magnify and propagate underlying shocks. Owing to shifts in the sepa-

ration margin, realistic unemployment responses can be generated using the standard process

of productivity shocks. Thus, insufficient magnification of shocks is not an issue under the

more realistic specification of the matching model. With endogenous separations, however,

the stronger echo effect on the vacancy posting decision greatly reduces vacancy persistence,

leading to a much lower negative correlation between unemployment and vacancies.

To enhance my claim, I also replicate Shimer’s results by fixing the separation rate, and I

show that the model implies insufficient vacancy persistence even under this specification. In

particular, even though one can indeed obtain a strong negative contemporaneous correlation

between unemployment and vacancies, the model lacks the ability to generate a hump-

shaped and persistent response of vacancies and, consequently, is unable to produce plausible

unemployment-vacancy dynamics.

This paper is organized as follows. Section 2 first overviews the general ideas about the

agnostic identification scheme and then applies the method to worker flows and job vacancies,

thus providing grounds for evaluating the quantitative performance of the model.4 Section

3 lays out the discrete time version of the standard Mortensen and Pissarides [28] labor-

matching model and calibrates it. This section also presents the calibration for the model

4Note that the responses of worker flows imply the response of employment.
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that assumes the fixed separation rate. Section 4 shows that the model’s cyclical properties

are not supported by the empirical evidence given in Section 2 in either version of the model.

Section 5 summarizes the results and offers some possible remedies for the model.

2 Empirical Evidence

This section presents the stylized facts about dynamic behavior of gross worker flows and

job vacancies in the U.S. Before presenting the results, I first give an overview of the general

ideas about the agnostic identification scheme proposed by Uhlig [38].5 The key elements of

this approach are to impose only the least controversial qualitative (or sign) restrictions on

patterns of impulse responses and to uncover all possible responses that are consistent with

those restrictions. Following Uhlig, uncertainty about the estimated parameters is taken

into account in a Bayesian manner.6

2.1 Identification Scheme and Its Mechanics

Let Yt be a vector of n endogenous variables containing time-t values whose dynamic rela-

tionships are described by the following vector autoregression of order p (VAR(p)):

Φ(L)Yt = νt, (1)

where νt is an n × 1 vector containing time-t values of reduced-form disturbances whose

variance-covariance matrix is written as Eνtν
′
t = Σ, and Φ(L) = I−Φ1L−Φ2L

2−···−ΦpL
p.

Assuming that Φ(L) is invertible, the VAR(p) has a Wold moving-average representation,

Yt = Ψ(L)νt, (2)

where Ψ(L) = Φ(L)−1 = Σ∞
j=0ΨjL

j. Let ωt be an n × 1 vector containing time-t values of

structural disturbances. The reduced-form residuals and structural disturbances are linked

through

νt = Aωt, (3)

where it is assumed that the structural disturbances are mutually independent as is standard

in the literature. Also, I adopt the normalization that Eωtω
′
t = I. Using Equation (3) in

Equation (2) implies that

Yt = Ψ(L)Aωt.

5Faust [20] also adopts a similar identification scheme.
6Much of the presentation below follows Burnside [9].
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Thus, Ψj can be constructed from Φj, which can be estimated by ordinary least squares,

and knowledge about A allows one to fully characterize the process of Yt in terms of the

structural disturbances ωt. The variance-covariance structure of the reduced-form residuals

puts constraints on the matrix A:

AA′ = Σ, (4)

where least squares give us a mean estimate of Σ. The identification problem is therefore to

uncover the n(n−1)
2

free elements in A by imposing identifying restrictions.

An important result in Uhlig’s [38] paper is that the matrix A can always be written as

A = XΛ1/2Q, (5)

where X is an orthogonal matrix whose columns are the orthonormal eigenvectors of Σ,

Λ denotes a diagonal matrix with the eigenvalues of Σ on its principal diagonal, and Q

denotes some orthogonal matrix (i.e., QQ′ = I). Equation (5) shows that determining the

free elements in A can be conveniently transformed into the problem of choosing elements

in an orthonormal set. Furthermore, if one is interested only in responses to one particular

shock, say, an aggregate shock, then the problem amounts to determining an orthonormal

vector q in the following expression:

a = XΛ1/2q, (6)

where a is a column of A (which Uhlig calls an impulse vector) containing the contempora-

neous responses of n endogenous variables to the structural shock of our interest, and q is a

column of Q in the corresponding location. The main idea of the identification scheme is to

impose a set of inequality constraints on Ψja. This, of course, does not uniquely identify a

but gives us ranges of possible responses consistent with the inequality constraints.

The ranges can be easily computed numerically. For each fixed set of the reduced-

form VAR coefficients Φ = [Φ′
1, Φ

′
2, · · ·, Φ′

p] and the error variance-covariance matrix Σ,

I draw candidate vectors q from a unit sphere and keep only the draws that satisfy the

sign restrictions. Following Uhlig, I deal with the sampling uncertainty about the VAR

parameters in a Bayesian manner. The parameters Φ and Σ are jointly drawn from a

Normal-Wishart posterior distribution.7 In my application, I examine 400 equally spaced

q’s on a unit sphere for each set of the VAR parameters (Φ, Σ) and keep the draws that

satisfy the sign restrictions. I draw the posterior 100 times, and therefore, a total of 40, 000

q’s are examined.

7See Appendix B of Uhlig for the collection of formulas used for my estimation and inferences. Also, I

use uninformative priors following Uhlig.
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2.2 Sign Restrictions

Now, specifically, let Yt = [cret, dest, vt]
′ be a vector of the creation rate, the separation rate,

and vacancies. Because the creation rate and the separation rate are defined as the number

of matches created and destroyed normalized by the number of employed, the difference

between the two gives the growth rate of employment, namely:

cret − dest = ∆et, (7)

where ∆et denotes the growth rate of employment in period t. Since the main focus of this

paper is to examine the behavior of vacancies in response to an aggregate shock, I impose

restrictions only on the responses of gross flows and employment growth and no restrictions

on the response of vacancies.

