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Abstract

We develop a model of costly technology adoption where the cost is irrecoverable

and fixed. Households must decide when to switch from an existing technology to a

new, more productive technology. Using a recursive approach, we show that there is a

unique threshold level of wealth above which households will adopt the new technology

and below which they will not. This threshold is independent of preference parameters

and depends only on technology parameters. Prior to adoption, households invest at

increasing rates, but consumption growth is constant. We also show that richer

households adopt sooner and that income inequality increases over time. Both these

results are consistent with the evidence from the Green Revolution.
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1 Introduction

We study capital accumulation in an environment where technology adoption is costly.

We develop a simple model in which a household faces a fixed cost to switch from a less

productive technology to a more productive technology. Given the household’s initial

level of wealth, we examine how the presence of the fixed adoption cost influences

the evolution of the household’s wealth and the length of time before the household

adopts the higher productivity technology.

Several authors have recognized the important role of technology adoption in

the process of economic development. Prominent examples of technology adoption

and productivity growth episodes include the Industrial Revolution (Mokyr, 1993),

the Green Revolution (van Zanden, 1991 and Alauddin and Tisdell, 1991) and the

Information Revolution (David, 1990, and Greenwood, 1996). In studying the role

of technology adoption, the literature has followed, essentially, two themes: (i) costs

and benefits of adoption in a variety of environments and (ii) impact of adoption on

macroeconomic variables such as growth, relative wages etc. In the former theme, the

decision to adopt a new technology is cast in an environment with rich details on costs

and benefits. For instance, Jovanovic and Nyarko (1996) and Pérez-Sebastián (1996)

posit a trade-off between the accumulated knowledge in the old technology through

learning-by-doing and the risky, unknown, but higher average productivity of the new

technology. In the latter theme, the focus is on the behavior of related variables in

the economy using relatively simple trade-offs in the technology adoption decision.
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For instance, Parente and Prescott (1994), Parente (1994, 1995) and Easterly, King,

Levine, and Rebelo (1994) try to explain persistent differences in incomes across

countries.

Our model belongs to the latter theme. We subsume the cost of adopting a new

technology entirely into an exogenous fixed cost. The benefit of adoption is higher

productivity. The fixed cost in our model is the cost of learning the new method

of production. For instance, in the context of the Green Revolution, farmers had to

learn how to use the new variety seeds with other inputs. Foster and Rosenzweig

(1995) document that the learning cost was non-trivial: knowledge about the new

seeds was a significant barrier to adopting the high-yield technology during the Green

Revolution. Furthermore, Wozniak (1987) finds that the decision to adopt is a human

capital intensive activity.

Capital, interpreted broadly to include both physical and human, is the sole factor

of production in our model. Both the old and the new technologies are linear.1 Our

aim is to characterize the path of capital accumulation. For infinitely lived house-

holds with time separable homothetic preferences, we show that prior to adopting

the high productivity technology, capital is accumulated at increasing rates, i.e., the

growth rate of capital is monotonically increasing in the level of capital. Once a

household reaches a threshold level of wealth, it pays the fixed cost and adopts the

new technology. Consumption growth is constant during this period of increasing
1In our model, each household’s wealth is its composite physical and human capital stock,

so we will treat the terms ‘capital’ and ‘wealth’ as synonymous throughout the paper.
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investment.

The threshold level of capital at which a household switches to the new technology

is independent of the initial level of wealth. Consequently, the duration with the low

productivity technology is decreasing in the initial level of wealth. (This is consistent

with the findings in Wozniak, 1987, and Alauddin and Tisdell, 1991.) Furthermore,

the threshold is independent of preference parameters and depends only on the pro-

ductivity of the two technologies and the fixed cost of adoption. These technology

parameters influence the date of adoption in our model directly through their effect

on the threshold level of wealth and indirectly through their effect on the evolution

of wealth. Higher productivity of the old technology tends to postpone the adoption

date; higher productivity of the new technology induces households to adopt the new

technology sooner; and a higher fixed cost postpones the adoption date.

We show numerically that income inequality increases over time along with aver-

age capital across households. In our model, the wealthier households take advantage

of the more productive technology by adopting it sooner and, hence, benefit propor-

tionately more than the poorer households. Income of all households eventually grows

at the same rate, but the levels remain distinct. Our result on increasing inequality

while households are engaged in technology adoption is consistent with evidence from

rural India (Gaiha, 1987) and the Philippines (Bautista, 1997).

While we derive these results under the assumption that households may neither

borrow nor lend amongst themselves, our results are robust to the introduction of
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consumption loans that may be used by low productivity households to indirectly fi-

nance the cost of technology adoption. However, we maintain the assumption that low

productivity households may not circumvent costly technology adoption by investing

with high productivity households.

