
FEDERAL RESERVE BANK OF PHILADELPHIA

Ten Independence Mall, Philadelphia, PA 19106-1574• (215) 574-6428• www.phil.frb.org

WORKING PAPERS
RESEARCH DEPARTMENT

WORKING PAPER NO. 02-18
TECHNOLOGY FLOWS MATRIX ESTIMATION

REVISITED

F.M. Scherer
Visiting Scholar, Federal Reserve Bank of Philadelphia

November 2002



WORKING PAPER NO. 02-18
TECHNOLOGY FLOWS MATRIX ESTIMATION

REVISITED

F.M. Scherer
Visiting Scholar, Federal Reserve Bank of Philadelphia

November 2002

The opinions expressed in this paper are those of the author and do not necessarily
represent those of the Federal Reserve Bank of Philadelphia.



1

TECHNOLOGY FLOWS MATRIX ESTIMATION REVISITED

F. M. Scherer*

November 2002 Revision

1.  Introduction

During the early 1980s I estimated a highly disaggregated matrix of

technology flows from U.S. industries that performed research and

development (R&D) to industries expected to use the R&D outcomes.  The

results, extended to analyze how technology flows affected productivity

growth in the 1960s and 1970s, are reported in Scherer (1982a, 1982b,

and 1984).  In this paper I return to the scene of the crime two

decades later to see whether the desired matrix of technology flows

could have been obtained using publicly available information, or

information that could be gleaned as a by-product of existing surveys,

without a costly effort extracting micro-data from a large sample of

individual invention patents.  

2.  Significance of the Problem

It is well accepted among economists that the huge gains in

consumers' material prosperity achieved in industrialized nations

during the past two centuries are attributable in significant measure

to technological change.  See e.g. Schumpeter (1942), Solow (1957),

Denison (1979), and Mokyr (1990). 

________________________ 

*Professor emeritus, Harvard University; lecturer, Princeton

University; and visiting scholar, Federal Reserve Bank of Philadelphia.
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The original version of this paper was presented as a keynote address
at the International Input-Output Association Conference in Montreal in

October 2002.

Determining the precise contribution to those gains of new technology,

as distinguished from augmented human capital, more intense

collaboration of physical capital with labor inputs, shifts in demand

from the goods and services of low-productivity to high-productivity

industries, favorable governmental institutions and infrastructure, and

the like, is more difficult.  To solve the puzzle, one must understand

how each of these factors is linked to productivity growth changes,

usually measured over the span of a few years or decades.  The received

consensus is that technological change defined narrowly has been

responsible for a substantial but minority fraction of observed

productivity growth.  See e.g. Griliches (1995).  

On that inference there are of course dissenting views.  Dale

Jorgenson (1990) has tended in the past, even if less so recently, to

assign relatively more weight to physical capital accumulation and less

to technical change in the Solowian residual sense.1  More recently,

William J. Baumol (2002) has argued that the received 

consensus underestimates the role of technological change because,

absent the scientific and technological advances that have occurred
since the Industrial Revolution, it would have been difficult or even

impossible to reach beyond immediate human subsistence needs,

undertaking the education with which human capital has been augmented

and accumulating complementary physical capital.  On this broader

interpretation, toward which I incline, my paper will have little to
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say.  Rather, I focus on the problem of measuring more precisely the
relatively short-run links between industrial R&D, as one source of

technological change, and the growth of productivity.

This has typically been done by regressing estimates of industrial

productivity growth on diverse indices of industrial technological

advance, usually proxied by some estimate of research and development

performed.  The basic difficulty with this approach has been known at

least since the publication of a brief paper by Gustafson (1962), who

showed that the vast majority of industrial R&D, estimated from my own

research (Scherer 1982a) to be on the order of 75 percent, was aimed at

developing new and improved products sold to other firms and to end

consumers.  The technological advances from such product R&D would

normally be embodied in the goods and services sold by the R&D

performers and from which purchasers derive benefits, including

enhanced productivity.  Only about a fourth of industrial R&D was

process-oriented, that is, aimed at improving the performing firms'

internal production processes and hence arguably raising the

performers' labor or total factor productivity.  To illustrate, most of

the R&D performed by the Pratt & Whitney Division of United

Technologies leads to improved turbojet engines that increase the

reliability, fuel economy, and range of the civilian and military

aircraft in which they are embodied.  The new drugs developed by Merck

are sold to health maintenance organizations and end consumers,

reducing the frequency and length of hospital stays and improving

consumers' health and their productivity in work environments.  Quite
generally, significant benefits from product R&D are derived by those

who purchase the goods and services in which the results of the R&D are

embodied.  For such product R&D, again, the majority of all industrial

R&D, relating the productivity growth of industry i to the R&D

performed in industry i, as all too many economists have done, could
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lead to seriously erroneous insights.

To move beyond this facile generalization requires an analysis at

two levels of subtlety.  At the first level, one focuses on what

happens in an exact economic analysis of the changes wrought by product

R&D.  In Figure 1, we assume that a firm's R&D efforts lead to a new

product for which the demand curve (taking into account the existence

and prices of inferior substitute products) is represented by AD.  If

the firm has a monopoly in the new and superior product, it will equate

marginal revenue with marginal cost (affected by process R&D, and

assumed constant at OC per unit) and set price OPM, realizing profits

of PMBFC.  If previously the firm was in competitive equilibrium with

revenues barely covering input costs, the profit represents an increase

of revenues over input costs correctly attributable to the originating

firm's benefit.  But the firm's customers also gain a surplus measured

by near-triangle ABPM.  Thus, in a correct accounting, part of the

social surplus from the R&D is captured by the firm, part by its

customers.2  If however several firms come up with similar new products,

they may compete on a price basis and force the subject firm's price

down to OPC.  Now the lion's share of the benefits from the R&D is

realized by consumers and only the smaller quantity PCGHC is

appropriated by firms performing the R&D.  The more price competition

there is, the smaller is the originating firm's share of the social

benefits from its innovation.3  Ignoring second-order general

equilibrium effects on other monopolistically competitive firms' demand

curves, which are sometimes substantial, this is the division a
theoretically correct analysis of the benefits from industrial R&D

would reveal.

However, the data with which economists must work in the real

world of productivity analysis often fall short of theoretical ideals.
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To measure productivity growth, we attempt to assess output changes in
real, i.e., constant purchasing power, terms.  Normally output changes

are measured by comparing the value of a firm's (or more likely,

industry's) sales (or value added) at an initial point in time with the

value at a terminal point in time.  But to perform the comparison

correctly, nominal values must be deflated by price indices reflecting

price level changes and changes in the product mix for a given

industry.  Product R&D leads to improved products which displace

inferior products from market baskets.  Obtaining price indices that

correctly account for the change in product quality is difficult.  Most

analyses have concluded that the price indices compiled by government

agencies such as the Bureau of Labor Statistics tend to underestimate

the value-enhancing effects of product quality increases, and hence

when used as deflators, to underestimate the gain in real output value

from an initial period to a post-innovation period.  See e.g. Griliches

(1979).  The more they underestimate the real value gain, all else

equal, the lower is the productivity growth attributed to the industry

selling improved products, and the lower is the imputed input cost to

industries using the products, whose total factor productivity gains

may be overestimated as a consequence.