The benchmark identification imposes the following three sign restrictions:8

1. Employment growth is not positive for at least K periods following a negative aggregate

shock.

2. The negative shock leads to a non-negative response in the separation rate in the

impact period.

3. The negative shock leads to a non-positive response in the creation rate in the impact

period.

There seems to be no room to debate over the validity of the first restriction except for

the choice of K. The benchmark case sets K at four quarters. To ensure robustness of the

results, I also try the choice of K = 2. The second and third restrictions are taken from Davis

and Haltiwanger [17]. According to them, these two restrictions are consistent with a wide

range of theoretical models and alternative views about business cycles and, therefore, would

be widely accepted. As we will see later, the calibrated labor-matching model satisfies these

restrictions. Note that these two restrictions imply that employment growth is not positive

in the impact period.

However, a potential problem with the third restriction is that the creation rate could

possibly increase in the impact period of a negative shock. Suppose that a negative shock

induces a spike in the separation rate, inducing large flows into the unemployment pool.

8I write the restrictions in terms of the responses to a negative aggregate shock for convenience of

discussion. The restrictions on the responses to a positive shock can be written symmetrically.
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Then the increase in job seekers would have positive impacts on the number of matches.9

Although a recessionary shock is likely to depress firms’ hiring effort, causing a negative

effect on job creation, we do not know ex ante which effect dominates. Therefore, imposing

the third restriction puts us at risk of eliminating dynamics possibly driven by aggregate

shocks. This concern is larger especially if workers’ job finding rate is so high that a spike

in the separation rate may be immediately followed by increases in the creation rate. It is

then possible that the separation rate and the creation rate are both observed to increase in

the initial period of the negative shock. To deal with this concern, I also consider the case

in which the third restriction is dropped. Note that although dropping the third restriction

allows the creation rate to increase in the impact period, the first and second restrictions

imply that the increase in the separation rate in the impact period must be larger than that

in the creation rate, so that employment growth is negative in the impact period.

Notice that the sign restrictions above are much less restrictive than the conventional

exact-identification scheme, which typically takes the form of either short-run zero restric-

tions or long-run zero restrictions (e.g., Blanchard and Quah [6] and Shapiro and Wat-

son [35]). In particular, the exact-identification scheme generally requires restrictions on

the effects of the shocks that we are not interested in. In our case, restrictions about the ef-

fects of other shocks such as an “allocative” shock would be additionally required to uncover

the effects of the aggregate shock. This can be seen from Equation (4) where elements in

one column are related (non-linearly) with elements in other columns. Although Davis and

Haltiwanger [17] provide several “reasonable” long-run restrictions on the effects of an aggre-

gate shock and allocative shock, none of them are comparable to the qualitative restrictions

used here in terms of simplicity and plausibility.

2.3 Data

The VAR, Equation (1), is estimated by using the Conference Board’s help-wanted index

and CPS worker flow data. The former series is an index of counts of help-wanted adver-

tisements in 51 major newspapers in the U.S. There are several pieces of evidence that this

series closely tracks actual job vacancies in the U.S.10 It is well known that CPS worker

flows are subject to several serious statistical biases. There have been several attempts to

9Recall that the creation rate is defined as the number of matches formed normalized by the level of

employment. The decreases in employment thus also contribute to raising the creation rate.
10See Shimer [36] for this point. The BLS recently started a comprehensive survey on job vacancies (Job

Openings and Labor Turnover Survey; JOLTS). Shimer compares the help-wanted index with this series over

the recent three-year period after 2000:Q4 and finds that they move very closely with each other.
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correct these biases (e.g., Abowd and Zellner [1] and Poterba and Summers [33]). Bleakley

et al. [7] have recently updated the Abowd-Zellner adjusted series and made the quarterly

series publicly available.11 The data set includes flows among the three states: employment

(E), unemployment (U), and not in the the labor force (N). In the following estimation re-

sults, I use total flows into employment (from the unemployment and out-of-the-labor-force

states) normalized by employment for the creation rate, and total flows out of employment

(to the unemployment and out-of-the-labor-force states) normalized by employment for the

separation rate. Alternative measures can be constructed by focusing on the flows between

unemployment (U) and employment (E). The results below are, however, robust with respect

to using the alternative measures for creation and separation.

The sample period is restricted to 1967:Q3−1999:Q1 owing to the availability of the

worker flow data. The order of the VAR is set to 3 suggested by the BIC. The results,

however, are not sensitive to the choice of lag length. No deterministic components except

constant terms are included in the estimation. The ADF tests reject the null of a unit root

at a 15% significance level for all the series.

2.4 Results

Figure 1 presents the impulse responses to a one-standard-deviation negative aggregate shock

when all three restrictions are imposed and K is set to 4. The responses of the creation rate

and separation rate (and thus implied employment growth and the level of employment)

exhibit patterns that are qualitatively consistent with the finding in the existing literature

that stresses the role of job destruction in propagating shocks (e.g., Ramey and Watson [34],

den Haan et al. [19], Gomes et al. [23]); the creation rate recovers quickly after the initial

decline contributing to increasing employment, whereas the separation rate remains higher

than its steady-state level for about 2−3 years after the shock. Note also that the empirical

finding that the aggregate shock has a long-lasting effect on the separation rate suggests the

rejection of the model that assumes the fixed separation rate. Figures 2 through 4 present

the results for the cases in which K is set to 2 and/or the restriction on the initial response of

the creation rate is lifted. The results are virtually unchanged. As I will show later, although

the overall patterns of the empirical responses of gross flows are qualitatively consistent with

the model responses, the model responses greatly exaggerate these patterns.

Consider now the responses of vacancies. The lower left panels of these figures show that

11The data set is available through http://weber.ucsd.edu/˜bleakley/eunflows.txt. Although original CPS

data are collected at monthly frequency, only the quarterly data are available on the web page.
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vacancies clearly exhibit hump-shaped patterns. Although this may not be a surprising result

intuitively, the model’s prediction is not consistent with the results as we will see shortly.

