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FORECASTING COIN DEMAND

ABSTRACT

Shortages of coins in 1999 and 2000 motivated us to develop models for
forecasting coin demand. A variety of models were developed, tested, and used in real-
time forecasting. This paper describes the models that were developed and examines the
forecast errors from the models both in quasi-ex-ante forecasting exercises and in real-
time use. Tests for forecast efficiency are run on each model. Real-time forecasts are

examined. We conclude with suggestions for further refinements of the models.



FORECASTING COIN DEMAND

In early 1999, the demand for pennies increased sharply. At the same time, the U.S.
government introduced a program to produce five new quarter-dollar coins each year, each
depicting information about one of the states in the union. Though demand for the first several
quarters issued was relatively small and not far from what the government expected, the
popularity of these state quarters grew over time. By the second half of 1999 and throughout
2000, the demand for the state quarters grew so much that the U.S. Mint was unable to produce
enough coins fast enough to meet demand; as a result, shortages of quarters developed. Once
those shortages began, people began using other denominations (mainly dimes and nickels)
instead of quarters in change, so demand for those coins went up as well. Adding to the
problems of inadequate production was the government’s decision to produce a new golden
dollar coin; the Mint produced 1.2 billion of the coins by September 2000.

Given the sharp increases in coin demand in 1999 and 2000, and the difficulty in getting
enough coins of various denominations into the hands of the public, the Federal Reserve Bank of
Philadelphia began in 2000 to investigate how to improve forecasts of demand for coin. The
idea was that if the Fed had its own projection of the demand for coins, it could work with the
Mint to ensure an adequate supply.

This paper describes the development of coin forecasting models. We begin in section 1
by discussing the historical data on demand for coins. Then, in section 2, we discuss the
development of four different models of coin demand: a structural model, a time-series model, a
VAR model, and a Bayesian VAR model. In section 3, we illustrate the real-time forecasts

produced by the models, although a complete analysis will not be possible until we have a longer



history of forecasts and actuals. Section 4 concludes the paper by discussing potential

refinements of our models and methods.

1. Coin Demand: History and Definitions

An important institutional constraint in determining the amount of coins that circulate is
that the U.S. Mint controls production of coins, while the Federal Reserve System distributes
them around the country. Unless both agencies are in synch, problems with coin production and
delivery may arise. The Fed distributes coins from 37 coin offices, which include mostly the
Reserve Banks and their branches and through over 100 coin terminals with armored carriers.

Developing a forecasting model involves several steps: choosing among different types
of models, testing the different models to see how well they perform, then running forecasts in
real time and investigating the quality of the forecasts. Because the demand for each coin
denomination seems to behave differently than other coin denominations, the models that we
examine will contain a separate forecasting equation for each denomination, rather than
modeling overall coin demand in a single equation.

The first difficulty we faced in forecasting coin demand was a lack of data. The Fed’s
database contained national data from 1989 to 1999 on coin demand, but coin demand has huge
monthly seasonal fluctuations, so the data amounted to roughly 11 observations. We could not
proceed further until we obtained a data set from the U.S. Mint containing data back to 1957.

We measure the flow demand for coins by net pay, as data on stocks were unavailable.
Net pay is an unusual economic concept because it represents the change in the demand for
coins, which can be either positive or negative. Net pay equals the payout of coins from the

Mint, Fed, and armored-carrier terminals to financial intermediaries minus the inflow of coins to



the Fed and armored-carrier terminals from financial intermediaries (hereafter called banks). Net
pay is positive when banks ask the Federal Reserve to deliver coins to them. But if banking
customers decide to return many coins to their banks, the banks in turn may send them back to
the Federal Reserve, resulting in negative net pay. Because coins are durable and can be
returned to the producer, coins are different from all other goods. Note that net pay differs from
the change in the demand for coins in the rare instance in which there is a shortage of coins.
Because such cases are rare and we do not have reliable data on the amount of shortages, our
models of coins ignore such instances, and we proceed by assuming that net pay equals the
change in demand.

Figure 1 illustrates the flows to and from banks. Coins flow between people or
businesses and banks. When people and businesses want more coins, their banks order more
coins from their local Federal Reserve offices. The Federal Reserve offices then ship coins to
the banks, either from inventories of coins located at armored carriers (the line labeled 4 in the
chart) or directly from the offices” own inventories (line B). Occasionally, the U.S. Mint ships
coins directly to a bank (line C). Each of these shipment methods to banks represents payout of
coins, which increases net pay.

However, if people begin turning in more coins to banks than the banks want to keep on
hand, the banks may return the extra to the Federal Reserve, either directly (line D) or through
armored carriers (line E). So, lines D and E represent inflows of coins, which decrease net pay.

In any given month, some banks may have positive net pay and others may have negative
net pay, so total net pay could turn out to be positive or negative. Net pay is the payout minus
inflow, so it is the sum of the amounts shown by lines 4, B, and C minus the sum of the amounts

shown by lines D and E:



Net pay = payout — inflow
=(A+B+C)—-(D+E). (1)
There are six different denominations of coins (penny, nickel, dime, quarter, half dollar, and
dollar) and net pay is calculated for each separately.

The data on net pay for each denomination show significant changes over time. We will
look at the net pay for each denomination in units of millions of coins each month (Figures 2a to
2f). The data run from January 1957 to February 2003 for pennies, nickels, dimes, and quarters,
from July 1960 to February 2003 for half dollars, and from January 1995 to February 2003 for
dollars. For each denomination, the thin line shows the actual monthly value of national net pay
(summed across all Federal Reserve coin offices), and the thick line is a 12-month moving
average, which is shown to help illustrate the long-term trend in the data.

The charts show that month-to-month seasonal fluctuations in net pay are huge. For
some coin denominations, national net pay is even negative in some months. The net pay of
different denominations swings dramatically from one month to the next, mostly because of
changes in people’s spending patterns. People need more change in the summer months for
parking meters at the shore and soda machines. They use more change around holidays at the
end of the year, as well. But people need much less in the middle of the winter.