The computer industry was for many years singled out as one in

which official price deflators egregiously underestimated the rate at

which technological improvements reduced the cost of computing

operations -- estimated to be falling at roughly 28 percent per year

during the 1960s and 1970s.  See e.g. Flamm (1987, pp. 27-28).  To
correct the problem, the U.S. Bureau of Economic Analysis and then the

Bureau of Labor Statistics began using essentially hedonic (i.e.,

function cost-based) price indices that implied a much more rapid rate

of implicit computer services price decline and hence a much more rapid

rate of real output value and productivity increase for the computer
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industry -- e.g., 26.8 percent per year for the
1973-1988 productivity growth data compiled by the National Bureau of

Economic Research.  See Young (1989) and Scherer (1993, p. 10).

The implications of these measurement conventions are illustrated

in Figure 2.  Suppose computer users base their purchasing decisions on

the real cost, adjusted for general purchasing power changes, of

computing services per gigaflop (billion floating point operations).

In base period 1, the price is OP1 and the quantity consumed, given the

assumed demand relationship, OQ1.  Now suppose the price per gigaflop

falls by period 2 to OP2, leading to an increase in the quantity of

computer services demanded to OQ2.  Ignoring changes in the economy-wide

price level, one would conclude from contemporary Census reports that

the value of computer industry output has increased slightly from P 1AQ1O

to P2BQ2O.  But with hedonic methods, the price index in period 2 in

terms of period 1 prices is P 2/P1 and so the deflated real output of the

industry increases to P 1HQ2O.  This is a very substantial increase.

Indeed, the implied consumers' surplus gain P 1HBP2 exceeds by the near-

triangle AHB the actual increase P 1ABP2. Given these assumptions,

hedonic or function cost-based price indices tend to overestimate the

real value gains from improved products, whereas traditional price

indices tend to underestimate them.  

For purposes of tracing where and how much productivity growth

occurs, the use of hedonic price indices tends to fix the locus of

gains as the industry from which the improved products originate and
indeed to overestimate those gains relative to the actual economic

benefits.  For industries purchasing the improved computers, which from

Figure 1 can be assumed to derive substantial net benefits, the use of

function cost-based price indices tends to exaggerate the value of the

capital goods purchased and hence to reduce or perhaps eliminate the
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measured value of total factor productivity growth (even if not labor
productivity growth without a capital intensity adjustment).  Quite

generally, the more price deflators underestimate the value of product

improvements, the less productivity growth one is likely to attribute

to industries originating the improvements.  The more (as a result of

hedonic methods) they overestimate the value of the improvements, the

more productivity growth one is likely to attribute to industries

originating the improvements.  The shift to hedonic price deflators for

computers has tended to show the total factor productivity gains from

rapid technological progress to be concentrated in the computer

producing sector even though, because of competitive pricing, virtually

all sectors of the economy have benefitted substantially from that

progress.4

These considerations have an important bearing on attempts to

estimate econometrically the impact of R&D on productivity growth.  If,

as is often the case, price deflators do not fully account for the

benefits of product improvement, it is necessary to trace the flow of

product R&D out to using industries in order to estimate its full

contribution.  On the other hand, when hedonic price deflators are

employed, most if not all of the impact will be found within the

industry originating the product R&D.  My experiments with alternative

deflator assumptions for computers within a much larger sample of

industries (Scherer 1993) support this generalization.

The focus here on benefits captured by either the innovator or
purchasers of innovative products does not exclude the possibility of

technology flowing through the economy in other ways.  Zvi Griliches

(1979) distinguishes between "rent" spillovers," which encompass the

technology flows analyzed here, and "knowledge spillovers," which occur

without embodiment in goods exchanged through market transactions.  To
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the extent that "upstream" producers provide disembodied know-how to
their customers along with the sale of hardware or software -- and

there is reason to believe that such transfers are widespread5 -- the

two will indeed be correlated.  But disembodied knowledge may also flow

through the economy in ways unrelated to market transactions, e.g.,

through the third parties' examination of patent specifications and

articles in technical journals.  These flows are best analyzed not with

the techniques analyzed here but through the tracking of citations

data.  See e.g. Jaffe and Trajtenberg (2002).  

3.  The Original Technology Flows Measurement Effort

Persuaded, rightly or wrongly, that existing measurement methods

required an analysis of industries using innovative products to assess

how R&D affected productivity growth, I embarked in the late 1970s upon

a project seeking to trace the flows of embodied technology from
originating to using industries.  The conceptual basis for the effort

was laid in Jacob Schmookler's pioneering (1966) book.  Nestor

Terleckyj (1974) had estimated a small-scale predecessor technology

flows matrix and used it to evaluate the contributions of industrial

R&D to productivity growth.

The event precipitating my research was the impending publication

(U.S. Federal Trade Commission 1981) of data on industrial research and

development expenditures for 1974 much more richly disaggregated (to

263 sectors) and with much less cross-industry contamination than any

that had been available previously.  Collection of the so-called Line

of Business data, it should be noted, proceeded with valuable support

from an affidavit submitted by Wassily Leontief in litigation that

eventually reached the U.S. Supreme Court.  Given these new data plus

consternation over the decline of U.S. productivity growth rates,
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foreshadowed by an unprecedented drop in constant-dollar industrial R&D
spending, it appeared worthwhile to develop a detailed matrix tracing

technology flows from industries performing R&D to industries using the

fruits of that R&D.

The link from R&D spending by individual firms in narrowly-defined

(three or four-digit) industries was effected by analyzing 15,112

invention patents obtained by 443 typically large U.S. corporations

filing Line of Business reports with the Federal Trade Commission.  A

team of four Northwestern University students -- an electrical

engineer, a biology specialist, a chemical engineer, and a mechanically

gifted farm boy -- devoted roughly three months each to extracting from

each patent a battery of information, including the line of business in

which the underlying R&D was done and the industrial fields, identified

in patent specifications to justify the "utility" of claimed

inventions, in which use of the inventions was likely.  Each coding was

reviewed by the author and in questionable cases rechecked, sometimes

through direct contacts with companies.  The coded patents were then

linked to individual lines of business on which companies reported

confidentially to the Federal Trade Commission.  For each of 4,274

individual lines of business, an average R&D cost per assigned patent

was computed. For each patent, its R&D cost, adjusted upward to reflect

origin industry sampling ratios, was then flowed out to one or more of

286 using industries, including personal consumption, to estimate the

technology flows matrix.  For 66 percent of the patents, from one to

three specific industries of use could be identified.6  Their underlying
R&D outlay averages were allocated among multiple industries according

to the using industries' relative purchase volume, as determined from

the 1972 input-output transactions matrix.  The remaining third were

categorized as inventions of general industrial use.  The R&D costs of

those inventions were allocated out to using industries in proportion
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to 1972 input-output transactions flows or (for inventions of
ubiquitous use) economy-wide value added shares, with various

modifications clarified later.  Further methodological details are

reported in Scherer (1984).