Note, however, that given that the bounds are computed by ordering the responses in each

period, it is possible that these hump-shaped responses are generated by the combinations of

responses that are not hump shaped individually. To meet this concern, I will later examine

the responses individually.

2.5 How Much Variation Do Aggregate Shocks Explain?

Given that the main interest of this paper is to evaluate the model’s ability to replicate the

empirical impulse responses to an aggregate shock, it is important to make sure that the

aggregate shocks account for significant variations in the variables of interest. There has

been a long discussion in the literature addressing the question of how much of employment

fluctuations can be attributed to aggregate shocks. A number of papers have tried to answer

this question by using a wide variety of identifying assumptions in the VAR framework.

The results are quite mixed and strongly depend on their identifying assumptions (e.g.,

Davis and Haltiwanger [17] and Campbell and Kuttner [11]). The sign-restrictions approach

seems to have advantages over the conventional exact-identification scheme for addressing

this issue because the restrictions imposed in this paper are simple and there appears to

be little room to debate over the plausibility of the restrictions. The upper panel of Figure

5 displays the result obtained by imposing the three sign restrictions, and K is set to 4.

According to the median estimates, the data indicate that the shock accounts for about 60%

of employment growth for all forecast horizons. Compared to the results in the previous

studies, this estimate appears to be on the high side. Furthermore, the 80% error bands are

quite narrow, given the nature of this type of exercise.

The lower panel of the figure present the results for vacancies. In this case, the median

estimate is around 40%, and the 80% band covers a wide range that includes the values

close to zero. However, this result may be due to the lack of restrictions on the behavior

of vacancies, and thus the valid draws actually include uninteresting cases that a negative

shock yields increases in vacancies. Figures 1 through 4 indicate that the 80% bands of the

responses cover such cases. To eliminate such dynamics in vacancies, I impose an additional

sign restriction that forces vacancies not to increase in the impact period. Figure 6 presents

the result. Although the lower band is still less than 10%, the median estimate has risen

substantially to 60%.
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3 The Mortensen and Pissarides Model

This section lays out a discrete time version of the Mortensen and Pissarides [28] model.12

There is a continuum of identical workers with total mass equal to one in this economy,

along with a continuum of potential firms, potentially having an infinite mass. Further, each

firm consists of only one job to which only one worker is attached. Workers are assumed

to be risk neutral, with discount factor β lying between zero and one. Time spent working

is restricted to be either zero or one, meaning that workers provide one unit of labor when

employed and zero when unemployed. Labor is the only input for production.13 To hire a

worker, a firm first must open a vacancy that imposes a cost c per period. Other important

assumptions are that workers search for their jobs only when unemployed and that workers’

decision about labor-force participation is ignored.

3.1 Employment Relationship

Each worker-firm pair that engages in production produces output according to the produc-

tion technology:

zityt,

where zit is a random productivity shock that is specific to ith pair in period t and yt

indicates a random aggregate productivity shock in period t, which follows a first order

Markov process. The idiosyncratic productivity shock is assumed to be i.i.d. across jobs and

time.14 The distribution of zit is described by a cumulative distribution function H(zit) whose

support is assumed to be [0,∞). Worker-firm pairs can be destroyed for either exogenous or

endogenous reasons, as in den Haan et al. [19]; matched pairs are exogenously destroyed with

constant probability ρx per period, and those that do not experience exogenous separation

may choose to separate endogenously.

12Although there are some variations in my particular version of the model from the original Mortensen

and Pissarides model (for example, they formulate the model in continuous time), these differences should

not alter the conclusion of this paper.
13Andolfatto [2], Merz [26] and den Haan et al. [19] embed the job-matching friction into dynamic stochastic

general equilibrium models with capital and a risk-averse household. Since these models with capital en-

counter the same problems addressed in this paper, I focus on the problems by ignoring capital. In principle,

adding capital should not alter the conclusions.
14den Haan et al. [19] (p. 495) examine the robustness of their propagation results with respect to the

presence of persistence in idiosyncratic productivity and conclude that their results do not depend on the

assumption that idiosyncratic productivity follows an i.i.d. process.
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The worker who is separated from a job, whether exogenously or endogenously, obtains

b+Ut, where b is the current-period unemployment benefit, and Ut denotes the continuation

value of the unemployed worker net of the current-period unemployment benefit.15

Given the outside options for the worker and firm, the separation decision of the matched

pair can be described as follows. Let Gt denote the joint continuation value of the worker-

firm pair in period t. The surplus of the matched pair over the outside options in period t

is then written as:

Sit = zityt + Gt − (Ut + b). (8)

The worker and firm bargain over this joint surplus. The negotiation is resolved according

to the Nash bargaining solution, where the firm and the worker take a fixed proportion of

Sit, π and 1− π, respectively. Since the current-period return becomes lower as zit declines,

there exists a level ẑit such that Sit < 0 for zit < ẑit, where both parties agree to abandon

their relationship, while Sit ≥ 0 for zit ≥ ẑit, where both parties agree to maintain their

relationship and engage in production in this period. The level of ẑit is referred to as the

separation margin. Associated with ẑit is the endogenous separation rate:

ρit =

∫ ẑit

0

dH(zit).

The overall separation rate is given by ρx + (1− ρx)ρit.