Over half of all coins produced recently are pennies. The net pay of pennies has
averaged over 800 million coins per month in the last five years, while the sum of all other
denominations has been about 700 million coins per month. The long-run trend in net pay for
pennies has been fairly constant since 1980 or perhaps declining slightly. For other main
denominations (nickels, dimes, and quarters), the trend over time is slightly upward, which

suggests that they may be replacing pennies gradually in terms of quantity used for making



change. There are some interesting variations in net pay for those coins, especially in the 1960s
when the value of silver, which was a major component of dimes and quarters, increased sharply.
Demand for those coins declined sharply when the coins were redesigned with no silver in them.
The other two denominations, half-dollars and dollars, had net pay near zero for much of the
1980s and 1990s. The introduction of the Sacagawea golden dollar coin in 2000 caused a sharp
increase in the net pay of dollars in that year.

Given these trends in the demand for different denominations, what can we say about the
overall demand for coins? To investigate this issue, we examine the total demand for coins in
terms of numbers of coins, adding up the net pay for all six denominations. (From 1957 to mid-
1960, we have no data on half-dollars and dollar coins; from mid-1960 through 1994 we have no
data on dollar coins. However, we believe that demand is small for these denominations in the
periods in which we are missing data, except for a short period in 1979 when the Susan B.
Anthony dollar coin was first introduced.) Also, to avoid confusion arising from the seasonal
fluctuations, we just look at the total net pay in each calendar year (Figure 3). We look at the
total number of coins in billions per year, rather than their dollar value, in part because the
Mint’s ability to produce enough coins to meet demand depends more closely on the number of
coins than on their dollar value.

In the graph, you can see that overall net pay generally increased over time from under 2
billion coins in 1957 to a peak of 23 billion in 1999 and 2000. But the increase was not steady.
From one year to the next, net pay sometimes rose and sometimes fell.

We might expect a correlation between net pay and the strength of the economy because
people seem likely to use more coins if they buy more goods and services. Looking at Figure 3,

you can see that in some years net pay falls when the economy weakens, as in 1990 and 1991.



But in other years, such as 1996 and 1997, net pay falls even when the economy is strengthening.
So, there does not appear to be a strong correlation between net pay and economic activity.
Special events caused net pay to be at very high levels in 1999 and 2000. Penny demand
was very high in early 1999 (Mullinix, 1999). Also, beginning in 1999, the Mint (directed by
laws passed by Congress) rolled out the first quarters in the state commemorative program. The
demand for these new quarters turned out to be significantly stronger than was anticipated, thus
causing net pay to rise sharply, as you can see in Figures 2d and 3. Then, in 2000, the
Sacagawea dollar coin was introduced to much fanfare (Roseman, 2002). Initial demand for the
new coin was also strong, and the Mint produced over 1 billion of them (United States Mint,
2001). At the same time, the demand for the new state quarters increased 50 percent from the
year before, so again net pay was much higher than expected. With people collecting both the
new dollar and the new quarters, fewer of these coins circulated for use as change, so the demand

for pennies, nickels, and dimes also rose substantially, as Figures 2a to 2c show.

2. Models of Coin Demand

We initially considered three different types of models: (1) a structural model; (2) a
time-series model; and (3) a vector-autoregression model. Descriptions of each model follow,
after which we examine tests of forecasting ability for all the models. In determining the exact
structure to use with each model, we ran diagnostic tests of various types, then determined the
choice of alternative proxy variables by running quasi-ex-ante forecasting exercises and
examining simulated forecast performance in the 1990s. Because the models were estimated too

soon after the state quarters and golden dollars were introduced, we excluded data from 1999 and



2000 from the sample period. Later, we developed a fourth model, a Bayesian vector-

autoregression model, testing it in a similar fashion and adding it to our stable of models.

Structural Model. We began our work on forecasting coin demand using a structural model
based on the work of earlier researchers who had modeled coin demand. The payout and inflow
of coins in each denomination are modeled separately. To relate the coin data to economic data,
we use quarterly averaged data. Economic theory suggests that the demand for money depends
mainly on economic activity, interest rates, and the inflation rate. Assuming that the demand for
coins by denomination should be similar to overall money demand, we use those variables as the
main explanatory variables for money demand.

The equations of the model are:
B! =a,+p'Y, + i, + A7, )
I"=a,+BiY +yli + X, (3)
where P is payout of coins (in millions of coins) at date ¢ for denomination d, I/ is the inflow

of coins at date ¢ for denomination d, Y, is a measure of economic activity at date ¢, i, is an

interest rate at date 7, and =, is the inflation rate at date 7.

We used data from the first quarter of 1958 to the second quarter of 2000 to estimate and
test the model. Our baseline version of this model was based on an inherited model from
previous analysts, so we used its basic structure of variables. We understand that this model was
used to project future coin demand, though details are sketchy because personnel have changed.
We modified the model slightly because given the data we had (which included a larger sample
than the one that had been used in the past), the original model performed poorly. The economic

activity measure was nominal personal consumption expenditures on services, deflated by the



CPI, both seasonally adjusted. The interest rate used was a three-quarter moving average of the
federal funds rate, lagged four quarters. The inflation rate was the 12-month percentage change
in the CP1. The equations also included a constant term and three dummy variables (for quarters
one, two, and three) to handle seasonal effects. We call this structural model A.

We modified the model slightly in several alternative versions. Structural model B used
the log of the quarterly average of monthly nominal retail sales as the economic activity variable.
Structural model C used the log of the quarterly average of monthly industrial production as the
economic activity measure and also included the logarithm of the CPI in the regression. Model
D used the log of quarterly nominal personal consumption expenditures as the economic activity
variable. Model E used the log of quarterly payroll employment as the economic activity
variable and included the log of CPI in the regression. Note that whenever a real variable is used
on the right-hand side to represent economic activity, we also include the log of the CPI because
the demand for a coin denomination may change as the price level changes.