Figure 3 provides an aggregated schematic view of the resulting

technology flows matrix.  In 1974, 95 percent of all company-financed

industrial R&D in the United States was performed within manufacturing

industries.  (Since then the contribution of nonmanufacturing

industries, and especially the software and biotech industries,

classified in services, has expanded to a reported 36 percent in 1999.)

Roughly half of the technology originating in the manufacturing sector

during 1974 flowed out to nonmanufacturing industries, arguably driving

productivity growth in those industries.  Only about seven percent of

the R&D performed was directed solely toward creating new and improved

consumer goods.

4.  Reestimation Using Less Labor-Intensive Methods

When the technology flows matrix estimation methodology was

articulated at a National Bureau of Economic Research conference in

1982, discussant Edwin Mansfield observed inter alia (Scherer 1984, p.

462), "I wonder whether it would be possible for Professor Scherer to

compare his findings with what would have resulted if he had simply

used an input-output matrix to allocate R&D expenditures."  Certainly,

if similar results could be obtained in the way Mansfield suggested,

much less effort would have been required to do the job, and the effort

could be replicated economically at regular intervals.  At the time, I

was exhausted both psychologically and financially by the work that had

been accomplished and had plunged into a quite different project, so I

did not follow up on Mansfield's suggestion.  This, I gradually came to
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realize, was a serious mistake.  I was induced to return to the
question by a Bureau of Economic Analysis query as to whether it would

be feasible to estimate technology flows matrices using input-output

data for an extension to the Bureau's satellite accounts program.  With

help from Bureau staff, the requisite machine-readable transactions

data for 1972 were retrieved and a reestimation effort could be

attempted.7  The remainder of this paper reports the results, compares

them to estimates obtained using my original more labor-intensive

approach, and speculates on future opportunities.

4.1   Which Input-Output Matrix?

Several conceptual questions had to be solved.  Among them,

perhaps the most fundamental is whether first-order input-output

transaction matrices should be used to carry R&D from originating to

using industries, or whether the total requirements (Leontief inverse)

matrix, calculating inputs used both directly and indirectly to produce

a given vector of outputs, was a better candidate.  In his pioneering

effort, Nestor Terleckyj used the first-order transactions matrix.

More recently, an ambitious OECD effort (1996) opted for a modified

total requirements matrix approach.  My own approach was eclectic.  For

two-thirds of the patents, little or no resort to input-output data was

required because the patents had been linked directly to using

industries.  For the other third, arguments in favor of each approach

were recognized.  The first-order "make and use" matrix was taken as a

starting point, but for 22 technology-originating industries,
transactions were carried farther from the first-order using industry

to the industry purchasing the output of that industry or in one case

(synthetic fibers) to the third-order user.8  This choice can be

criticized as arbitrary.  Its principal defense is that it was based

upon a detailed understanding, from reviewing 15,112 patents, of how
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the technology originated in diverse industries affected the activities
of downstream industries.

The case for taking into account second and n th order flows is best

summarized by considering the computer industry.  Our basic objective

is to place technological innovations, wherever they originate, in the

industrial sector where they are likely to yield measured productivity

improvements.  (A different objective might lead to alternative

choices.)  As we have seen earlier, improvements in computer technology

have enormously reduced the costs of processing data.  Many of those

improvements have come from innovations in storage devices, which were

in 1972 and are again under NAICS included as part of the four-digit

computer industry, and, following Moore's Law, from innovations

increasing the capacity and speed of microprocessors and memory chips.

Since only the integrated circuits cross industry lines, we focus on

them.  The first-order transaction is from the semiconductor industry

to the computer industry.  But who derives the productivity benefits?

Under the logic of Figure 1, the ultimate beneficiary, since cost

reductions per semiconductor function tend to be passed on by computer

makers to computer buyers, is the computer buyer, not the computer

industry.  However, by the logic of Figure 2, if hedonic price indices

are used to deflate nominal computer industry output, the productivity

effects are likely to show up in the computer industry (unless hedonic

price indices are also used in deflating semiconductor industry

output.)  Thus, depending upon how the productivity data are compiled,

an argument can be made for either a first-order flow (from
semiconductors to computers) or for a second-order flow (from

semiconductors to computer buyers).  My choice in compiling my original

technology flows matrix, recognizing that computer price deflators at

the time understated true cost reductions per data processing

operation, was to implement a second-order flow for semiconductors.
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Ignoring the price deflator problem, consider an improved
synthetic resin originating in old S.I.C. industry 2821 used to make

engineered plastic parts in automobile parts plants.  If the utility of

the innovation comes from faster or less waste-prone molding in the

automobile parts plant, the productivity gains are likely to show up in

the automobile parts industry.  If however the benefit of the

innovation is lighter weight or superior durability relative to parts

previously produced, the productivity benefits are likely to be

realized by industries and end consumers who buy the vehicles

incorporating the parts.

Such ambiguities abound when one tries to trace the locus at which

productivity gains are realized.  Thus, the case for using first-order

transaction as opposed to total requirements matrices is intrinsically

equivocal.  One way to resolve it is to make ad hoc choices depending

upon the perceived dominant character of usage patterns, as I tried to

do in constructing my original matrices.  However, the goal of my

revisited effort was to find simpler solutions, which meant an either-

or carrier matrix choice.  The first-order transactions matrix was

initially given preference, in part because it was closer to my

original approach.9  A still better solution is to pursue both global

alternatives and see which one yields results conforming more closely

to my original matrix (in which, again, two-thirds of the allocations

were based upon patent data) and which approach explains productivity

growth more successfully.  This dual assault on the problem is pursued

here.

4.2  The Diagonal Problem

When published input-output matrices are used as the "carrier" to



14

trace R&D from the industry where it is performed to the industry(ies)
using it, there is inevitably a problem of mismatch between what the

diagonal values measure and what one wishes them to measure.  What

should be on the diagonal of an appropriate carrier matrix is the

fraction of R&D performed by industry i and used by industry i, which

consists preponderantly of process R&D.  Industries vary widely in

their orientation toward process as contrasted to product R&D -- in my

original technology flows sample, from zero percent to 100 percent

process, with a simple average value across industries of 29.9 percent

process R&D and a median of 19 percent.  For industries with a strong

internal process orientation, the input-output transactions diagonal

values are almost always much too low.  For industries (typically the

more research-intensive ones) with low process orientation, the

diagonals are often too "fat," especially when there are extensive

inter-plant shipments within an industry as defined.  For 154

industries with positive process R&D values, the simple correlation

between process R&D as a percent of total R&D, measured using R&D-

weighted patents, and diagonal transaction matrix elements as a

percentage of total intermediate industry shipments (excluding final

demand vectors) was -0.03.  Plainly, the use of input-output data to

estimate the amount of own process R&D fails badly.

In my original application of input-output data to allocate

general-purpose inventions (again, roughly one third of all inventions)

to using industries, I tried to alleviate the intra-industry shipments

problem by reducing diagonal elements to values not exceeding a
fraction measuring the row industry's share of industry output.