3.2 Matching Market

Unemployed workers and firms with vacant jobs engage in search activity in a matching

market, which is characterized by a constant-returns-to-scale aggregate matching function:16

mt = m(ut, vt), (9)

where mt denotes the number of matches formed in the period-t matching market, ut denotes

unemployment, and vt denotes vacancies. The matching function m(.) is increasing in both

arguments. On average, an unemployed worker finds a firm each period with probability

m(ut, vt)

ut

≡ λw
t . (10)

15The symbol b is referred to as “unemployment benefit” simply for convenience, even though it is not a

transfer from the government. More precisely, b should be considered as home production or utility from

leisure that unemployed workers enjoy. The firm’s outside option alternative to production is zero in the

benchmark model, as we will see shortly.
16This assumption is supported by numerous empirical studies. Previous work for the U.S. includes

Blanchard and Diamond [4] and Bleakley and Fuhrer [8]. See Petrongolo and Pissarides [29] for an extensive

survey on this issue.
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Similarly, a vacant job is filled with probability

m(ut, vt)

vt

≡ λf
t . (11)

Specifically, the matching function takes the following form proposed by den Haan et al. [19]:

mt =
utvt(

ul
t + vl

t

)1/l
. (12)

A major advantage of this functional form over the widely used Cobb-Douglas specification

is that the matching probabilities defined in Equations (10) and (11) take on values between

zero and one for all ut ∈ [0, 1] and vt ∈ [0,∞).

3.3 Equilibrium

Consider now the situation facing a firm and a worker in the matching market. When the

firm and the worker meet in period t, which occurs with probabilities λf
t and λw

t , respectively,

the pair draws the idiosyncratic productivity shock from the distribution H at the beginning

of period t + 1 and decides whether to start producing or not. The pair faces exactly the

same decision problem as that of the ongoing firm-worker pairs, whose decision problem is

described in Subsection 3.1. The newly formed pair is also subject to the exogenous and

endogenous separation, and if it survives the separation process, production takes place.

When the pair decides to produce, the firm and worker share the surplus over their outside

options by a fixed proportion as before.

The firm’s outside option, which is the value of having a vacant job, is zero in every

period as a consequence of free entry into the matching market. The free-entry condition is

written as:17

0 = −c + βλf
t (1− ρx)πEt

∫ ∞

ẑt+1

St+1dH(zt+1). (13)

The condition states that, in equilibrium, the vacancy posting cost equals the expected

returns from posting a vacancy.

On the other hand, the worker finds a firm with probability λw
t , and if he accepts the

relationship, he obtains the share 1 − π of surplus St+1 in addition to his outside option

Ut+1 + b. When he does not meet with a firm, or the relationship is rejected after the

meeting, he obtains Ut+1 + b. The continuation value for the unemployed worker is thus

written as:

Ut = βEt

[
λw

t (1− ρx)(1− π)

∫ ∞

ẑt+1

St+1dH(zt+1) + Ut+1 + b

]
. (14)

17In what follows, the i subscripts are suppressed because the idiosyncratic productivity shocks are assumed

to be independent across time and worker-firm pairs.
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Next, consider the joint returns of a worker-firm pair that produces in period t. Given

that the firm’s outside option is zero, the joint outside option for the relationship equals

Ut+1 + b. If the relationship survives the separation process at the beginning of period t + 1,

it receives St+1 in addition to Ut+1+b. Thus the following continuation-value equation holds:

Gt = βEt

[
(1− ρx)

∫ ∞

ẑt+1

St+1dH(zt+1) + Ut+1 + b

]
. (15)

Finally, unemployment evolves according to:

ut = ut−1 + [ρx + (1− ρx)ρt] (1− ut−1)− (1− ρx)(1− ρt)m(ut−1, vt−1), (16)

where the second and third terms on the right-hand side are the flows into and from the

unemployment pool, respectively.

The period-t aggregate state variables of the economy consist of aggregate productivity

and the number of unemployed at the beginning of period t, ut−1 − mt−1. Letting st =

{yt, ut−1−mt−1} be a set of the period-t aggregate state variables, the recursive equilibrium

is defined by a list of functions, G(st), U(st), v(st) and ẑ(st), such that (i) equations for

continuation values for a vacant job (13), an unemployed worker (14), and a operating job

(15) hold; (ii) the separation margin ẑ(st) is determined by ẑtyt +G(st)−U(st)− b = 0; and

(iii) these conditions are satisfied under the evolution of aggregate productivity yt (specified

below), and unemployment (Equation (16)).18

3.4 Calibrating the Model

This section describes the model calibrations. I first calibrate the model just laid out, which

features the endogenous separation decision. I also present the calibration for the specifica-

tion that assumes the fixed separation rate. This latter specification can be calibrated as a

special case of the former. Although the latter specification is not supported by the data as

shown in Subsection 2.4, examining the performance of the latter model serves to clarify the

fundamental nature of the problems of the model.

I assume the following aggregate productivity process for both specifications:

ln yt+1 = ξ ln yt + εt+1, (17)

where εt is taken to be independently and identically distributed (i.i.d.) normal with zero

mean and standard deviation σε. This process for aggregate productivity is commonly used in

18See the appendix for the solution algorithm.
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the RBC literature. Following the literature, I set ξ and σε at 0.95 and 0.007, respectively.

I also assume for both specifications that the discount factor β is 0.99, which implies an

annual interest rate of 4 percent, and that the bargaining parameter for firms π is 0.5, as is

standard in the literature.

3.4.1 Benchmark Specification

I start with the steady-state version of the law of motion for unemployment (Equation (16)):

[ρx + (1− ρx)ρ](1− u) = (1− ρx)(1− ρ)λwu. (18)

To calibrate the above equation, I make use of the empirical evidence on the worker match-

ing probability and the overall separation rate ρ + (1 − ρx)ρ. The implied unemployment

rate in the model economy is then computed. I refer to CPS worker flow data to pin down

the overall separation rate. Using Bleakley et al.’s [7] data set, I find the quarterly sepa-

ration rate from employment at around 0.10 over the available sample period. The worker

matching probability is determined from the unemployment duration estimated by Clark

and Summers [13]. They show that the measured unemployment duration is substantially

downward biased because of reporting errors induced by the presence of the out-of-the-labor-

force state. As also discussed by Cole and Rogerson [14], the main issue is that measured

unemployment durations do not capture the expected time between employment spells but

rather the expected time before leaving the unemployment state to either the employment

state or the out-of-the-labor-force state, which is problematic in the face of the fact that there

is a large flow out of the labor force into employment every period.19 Given that the model

abstracts from the out-of-the-labor-force state, it appears appropriate to treat the expected

time between employment spells as the “unemployment” duration in the model economy.20