Diagnostic tests on the results of the regressions for equations (2) and (3) for each
denomination suggested fairly clean regressions, with no severe problems. So, we proceeded to
generate quasi-ex-ante forecasts with the model. The forecast for the inflow is subtracted from
the forecast for the payout to generate a forecast for net pay. Because we knew that we would be
comparing the structural models with other models that we thought, a priori, were likely to be
superior, we gave the structural models a boost by using realized values for the right-hand-side
variables in equations (2) and (3). [By contrast, all the other models that we considered had to
generate forecasts for the variables in equations (2) and (3).] For each model, we generated
forecasts in a rolling fashion in the following set of steps. First, at the forecast date 1990Q1,

given coin data through 1989Q4, we generated one-year-ahead forecasts from the estimated



equations (2) and (3) for pennies, nickels, dimes, and quarters." [Halves and dollars were not
forecast because of a lack of data.] Then, we stepped forward one quarter to forecast date
1990Q2, using coin data through 1990Q1, to generate another set of one-year-ahead forecasts.
We continued this process until forecast date 1998Q1, at which time we generated one-year-
ahead forecasts that extended to the end of 1998Q4. We stopped there so that we would not
enter the period in which the state quarter program began.

The results of this exercise were used to generate a number of statistics. Because the
Mint’s main focus is on the total number of coins produced (adding up the number of coins
across all denominations), we chose as a forecast criterion the root-mean-squared-forecast error
(RMSFE) for net pay of total coins (adding the number for pennies + nickels + dimes + quarters)
during the four quarters of the forecast horizon for the 33 forecast periods from 1990Q1 to
1998Q1. The results for each model are shown in Table 1.

As Table 1 indicates, the worst model in terms of RMSFE is the original one based on
services consumption. Much better forecasts are obtained using other variables. The use of the
log of payroll employment provides the best out-of-sample quasi-real-time forecasts. We ran the
forecasts through a batch of diagnostic tests that are fairly standard in the literature, which will

be discussed after the other forecasting models are described.

" Throughout this paper, whenever we use the term one-year-ahead forecasts, we always mean the cumulative sum
of the forecasts for the variable (usually net pay) over the coming year. For example, for the forecast date 1990Q1,
which is based on data through 1989Q4, the one-year-ahead forecast is the sum of the forecasts for 1990Q1,

1990Q2, 1990Q3, and 1990Q4.



Time-Series Model. Whereas a structural model is based on economic theory, a time-series
model uses only past data and no theory. Yet research has shown that time-series models often
yield superior forecasts, especially in the presence of structural change. So, we developed a
univariate time-series model, following standard Box-Jenkins (1976) procedures. We used
monthly data from January 1960 to October 2000 to identify several possible models. Because
of uncertainty about the optimal procedure to handle the strong seasonal effects, we proceeded
with two alternative models: Model A first deseasonalizes the data by regressing it on monthly
dummy variables, then bases forecasts on a time-series model on the seasonally adjusted data;
Model B does not deseasonalize the data but generates forecasts using a time-series model with
seasonal differencing.

The models were run on net pay, rather than payouts and inflow separately. The

regression model is:

a’(L)ag (L*)1-L) (1= L*)' N/ =b"(L)b{ (L?)e/ 4
where d is the denomination (pennies, nickels, dimes, or quarters), N is net pay of
denomination d at date ¢, L is the lag operator, a“ (L) is a polynomial in the lag operator with p
autoregressive lags, a’ (L") is a polynomial in the seasonal (12-month) lag operator, i is the
order of integration, j is the order of seasonal integration, »¢(L) is a polynomial in the lag
operator with ¢ moving-average lags, b* (L") is a polynomial in the seasonal (12-month) lag
operator, and ¢’ is a white-noise error term. Model A sets j =0, a?(L”) =1, and b/ (L”) =1

but uses seasonally adjusted data on net pay; Model B uses unadjusted data on net pay and does

not restrict the model at all.
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Tests of the data for Model A showed that a“ (L) should contain about 14 lags (so p =
14), b*(L)=1 (so g =0), and i = 1, so the model is described as an ARIMA(14,1,0). Tests of
the data for Model B suggested that ¢ (L) should contain about 14 lags (so p = 14), b*(L)=1
(sog=0),i=1,7=1, a’(L”) =1,and b?(L?) = 1, so the model is described as an
ARIMA(14,1,0) with one seasonal difference.

A comparison across models with quasi-out-of-sample forecasts for the 1990s suggests

that Model A is superior to Model B, as Model A’s RMSFE was just 2035 compared with 2465

for Model B. For that reason, we chose Model A to use in subsequent analysis.

Vector-Autoregression (VAR) Model. A vector-autoregression (VAR) model is a natural
choice for modeling coin demand as it does not impose too much structure on the model but uses
data on economic variables to help forecast coin demand. Our prior was that a VAR model
would be superior to other approaches we tried. A VAR model (Sims 1980) is useful because it
allows us to conduct “what-if” experiments, such as: “What will happen to the demand for coins
if the economy goes into a recession?”’

For our VAR model, the net pay of each coin denomination depends on lagged data on
economic activity, the interest rate, and the inflation rate, which are the same basic variables
used in the structural model. The model-evaluation phase required us to make decisions on the
choice of variables, how to seasonally adjust the data, how to choose lag length, and whether to
exclude some variables in some equations. We tested a number of different economic variables,
including industrial production, personal consumption expenditures, retail sales, and payroll
employment. We ran the model using both seasonally adjusted data and not seasonally adjusted

data, in the latter case adding monthly dummies to account for seasonality. We used AIC and
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SIC testing criteria to choose the lag length. And we examined whether the model was better if
we used a full VAR or if we excluded some variables from some equations, a near-VAR. In the
latter case, we considered whether the coin demand variables should be excluded from the
equations containing the macroeconomic variables. We used monthly data from January 1957 to
September 2000.