We also make a methodological contribution in this paper. We set up a sequence

of dynamic programs, one for each possible adoption date. Each dynamic program

yields a value function that helps us evaluate whether the associated adoption date

is optimal. One may use our dynamic programming technique to study a variety of

situations where there is a one-time cost. For instance, consider a household deciding

whether to migrate from a developing country to a developed country. If there is

a one-time fixed cost at the time of migration, then our technique will be useful

in determining the wealth accumulation prior to migration and the period in which

the household chooses to migrate. Other examples include opening an economy to

international trade or implementing a radical change in policy.

In related work, Greenwood and Jovanovic (1990) examine a growth model where

agents must pay a one-time start-up cost to avail themselves of the services of fi-

nancial intermediaries who provide information on the profitability of a risky asset

relative to a safe asset. In contrast to their analysis, we derive a unique threshold

level of capital at which households adopt the higher productivity technology and

show that this threshold is independent of preference parameters. We also explicitly

solve for the path of capital accumulation. However, we abstract from issues involv-
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ing uncertainty in the production technologies or intermediation. Bental and Peled

(1996) develop a search-theoretic model where technological progress is endogenous.

Improvements in technology depend on costly search, and the search process is one

of sequential sampling with a fixed cost associated with each sample. Their problem

is to determine the optimal stopping time, i.e., the number of samples above which

one stops looking for improvements in technology. Our problem is to determine the

optimal starting time, the period when one starts using the better technology. While

growth is endogenous in our framework, technological progress is not.

2 The Model

Time is discrete and is indexed by t. Households initially produce output, Yt, using

a technology characterized by a constant marginal product of capital whose value is

A > 1, i.e., Yt = AKt, where Kt is the composite physical and human capital stock

(or the sum of physical and human wealth), at the beginning of period t. We will

model the fixed cost of adoption as a reduction in wealth at the time of adoption,

i.e., it costs any household λ > 0 units of capital to adopt a new technology. This

fixed cost λ allows a household permanent access to a more productive technology

characterized by a constant marginal product B > A.

Any household may be in one of three stages at any point in time: it may be

operating the old technology; it might have paid the fixed cost and just adopted the

new technology; or it might be operating the new technology, having adopted it in
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the past. Let S denote the time at which a given household pays the cost of adoption.

Production for this household is then summarized by

Yt =


AKt

BKt

if
t < S,

t ≥ S.
The household faces the following resource constraints conditional on S.

Ct +Kt+1 ≤ AKt for t = 0, 1 . . . , S − 1,

CS +KS+1 ≤ B (KS − λ) , (1)

Ct +Kt+1 ≤ BKt for t = S + 1, S + 2, . . .

While capital is assumed to fully depreciate each period, this is without loss of gen-

erality, since a depreciation rate may be subsumed into the coefficients A and B.

Households are assumed to discount future utility by the constant β ∈ (0, 1), and

their preferences are assumed to be time-separable. We assume βA ≥ 1.2 Utility

over consumption in period t, Ct, is given by (1 − β)C
1−σ
t

1−σ , σ > 0. (We interpret the

σ = 1 case as logarithmic utility.) The lifetime utility maximization problem for a

household identified by an initial level of wealth of K0 is presented below.
2If βA < 1, then, as we will see, it is possible that an initially poor household may never

choose to accumulate enough capital to pay the fixed cost of adoption.

6



max
S,{Ct,Kt+1}∞t=0

(1− β)
∞X
t=0

βt
C1−σt

1− σ

subject to (1),

Ct ≥ 0, t = 0, 1, ...,

K0 given.

Two remarks are in order. First, our formulation allows for immediate adoption;

households may choose to adopt the new technology in period 0. Indeed, we will show

that a household with sufficiently large initial wealth will follow exactly this strategy.

Second, the fixed cost of technology adoption is closely related to the time interval

between periods in our model. For example, suppose it takes five years of time and

material expenditures to bring the new technology on line. Then the fixed cost is the

present value of these resources, and the time interval between model-periods is five

years.

A straightforward but cumbersome two-step approach to solving the above prob-

lem is as follows. First, for each S ≥ 0 where adoption is feasible (in the sense that

KS > λ), determine the path of capital accumulation given S, both before and af-

ter technology adoption. Given the path of capital, determine lifetime utility as a

function of S and initial capital. Next, choose the value of S that yields the high-

est level of lifetime utility. While the first step is a relatively straightforward utility

maximization problem, the introduction of the second step requires solving the first
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problem an infinite number of times, since, in the absence of any characterization of

the properties of the solution, we have to evaluate lifetime utility for each feasible

value of S. We circumvent this problem below by following a recursive approach.

3 Households’ Decision Rules

3.1 Technology adoption: a recursive characterization

We formulate a set of indirect lifetime utility functions defined over capital, each

associated with a particular period for adoption. This allows us to complete the first

step of the solution approach described above and determine the path of capital ac-

cumulation given a time for, or more accurately a time until, technology adoption.