Clark and Summers estimate average unemployment duration at 19.9 weeks in 1974, which

is translated into the matching probability of 0.65 per quarter. Taking ρ + (1 − ρx) = 0.1

and λw = 0.65 as given, we can compute the implied unemployment rate at 0.146. This is

obviously much higher than the measured unemployment rate in the U.S. whose historical

average is around 6 percent. The higher implied unemployment rate here simply reflects

that I measure unemployment duration as the expected time between employment spells,

including those who are looking for a job being out of the labor force. In fact, referring to

19As Bleakley et al.’s [7] data set indicates, the flows between N and E are roughly of the same magnitude

as those between U and E. See also Blanchard and Diamond [5].
20Note that the correction is essentially equivalent to treating as “unemployed” those who are identified

as being out of the labor force but who “want a job,” as well as those who are officially unemployed.
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Blanchard and Diamond [5], den Haan et al. [19] identify 11.2 million job seekers and 93.2

million employed workers, on average, for the period of 1968-1986. These estimates yield

u =
11.2

93.2 + 11.2
' 0.11.

Using this unemployment rate together with either ρ + (1 − ρx) = 0.1 or λw = 0.65 gives

two other sets of estimates that are consistent with Equation (18). My results are based on

the first set of estimates. But the results presented below are insensitive with respect to the

choice of the other two sets of estimates.

To break down the overall separation rate into exogenous and endogenous parts, I adopt

the interpretation that the model’s endogenous separation rate corresponds to the permanent

layoff rate.21 Valletta [39] calculates the share of permanent layoffs out of the total incidence

of separation over the period 1976−1998 and shows that it fluctuates around 25 percent. This

evidence allows me to set ρ at 0.025.22 Using ρ = 0.025 together with the total separation

of 0.1, the exogenous separation rate is set equal to 0.083.

Next, the steady-state matching probability for firms λf is set equal to the same value

as the worker matching probability 0.65. This choice is made simply because the equal

matching probabilities imply the equal steady-state elasticities of the number of matches

with respect to unemployment and vacancies, i.e., 0.5, under den Haan et al.’s [19] matching

function used in this paper (Equation (12)).23 I could alternatively refer to den Haan et

al.’s [19] estimate of the firm matching probability equal to 0.71. The numerical results

below are again robust to this alternative choice.

The parameters l, b, and c are uniquely determined by requiring the steady-state version

of the model to match the empirical measures of the unemployment rate, the separation rate,

and the matching probabilities obtained above. Finally, the idiosyncratic productivity shock

is assumed to be i.i.d. lognormal with mean zero and standard deviation σz, following den

Haan et al. [19]. Finally, σz is selected so that the model matches the observed variability of

the separation rate.

21This interpretation for the endogenous separation rate can be found in den Haan et al. [19] and Collard

et al. [15].
22Topel [37] calculates the quarterly permanent layoff rate at 0.018 based on the PSID in 1985. This is

broadly in line with the the value used here.
23den Haan et al.’s matching function implies variable elasticities in contrast to the widely used Cobb-

Douglas specification. This is a natural consequence of the matching probabilities being bounded between

zero and one for all ut ∈ [0, 1] and vt ∈ [0,∞) as I mentioned before.
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3.4.2 Fixed-Separation-Rate Specification

The benchmark model is modified by letting the endogenous separation rate be zero. Ac-

cordingly, idiosyncratic uncertainty is eliminated by setting zt = 1 and σz = 0. Under this

specification, the steady-state version of the evolution of unemployment reduces to:

ρx(1− u) = (1− ρx)λwu. (19)

As in the benchmark specification, the total separation rate and the worker matching prob-

abilities are set equal to 0.1 and 0.65, respectively, implying that the steady-state unem-

ployment rate is 0.146 as in the benchmark case. The worker matching probability and the

unemployment rate deviate from Shimer’s [36] calibration, which sets the steady-state worker

matching probability at 0.34 per month and the steady-state unemployment rate at 0.057.

These differences are due to the fact that Shimer takes reported unemployment as the em-

pirical analogue to unemployment in his model, and accordingly, the matching probability is

computed from the unemployment duration data. On the other hand, I lump together those

who are still looking for jobs being out of the labor force and those officially unemployed and

compute the matching probability from the evidence on non-employment duration. How-

ever, these differences did not have significant impacts on the model’s quantitative properties.

In other words, Shimer’s results are well approximated under my calibration despite these

differences.

The steady-state matching probability for firms λf and the parameter l for the matching

function are set to the same values as in the benchmark specification.

The unemployment benefit b is chosen to be 0.4, following Shimer. This value corresponds

to the upper end of the range of income replacement rates in the U.S. This parameter plays

a crucial role in determining the model’s ability to magnify aggregate productivity shocks,

as shown analytically by Shimer. To see this point intuitively in my framework, first note

that surplus St gets smaller as b gets larger, and thus an aggregate shock has a larger impact

on the surplus in a percentage term. Vacancies then must change by more in a percentage

term in order to ensure that the free-entry condition holds (see Equation (13)). The larger

volatility in vacancies also makes unemployment more volatile as unemployment evolves

according to Equation (16). Note that in the benchmark specification where the separation

decision is endogenous, the parameter b must be assigned to achieve the target level of the

endogenous separation rate, which yields a much higher level of the outside option b = 0.87

than Shimer’s choice. This implies that the benchmark model exhibits larger volatilities

even apart from endogenous fluctuations in the separation rate. The next section shows that
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the “leverage effect” together with endogenous fluctuations in the separation rate makes it

possible for the benchmark model to perform well along the volatility dimensions whereas the

low value of b and the fixed separation rate lead to a serious problem along these dimensions.

Rather than exploring the issue of which specification is more reasonable, I will show that

the model encounters basically the same problems in its vacancy dynamics no matter which

specification is used.