Preliminary examination of the data and models, including statistical tests of exclusion
restrictions, helped to reduce the number of models. Those tests were not able to distinguish
between alternative economic variables but suggested that the best model was likely one using
seasonally unadjusted data combined with monthly dummies. Several choices of lag lengths
were considered after AIC and SIC tests were run. The tests suggested that 13 lags were best.
But to avoid the likely overfitting that would result, we also considered a much shorter lag
structure (2 lags of each variable) and a mixed lag structure (using lags 1,2, 3, 6, 9, and 12).
Tests indicated that models excluding the coin demand variables from the equations for the
macro variables would lead to superior forecasts.

We were unable to clearly determine whether macro variables should be entered in log
levels or growth rates, so we ran forecasts using both. The results of testing forecasts for the
1990s are shown in Table 2.

Table 2 shows that nearly all the VAR models, except for those with a small number of
lags with growth rate variables, lead to similar root-mean-squared forecast errors. The lowest
RMSFE was for model A1, using the log of employment, with 13 lags, so we chose that as the
best VAR model. We tested the model’s residuals for serial correlation and heteroskedasticity,

and found no evidence of any problems. We also tested whether a fixed sample size as we
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moved through time would be better than always starting the regression equations with a sample

beginning in 1962:1, finding that the latter was superior.

Comparing the Models. We used the testing period of 1990 to 1998 to examine the models and
choose the best model within each type. We used similar procedures to compare the models
across types and also ran a set of diagnostic tests on the best structural model, the best time-
series model, and the best VAR model. Each forecasting model was run in a simulated quasi-ex-
ante forecasting exercise from the first quarter of 1990 to the first quarter of 1998, with monthly
or quarterly forecasts generated for horizons up to two years. We focused on the one-year-
horizon results.

Figure 4 shows a plot of the one-year-ahead forecasts. Each date shown on the horizontal
axis 1s the forecast date, and the value shown on the vertical axis is the forecast amount for net
pay over the year from the forecast date to 12 months ahead (for the VAR and time-series
models, which are monthly) or 4 quarters ahead (for the structural model, which is quarterly),
compared with the actual value of net pay over the same period. (Ignore the line labeled BVAR,
which will be discussed later.) As might be expected, the forecasts lag the movements in actual
coin demand. Both the VAR and time-series models pick up those movements fairly quickly, so
they respond over time, with a lag, to changes in actual coin demand. But the structural model is
much slower to respond, even though we gave that model an informational advantage by feeding
it actual values of economic variables. The VAR and time-series models move in similar ways,
but the time-series model seems to respond a bit more, while the VAR forecasts do not change as
much over time. Whether that is a good thing or a bad thing can only be judged with statistical

tests, to which we turn next.
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Comparisons of root-mean-squared forecast errors and test results for a number of
statistical tests on the forecasts (sign test, Wilcoxon signed-rank test, zero-mean test, and test for
unbiasedness) are shown in Tables 3 to 7. For additional details on these tests, see Croushore
(1998). (The tables each include a row labeled BVAR, which will be discussed later.)

Table 3 compares the root-mean-squared forecast error (RMSFE) across the models in
two ways. One column (labeled Quarterly RMSFE) shows the RMSFE for the one-year-ahead
forecasts made each quarter from 1990Q1 to 1998Q1. These results are potentially misleading
because the observations are overlapping—that is, the forecast errors may be correlated because
the forecast horizon is longer than the observation interval. As a check on those results, we also
calculated the RMSFE (labeled Annual RMSFE) using only the first forecast made each year,
based on data through December of the previous year. The two RMSFE calculations yielded the
same result: the time-series model was the best of the three models over the testing period, with
the VAR coming in a close second. The structural model was clearly the worst model using the
RMSFE criterion.

A useful test of forecasts is a sign test on the forecast errors. If a forecast is optimal, the
forecast errors should have a zero median. The sign test examines the null hypothesis of
independent errors with a zero median by counting the number of positive observations in the
sample, which has a binomial distribution. We ran sign tests for the one-year-ahead forecasts
made both quarterly and annually. The results, reported in Table 4, show no rejections of the
null hypothesis. So, the forecast errors appear to be independent with a zero median.

The Wilcoxon signed-rank test is related to the sign test, since it has the same null
hypothesis, but assumes a symmetric distribution. It accounts for the relative sizes of the

forecast errors, not just their sign. The test statistic is calculated by taking the absolute values of
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the forecast errors, ranking them by size in increasing order, then finding the sum of the ranks for
the positive forecast errors. Table 5 reports the results, which show no rejection of the null
hypothesis for any of the models. Again, the forecast errors appear to be independent with a zero
median.

A simple test that optimal forecasts should pass is that the mean of the forecast errors be
zero. This can be tested with a t-test that depends on the sample mean, standard deviation, and
number of observations. Table 6 reports the p-values for the t-tests, and again the null
hypothesis is not rejected for any of the models. (Because the quarterly forecasts are overlapping
observations of one-year-ahead forecasts, the covariance matrix was adjusted using the Newey-
West procedure.)

So, the models pass three nonparametric tests on the forecast errors, which suggests that
the models are reasonable.

A more stringent test is a test for unbiasedness. A set of forecasts is unbiased if a
regression of the actual values (the dependent variable) on a constant term and the forecasted
values (the independent variable) yields coefficients that are not significantly different from O for

the constant term and 1 for the forecast term. The regression is:
n, =a+pr +¢, (5)
where 7; 1s the actual inflation rate and 7r,f 1s the forecast at each date ¢. The test for

unbiasedness requires that over a long sample period, & should be close to zero and ,[;’ should be
close to one, if the forecasts are not biased.

Table 7 reports the results of testing this hypothesis. For quarterly forecasts, the null
hypothesis that & = 0 and ,5’ =1 is rejected, but it is not for annual forecasts. (As with the zero-

mean test, because of the overlapping observations in the quarterly forecasts, the covariance
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matrix was adjusted using the Newey-West procedure.) For annual forecasts, the p-value on the
F-test shows no rejection of the null hypothesis, but with only 9 observations, the sample size is
so small that rejection was unlikely.

How much should we worry about the rejection of the unbiasedness test for the quarterly
forecasts? Particularly worrisome is the estimated f coefficient in the structural model, which is
negative, suggesting that the forecasts move in the opposite direction of actual coin demand.