However, if input-output matrices were used in the future as the

principal R&D allocator in constructing technology flows matrices, the

results might be improved greatly through the incorporation of

individual industry process R&D ratio estimates.  Such estimates were
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collected in early U.S. R&D censuses and could be added to future
questionnaires with little additional burden on respondents.  Given

this possibility, I constructed alternative carrier matrices in which

the diagonal elements, expressed as fractions of total intermediate

industry output (excluding personal consumption, gross private fixed

investment, inventory changes, and other final demand items), were

replaced by individual industry process R&D fractions derived from the

data on 15,112 patents, with other elements renormalized so that all

included row elements summed to unity.  The technology flows carrier

matrices derived in this way will be called "process-adjusted"

matrices; those without diagonal adjustments will be called "naive"

matrices.

4.3  The Capital Goods Problem

Under standard input-output conventions, the capital goods output

of an industry is allocated in the transactions matrix to a gross

domestic fixed investment category analogous to the personal

consumption category, and not to individual using industries.  If this

convention were accepted at face value, flows of technology embodied in

capital goods delivered to individual using industries would be lost or

mismeasured.  This would be most unfortunate, especially given the

evidence from our analysis of individual patents that 44.8 percent of
all the patents were associated with capital goods products sold to

other industries, not including the 26.2 percent of patents covering

process inventions, many of which would affect internally modified

capital equipment.10  In contrast, only 21.6 percent of the patents

pertained to industrial materials.  Thus, somewhat more than two-thirds
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of the technology flowing from an origin industry to other using
industries and potentially affecting the productivity of the using

industry was embodied in capital goods.  To exclude capital goods

transaction flows from the carrier matrix could lead to serious errors.

Flows of spare parts and other non-capital items treated as inter-

industry transactions originating in capital goods producing industries

could be poor proxies for the flow of capital goods to users.

The U.S. Bureau of Economic Analysis (and apparently the input-

output compilation agencies of other national governments) publishes

separate matrices tracing capital goods flows from producing or origin

industries to using industries.  These are much more highly aggregated

than the transactions matrices -- in the rows, because many industries

sell no capital goods, but more importantly, in the columns, to only 80

using industries in the 1972 version.  

In my original technology flows matrix estimation, I disaggregated

the capital flow transactions in proportion to more narrowly-defined

using industry new capital investment (or for some nonmanufacturing

industries, value added) as a fraction of capital flows for the more

aggregated industry category.  The resulting capital flow estimates

were added to the transactions estimates to arrive at the basic carrier

matrix allocating R&D from origin to using industries.

A similar procedure was followed in reestimating carrier matrices

to determine technology flows from input-output data alone, without
recourse to the detailed patent use codings.  The disaggregations were

from 77 using industries out to 211 more narrowly defined industries.

For 70 of the 192 technology-originating industries, capital flows were

at least five percent of the sum of transactions plus capital flows.

The mean capital flow value was 19.4 percent of combined transactions
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plus capital flows.

As with the transactions matrix lacking capital flow values, the

combined transactions plus capital flows carrier matrix was computed in

two ways -- one without correction of diagonal elements, and one with

diagonals proportional to internal process R&D as a fraction of total

originating industry R&D (and with other row elements renormalized to

ensure unit row sums for all using (i.e., column) industries, excluding

personal consumption and other final demand items).  Capital goods

supplying industries were on average much less process invention-

intensive than industries with negligible capital goods flows.  For

capital goods suppliers, R&D devoted to process inventions was 8.6

percent of total R&D; for the latter (i.e., industries with at most

trivial capital flows), process R&D averaged 42.1 percent of total R&D.

Ambiguity over whether one should base technology flows on the

first-order transactions matrix or the total requirements matrix

largely vanishes when capital flows are the focus.  Except when the

capital goods developer is the company that will utilize the new

technology, in which case the R&D should be characterized as process

R&D, the productivity benefits of new capital goods are normally

realized by the first downstream purchasing industry.11

5.  Reestimated vs. Original Values

Two criteria are applied to judge the superiority of alternative

technology flows matrix estimation methods.  For one, the technology

flows matrix created during the early 1980s by classifying 15,112

patents can be viewed as a standard against which alternatives should
be evaluated.  To be sure, the original sample covered only the
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activities of 443 corporations conducting approximately 73 percent of
all U.S. company-financed research and development in 1974.  Excluded

firms, which were for the most part smaller, could have had different

usage patterns than those of included companies.  And even for the

included companies, one would expect usage patterns to undergo some

statistical variation over time.  Nevertheless, the classifications

were made with extreme care, and because (with an exception to be noted

later) alternative benchmarks do not exist, no better standard for

assessing the revised matrices' accuracy is known.  Second, the output

of alternative matrix estimation methods can be used to predict

productivity growth to see which contender yields the most satisfactory

predictions.   Both approaches are pursued here.

For purposes of predicting productivity growth in technology-using

industries, the most relevant variables are the sums of the technology

flows matrix columns -- that is, the sum of the various amounts of

technology an industry imports from other industries along with the

diagonal element measuring process technology originated by the

industry in question.  These were available for at most 205 industries,

excluding inter alia personal consumption and gross private fixed

investment, but including various government activities.  Many of the

non-manufacturing industries were highly aggregated -- e.g., finance,

insurance, and real estate services -- and tended to dwarf the more

highly disaggregated observations for manufacturing.  Therefore,

separate prediction error computations are also reported for

manufacturing only.  

The relatively disaggregated data were also aggregated back to a

matrix with 42 technology-originating rows and 50 using industry

sectors, including personal consumption, replicating as closely as

possible the 41 x 53 matrix published (with various deletions owing to
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data element confidentiality) in Scherer (1982a, 1984).  The new matrix
resulting from these aggregations is presented here as Appendix Table

1.  That matrix was constructed implementing the assumptions considered

most suitable on a priori grounds -- i.e., with the first-order

transactions and capital flows carrier matrices combined, and with

corrections on the diagonal for the incidence of process technology.

Personal consumption column sums were excluded from most of the

tests that follow because they posed special conceptual problems.  Only

7.4 percent of the 15,112 patents pertained solely to consumer goods.

Another 8.7 percent had joint consumer goods and producing sector

applications.  In the original matrix estimated two decades ago, R&D

outlays linked to inventions identified as consumer goods only were

allocated on the basis of the patent classifications to that use

column.  However, when there was joint use, personal consumption usage

was treated as a public good ancillary to the industrial uses, and so

input-output table weights summed to unity for the industrial uses,

with double-counting of consumer goods usage.  For the cruder input-

output matrix-based approach here, normalizing row sum shares to unity

excluding most final demand items -- the assumption most consistent

with my original multi-use convention -- assigns too much weight and

hence R&D cost to using industries other than personal consumption for

the 7.4 percent of inventions (with slightly lower R&D per patent)

actually used only in personal consumption.12  Accepting this error was

deemed the least of various alternative evils.

5.1  Goodness-of-Fit Analysis

Table 1 summarizes the tests conducted.  Used to assess goodness

of fit is the simple Pearsonian correlation coefficient r and four
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summary measures -- mean, median, and values computed at the first and
fourth quartile distribution boundaries -- of the percentage deviations

between newly estimated and original column sum technology usage, in

millions of 1974 dollars.