4 Performance of the Model

4.1 Benchmark Specification

Figure 7 presents the model’s impulse responses to a one-standard-deviation negative aggre-

gate shock. The upper right panel shows that vacancies respond to shocks immediately; the

negative shock lowers firms’ expected returns, and thereby vacancies, eventually raising the

matching probability up to the point where the free-entry condition is restored. However,

the initial effects largely disappear in a couple of quarters. From then on, vacancies slowly

converge back to the steady-state level. The behavior after the initial decline is due to the

echo effect; as unemployment rises, the matching probability for the firm becomes higher,

eliminating firms’ incentive to keep cutting vacancies any further. Another important feature

of the model’s responses, as illustrated in the lower left panel of the figure, is that the initial

decline in vacancies produces the lower creation rate, but immediately after the decline, the

creation rate surges to a much higher level than the pre-shock level, reflecting the strong

influence of unemployment.

Figure 8 compares the model and empirical responses. First, observe in the lower right

panel that the model has no trouble in generating a volatility in employment (equivalently

unemployment) that is comparable to the data (actually the model generates too much

volatility). Next, consider the patterns of responses of gross flows behind the employment

stock. As mentioned above, the model’s responses greatly exaggerate the empirical responses;

increases in the creation rate are too large, and the separation rate is too persistent. Finally,

the lower left panel compares the responses of vacancies. As we saw in Section 2, the observed

data strongly favor a hump-shaped and persistent response. Neither of these can be observed

in the model. This problematic behavior of vacancy is the source of the overshooting behavior

in gross flows. Clearly, the immediate recovery of vacancies, due to the echo effect discussed

above, pushes up the creation rate to a higher level than otherwise. Moreover, it also makes

the separation rate too persistent because the surge in vacancies causes the worker matching
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probability to be higher than otherwise. Unemployed workers then find it easier to find next

employment opportunities and thus, in turn, have larger incentives to separate. Observe

also that the initial declines in vacancies in the model and the data are roughly of the same

magnitude. This indicates that lack of volatility of vacancies is not a first-order issue under

the benchmark specification. The more fundamental problem lies in the model’s inability to

produce a hump-shaped and persistent response in vacancies.

Another symptom of the model due to the behavior of vacancies is its inability to generate

an empirically plausible Beveridge curve. The middle row (labelled “Benchmark”) of Table

3 presents the cross correlations between unemployment and vacancies in the model.24 The

model generates only a small negative correlation between the two, whereas the observed

data display a correlation coefficient of −0.95. Observe also that in the model, increases

in unemployment predict future recovery of vacancies, and this relationship shows up as

positive correlations between period-t unemployment and future vacancies. In the observed

data, however, we do not observe this pattern. The data display strong negative correlations

at all leads and lags with some indication that vacancies lead unemployment.

4.2 Fixed-Separation-Rate Specification

Figure 9 displays impulse responses of the model economy where the separation rate is fixed.

An important observation here is that the echo effect in vacancies is still present in the model

but weaker than in the preceding case; vacancies recover only half way initially and then

slowly converge to the steady-state level. In the benchmark case, on the other hand, almost

all the initial response is corrected within a few quarters. This weaker echo effect is explained

by the fact that unemployment volatility is much smaller under this alternative specification

because of the lower outside option and the fixed separation rate. Figure 10 puts together

the model and empirical responses under the alternative specification and clearly illustrates

Shimer’s [36] point that the model generates only small variabilities relative to the data.

As discussed in Subsection 3.4.2, this volatility issue arises because of the choices that the

separation rate is fixed and the outside option for the matched pair is set low.

The less substantial echo effect makes it easier for the model to generate negative cor-

relations between unemployment and vacancies, which we can see in the last row of Table

24The statistics of the model economies are based on 100 simulated samples, each of which consists of 327

periods, where only the last 127 observations are used to compute the statistics. The number of observations

corresponds to the available sample period of CPS worker flow data. The first 200 observations are ignored

to randomize initial conditions. The data are logged and HP filtered with the smoothing parameter 1600.
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3. Note that given the timing of the model, unemployment responds to the shock only in

the next period under the fixed-separation-rate specification. It is therefore appropriate to

compare the correlation between period-t unemployment and one-period-lagged vacancies

with the contemporaneous correlation in the observed data. As expected, current-period un-

employment is highly negatively correlated with one-period-lagged vacancies in the model.

This result corresponds to Shimer’s simulation result.25 However, even though the model

is able to generate the strong negative correlation under this alternative specification, the

correlation patterns of the model still substantially differ from the observed pattern. Impor-

tantly, the echo effect is still present, though weaker, making it impossible for the model to

generate a hump-shaped response, which is found to be a robust feature of the data.

4.3 Looking at Individual Responses

I have argued so far that the model has a serious problem in its vacancy dynamics, by

visually comparing the model and empirical responses; the lower left panels of Figures 8 and

10 clearly indicated that the median empirical responses of vacancies are of quite different

shape from the model responses. Recall, however, that the bounds are computed for each

period rather than for the entire functions. Given that the model responses are actually

within the bands almost all the time, it is important to examine the individual responses.

To confirm that my claim is valid, I calculate the fraction of the responses that roughly

match the model’s predictions about the vacancy behavior to the total number of responses

that satisfy the sign restrictions. Specifically, I select the responses that meet the following

two criteria in addition to the sign restrictions:

∂vt

∂ωagg,t

> 0,

∣∣∣∣
∂vt+i−1

∂ωagg,t

∣∣∣∣ >

∣∣∣∣
∂vt+i

∂ωagg,t

∣∣∣∣ for i = 1, 2, 3.

where ωagg,t denotes an aggregate shock in period t. The first criterion indicates that vacan-

cies must drop (increase) in the impact period of the negative (positive) aggregate shock.

The second criterion says that the response of vacancies then approaches toward the steady-

state level in the subsequent two periods.26 Note that these criteria actually allow for a much

wider class of responses than the model responses shown in Figures 7 and 9. In particular,

these criteria do not exclude the possibility that vacancies slowly move back toward the

25Since Shimer works on a continuous time model, there is no timing issue in his model.
26The results are not sensitive with respect to setting the horizon longer.
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steady-state level following an initial drop. The idea here is to pick up the responses that

are not hump shaped and to consider them as consistent with the model. Table 4 presents

the results. Surprisingly, only 4 draws meet the above criteria out of the total of 3,149 draws

that satisfy the three sign restrictions. This exercise clearly confirms my claim.