The very low values of the R? statistic for the structural and VAR models suggest that they fit
poorly; the time-series model seems to be more consistent with the data. Possibly, the poor fit
and rejection of the null hypothesis of unbiasedness arise because the sample is small. But,
overall, the findings suggest that we should continue our efforts to improve the models.

The biggest surprise in our tests was how well the time-series model performed relative
to the other models. The other two models had the advantage of using data on economic
variables that had been revised, rather than the original data that would have been available to
forecasters in real time; on the importance of this issue, see Croushore and Stark (2001). That is,
the data on employment used in the VAR and the structural model were taken from a database in
October 2000 (when these tests were run). The VAR does not use data on employment beyond
the forecasting date; the model generates forecasts for employment for dates after the forecasting
date, whereas the structural model does not. To give the structural model the benefit of the
doubt, we used actual values instead of forecasts for employment in periods after the date at
which the forecast was made. Despite this advantage, the model did worse than any other model.
And as we began to use the model to forecast in real time, it began producing unreasonable
forecasts that were out of line with the other forecasts. Given that the structural model forecasts

also tended to move counter to the underlying trend in coin demand (as shown in Figure 4 and in
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the negative slope coefficient in Table 7) we decided to drop the structural model and instead to
work on a Bayesian VAR, which will be discussed next.

Because the time-series and VAR models passed the tests we posed, we began using
them for forecasting coin demand in real time in February 2001, reporting the results to officials
in the Fed responsible for coin distribution, first at the Cash Fiscal Product Office at the
Philadelphia Fed, then at the Cash Product Office at the Los Angeles Branch of the San

Francisco Fed, to which responsibility for coin distribution was moved in spring 2001.

Bayesian VAR. The research on these coin models took place in several stages. As we
proceeded to forecast with the time-series and VAR models in February 2001, we also began
development work on a new model, a Bayesian VAR (Litterman 1986). Preliminary work on
that model was completed in September 2001.

We had expected the VAR model to be superior to the time-series model, but in our
quasi-ex-ante forecasting exercise, that proved not to be the case. Most likely, the cause was
overfitting the model. But overfitting probably arose because of the extreme seasonality in the
data, which required many lags in the VAR. To reduce the problem of overfitting, we chose a
Bayesian approach.

The main differences between the VAR and the Bayesian VAR are in the amount of past
data used (24 months in the Bayesian version versus 13 months in the non-Bayesian version) and
in the coefficients of the forecasting equation, which are fixed in the VAR but allowed to change
over time in the Bayesian VAR. In the Bayesian VAR, a number of hyperparameters are chosen
to make the model perform well, the most important being those that concern the seasonal

patterns in the data.
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The model consists of data on seven variables, just as in the VAR: an economic activity
variable (the log of not seasonally adjusted payroll employment), a price variable (the not
seasonally adjusted CPI inflation rate), an interest rate (the federal funds rate), and four net pay
variables for each main coin denomination (pennies, nickels, dimes, and quarters). Seasonal
dummies are included in the model, as described below.

Each variable is modeled with the following state-space representation, comprised of an

observation equation and a state equation:
yi=2'p +é&, (6)
B =B +v, (7)
where y, is one of the variables in the system; Z, is a 180 x 1 vector composed of a constant, 11
seasonal dummies, and 24 lags of the 7 variables in the system; £, isa 180 x 1 coefficient
vector, &, is a shock distributed as: &, ~ N(0,6°), and v, is a shock distributed as:
v, ~N(0,0Q), with covariance matrix 0.2 With 180 coefficients per equation and seven

equations, the model is large. Equation (6) is a regression equation with a time-varying

coefficient vector, f5,. Equation (7) shows that the coefficients move as a random walk, which

allows for permanent shocks, which may be important for times such as the mid-1960s when the
value of silver in coins rose so high that silver coins were driven out of circulation, the similar
events in the early 1980s when the value of copper in a penny exceeded one cent and penny

demand rose sharply, and changes in seasonality. If O = 0, then there are no permanent shocks

> When we need to differentiate among the & ? terms for each equation, we write O J2 .
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to coefficients, and the model reverts to one with fixed coefficients. Following standard practice,
we restrict the model by assuming that Q is diagonal.

The Kalman filter is used to generate the conditional expectation and variance of the
coefticient vector f,, which we denote f;; and Py, where:

Bi| &)~ NPy, Py) and ; = (v,...y1, Zy,....Z)).
With the aid of equation (7), we can find the moments of (8+; | £,), denoted S+, and P+,
where:

Bre11 Q) ~N Breaie, Preap).
We use the recursive algorithm described in Hamilton (1994) to compute S, Py, Bi+111, and Py g
Starting values for the recursion are given by the Bayesian prior:

B~ N(b, Pip),
where B is the 180 x 1 coefficient vector described above at time ¢ = 1, which we assume is
distributed normally with mean b and variance P,

Our priors are taken from the work of Raynauld and Simonato (1993), who considered
three alternative modifications of standard Minnesota priors designed to account for variation in
the data at seasonal frequencies. As noted above, we use the modification that Raynauld and
Simonato call, “the random walk plus dummies specification.” In our implementation, this
modification specifies b and Py according to the prior that each variable in the VAR follows the

process given by:>

*Raynauld and Simonato (1993) also considered priors governed by: (1-L)(1-L'?)y, = ¢ and (1-L'?)y, = constant + ¢,,
where L is the lag operator. The first imposes two unit roots at the zero frequency and seasonal unit roots. The
second imposes a single unit root at the zero frequency and seasonal unit roots. Our baseline specification assumes

a zero-frequency unit root and no seasonal unit roots.
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Vi =y + constant + 11 seasonal dummies.

Thus, b is a 180 x 1 vector of zeros in all positions except the position corresponding to the own
first lag, which is unity. Although the constant and seasonal dummy coefficients are important
parts of the specification, given the high degree of seasonality in the coin data, we specify their
prior values (somewhat counter-intuitively) as zero, but allow for a large degree of uncertainty
about these values by setting large values of the corresponding elements of Pyj.. This is the same
approach used in the standard Minnesota prior for nonseasonal data.