Among the computations using first-order transactions, the naive

transactions matrix performs least well as an R&D carrier by nearly all

measures.  When technology flows are based on either the transactions

matrix or the sum of transactions plus capital flows, unambiguously

better fits result when diagonal elements are corrected for the

observed incidence of own-process usage.

The principal surprise relative to a priori expectations is the

superior performance, at least for percentage errors, of the estimation

using only the transactions matrix rather than the theoretically

preferred combination of transactions and capital flows matrices.

However, the preferred combination performs better in terms of simple

correlation coefficients.  Evidently, the latter had smaller prediction

errors for relatively extreme values, which tend disproportionately to

influence correlation coefficients, while using industries with

intermediate used R&D values in the original study had somewhat larger

prediction errors when capital flows were added to transaction values

in computing the relevant carrier matrices.

Figure 4 is a scatter diagram arraying the observations for all

205 using industries according to R&D usage (in millions of dollars)
predicted with full use of the data on 15,112 patents (horizontal axis)

and R&D usage predicted with the process diagonal-corrected matrix

combining transactions and capital flows.  The most extreme positive

errors are general government,13 which was also an error outlier in the

process-corrected transactions-only analysis, and construction, which
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was not an outlier in the transactions-based analysis.  The reason why
construction is an error outlier when predictions include capital flows

is straightforward.  The capital flows matrix allocates to construction

large volumes of kitchen and bathroom appliances, heating and air

conditioning apparatus, office partitions, and the like which probably

do little to improve productivity on the construction building site,

but whose benefits flow largely to those who buy and use the structures

constructed.  In other words, it is important to implement second-order

technology flows, which was done in formulating the original flows

matrices but not in the new estimations reported here.  The largest

negative outlier is air transport, whose estimate in the new matrix

undoubtedly understates the dual-use technology contributions of engine

and electronic communications and navigation systems producers shared

between the defense and air transport sectors.

Among the subset of relatively disaggregated manufacturing

industries, the largest positive error outlier is passenger

automobiles, whose value in the new estimate includes such innovations

as improved disk brakes and electronic ignition controls and more

efficient air conditioners whose benefits accrue mainly to vehicle

purchasers, but which, without the second-order technology flow

adjustments made in the original compilation, are perceived to remain

within the vehicle-producing sector.  Other large residuals were found

for organic fibers and aircraft assembly, both of which were

appreciably affected by second-order flows in the original matrix

estimation but not in the new estimates described here.  These problems
suggest that if input-output data were used as the basis of technology

flows estimates in the future, selective use of second-order flow

adjustments could lead to substantially improved accuracy.

The fifth and sixth entries in Table 1 assess goodness-of-fit when
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a Leontief inverse total requirements matrix is used as the carrier for
technology flows.14   For reasons stated earlier, no attempt was made

to combine capital flows with conventional transactions; the inverse

matrix was derived solely from an appropriately aggregated first-order

transactions matrix.  To avoid excessively "fat" diagonal values

overestimating the importance of what should be process technology, the

unit value reflecting deliveries to final demand is subtracted from

each diagonal element.15  The matrix derived in this way is called the

"naive" Leontief matrix.  An alternative in which process elements were

replaced by actual industry process usage ratios and all elements were

renormalized to sum to unity is called the "process-adjusted Leontief

matrix."  By all measures, the fit is much worse than with any of the

first-order matrices.  The process-adjusted row sums conform slightly

more closely than unadjusted values.  Since the differences did not

appear to be attributable to matrix inversion errors,16  it seems clear

that the total requirements approach characterizes rather different

phenomena than those measured in my original effort two decades ago or

in my reconstruction emphasizing first-order flows only.  The

implications of this difference will be addressed subsequently.

   
The final entries in Table 1 reveal that some of the large mean

and quartile estimation errors observed using disaggregated first-order

data for some 205 industries are more or less random, cancelling out

when the process adjusted-estimates including capital flows are

aggregated down to 49 broader sectors.

5.2  Predicting Productivity

An alternative perspective for assessing the success of the new

technology flows estimates is to use the column sums as an explanatory

variable in regression analyses "explaining" productivity growth,
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taking into account also other relevant variables.  This was a
principal purpose of the original estimation effort two decades ago.

At the time, productivity growth data disaggregated by industry were

scarcer than they are now.  The principal results, reported in Scherer

(1982b), emphasized what was at that time a new Bureau of Labor

Statistics series using input-output industry definitions and including

87 industries -- 81 of them from the manufacturing sector along with

agriculture, crude oil and gas production, railroads, air transport,

communications, and the combined electric-gas-sanitary utilities

sector.  These data are used also in my new analysis, although because

of gaps attributable mainly to the confidentiality of certain Federal

Trade Commission Line of Business data, only 80 (or with the Leontief

inverse data, 79) industries can be covered here.  The dependent

variable is the percentage growth of labor productivity   LP, i.e.,

(estimated) real output per unit of labor input, between 1973 and 1978,

both cyclical peak years.  An additional variable from the original

productivity growth data set was the percentage growth of capital

intensity  (K/L) over the same period.  Two variables were emphasized

in the original paper and are employed again here to measure the

contributions of technology:  UsedRD, which is the appropriately

aggregated column sum estimating industry i's R&D usage, either as

process R&D or R&D imported from other industries, and ProdRD, or the

amount of non-process R&D performed by industry i, virtually all of

which was assumed to be exported in embodied form to other using

industries.  Both are measured as a percentage of relevant industry

output values.  Ignoring measurement difficulties, ProdRD should
characterize the benefits appropriated internally by the innovating

firm, e.g., area P MBEPC in Figure 1, and UsedRD the external or exported

benefits ABPM in Figure 1.  Our main concern is the contribution of

UsedRD computed in various alternative ways.  Following a proof

attributable to Terleckyj (1974), the regression coefficients on the
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R&D variables can be interpreted, subject to some qualifications, as
rates of return on research and development investment.

Table 2 reports the regression results.  Regression (1) is drawn

from Scherer (1982b) using my original technology flows data.  All

three variables made statistically significant contributions to the

explanation of productivity growth during the (relatively stagnant)

middle 1970s (and also, it was shown, with some limitations, in the

more dynamic 1964-1969 period).  The R 2 value is modest, however,

indicating that considerable unexplained noise remains.  Regression (2)

reports results using the original technology flow estimates for the

new sample from which seven industries were removed because of data

gaps.  It will be taken as the benchmark against which regressions

using the new estimates will be compared.  In all new regressions (3)-

(10), the  (K/L) and  ProdRD variables are identical to those used in

the second, N = 80, entry.

There are several surprises.  First, regressions (3) and (5), with

and without capital goods flows added, but without process diagonal

adjustments, outperform their counterparts.  Second, the greatest

explanatory power (R2) using first-order carrier matrices is achieved

with regression (5), which is based on summed transactions and capital

flows, but without process diagonal adjustments.  That regression,

however, reveals a surprising and indeed implausible constellation of

technological impact coefficients.  The coefficient on UsedRD implies

rates of return of 225 percent on process plus imported R&D -- much
higher than any estimated with the original data set.  At the same

time, this strong used R&D effect destroys the impact of internal

product R&D, which is also implausible.  The reason for this second

result is that the regression equation suffers from severe

multicollinearity.  The simple correlation between the two output-
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deflated R&D variables is 0.760, and the used R&D variant (without
process diagonal adjustment) overwhelms its correlated own-product R&D

analogue.  Given these anomalies, one is inclined to reject regression

(5) and favor regression (6), with the strongest a priori support and

the second-highest explanatory power of the new contenders.  Indeed,

the explanatory power R 2 of regression (6) is identical to that of

regression (2) incorporating used R&D data from the original technology

flows matrix derived through inspection of 15,112 patents, and the

regression coefficients differ only trivially.