Moreover, we are able to essentially replace the second step by mapping the origi-

nal problem of locating the optimal S into an equivalent problem of determining a

threshold level of wealth at which the household will adopt the new technology.3

To characterize the technology adoption problem, it is necessary to know the value

of each household’s wealth in three distinct scenarios: the value after adoption, the

value assuming it never adopts the new technology, and the value given it adopts the

new technology in some arbitrary period T . The results we derive here hold for all

σ > 0 (see Appendix 6.2); however, for expositional convenience, we concentrate on

the case where U (Ct) = (1− β) logCt (i.e., σ = 1). We assume that households can
3Horowitz (1993), in a finite horizon model of moving from a traditional sector to a

modern sector, solves for the optimal switching time directly (instead of deriving the critical
level of capital above which it is optimal to switch).
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neither borrow nor lend. This assumption is partially relaxed below.

We start our characterization of the technology adoption decision by characteriz-

ing households that have already adopted the more productive technology. LetH (K)

denote lifetime utility for a household currently using the high productivity technol-

ogy that has K units of capital. For such a household, the constraint correspondence

ΓH (K) = {K 0 ∈ R+ | K 0 ≤ BK}

is the set of feasible values for next period’s capital, K 0. For households not using

the more productivity technology, let the constraint set for K 0 be defined by

ΓL (K) = {K 0 ∈ R+ | K 0 ≤ AK} .

As B > A, it follows that for any K ≥ 0, ΓL (K) ⊆ ΓH (K). Hence, a household

currently using the higher productivity technology will never use the original, less

productive technology in future. Consequently, H will solve the following Bellman

equation:

H (K) = max
K0∈ΓH(K)

U (BK −K 0) + βH (K 0) . (2)

The existence of an unique H that solves the functional equation (2) follows from

Alvarez and Stokey (1998). We denote the optimal policy for next period’s capital

associated with this dynamic programming problem as K 0 = gH (K).

We define the value of capital for a household under the assumption that it never

adopts the more productive technology as L (K):
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L (K) = max
K0∈ΓL(K)

U (AK −K 0) + βL (K 0) . (3)

The policy function for this benchmark is denoted gL (K). Equations (2) and (3) may

be used to verify that

H (K) = log (1− β) +
β log β

1− β
+
logB

1− β
+ logK, (4)

L (K) = log (1− β) +
β log β

1− β
+
logA

1− β
+ logK. (5)

These solutions yield associated policies: gH (K) = βBK and gL (K) = βAK.

Using our solution for the lifetime utility function post-adoption, H, allows us

to solve for lifetime utility functions pre-adoption, Z, given some number of periods

until adoption, T . Specifically, for T = 0, 1, . . ., Z (K,T ) describes lifetime utility

as a function of capital when technology adoption will occur in T periods; T = 0

represents immediate adoption. Since the constraint set during the adoption period

is given by {K 0 ∈ R+ | K 0 ≤ B (K − λ)} = ΓH (K − λ), Z (K, 0) must satisfy (6).

Z (K, 0) = max
K0∈ΓH(K−λ)

U (B (K − λ)−K 0) + βH (K 0) . (6)

An examination of equation (2) reveals Z (K, 0) = H(K − λ). Iterating backward,

the period prior to technology adoption we have

Z (K, 1) = max
K0∈ΓL(K)

U (AK −K 0) + βZ (K 0, 0) . (7)
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We note that before the adoption period the constraint set is given by ΓL (K). Gen-

erally, Z (K,T + 1) is defined recursively using Z (K,T ),

Z (K,T + 1) = max
K0∈ΓL(K)

U (AK −K 0) + βZ (K 0, T ) . (8)

We now solve the time-until-adoption value functions Z (K,T ). The function

Z (K, 0) is easily determined using the solution for H in (4),

Z (K, 0) = log (1− β) +
β log β

1− β
+
logB

1− β
+ log (K − λ) , (9)

and implies that gZ (K, 0) = βB (K − λ). Next, backward induction using (8) for

T = 1, 2, . . ., yields

Z (K,T + 1) = log (1− β) +
β log β

1− β
+

βT+1 logB

1− β
(10)

+
β
¡
1− βT

¢
1− β

logA+ log
¡
AK − λA−T

¢
and the associated optimal policies

gZ (K,T + 1) = βAK +
1− β

AT
λ. (11)

Thus far, we have essentially restated the approach to determining S, described

in the previous section, in terms of an equivalent problem of determining T . Our

determination of lifetime utility prior to adoption as a function of both K and T ,

Z (K,T ), has completed the first step of the approach to characterizing the technology
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adoption problem. If we were to now implement the second step and determine the

optimal period of adoption, S∗, we would have to find the optimal number of periods

to wait until technology adoption, T ∗, that satisfies Z (K,T ∗) ≥ Z(K,T ), for T =

0, 1, 2, ..., givenK. As we have already noted, this approach is cumbersome, requiring

an infinite number of function evaluations. Instead, we determine the threshold level

of wealth, K∗, at which each household will adopt the new technology and use the

accumulation behavior implied by (11) to determine T ∗ as the time taken to reach

the threshold level of capital starting from an initial capital stock of K0.