Priors on variances (Pjp) are governed by the following. P is diagonal. When a
seasonal variable (any variable other than the federal funds rate) appears on the right-hand-side

of an equation, the variance prior for the coefficient is:

O .
[P,y (j,m,n)]"? = TIGHT x OTHER( j,m)x SD(a)x TS (n)x —-
(o)

where this variance [P1o(j,m,n)] applies to the equation for variable j, j =1, 2, ..., 7), the nth
lag of the mth variable, and where TIGHT is a hyperparameter governing overall tightness;

OTHER(j,m) is a parameter governing the relative tightness on the mth variable in the jth

equation, which we set equal to 1.0 when j = m, and 0.2 when j # m; SD(a) = SDECAY ™",

where SDECAY is a hyperparameter,a =1 whenn=1,2, ...,12,anda=2 whenn =13, 14, ..

., 24, and so on; TS(n) = # forn=1,2,...,11,TS(n) =

TOOTH
n

forn=12,13,...,

(n _ll)TOOTH

23, and so on. These priors allow for lower variances (that is, more confidence in the
corresponding elements of b) as the lag, n, varies fromn=1to 11, n =12 to 23, etc. This
reflects the influence of the function, 7S(n), and captures the belief that we have more
confidence that a coefficient is zero when the lag is larger. However, 7S(n) also allows for

discrete jumps in the variance (less confidence) at the seasonal lags, 12, 24, etc., reflecting the
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belief that the coefficients at these lags are often much different than the value of zero assigned
in the vector . When SDECAY < 1, the function SD(a) scales down the size of the upward
jumps at the seasonal lags occurring in each calendar year. This downward scaling at annual
intervals [due to SD(a)] parallels that at within-year monthly intervals [due to 7S(n)].

When a nonseasonal variable (the federal funds rate) appears on the right-hand-side of an

equation, the variance prior for the coefficient is:

DECAY

O .
[P,y (j,m,n)]"? = TIGHT x OTHER( j,m) Lx—f,
n (o)

where DECAY is a hyperparameter.

Two additional hyperparameters complete the specification of the Bayesian prior. First,
we specify the elements of Py corresponding to the constant and 11 seasonal dummy variables
in each equation, j, as ¢° i [TIGHT *CONREL]?, where CONREL is set to a large number to reflect
a large degree of uncertainty that the mean of these coefficients is zero, as specified in 5. In our
implementation, CONREL equals 100. Second, the degree of time variation in S, given by the
diagonal matrix Q, is determined by the hyperparameter, 7, whose square multiplies the prior on
the variance prior, Pip. That is, we set O = e P1jo. Normally, we expect 7 to be a very small
number, indicating that the variance of shocks to the process describing parameter evolution (Q)
is a very small fraction of the variance of our prior (Pp). For each equation,j=1,...,7, we
follow standard practice in estimating 02j as 0.9 times the variance of the residual from a
univariate ARMA(24, 0) including a constant and, for a seasonal variable, eleven seasonal

dummy variables.
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The hyperparameters TIGHT, DECAY, SDECAY, TOOTH, and 7 are estimated by a
simplex routine, to minimize the log determinant of the one-step-ahead MSE matrix of forecast
errors.”

Following standard practice, we use the state-space representation (6) — (7) to form one-
step ahead forecasts for each variable in the model as yi 1 = Z 1 Berije . Using (7), Berije = Pues
thus we have a one-step ahead forecasting rule given by: yi1; = Z'+1 By Forecasts for more than
one-step ahead are computed via the chain rule.

Figure 5 plots the square root of the elements of Py (that is, standard deviations)
corresponding to the federal funds rate and pennies in the equation for pennies. Figure 5a shows
the priors for the standard deviations at each lag for a nonseasonal variable (the federal funds
rate). As the lag increases, the standard deviations decline, to indicate that we are more certain
about the values of b as the lag increases. Figure Sb shows how the standard deviations for our

priors about the coefficients on lagged pennies in the equation for pennies change as the lag

4 Estimation was subject to the following restrictions on the hyperparameters:

0<TIGHT< 1;0< DECAY< 5;0< SDECAY< 1;0< TOOTH< 5; and, 7> 0. On the basis of several
experiments, the estimates of the hyperparameters do not appear sensitive to starting values for those parameters.
Estimation yielded the following point estimates: TIGHT = 0.2606, DECAY = 1.2459, SDECAY = 0.7639, TOOTH =
0.8514, and 7= 0.3533 x 10”. These estimates are based on a sample of data from 1959:2 to 1989:12, 24 lags (with
observations prior to 1959:2 serving as presample values), and one-step-ahead forecasts for the period 1960:2 to
1989:12 for use in constructing the one-step-ahead mean-square-forecast-error matrix. The data were scaled as
follows: net pay (in millions of coins) was divided by 100; the federal funds rate (in annualized percentage points)

was divided by 400; and the not-seasonally-adjusted CPI inflation rate was constructed as a log first-difference. All

computations were performed in RATS 5.02.
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increases. The upward spikes at the seasonal lags (12 and 24) suggest an increased level of
uncertainty about our prior that the coefficients are zero at those lags, although we are more
certain at lag 24 than we are at lag 12. These functions are evaluated at the point estimates
described in footnote 4 above.

The result of estimating the Bayesian VAR over the same testing period used in the other
models generates an annual RMSFE of 1723, which compares favorably with all the other
models, including the time-series model, as Table 3 shows. The forecasts from the Bayesian
VAR pass the tests (sign test, Wilcoxon singed-rank test, zero-mean test, and test for
unbiasedness) that the other models passed, as shown in Tables 4 to 7, except for the test for
unbiasedness with quarterly data. Thus, the Bayesian VAR appears to be our best model, though

as Figure 4 shows, its forecasts are very close to those of the time-series model.