Additional surprises materialize when column sums from the

Leontief total requirements carrier matrices are substituted to obtain

the key used R&D variable.  With Leontief inverse estimates both

unadjusted for process diagonal values (regression (7)) and process-

adjusted (regression (8)), R2 is less than that of the best two

regressions using new first-order technology flow vectors.  Neither

total requirements-based used R&D variable achieves statistical

significance by conventional standards, exceeding the 1.67 t-ratio

value delineating 95 percent confidence in a one-tailed test.  As with

the first-order estimates, explanatory power is greater without process

diagonal adjustments, but at the cost of degrading the product R&D

variable's role.  A reason for the product R&D impact is that the

Leontief estimates without process diagonal adjustments are fairly

strongly correlated with the product R&D variable, and this

collinearity degrades the product R&D coefficients.17  See Table 3,

which presents a matrix of correlation coefficients for alternative R&D
flow measures defined as a percentage of the value of industry output.

From regressions (7) and (8) in Table 2, the generally similar

Pearsonian correlations between 1973-78 productivity growth and

alternative R&D flow measures in Table 3, and the Leontief variables'
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typically low correlations with first-order R&D usage variables, it
would appear that the R&D usage variables derived from total

requirements matrices are characterizing a different dimension of

technology flows, but one that has at least some utility in explaining

productivity growth.  To pursue this insight further, regressions (9)

and (10) in Table 2 introduce together two distinct technology usage

variables, one derived with emphasis on first-order transactions and

one based on the total requirements matrix without process diagonal

adjustment.  Higher R 2 values are achieved than in any but regression

(5), rejected as implausible on a priori grounds.  The first-order and

total requirements technology usage coefficients exceed 95 percent

statistical significance thresholds in three out of four cases,

although, as in equation (7), the power of the product R&D variable is

degraded.  We observe too that the implied returns on R&D investment

are in the range of 70 to 80 percent with first-order flow measures but

only 23 to 37 percent with n th order measures.  It would appear that the

more diffuse usage traced using the Leontief inverse approach yields

lower returns than the direct usage in first-order technology

embodiments.  We conclude more generally that both the first-order and

total requirements approaches help explain the links between research

and development and productivity growth, with the first-order measures

holding a modest edge over those based upon the Leontief inverse.

6.  An Alternative Technology Flows Measurement Approach

A promising alternative approach to measuring the inter-industry

flow of technology has been pioneered by Robert Evenson and associates

at Yale University, using unique data developed in the Canadian Patent

Office (CPO).  See Evenson and Johnson (1997a, 1997b) and Kortum and

Putnam (1997).  Beginning in the late 1970s, the CPO began having its
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staff classify most of the patents it grants (roughly half of which
originate from U.S. inventors) according to industry of manufacture,

which corresponds to my industry of origin concept, and sector of use,

which corresponds to my industry of use concept.  See Ellis (1981).

The classifications, discontinued during the 1990s, were typically made

at the four-digit industry level in the then-prevailing Canadian

Standard Industrial Classification System.  Evenson and colleagues have

arrayed the Canadian data into technology flow matrices like mine.  The

comparison made here is from Evenson and Johnson (1997b), whose Table

2 reports flow matrix column sums for counts of issued patents

analogous to those analyzed in the previous section.  My original

technology flows matrix was based upon U.S. patents issued to U.S.

corporations in 1976 and 1977, to which the patent usage sums reported

by Evenson and Johnson for 1978-1981 correspond most closely in time.

The Evenson et al. data are relatively highly aggregated to the

level of 33 sectors.  By aggregating my original matrix column sums,

combining six of the Evenson sectors into three, and omitting three

incompatibly defined sectors, an acceptable match was achieved for 27

sectors, including 19 manufacturing and eight nonmanufacturing sectors.

Figure 5 arrays their issued patent counts (vertical axis) against my

original technology flow matrix column sums (horizontal axis), measured

in millions of dollars.  Inspection reveals substantial departures from

what ought, if the same phenomenon is being measured, to be a linear

array of data points.  The correlation between the two data sets is
0.560.  Especially large discrepancies are observed for the combination

of their electrical equipment and electrical machinery groups, which in

my analysis had a relatively high incidence of second-order product

technology flows; the various transportation services industries (which

in my analysis were recipients of substantial first- and second-order
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technology flows); and the wholesale and retail trade sectors, which in
my matrix received many general-use inventions apparently not coded by

the Canadian Patent Office.18  It is also possible that the patterns of

patenting in Canada, mostly by foreigners, were different than in the

United States, in which during 1977 foreign residents were a distinct

minority among patent recipients.

Whatever the reasons, it seems clear that the Canadian patent

classifiers and my late 1970s effort measured somewhat different

phenomena.  Further research on the reasons for discrepancies using

more disaggregated column sums and information on second-order

technology flows seems in order.

7.  Conclusions

From the tolerably good results I have achieved attempting to

emulate my original labor-intensive technology flows matrix using

mainly input-output data as the carrier matrix, it seems clear that

future iterations might be feasible.  If the effort is undertaken,

combining the transactions and capital flows matrices is essential,

since much of the technology flowing between industries is embodied in

capital goods.  Ideally, capital flows should be capitalized over a

larger number of years and depreciated.  There is also a persuasive

argument for replacing the standard input-output matrix diagonals with

information on the share of each industry's R&D effort devoted to

internal process improvement.  On this, more in a moment.  From the

results reported here, taking into account second and nth-order

technology flows is also important.  Doing so selectively, as I did two

decades ago, yields productivity explanations different from (and

somewhat stronger than) those using nth order Leontief total
requirements matrices as the technology flow carrier.  That the two
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alternative methods yield superior predictions when used in tandem
suggests that both approaches warrant support in future work.

There are several possible ways to obtain the data needed to

estimate process diagonals correctly.  Ideally, respondents in the

joint National Science Foundation - Census Bureau industrial R&D

surveys could be asked to provide an estimate for their operations.

They may not know the correct fraction precisely, but a knowledgeable

approximation is much better than ignorance and manifest error.  In

diversified corporations, however, a company-wide estimate may conceal

wide inter-industry variations.  Alternatively, the process breakdowns

(averaging 22 percent for 1996) elicited through a smaller survey

conducted periodically by the private-sector Industrial Research

Institute could be tapped. See Bean et al. (1998).  Or at higher cost

but greater potential precision, patent applicants might be asked

whether their inventions pertain mainly to potential products, internal

process improvements, or some mixed or "other" category.