There are obvious bounds on the threshold level of capital. For instance, if a

household’s capital is less than λ, the household cannot adopt the new technology.

This does not imply, however, that the household will switch as soon as it reaches

a level of capital above λ. To see this, consider a household with λ units of capi-

tal. If this household never adopts the new technology, its lifetime utility is L(λ).

If it decides to adopt the new technology, then from (4) and (5) it is clear that

limK→λ Z(K, 0) < L(λ). By continuity, the household will not adopt even if it has

capital close to but greater than λ.

An upper bound on the threshold level of wealth may be found as follows. Let

K be such that the output, net of fixed cost, under the new technology is the same

as the output in the old technology, i.e., B(K − λ) = AK or K = Bλ/(B − A).

(See Figure 1.) A household with capital K ≥ K will immediately adopt the new

technology. This follows from a simple observation: any consumption sequence that
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is feasible when the household operates the old technology for T ≥ 1 periods and

then switches to the new technology is also feasible if the household adopts the new

technology immediately. However, the converse is not true. Hence, the household is

better off switching to the new technology if its capital is K ≥ K.

So far we know that the threshold level of capital lies in [λ, K]. It turns out that

there is a unique threshold level of wealth above which all households will adopt the

higher productivity technology and below which they will not.

Proposition 1 Let K ∗ = B−1
B−Aλ. A household will adopt the new technology if and

only if K ≥ K∗.

The proof is in the Appendix.4 Briefly, our proof has three steps. First, we show

that a household with capital K ∗ or higher will immediately adopt rather than wait

one more period. Second, we prove that at this threshold, the household will adopt

immediately rather than wait any finite number of periods. Finally, we establish that

the household would rather adopt the new technology than never adopt, when its

wealth exceeds the threshold.

Clearly, K ∗ ∈ (λ, K) since A > 1. Furthermore, the threshold level of wealth

is decreasing in B, increasing in A, and increasing in λ. Note that, in contrast

to Greenwood and Jovanovic (1990), the threshold level of capital in our model is

unique. Below, we examine the implication of these properties for the length of time

until adoption and the evolution of each household’s wealth.
4Section 6.2 of the Appendix proves that this threshold level of capital K∗ is independent

of σ.
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3.2 Evolution of households’ wealth

The evolution of wealth after adoption is completely described by the policy function

gH (K) = βBK. The path of wealth prior to adoption depends on when the new

technology is adopted (see equation (11)). However, since we know the threshold level

of wealth at which households adopt the new technology, we are able to compute the

time taken to reach K∗, given an initial wealth K0, using (11).

Suppose that a household plans to adopt the new technology in period S and has

K0 units of initial capital. Then, setting T = S − t in (11), we have

Kt =
(1− β)λ

AS−t
+ βAKt−1, t = 1, . . . , S. (12)

Iterating backward to period 0, we can derive the path of capital from period 0 to

period S:

Kt =
(1− βt)λ

AS−t
+ (βA)tK0, t = 1, . . . , S. (13)

Define this household’s growth rate of wealth pre-adoption to be γt ≡ Kt+1

Kt
, t =

0, 1, ..., S − 1. Using (12) and (13), we have

γt =
(1− β)λA

λ+ βt(ASK0 − λ)
+ βA.

It is easy to see that γt is rising over time. First, starting from any K0, the highest

level of capital that a household can possibly have in period S is ASK0; hence,

KS ≤ ASK0. For S to be the adoption period, KS must be greater than λ; so it
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follows that ASK0 − λ > 0 is a necessary condition. Second, since β < 1, βt is a

decreasing function of t. Hence, γt > γt−1 > γt−2 > ... > γ0.

The increasing growth rate of capital implies that the investment rate, Kt+1−Kt
AKt

,

is also rising over time. This may be explained as follows. While a household would

like to access the high productivity technology soon, it would also rather have more

current consumption than more future consumption. Consequently, the investment

rate is low in the earlier periods and high in the later periods. A household that begins

with K0 units of capital invests at an increasing rate until it reaches the threshold

K∗, pays the fixed cost of λ units of capital and switches to the new technology. We

thus have the following proposition:

Proposition 2 Prior to technology adoption by a household, the growth rate of its

capital and the investment rate are both monotonically increasing over time.

We can use (13) to determine the adoption period. Assuming that the switching

period is S, the wealth at the beginning of period S is given by

KS = (1− βS)λ+ (βA)SK0.

For S to be the switching period, we must have KS ≥ K∗. By replacing KS with K∗

on the left-hand side of the above expression, we may solve for bS and set S as the
next largest integer. Informally, graphing the two sides of

K∗ = (1− βS)λ+ (βA)SK0 (14)
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as functions of S, the intersection point gives us the switching period (subject to

an integer constraint). This is illustrated in Figure 2. While S cannot be solved

analytically, a numerical solution to the nonlinear equation (14) is easy to obtain.