3. Real-Time Forecasts

Each month, after the Federal Reserve coin offices calculate data on net pay, we generate
new forecasts for net pay for pennies, nickels, dimes, and quarters at the national level using the
time-series model, the VAR model, and the Bayesian VAR. We also use the time-series model
to generate forecasts for the very small demand for halves and dollar coins.

The key question put to any forecasting method is: how well does it work?
Unfortunately, we have only been forecasting the demand for coin for about 2 years, so we
cannot answer that question very well. Table 8 shows the forecasts from each model made every
three months from February 2001 to February 2003, along with the actual values in 2001 and
2002. Table 9 shows the same information for averages of the models (the VAR and time-series

models for most of 2001; the VAR, time-series, and Bayesian VAR models beginning in
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November 2001). As you can see in the tables, the initial forecasts were a bit high for 2001.
Given what had happened in 1999 and 2000, with coin demand rising, the forecasting models
predicted continued strong demand in 2001 that did not materialize. Instead, coin demand began
declining substantially, and it took the forecasting models several months to adjust fully. Coin
demand was 17 billion coins for the year, somewhat less than the 21 billion coins suggested by
the models early in the year.

Forecasts for 2002 also moderated over time but later increased. Forecasts made in early
2001 pegged coin demand for 2002 at over 20 billion coins. The forecasts were gradually
reduced through February 2002, as actual coin demand in 2001 was less than expected. Then, in
spring 2002, coin demand grew a bit more than expected, so the forecasts began to rise
somewhat. But demand declined in fall 2002, so the forecasts declined as well. The forecasts
for 2003 reflect a similar pattern.

So far, the time-series model has done a better job of forecasting than the VAR because it
was the quickest to drop the forecasts for 2001 and 2002 as net pay fell. But the period is much
too short to favor the use of that model over the others. In a few years, we will have much more
data on the forecasts and the errors made by each model, and we will be able to undertake a more

complete examination.

4. Conclusions
This paper explained the basic models that we use for forecasting coin demand. We
developed a structural model that we shelved because of its poor performance. We developed

and currently use a VAR model, a time-series model, and a Bayesian VAR model, all of which
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appear to provide sensible forecasts. As time passes, we will be able to evaluate the real-time
forecasts of these models.

We are currently working on small modifications to each model. We developed the
models in the midst of a major structural change in coin demand because of the state quarter
program and the introduction of the golden dollar. As a result, we do not have enough data from
that structural change to incorporate any type of break into the models. This could be done when
a few years have passed and we are better able to ascertain the implications of this structural
break. Also, each model treats all the coins symmetrically; we will now consider alternative
structures for the different coins. We may even find that it would be optimal to mix models—the
time-series model might be best for some coins and a VAR best for other coins, so the optimal
model may be a combination of the two.

We have begun forecasting coin demand at the local office level using the time-series
model with data on coin demand at each of the 37 coin offices. This project is designed to
provide better analysis of coin demand and inventory control at each Fed cash office.

We are also considering alternative approaches to forecasting. First, once we have
enough forecast history, we will run forecast encompassing tests to see if certain models should
receive more weight than others. Currently, we simply take the average of the forecasts across
the three models and use that as the main forecast for planning purposes. Second, there exist
some estimates of the stock of coins, rather than the flow, so we could develop a stock model of

coin demand instead of a flow model.
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Table 1
Structural Model Results

Model Economic Activity Variable RMSFE
A Services Consumption 3179
B Nominal Retail Sales 2717
C Industrial Production 2705
D Nominal PCE 2737
E Employment 2647

Notes: Quasi-ex-ante forecast dates 1990Q1 to 1998Q1; one-year-ahead forecasts made
quarterly; RMSFE = root-mean-squared forecast error
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Table 2
VAR Model Results
RMSFE for 1990 to 1998

Lag Structure

Model Economic Activity Variable 1to2 1,2,3,6,9,12 1to 13
Al Log of Employment 2485 2395 2279
Bl  Log of Retail Sales 2495 2423 2299
Cl  Log of Industrial Production 2454 2442 2337
D1 Log of Nominal PCE 2469 2456 2355
A2  Growth Rate of Employment 4024 2397 2358
B2  Growth Rate of Retail Sales 4195 2435 2339
C2  Growth Rate of Industrial Production 4081 2443 2412
D2  Growth Rate of Nominal PCE 4207 2470 2407

Notes: Quasi-ex-ante forecast dates 1990Q1 to 1998Q1; one-year-ahead forecasts made
quarterly; RMSFE = root-mean-squared forecast error
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Model

Structural Model
Time-Series Model
VAR

BVAR

Sample size

Table 3
RMSFEs for Different Coin Models
Testing Period 1990 to 1998

Quarterly
RMSFE

2647
2035
2279

2051

33

Annual
RMSFE

2606

1746

2014

1723

Notes: Quasi-ex-ante forecast dates 1990Q1 to 1998Q1; one-year-ahead forecasts made
quarterly and annually; RMSFE = root-mean-squared forecast error

28



Model
Structural
Time-Series
VAR

BVAR

Null hypothesis:

Quarterly
t-statistic

0.52

1.22

0.17

0.87

Table 4
Sign Test

Reject
null?

no

no

no

no

Annual
t-statistic

0.33

1.00

0.17

0.33

forecast errors are independent with a zero median

Reject
null?

no
no
no

no
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Table S
Wilcoxon Signed-Rank Test

Null hypothesis:

Quarterly Reject Annual Reject
Model t-statistic null? t-statistic null?
Structural 0.53 no 0.41 no
Time-Series 0.37 no 1.13 no
VAR 0.28 no 0.04 no
BVAR 0.15 no 0.42 no

Null hypothesis: forecast errors are independent with a zero median



Table 6
Zero-Mean Test

Quarterly Reject

Model p-value null?
Structural 0.74 no
Time-Series 0.74 no
VAR 0.86 no
BVAR 0.88 no

Null hypothesis: Mean of forecast errors is zero

Annual
p-value

0.72
0.49
0.91

0.72

Reject
null?

