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1. Introduction

This paper provides detail on technica aspects of the methods used to solve and smulate the
moddsin our Working Papers “ Exchange Rates, Monetary Policy Regimes, and Bdliefs’ and
“Exchange Rates and Monetary Policy Regimesin the U.S. and Canada.” In those papers we
solve and Ssmulate atwo-country, limited participation monetary mode of the exchange rate.
The models feature money supply growth rate processes that have regime-switching behavior as
in Hamilton's (1989) Markov-switching model. We investigate the predictions of the models
under the assumption of a nonlinear driving process. In addition, we look a the implications of
environments where agents have full information about the monetary regime and when they must
form inferences about the ate of the monetary regime. In the latter case, agents form beliefs
about the state of monetary policy and update beliefs rationaly using a Bayesian updating
procedure.

The models in our two Working Papers are distinguished by the time series processes
that describe the evolution of the exogenous state variables: money growth and technology
shocks. In*“Exchange Rates, Monetary Policy Regimes, and Beliefs,” we assume that the
exogenous date variables driving the economies are independent in that there are no feedback
effects between countries. In “Exchange Rates and Monetary Policy Regimesinthe U.S. and
Canada,” we dlow the two countries to have cross-correlated technology shocks and money
growth rates. Consequently, the models of exogenous shocks and belief sequences differ

across the two exercises.



This paper isin the nature of atechnical gppendix. Section 2 describes a theoretica
open-economy modd that features limited participation by households and firms in asset-trading
markets. Section 3 gives details on how the model is solved. We use Chrigtiano’'s
(1991,1998) method of undetermined coefficients. Section 4 describes the smulation methods
used to generate second moments and impulse response functions. The Appendix provides a
listing of computer programs that solve and Smulate versons of the basc modd. The programs
are written in Python, an object-oriented scripting language that is freely available for awide
varigty of computing platforms, including Windows, Unix, and Linux. The code listing provides
areference to much of the discusson in the text. All programs used to solve and smulate the

models in the two Working Papers referred to above are available from the authors on request.

2. Models

The basc modd is atwo-country variant of that in Christiano (1991) and is Smilar to the model
in Schlagenhauf and Wrase (1995). The trading opportunities, objectives, and constraints of
households are assumed to be isomorphic across countries. Details are provided for the
representative domestic household' s decisions and opportunities only: the foreign andogs are
graightforward and involve only obvious notationa dterations.

The domestic household begins period t with K. units of capitd and A” units of
domestic currency. At the beginning of period t, nomina wedlth A is divided by sending a

deposit of N.° currency units to the domestic financid market. Theremaining A° - NPis
t t



alocated to trade in the foreign exchange market. 1n the exchange market, domestic and
foreign households trade currencies to arrange balances for use in purchasing consumption
goods.

Domestic currency avallable to the domestic household in the exchange market conssts

of A°- N aong with the household worker’ swages. The worker supplies H ° labor unitsin
the domestic labor market a nomina wage W,° . In the foreign exchange market

AP - N +a,WP°H P units of domestic currency are divided into a domestic currency balance,
Mp,, and aforeign currency balance, M FDI , & nomind exchange rate g, (expressed in

domestic per foreign currency units). We dlow for some of the worker’ s wage receipts,

aWPHP, with 0£a, £1, to be used in currency trades in the foreign exchange market. The
household’' s nomind dlocation in the foreign exchange market is:
A’ - NZ+aWPHS =MJ +eM?, 2.2)

The household shopper purchases c,g’,t units of home-produced goods at price P°, and CE’t
units of foreign goods & price P™, subject to the cash condraints:

R°Co, £ Mg, (2.2)

P CE EM, (2.3)
When the congtraints bind as equalities, the shopper and worker combine to return home at the

end of the period with goods, but no cash.



Thefinancid intermediary receives amonetary injection X,° in the financid market,
which is deposited on behdlf of the household. The intermediary canthenlend N° + X° units
of cash to domedtic firms. Loanable cash supplied by the intermediary is

7= N7+ X? (2.4)

The firm manager hires workers, undertakes investment, and holds the household' s capita stock
K. Prior to producing output, the firm borrows L domestic currency units from an
intermediary to finance acquisition of H ° units of labor a wage W, per unit and to potentially
finance capita accumulation, in the face of a cash condraint:

WPHP +a,P°IP £ P (2.5)
Thefirm purchases 1° = K2, - (1- d®)K” units of home-produced goods to add to the
household's capital stock and finances fraction a,P°1.° ,with 0£a, £1, representing the
fraction of investment financed by loans. Capitd and consumption goods are indistinguishablein
the domestic goods market and sdll a a common price P° .