In my opinion, understanding how technology flows through the

economy and enables economic growth is one of the most important

matters to which economic analysis can contribute, and therefore it

warrants a richer allocation of information-gathering resources.  I

therefore propose that the U.S. Patent Office emulate its Canadian

cousins, but go farther.  It would ask each applicant to disclose the

NAICS industry category in which the invention originated (with a

catch-all for inventions from broad-mandate basic research laboratories
and an "unaffiliated" option for unaffiliated inventors), along with

the principal industries in which use of the invention is contemplated,

with "industries to which the originating industry sells products" and

"throughout the economy" as alternatives for general-use inventions.

Once patent attorneys became accustomed to asking inventors for such
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information, the incremental compliance burden would be minute, and
valuable information on the structure of the economy would be obtained.

Developing this information as a by-product of invention patenting

would go a long way toward solving what was with my research two

decades ago a minor problem but has now taken on major proportions --

the measurement of imported technology flows.  My research was focused

on patents issued in 1976 and 1977, when the United States was the

world's clear leader in most areas of industrial technology and 34.4

percent of all U.S. invention patents went to foreign residents.  At

the time the role of foreign inventors was rising rapidly.  From 1966

to 1970, the average share of foreign inventors in total U.S. patenting

was only 22 percent; it rose to 47 percent in the late 1980s before

receding to 44 percent during the mid-1990s.  At the time my original

study was conducted, high-technology imports were penetrating the U.S.

economy at an accelerating rate.  See Scherer (1992).  When my research

was carried out, one could defend ignoring foreign technology sources,

but that is no longer possible.  Assuming that imports disseminate

technology or its underlying R&D results with the same usage patterns

as domestic technology sources, as the OECD staff (1996, pp. 26-27 and

143) has been compelled by data limitations to assume, provides at best

a crude approximation to the contribution of imported technology.  A

much better estimate could be obtained if foreign inventors, like U.S.

inventors, were required to disclose the industry from which their

inventions originated (which could then be linked to national R&D

statistics) and the industries likely to utilize their inventions.19

I have saved for last the most difficult problem to be solved in

future technology flows matrix development efforts -- obtaining

accurate, reliable origin industry research and development data.  I

began my project during the late 1970s because for the first time ever,



31

reliable R&D data for highly disaggregated industries became available
through the Federal Trade Commission's Line of Business program.

Complete reports for four years -- 1974 through 1977 -- were obtained

before the program was terminated as a result of political pressure

orchestrated by U.S. industry.  

The closest analogue to the FTC R&D reports covering some 263

industries has been the collection in NSF-Census surveys of  applied

R&D expenses for some 37 "product fields." That data collection effort

was discontinued following the 1997 survey because of poor response

rates.20  As a result, the only industrial R&D expenditure

disaggregations from the NSF-Census surveys are reported for roughly 50

industry groups (expanded through disaggregation of many

nonmanufacturing groups from the 26 reported in 1997) by the "principal

industry" method.  That is, the principal industry in which a company

operates is ascertained, and all of the company's R&D is thereupon

assigned to that industry.  For large diversified companies, this

method leads to large allocation errors.  To illustrate, among the

companies included in my study two decades ago, General Electric

obtained 706 patents.  It is uncertain to which of the many fields in

which GE operated at the time, ranging from synthetic resins to

aircraft engines, the Census Bureau staff would classify its R&D

activities.  It was probably "other electrical equipment," in which

case 57 percent of GE's patents would be misclassified.  If GE were

located in the broader (old S.I.C.) two-digit "electrical equipment"

group, the error rate would be 42 percent.  Or to take a less
diversified company, 47 percent of du Pont's 391 patents would be

misclassified if its principal industry were deemed to be "industrial

chemicals."  Even at the two-digit S.I.C. level of detail, 24 percent

of du Pont's patents originated outside the broad "chemicals and allied

products" sector.  Basing a technology flows matrix on such
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"contaminated" R&D data would impart considerable inaccuracy.

The simplest solution to this problem would be to restore line of

business reporting in the National Science Foundation - Census Bureau

surveys, disaggregating the reporting lines more finely than they have

been disaggregated in the past, and exerting strenuous efforts to

convince industry participants that the data shed important light on

the dynamics of the American economy.  Failing that, the principal

alternative basis for measuring inter-industry technology flows could

be requiring patent applicants to disclose industries of origin and use

in their applications.  In this case, an average R&D cost per company

patent could be estimated using publicly-available annual reports on

company-financed R&D expenditures.  Or for companies that do not report

their R&D figures, the data could be obtained on a confidential basis

from NSF-Census filings.

I conclude that it is indeed feasible to construct meaningful

technology flow matrices using approaches less labor-intensive than

those accepted for my effort two decades ago.  But substantial progress

requires improvements in the data obtained from industry in annual R&D

surveys or patent filings.
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     1.  Compare Jorgenson and Stiroh (2000) and the comment by Gordon
(2000, p. 215).

     2.  With cost-saving process innovations, it is possible but not
necessary that all of the benefits are appropriated by the innovator.
See Arrow (1964).  If the innovations induce price reductions, the
benefits are shared.

     3.  Mansfield et al. (1977) estimate that at the median in a
sample of 17 innovations, innovators appropriated roughly 44 percent of
the discounted economic benefits from their innovations.

     4.  Because in deriving gross national product estimates "real"
industry outputs are weighted by industry price indices, changes in the
price index base year can lead to surprisingly large reductions in
estimated GNP.  This was a special problem in the early 1990s, until
GNP weights were chain-linked annually instead of every five years. 

     5.  See Harhoff (1996).

     6.  Sixty-four percent of these involved a single using industry.

     7.  The author is grateful in particular to Peter Kubach and
Jiemin Guo of BEA.

     8.  The industries from which second-order flows were computed
were weaving mills, fabric knitting mills, organic fibers, tires and
tubes, rubber hose and belting, flat glass, pressed and blown glass,
internal combustion engines, pumps, anti-friction bearings,
compressors, speed changers and industrial drives, mechanical power
transmission equipment, automotive carburetors etc., vehicular lighting
equipment, electron tubes, cathode-ray tubes, semiconductors, other
electronic components, starter and traction batteries, aircraft
engines, and buttons, zippers, etc.  Not all transactions, but only
those that were preponderantly of a "component sale to further
assemblers" nature, were treated in this way.

     9.  But see Scherer (1982b), p. 631, in which matrices with
second-order flows were emphasized on a priori grounds even though
slightly higher Pearsonian correlations with productivity growth were
obtained when only first-order flows were measured. 

     10.  On this, see Carter (1970), p. 21, who correctly observes
that "New types of capital goods are at the core of technological

END NOTES
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change."

     11.  An important exception, the construction industry, will be
discussed subsequently.  

Purchasers farther downstream benefit when competition forces cost
reductions at the first using stage to be passed on in the form of
lower prices.  But the change in productivity occurs at the stage using
the capital good.

     12.  The average 1974 R&D cost per consumer good invention patent
was $533,000, as compared to $594,000 for industrial use inventions.
Patents on inventions whose use was considered to be of general use,
without any specific industry assignment, had the highest average R&D
cost at $743,000.  Patents covering complex system inventions had the
highest average R&D cost of $707,000 among several technological
categories; the lowest average was for production processes, at
$450,000.