This numerical solution is critical for computing the evolution of capital for each

household. Once we solve for S, the entire path of capital accumulation in the pre-

adoption state can be determined by using (13). Our recursive approach relies on the

result that we have a unique threshold level of capital above which households adopt

the higher productivity technology.

An implication of (14) is that the switching period depends on the initial wealth.

Since the threshold does not depend on the initial level of capital, a lowerK0 implies a

higher S for equation (14) to be satisfied. The threshold level of capital is determined

by the technology parameters, A, B, and λ. Poorer households, starting with a lower

level of initial capital, will take longer to reach K∗ even if they accumulate capital at

the same rate as wealthier households. In fact, in our setup, poorer households save

a smaller fraction of their income relative to the rich households (see Proposition

2). Hence, the new technology is adopted at a later date by households that are

relatively poor. This is in contrast to the two-period model of Eswaran and Kotwal

(1989) where lack of access to loans is the key reason why poor farmers adopt later.

(For more details on the effect of loans in our model, see section 3.3.)

Proposition 3 The lower is the level of initial household capital, the is later the

adoption date.
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Proposition 3 is consistent with the findings in Wozniak (1987), given our inter-

pretation of K as a mix of physical and human capital. He finds that the technology

adoption decision is a human capital intensive activity and that early adopters tend

to be those with high levels of human capital.

Next, we study the effect of changes in the underlying parameters upon the switch-

ing period. Combining equation (14) with Proposition 1, we have

B − 1
B −Aλ = (1− βS)λ+ (βA)SK0. (15)

where the left-hand side is, of course, the threshold level of capital, K∗. A higher level

of post-adoption productivity B0 > B accelerates the pace of technology adoption.

First, as noted in the previous section, B0 implies a lower threshold than B. Second,

the path of wealth accumulation in the pre-adoption state does not depend on the

productivity of the new technology. That is, the left-hand side of (15) is lower but

the right-hand side remains the same. Hence, the time until adoption is reduced.

Now consider the effect of a higher fixed cost of adoption, λ0 > λ. For each unit

increase in λ, the left-hand side of (15) increases by B−1
B−A > 1 while the right hand

side increases by 1 − βS < 1. Thus, the switching period has to increase to satisfy

equation (15). The intuition for this is fairly straightforward. A higher fixed cost

raises the barrier to adoption, so starting from the same initial condition households

adopt later. Clearly, earlier adoption in this case would suggest that households’

behavior was not rational when the fixed cost was lower.
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We summarize our results in the following proposition.

Proposition 4 A more productive new technology implies faster technology adoption

while higher adoption costs delay technology adoption.

Finally, consider the effect of higher productivity in the initial technology, i.e.,

B > A0 > A. The reduced net return to adoption suggests a delay in the time

of adoption. However, the rise in pre-adoption productivity implies that while the

threshold wealth for adoption rises, so does the savings rate prior to technology

adoption. Consequently, the path of wealth accumulation shifts up. Overall, it is

unclear whether the switching period falls or rises. Figure 2 illustrates the switching

time for a household using a simple numerical example. It is clear from the figure

that households adopt the new technology later under A0 than under A. We have

found this result to be robust to changes in parameters.

A notable feature of our model is that household consumption and wealth do not

grow at the same rate prior to adoption. To see this, consider a household that plans

to adopt the new technology in period S and has K0 units of initial capital. From the

resource constraint (1) we know that the gain to giving up a unit of consumption in

period 0 is A units of consumption in period 1. In utility terms, we have the following

Euler equation:

1

Ct
= β

1

Ct+1
A, t = 0, . . . , S − 2.
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During these periods, consumption growth is constant and equal to βA. Proposition

2, however, showed that the rate of growth of wealth is increasing over time during

this period.5 The contrast in growth rates is especially stark when one considers the

case βA = 1: the level of consumption stays constant, but wealth exhibits growth.

The reason for saving despite the low rate of return is that even though the ‘current’

return to savings is low, the ‘anticipated rate of return’ to savings is high. Households

take this into account when making their intertemporal decisions.

Post-adoption our model implies that the rates of growth of capital and consump-

tion are equal. When the household reaches period S−1, the gain to giving up a unit

of current consumption is B units of future consumption. Thus, the Euler equation

is

1

Ct
= β

1

Ct+1
B, t = S − 1, S, ....

Once technology adoption is completed, consumption and investment are constant

proportions of the current stock of capital.
5Models with minimum consumption requirements (such as Chatterjee and Ravikumar,

1999) imply an increasing rate of consumption growth and an increasing grwoth rate of
wealth. For instance, suppose that U (Ct) = (1− β) log(Ct − C), C > 0, and that the rate
of return to saving is constant. Then, as households accumulate capital they move away
from C and the growth rates of both consumption and wealth increase.
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3.3 Loans

As we have stressed, the form of technology adoption we are examining is a human

capital intensive activity. Hence, access to loans may not directly help a household

adopt the high productivity technology. However, households may be able to adopt

the technology sooner if they have other means of financing consumption. Our analysis

above has not allowed for this possibility. We relax this assumption now.