5 Conclusion

This paper has shown that the cyclical behavior of vacancies in the standard labor-matching

model is counterfactual, implying that the model’s key equilibrium condition is not supported

by the observed data. Whereas the model predicts that vacancies respond to shocks with no

delay and are not persistent, the data strongly favor a hump-shaped and persistent response

of vacancies. I have also found that the problems in vacancy behavior cause gross flows in

the model to exhibit counterfactual properties.

I propose two possible modifications to the model. First, recall that in the model, rises

in unemployment produce an incentive for firms to open up vacancies even though aggregate

conditions are not favorable. Notice that the statement is valid only under the assump-

tion that workers engage in search activities only when they are unemployed. That is,

countercyclical unemployment directly implies countercyclical search activities under this

assumption, thus causing a strong echo effect. It is then clear that anything that generates

procyclical search activities may reduce the echo effect caused by countercyclical unemploy-

ment. Allowing for on-the-job search could be one such candidate as the outside option

for on-the-job seekers is higher (lower) during booms (recessions).27 Barlevy [3] develops a

matching model with on-the-job search and, in fact, emphasizes the mechanism in his model

that fewer vacancies during recessions give workers a difficult time in reallocating themselves

into better employment relationships. Although he does not explore the quantitative im-

plications for vacancy dynamics, this story appears to be in line with observed persistence

in vacancies. Mortensen [27] examines the quantitative implications of on-the-job search

extending the standard Mortensen and Pissarides [28] framework. His simulation result in

fact displays a somewhat higher negative correlation between unemployment and vacancies

27Endogenizing the labor market participation decision may also introduce procyclical search activities

into the model (e.g., in the form of a discouraged worker effect). In this case, however, unemployment must

be procyclical in order to eliminate the echo effect. Veracierto [40] shows that introducing the participation

decision into the Lucas-Prescott island model counterfactually produces procyclical unemployment. He also

argues that the result holds in the Mortensen and Pissarides labor-matching framework.
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than his earlier result with Pissarides.28 A remaining problem with this approach, however,

is that there appears to be no reason for vacancies to respond to shocks slowly, displaying a

hump-shaped pattern.

Second, it may be possible to interpret the persistent and hump-shaped response of

vacancies in the data as the evidence suggesting presence of some frictions in creating new

positions. Caballero and Hammour [10] develop a vintage model in which job creation

requires relation-specific investment as well as a search cost and show that the specific

investment component serves to produce a negative comovement between unemployment and

vacancies and to “decouple” the positive comovement between creation and destruction.29

Fujita and Ramey [21] examine cyclical implications of heterogeneity in a job creation process

building upon the standard Mortensen and Pissarides framework. Specifically, they augment

the model by introducing costly planning for brand-new jobs and the option to mothball

preexisting jobs. These modifications are shown to greatly improve the model’s quantitative

performance.

6 Appendix: Solution Algorithm

This appendix presents the solution algorithm of the model. The algorithm applied here is a

non-linear global projection method. General discussions on the same class of methods can

be found in Judd [24], [25].30

Before presenting the algorithm, I first rewrite the model by following the convention

that an unprimed variable denotes its current-period value, and a primed variable denotes its

next-period value. Recall that the current-period state variables consist of s = {y, u −m}.
The recursive equilibrium is a list of functions G(s), U(s), v(s) and ẑ(s) such that (i) the

continuation-value equations hold:

G(s) = E

[
β(1− ρx)

∫ ∞

ẑ(s′)
S(z′; s′)dH(z′) + U(s′) + b | y

]
, (20)

U(s) = E

[
βλw(1− ρx)(1− π)

∫ ∞

ẑ(s′)
S(z′; s′)dH(z′) + U(s′) + b | y

]
, (21)

where S(z′; s′) = z′y′+G(s′)−U(s′)−b and λw = m(u′, v(s))/u′; (ii) the free-entry condition

28Pissarides [31] and Chapter 4 of Pissarides [32] also allow for on-the-job search, but they focus on

steady-state analysis.
29They show that the model with the search cost alone predicts positive comovements between these

variables, as is consistent with the prediction of the standard labor-matching model.
30See also Gasper and Judd [22] and Christiano and Fisher [12].
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holds:
c

λf
= E

[
βπ

∫ ∞

ẑ(s′)
S(z′; s′)dH(z′) | y

]
, (22)

where λf = m(u′, v(s))/v(s); (iii) the separation condition ẑy + G(s)− U(s)− b = 0 defines

ẑ(s); (iv) these conditions are satisfied under the evolution of aggregate productivity and

unemployment:

ln y′ = ξ ln y + ε′, (23)

u′ = u + [ρx + (1− ρx)ρ(ẑ(s))] (1− u)− (1− ρx)(1− ρ(ẑ(s))m. (24)

The first step in numerically solving the model is to approximate the right-hand side of

Equations (20), (21), and (22) by a tensor product of second-order Chebyshev polynomials

of each state variable. Note that each function has 33 = 27 unknown coefficients, so there

are a total of 27 ∗ 3 = 81 unknown coefficients. I use fixed-point iteration to solve for these

coefficients. The iteration proceeds as follows; using some initial guess for the 81 unknown co-

efficients, the current period separation margin can be computed by the separation condition,

which also gives the separation rate from ρ(ẑ(s)) =
∫∞

ẑ(s)
dH(z). The integral is computed by

Simpson’s rule with 15 nodes. One can then compute u′ from the evolution of unemployment

(24). Next, making use of the approximating function for E
[
βπ

∫∞
ẑ(s′) S(z′; s′)dH(z′) | y

]
in

the free-entry condition (22) allows one to obtain the equilibrium level of vacancies v(s). The

matching technology then reveals the outcome of the matching market m(u′, v(s)) given the

levels of vacancies and unemployment. Given the next-period values of unemployment u′

and the distribution of the aggregate productivity shock ε′, one can actually compute the

conditional expectations appearing on the right-hand side of Equations (20), (21), and (22).