no
no
no

no

Note: Quarterly standard errors adjusted for overlapping-observations problem using

Newey-West method.
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Table 7
Test for Unbiasedness

a Vi R’ D.W. p-value
Model
Quarterly Forecasts
Structural 23883 —0.46 0.09 0.11 0.00
(4.60) (1.47)
Time-series 7047 0.57 0.40 0.41 0.00
(3.61) (5.05)
VAR 9122 0.44 0.11 0.23 0.01
(3.00) (2.46)
BVAR 6972 0.57 0.35 0.39 0.00
(3.27) (4.66)
Annual Forecasts
Structural 25841 —0.58 -0.07 0.98 0.22
(1.86) (0.69)
Time-series 5641 0.67 0.46 1.77 0.35
(1.48) (2.81)
VAR 7707 0.52 0.09 0.22 0.18
(1.88) (2.08)
BVAR 5120 0.70 0.40 1.58 0.24
(1.57) (3.44)

Numbers in parentheses are absolute values of t-statistics testing whether the coefficient
is zero. The p-value reports the significance level of the test of the null hypothesis that o
=0and f=1. For quarterly forecasts, the covariance matrix was adjusted for
overlapping observations using the Newey-West procedure.
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Table 8
Quarterly Real-Time Forecasts
(billions of coins)

Forecasts for 2001

Period 2001:Q1 2001:Q2 2001:Q3 2001:Q4

Forecast
Date

February 2001 (data through January 2001)

VAR 3.1 6.9 5.8 6.2

Time-series 3.2 6.7 5.3 5.5
May 2001 (data through April 2001)

VAR 6.7 54 58

Time-series 6.6 5.1 54
August 2001 (data through July 2001)

VAR 4.0 5.1

Time-series 3.8 4.8
November 2001 (data through October 2001)

VAR 3.8

Time-series 3.7

BVAR 3.7
Actual for 4 Denominations 3.2 6.1 3.7 41

2001

22.0
20.7

21.2
20.3

18.4
17.9

16.8
16.7
16.7

17.1
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Table 8 (continued)
Forecasts for 2002

2002:Q1 2002:Q2 2002:Q3 2002:Q4 2002

February 2001 (data through January

2001)
VAR 3.8 7.0 6.0 6.5 23.3
Time-series 3.2 6.4 5.1 5.5 201

May 2001 (data through April 2001)
VAR 3.6 6.7 5.5 5.9 21.7
Time-series 3.1 6.1 4.8 5.2 19.3

August 2001 (data through July 2001)
VAR 3.2 6.2 4.7 55 19.6
Time-series 2.7 55 3.8 4.6 16.7

November 2001 (data through October 2001)

VAR 2.3 55 4.3 4.8 16.8
Time-series 2.1 4.9 3.2 3.6 13.9
BVAR 2.2 5.3 3.6 4.0 15.0
February 2002 (data through January
2002)
VAR 1.5 5.1 3.8 4.8 15.3
Time-series 1.5 4.7 2.9 3.6 12.7
BVAR 1.6 5.1 3.3 3.9 13.9
Actual for 4 Denominations 2.8 57 2.8 3.8 15.1

Forecasts for All 6 Denominations Begin May 2002

May 2002 (data through April 2002)

VAR 5.6 4.3 5.0 17.7
Time-series 5.5 3.9 41 16.3
BVAR 5.8 4.1 4.5 17.2

Aug 2002 (data through July 2002)

VAR 4.0 4.9 17.5
Time-series 3.9 4.2 16.6
BVAR 3.9 4.4 16.8

November 2002 (data through October 2002)

VAR 4.1 15.5
Time-series 3.8 15.2
BVAR 3.8 15.2

Actuals for 6 Denominations 2.8 5.8 2.8 3.8 15.2



Table 8 (continued)
Forecasts for 2003

2003:Q1 2003:Q2 2003:Q3 2003:Q4 2003

February 2002 (data through January

2002)
VAR 2.5 54 4.2 5.1 17.2
Time-series 14 4.4 2.8 3.5 12.2
BVAR 1.8 5.0 3.3 3.8 13.9

Actual for 4 Denominations
Forecasts for All 6 Denominations Begin May 2002

May 2002 (data through April 2002)

VAR 3.3 5.8 4.7 5.2 19.1
Time-series 2.9 54 3.9 4.2 16.4
BVAR 2.9 5.8 41 4.3 171

Aug 2002 (data through July 2002)

VAR 3.3 59 4.5 52 18.9
Time-series 2.9 5.6 3.9 4.3 16.7
BVAR 2.8 5.7 3.9 4.2 16.5

November 2002 (data through October 2002)

VAR 2.7 57 3.7 4.8 16.9
Time-series 2.3 5.2 2.9 3.8 14.2
BVAR 2.2 52 2.9 3.6 14.0
February 2003 (data through January
2003)
VAR 0.9 4.9 3.2 44 134
Time-series 0.9 4.5 2.3 3.2 11.0

BVAR 1.0 4.6 2.3 3.1 11.0



Table 9
Annual Real-Time Forecasts

Fed Average Forecasts
Forecasts (billions of coins per calendar year)
Forecast Date 2001 2002 2003 2004

Forecasts for Pennies, Nickels, Quarters, and Dimes; Average of Time Series and VAR Forecasts

Feb 2001 214 21.7
May 2001 20.8 20.5
Aug 2001 18.1 18.1 18.7

Forecasts for Pennies, Nickels, Quarters, and Dimes; Average of Time Series, VAR, and BVAR
Forecasts

Nov 2001 16.7 15.2 15.6
Feb 2002 14.0 14.4
Actual 17.1 15.1

Forecasts for all 6 denominations; Average of Time Series, VAR, and BVAR Forecasts

May 2002 171 17.5

Aug 2002 17.0 17.4

Nov 2002 15.3 15.1 15.3
Feb 2003 11.8 12.3
Actual 15.2
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Figure 2d
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Figure 2e
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Figure 3
Annual Net Pay of Coins
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