Suppose the households that have not yet adopted the high productivity tech-

nology could obtain consumption loans from the households that have adopted the

high productivity technology. Since the gross rate of return on the new technology

is B, the lowest possible interest rate acceptable to the high productivity households

is r = B − 1.6 If a household decides to borrow, the only reason for doing so is to

switch to the new technology immediately since r > A − 1. Consider a household

with K0 > λ units of capital borrowing Bλ units of goods and repaying the loan in

constant amounts starting next period. At the interest rate r, the per period pay-

ment must equal rBλ. In period 0, the household uses the borrowed resources Bλ

to finance consumption. From period 1 on, the household repays the loan by the

constant amount rBλ each period. Thus, the household’s budget constraint is
6The presence of fixed cost prevents us from aggregating heterogenous households into a

representative household. Hence, in contrast to Becker (1981, 1982), we cannot exploit the
equivalence between optimality and competitive equilibrium in order to derive the implica-
tions for equilibrium interest rates.
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C0 +K1 ≤ B (K0 − λ) +Bλ,

Ct +Kt+1 ≤ BKt − rBλ for t = 1, 2, . . . .

Define y ≡ rBλ
B−1 , so at the interest rate B − 1, y = Bλ. We can then modify the

household’s budget constraint as follows:

C0 +K1 − y ≤ B(K0 − λ),

Ct +Kt+1 − y ≤ B(Kt − y) for t = 1, 2, . . . .

Define eKt ≡ Kt − y for t = 1, 2, . . .. The above constraints, restated using eKt, allow

us to reformulate this household’s problem: it begins with eK0 = K0 − λ units of

capital and chooses a sequence eK1, eK2, ... subject to eKt+1 ∈ ΓH
³ eKt

´
. It follows that

the household values this at H( eK0) = H(K0 − λ) = Z(K0, 0) using (6). That is, the

access to loans potentially helps the household immediately adopt the new technology

and realize the value Z(K0, 0).

The surprising result is that access to such loans does not make the borrowing

household better off. To see this, suppose that the initial level of capital is less than

the threshold, i.e., K0 < K∗. In this case, the household would be better off by

ignoring the loan markets and waiting one or more periods before switching, since

Z(K0, 0) < Z(K0, 1) for K0 < K
∗ (see Lemma 5 in the Appendix). If K0 ≥ K∗, the

household would indeed switch immediately, but it would have done so even without
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access to loans (see Proposition 1). Thus, the path of wealth and the threshold level

of wealth in our model are robust to the introduction of loans to help low productivity

households accelerate their technology adoption. To understand this result, note that

the per period return on investment for a household operating the low productivity

technology exceeds A − 1 but is less than B − 1. Clearly, such a household will not

be willing to borrow at the interest rate B − 1.7

While we have shown that allowing for consumption loans by poor households

does not affect their timing of technology adoption or accumulation of capital, we

have not considered the possibility of lending by these households. In the absence of

capital market imperfections, households without direct access to the high produc-

tivity technology would prefer to invest in the production of those already operating

the high productivity technology instead of engaging in costly technology adoption.

This in turn would imply that technology adoption occurs only at the wealthiest

households, and all remaining households abandon production to become outside

lenders. However, such a pattern of adoption would clearly contradict the empiri-

cal evidence that during the Green Revolution, poor households, alongside wealthier

households, engaged in technology adoption, though they adopted later. (See, for

example, Alauddin and Tisdell, 1991). Other evidence includes Jovanovic and Mac-

Donald (1994), who study the diffusion of Diesel locomotives and Dekimpe, Parker
7If relatively wealthy households faced any uncertainty regarding loan repayments from

poorer households, the interest rate would rise above B − 1. Wealthier households would
demand a premium to compensate for the default risk. Clearly, the poor households will
not borrow in such circumstances as they chose not to do so at an interest rate of B − 1.
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and Sarvary (1997), who study adoption of cellular phone technology.

Similar to models in the diffusion literature, our model implicitly assumes a cap-

ital market imperfection: low income households are unable to invest with high pro-

ductivity households. We suggest the following basis for this assumption. If low

productivity investors have no ability to ensure that their loans to high productiv-

ity households will be repaid, the unenforceability of loan contracts would eliminate

borrowing and lending altogether in our model. There is, in fact, considerable evi-

dence that legal protection of investors’ rights varies across economies. For example,

La Porta, Lopez-de-Silanes, Shleifer and Vishny (1998) examine rules protecting in-

vestment across 49 countries and find significant differences in the legal protection

of investors. One interpretation of their work is that, all else being equal, poorer

economies offer weaker investor protection. In fact, the insecurity of economic rights

due to arbitrary decision-making by government and the uncertainty of legal and

contractual rights are believed to be particularly acute, with adverse effects on the

availability of investment, in many developing economies (World Bank, 1987, p.62).