The integral inside the bracket in Equation (20) is again computed by Simpson’s rule with

15 nodes. The conditional expectations associated with the aggregate productivity shock

are numerically computed by Gauss-Hermite quadrature with 5 nodes. These conditional

expectations are evaluated at 27 grid points that are chosen by finding three zeros of Cheby-

shev polynomials for each state variable and taking all possible combinations of the roots.

The new set of coefficients of the approximating functions is obtained by equating the values

of the right-hand sides of Equations (20), (21), and (22) to the values of the approximating

functions at 27 grid points. Since there are 27 coefficients in each approximating function,

this uniquely pins down the new set of coefficients (i.e., orthogonal collocation method). The

iteration continues until convergence of the 81 Chebyshev coefficients is achieved.
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Table 1: Parameter Values

Symbol Concept Benchmark Exogenous
Separation

ξ AR(1) coefficient of aggregate 0.950 0.950
productivity

σε Standard deviation of the aggregate 0.007 0.007
productivity shock

b Unemployment benefit 0.872 0.400
σz Standard deviation of the idiosyncratic 0.250 0.000

productivity shock
ρx Exogenous separation rate 0.083 0.100
π Bargaining weight of the firm 0.500 0.500
l Parameter in the matching function 1.609 1.609
β Discount factor 0.990 0.990
c Vacancy posting cost per period 0.124 0.436

Table 2: Steady-State Values

Symbol Concept Both
Calibrations

λw Worker’s matching probability 0.650
λf Firm’s matching probability 0.650
u Unemployment rate 0.156
v Vacancy rate 0.156
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Table 3: Cross Correlations Between Unemployment and Vacancies

Corr(vt+k, ut) −3 −2 −1 0 1 2 3

US data −0.60 −0.80 −0.94 −0.95 −0.81 −0.59 −0.35
(0.068) (0.054) (0.014) (0.014) (0.046) (0.058) (0.109)

Benchmark −0.43 −0.52 −0.51 −0.17 0.24 0.34 0.33
Exo. Separation −0.58 −0.77 −0.82 −0.33 −0.10 0.04 0.13

Notes: All series are logged and HP filtered. Standard errors presented in parentheses are computed
by the den Haan and Levin’s [18] GMM-VARHAC procedure. u = LHUR · LHPAR/10000,
v = LHELX ·LHUR ·LHPAR/10000, where LHUR : unemployment rate, LHPAR : labor-force
participation rate, LHELX : help-wanted ads as percentage of unemployed. These data are taken
from DRI-Webstract (former CITIBASE). Sample period is 1972Q1-1993Q1.

Table 4: Probability that the Prediction of the Matching Model is Supported by the Data

number of probability sign K
valid draws (%) restrictions

3, 149 0.13 1, 2, 3 4
7, 662 0.39 1, 2, 3 2
3, 986 0.10 1, 2 4

12, 431 0.51 1, 2 2

Notes: The first column shows the number of valid draws (from a total of
40,000 draws) that satisfy the sign restrictions listed in the third column. The
restrictions are discussed in Subsection 2.2. The third and fourth columns give
the probability (%) that the predictions of the Mortensen and Pissarides model
regarding the behavior of vacancies are met. See page 19 for the criteria.

27



Figure 1: Empirical Impulse Responses: Sign Restrictions 1, 2 and 3, K = 4
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Notes: The three sign restrictions are discussed in Subsection 2.2. The three lines are the 10th

percentile, the median, and the 90th percentile of the posterior distribution.
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Figure 2: Empirical Impulse Responses: Sign Restrictions 1, 2 and 3, K = 2
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Notes: The three sign restrictions are discussed in Subsection 2.2. The three lines are the 10th

percentile, the median, and the 90th percentile of the posterior distribution.
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Figure 3: Empirical Impulse Responses: Sign Restrictions 1 and 2, K = 4
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Notes: The three sign restrictions are discussed in Subsection 2.2. The three lines are the 10th

percentile, the median, and the 90th percentile of the posterior distribution.
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Figure 4: Empirical Impulse Responses: Sign Restrictions 1 and 2, K = 2
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Notes: The three sign restrictions are discussed in Subsection 2.2. The three lines are the 10th

percentile, the median, and the 90th percentile of the posterior distribution.
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Figure 5: Variance Decomposition for Employment Growth and Vacancies: Sign restrictions

1, 2 and 3 are imposed. K = 4.
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Notes: The sign restrictions are discussed in Subsection 2.2. The three lines are the 10th

percentile, the median, and the 90th percentile of the posterior distribution.
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Figure 6: Variance Decomposition for Employment Growth and Vacancies: Sign restrictions

1, 2 and 3 are imposed. K = 4. Responses of vacancies in the impact period are restricted

to be negative.
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Notes: The sign restrictions are discussed in Subsection 2.2. The three lines are the 10th

percentile, the median, and the 90th percentile of the posterior distribution.
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Figure 7: Impulse Responses: Endogenous Separation
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Figure 8: Comparison between Model Impulse Responses and Empirical Impulse Responses:

Endogenous Separation
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Notes: Responses in the model economy are shown by the thick solid lines. Other lines plot the

empirical responses that are taken from Figure 1. All responses are expressed as deviations from

the steady-state levels. Responses of vacancies and employment are expressed as log deviations.
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Figure 9: Impulse Responses: Fixed Separation Rate
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Figure 10: Comparison between Model Impulse Responses and Empirical Impulse Responses:

Fixed Separation Rate
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Notes: Responses in the model economy are shown by the thick solid lines. Other lines plot the

empirical responses that are taken from Figure 1. All responses are expressed as deviations from

the steady-state levels. Responses of vacancies and employment are expressed as log deviations.
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