     13.  On both dimensions the most extreme observation is defense
and space operations.  The R&D values include only company-financed R&D
(although some so-called "independent" R&D reported as company-financed
was ultimately reimbursed by the Department of Defense).  In addition
to the $1.2 billion of company-financed R&D allocated to defense and
space, the original study identified $4.8 billion of government-
financed R&D.

     14.  The author is indebted to Aubhik Khan and Robert Hunt of the
Federal Reserve Bank of Philadelphia for inverting the 207 x 207
transactions matrix, which was too large for the author's ancient
computer.

Two using industries -- guided missile production and the
government's defense and space operations -- had to be omitted.

     15.  A somewhat different procedure to avoid overestimation of
diagonal effects was adopted by the OECD group (1996, pp. 142-143).

     16.  Some sectors of the 207 square matrix were at the same level
of disaggregation as the 487 x 487 matrix published in U.S. Department
of Commerce (1979, volume II), so a comparison to verify the accuracy
of our inversion effort was possible.  All diagonal elements had
unadjusted values of unity or greater, as is required.  Most of the
compared cells differed by no more than 10 percent.  A few larger
deviations were expected (and found) in inverting matrices of such
disparate aggregation.
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     17.  That the Leontief inverse measures without process diagonal
adjustment are associated with advanced product technology is suggested
also by an examination of the three most extreme values, all taken as
a percentage of industry output value:  computers, 10.04 percent;
optical and ophthalmic instruments, 9.36 percent; and other office
machinery, 6.15 percent.  The median value for all industries was 1.36
percent.  With my original used R&D indices, the largest three values
occurred in electronic components (3.39 percent), air transportation
(3.02 percent), and synthetic fibers (2.56 percent).  Two of the three
are high process technology users; the third (air transport) a major
importer of embodied technology.

     18.  See Kortum and Putnam (1997), p 174, note 13.  For those who
might wish to replicate the comparison, it should be noted that in
Scherer (1984), p. 451, which presents disaggregated used R&D matrix
column sums, the value for coal mining should be 72.4 rather than 35.1.

     19.  For a pioneering effort using Canadian patent data, see Hanel
(2000).  Several studies have found that patents sought outside one's
home market tend to be of greater economic value on average than
patents received at home.

     20.  Communication from Raymond Wolfe of the National Science
Foundation May 23, 2002.  From a mini-conference April 23, 1998, on
"R&D and Innovation Statistics" under the auspices of the Census
Bureau's Advisory Committee of Professional Associations, one of the
strongest recommendations to emerge was that more effort be devoted to
obtaining industrial R&D expenditure data broken down by disaggregated
originating lines of business.
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 Table 1

Goodness-of-Fit Measures: 1982 Estimates as Basis

                                       Percentage Errors*         
                     N   Corr.   Mean   Median 1st Quart. 3rd Quart. 

Naive Transactions

  All industries    205  .701    78.60   18.41   -37.31    116.82
  Manufacturing     181  .528    90.04   22.01   -30.20    126.25

Process-Adjusted

  All industries    205  .716    33.85    8.78   -15.23     63.50
  Manufacturing     181  .878    37.53   12.24   -11.23     63.50

Transactions plus Capital Flows Combined

  All industries    205  .859    62.73   25.30   -20.37    111.22
  Manufacturing     181  .715    68.14   36.22   -14.48    122.18

Combined, Process-Adjusted

  All industries    205  .899    41.52   19.64    -3.91     68.78
  Manufacturing     181  .921    43.62   24.12    -2.30     68.86

Naive Leontief Matrix

  All industries    203  .113   669.60  229.44     6.85    718.68
  Manufacturing     180  .218   754.45  280.00    55.37    859.44

Process-Adjusted Leontief Matrix

  All industries    203  .246   574.26  162.84    27.86    629.91
  Manufacturing     180  .381   645.85  242.43    46.83    703.45

Aggregated Appendix Matrix (Process-Adjusted, with Capital Flows)

  All industries     49  .843    25.25   10.77    -1.49     37.98
____________________________________

* 100 [(New Estimate - Original Estimate) / Original Estimate)
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Table 2

Regressions Explaining 1973-1978 Labor Productivity Growth

                       UsedRD       ProductRD    (K/L)    R2     N 

(1)  Original data     0.742          0.289      0.347   .193    87
                      (1.89)        (2.01)     (3.30)

(2)  Original data,    0.698          0.357      0.332   .192    80
    matching sample   (1.74)        (2.27)     (3.03)

(3)  New naive         0.565          0.194      0.314   .175    80
    transactions      (1.19)        (0.81)     (2.85)

(4)  New transactions, 0.352          0.359      0.312   .164    80
    process-adjusted  (0.66)        (2.07)     (2.81)

(5)  New transactions   2.25         -0.073      0.268   .232    80
   plus capital flows  (2.68)        (0.31)    (2.48)

(6)  New transactions   0.751         0.320      0.299   .192    80
   plus capital flows, (1.73)       (1.96)     (2.72)
   process-adjusted

(7)  New Leontief       0.302         0.198      0.322   .183    79  
 inverse             (1.41)        (0.92)    (2.91)

(8)  New Leontief,      0.232         0.321      0.316   .169    79
   process-adjusted    (0.88)        (1.72)    (2.84)

                 1st Order  Inverse

(9)  UsedRD from    0.815    0.336    0.079      0.302   .220    79  
   (6) and (7)   (1.88)   (1.60)   (0.36)    (2.76)  

(10) UsedRD from    0.817    0.374    0.088      0.339   .225    79
     (2) and (7)   (2.02)   (1.77)   (0.40)    (3.12)

______________________________

Subscripted parentheses report t-ratios.
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Table 3

Correlation Matrix for Variables used in the Regression Analysis
_________________________________________________________________

             (Q/L) ProductRD  UsedRDorig UsedRDk,p UsedRDL UsedRDL,p

 (Q/L)        1.000     .264    .204     .279     .259    .227

ProductRD              1.000    .186     .308     .689    .532

UsedRDorig                       1.000     .805     .009    .236

UsedRDk,p                                 1.000     .151    .419  

UsedRDL                                            1.000   .844

UsedRDL,p                                                 1.000

_________________________________________________________________

Notation

 (Q/L)         Percent annual labor productivity growth, 1973-78

ProductRD      Product R&D (percent of industry output value)

UsedRDorig       Used R&D (original measures) (percent of industry
                    output value)

UsedRDk,p       Used R&D, new estimates, with capital flows and
                    process diagonal adjustments (percent)

UsedRDL        Used R&D, Leontief inverse (percent)

UsedRDL,p       Used R&D, Leontief inverse, with process diagonal
                   adjustments (percent)



0

-.-__._____*__

R

--.__-..---_-__

Price per Unit



r

I._.-.-- . ..-_

d&J:-,------ __.-..

. .

.



.* ’

c
0.-
=.-
E
8
-5;

-

uo!ll!q  Es-a
*



\. l

(sqloa 40 suo!ll!w) afjesn pqapad AIM~N


	18p2.pdf
	WORKING PAPER NO. 02-18