In the context of our model, the interest rate, r, on loans from low productivity to

high productivity households must have the property that r ≥ B − 1 to ensure finite

demand for such loans. However, at these interest rates, high productivity households

are always better off defaulting on loans if they are able to do so. For such households,

borrowing at interest rates bounded below by B − 1 does not offer any positive net

benefit. Therefore, given any level of investment, a high productivity household
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would retain all output and refuse to repay the investment loan. (This result holds

even if we assume that a borrower who defaults on loans will be credibly excluded

from subsequent borrowing.) Consequently, low productivity households would be

unwilling to lend to high-productivity households in the absence of a commitment

technology that ensured repayment of loans. Such commitment devices are likely to

be absent in less developed economies, and thus our model is most applicable to such

environments.

4 Income Inequality

As discussed in the previous section, a crucial assumption in our model is the lack

of institutions that channel the endowments of those operating the low productivity

technology to those operating the high productivity technology. While this may

be empirically justifiable in the context of a developing country during the Green

Revolution, this assumption has implications for the evolution of income inequality

that may provide another test of our model. Suppose that the initial level of wealth

was different across households. Then, as noted in propositions 2 and 3, wealthier

households will grow faster in the pre-adoption stage and adopt the high productivity

technology earlier. In the post-adoption stage, all households grow at the same rate.

In figure 3, we illustrate path of capital for different levels of initial capital. The

technology adoption decision is evident in the ridge that is a result of the fixed cost

of technology adoption and the high rates of capital growth displayed by households
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as they approach the adoption decision. Examining the period of adoption as a

function of the initial level of capital, we see that wealthier households will adopt

earlier. After adoption, the rise in the return to savings as a result of the high

productivity technology generates faster increases in wealth. Since the rate of growth

of wealth is initially increasing in the level of wealth and subsequently independent

of the level of wealth, the poor never catch up with the rich in our model. Thus,

while all households eventually achieve the same growth rate of income, their levels

of income remain distinct.

In Figure 4, we illustrate the evolution of income inequality over time. We use

the Lorenz Dominance criterion to rank income distributions in different periods.

(See Nygard and Sandstrom, 1981, for a definition of Lorenz Dominance.) Over

time, the Lorenz curve moves away from the 45-degree line, indicating that income

inequality is increasing over time.8 In Figure 5, we summarize income inequality in

each period with a commonly used index, the Gini coefficient, and plot its evolution

over time. The top panel contains the log of mean income across households, so the

slope at any point in time is the growth rate of average income. The bottom panel

contains the Gini coefficient. Note that income inequality is increasing as the average

capital increases. This is consistent with several studies on income distribution and

agricultural productivity growth. For instance, Gaiha (1987) documents that during
8Since average income (across households) in our economy is changing over time, Gener-

alized Lorenz Dominance (Shorrocks, 1983) may be a more appropriate way to rank income
distributions. However, we focus only on positive growth, so Lorenz Dominance and Gen-
eralized Lorenz Dominance yield the same ranking of distributions.
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the Green Revolution income inequality increased in rural India since large cultivators

benefited disproportionately from the new, more productive technology. Bautista

(1997) finds that during the period of dramatic growth in rice yield in the Philippines

(1965-80) proportionately larger income benefits accrued to large-farm than small-

farm households, resulting in an increase in income inequality.

5 Concluding Remarks

We have developed a model of costly technology adoption where the cost is irrecov-

erable and fixed. The path of wealth in this model has been characterized using a

recursive approach. Specifically, we formulated a sequence of value functions, one

for each possible adoption date, and showed that there is a unique threshold level

of wealth at which households adopt the more productive technology. We find that

this threshold is independent of initial wealth and depends only on technology para-

meters. Hence, wealthier households undertake earlier technology adoption. Prior to

adoption, households’ savings rates rise until they reach the threshold level of wealth,

but the rate of consumption growth remains constant. Our results on technology

adoption and capital accumulation hold even if the households that have already

adopted the high productivity technology could indirectly finance the adoption cost

of other households.

A crucial assumption in our model is the lack of institutions that channel the

endowments of those operating the low productivity technology to those operating
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the high productivity technology. Given that some farmers had already adopted the

high productivity technology during the Green Revolution, an interesting question

is why the remaining farmers did not rent out their factors of production. In future

research, we plan to follow the approach in Atkeson (1991) and Phelan (1995) and

examine whether lack of contract enforcement helps explain why the low productivity

households do not lend to the high productivity households.

6 Appendix

6.1 Proof of Proposition 1

Our proof of Proposition 1 proceeds along the three steps outlined in the text.

Lemma 5 For a household with K ≥ K∗, it is better to switch immediately rather

than wait one more period. Formally, Z(K, 0) ≥ Z(K, 1) ⇐⇒ K ≥ K∗.

Proof. The functional equations (9) and (7) imply that

Z (K, 0) ≥ Z (K, 1)⇔ logB + log (K − λ) ≥ log(AK − λ)

⇔ B(K − λ) ≥ AK − λ.

The last inequality is true for K ≥ K∗.

Lemma 6 If a household has K ≥ K∗, it is better to switch now than wait a finite

number of periods, i.e., for K ≥ K∗, Z(K, 0) ≥ Z(K,T ), T = 2, 3, ....
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Proof. Suppose that the household prefers to switch T periods hence, instead of

switching immediately. Note from the optimal policy (11) that the growth rate of

wealth exceeds βA. Since βA ≥ 1 by assumption, the wealth T − 1 periods hence

will be greater than K∗. By Lemma 5 it is optimal to switch in period T − 1 rather

than wait until period T . A similar argument applies to T −2 versus T − 1. Working

backward, it is easy to see that it is optimal to switch immediately.

Lemma 7 If a household has K ≥ K∗, it is better to switch to the new technology

now than never switch, i.e., for K ≥ K∗, Z(K, 0) ≥ L(K).

Proof. The functional equation (10) implies that

lim
T→∞

Z (K,T ) = log (1− β) +
β log β

1− β
+

1

1− β
logA+ logK

since β ∈ (0, 1) and A > 1. Note that the right-hand side is the same as L (K). Thus,

the sequence of functions Z (K,T ) converges to the function L(K). Now, suppose

for K ≥ K∗, Z(K, 0) < L(K). Then, there exists a T sufficiently large such that

Z(K, 0) < Z(K,T ). This contradicts Lemma 6.

It is clear from lemmas 5, 6, and 7 that K∗ is the threshold level of wealth, as

stated in Proposition 1.

6.2 Isoelastic Preferences

Before establishing our results for the isoelastic case, we define sA = (βA1−σ)
1
σ and

sB = (βB
1−σ)

1
σ . When U (C) = (1− β)C

1−σ
1−σ where σ > 0 and σ 6= 1, we may repeat

the approach of section 3 to obtain
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H (K) =

µ
1− β

1− σ

¶
(BK)1−σ

(1− sB)σ , (17)

L (K) =

µ
1− β

1− σ

¶
(AK)1−σ

(1− sA)σ , (18)

with gH (K) = sBBK and gL (K) = sAAK. Thus, we see that sA represents the

savings rate under the plan which permanently uses the low productivity technology

while sB is the rate of savings under the high productivity program. We assume that

sAA > 1 and sBB > 1. Following the approach taken for the log case, we are able to

derive

Z (K, 0) =

µ
1− β

1− σ

¶ {B (K − λ)}1−σ
(1− sB)σ , (19)

Z (K, 1) =

µ
1− β

1− σ

¶
(AK − λ)1−σ

(1− sB)σ (20)

and gZ (K, 0) = sBB [K − λ] and gZ (K, 1) = sBAK + (1− sB)λ.

Finally, as in section 3, we now solve for the family of value functions, Z(K,T+1).

For notational brevity, define

XT+1 ≡
¡
1− sTA

¢
(1− sB) + sTA (1− sA)
1− sA , for T = 0, 1, ...

Then,

Z (K,T + 1) = (1− β)

µ
XT+1
1− sB

¶σ
¡
AK − λA−T

¢1−σ
1− σ

(21)

g (K,T + 1) =
sAXTAK + (1− sB)λA−T

XT+1
.
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Note that limT→∞ Z (K,T + 1) = L (K) and limT→∞ g (K,T + 1) = gL (K). We will

show that the threshold value of capital, K∗, is unchanged relative to that which

defined the level of wealth associated with technology adoption for the case of log-

arithmic utility. Before we proceed, it is useful to show that the capital stock is

monotonically rising over time in the pre-adoption state.

Lemma 8 For all σ > 0, given sAA > 1, g (K,T + 1) > K, T = 0, 1, .....

Proof. When σ < 1, as B > A, sB > sA or 1−sB < 1−sA. Since 0 < sA < 1, this

implies that
¡
1− sTA

¢
(1− sB) + sTA (1− sA) <

¡
1− sT−1A

¢
(1− sB) + sT−1A (1− sA) or

XT+1 < XT . Therefore g (K,T + 1) > sAAK > K.

When σ > 1, the ratio XT
XT+1

is increasing in T . At its lowest value, when T = 0,

we have g (K,T + 1) > sAX0X1AK = sBAK > K.

Note that our additional assumption sAA > 1 is sufficient, but not necessary, to

prove that capital rises over time. However, given our result that the stock of capital

is growing over time, independently of T , we are able to apply lemmas 5-7 for the

case of isoelastic utility.

Proposition 9 The high yield technology is adopted if and only if K ≥ K∗.

Proof. A direct comparison of Z (K, 0) and Z (K, 1) indicates that the threshold

K∗ is unchanged. Next lemma 8 shows that capital is growing over time, indepen-

dently of T . This implies that lemma 6 continues to apply and the household would

rather adopt immediately than wait any finite number of periods. Finally, since
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limT→∞ Z (K,T + 1) = L (K), we can apply lemma 7 as well, so the household would

rather adopt immediately than never adopt.
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