From (2.1)-(2.3), the shopper and the worker bring home goods but no cash when the

congraints bind as equdities.  The firm manager, after the close of trading in the goods
markets, pays|oan obligation R’,L;, where R, isthe gross domestic loan rate. The manager
brings home capital and cash profits of:

ROY’ - Ry - 1-a,)R"I? (2.6)

where Y,” isred output per domestic household.



The intermediary receives loan repayments R L =RP, (N,°+ X,°) and pays a gross
deposit return RS (N,°+ X,”) . Theintermediary returns home a the end of the period with its
household’'s own deposit return, RS, (N,”+ X,”), plus cash derived from intermediation
R%(N. + X ) - Ry (N,°+X.°). Thus theintermediary brings home a cash balance of:

R°.(NP +X?) 2.7)

Combining cash brought home by the household firm manager in (2.6), the intermediary in (2.7),
and cash that the household worker did not send to the foreign exchange market givesthe
household' s end-of -period nomind wealth:

AL=RYY- RO - (1-a)R 1P +

~ (2.8)
R_D,t (NtD + XtD) + (1' al)VVtDHtD
2.1 Preferences, Technology, and Shocks
The household maximizes utility measure:
— 3 t+] D |D
U _E[a. bD U(Ct+j’ll+j) (29)
j=0
with O£ b, £1. Domestic consumption of home-produced goods, ngt , and foreign-
produced goods, CFDYt , Isaggregated viaa Cobb-Douglas function:
CX =(Co)" (Ce)™ (2.10)

and momentary utility takes the form:



]- D

1
S D

U(ngt ’CFD,t’l' H~tD) :J

{2y oy} (2.12)

Lasureis |° =1- H ", with the time endowment normalized to unity. Foreign utility isthe same
as (2.9)-(2.10) except for the obvious notationd dterations.
For output production, each domestic firm possesses the technology:

Y = FP(KS HY) = (KPP (H)* exp((1- 2)7”) (212)
with 0<a <1. z"isamean-zero technology shock, so thereis no long-run growth in the
modd. Thetechnology for foreign firmsis the same as above except for notation.

Monetary injectionsaregivenby X =M_,,- M and X[ =M{,,- M_,, where

st

M ¢ and M, are per own-country-household stocks of domestic and foreign currencies. The
exogenous money growth rates ¢, =X /M_,and ¢ = X{ / M, depend on the monetary

policy regime. We assume that there are two monetary policy regimes. a high-mean money

growth state and alow-mean money growth State.

2.2 Monetary Policy

Money growth is exogenous and follows a Markov-switching process in the mean and,
possibly, in the variance. We consider two parameterizations of the money supply process.
The firgt is one in which money growth rates are independent across countries. For this case we

edimate univariate Markov-switching models for each country. Alternatively, we dlow for



money supply feedback across countries. We then model the money supply processasa
Markov-switching vector autoregression.*
Firgt, consder the case where money growth is independent across countries. Let

s indicate the unobserved regimewith s 1 {0,1} . Mean money growth can take on values

m(s)T {m-,m" }with mt <m" . Thetime series process for money growth follows:

(x - ms)) =r K.,- MS.,))+e (2.13)
The monetary control error e, is assumed to be distributed iid normd, drawn from a state-
dependent distribution with mean 0 and standard deviation that possibly depends on the State.
Mean money growth switches back and forth according to a Markov transition law with known

parameters:
p; =Pr{mg) =m’ |m(s.)=m]fori, j=H,L (2.14)
For the case where money growth is not assumed independent across countries we use
aMarkov-switching vector autoregression framework. The time series process for money
growth is assumed to be:
(X, -n(s)) = A(X,_,-n(s.,) +W, (2.15)
with X,,n ($),w, 2x1 vectors, and Aa2x2 matrix of coefficients. Note thet this

parameterization assumes both countries are in the same regime at the sametime. The
independent money supply mode alows countries to be in different regimes a the same time

(though there are no monetary interactions between countries). Thus, under the independent

! The Markov-switching models were estimated using Hans-Martin Krolzig's MSVAR package
for Ox.



money case, there are four states for monetary policy, while under the dependent case there are

two gtates for monetary policy.

2.3 Household Decisions

The household maximizes utility measure (2.9) subject to the trading opportunities and
condraintsin (2.1)-(2.8) and technology (2.12).

Condder acase of full information, thet is, a case in which households and firms have
full knowledge of dl current period shocks prior to making consumption and investment

decisons. Let V° (A", K", S) bethe vaue function corresponding to the domestic

household' s problem. V (- ) satisfies the functiond equation:

VOAS KD, Q) =max o o o pip,py (UGS 1- HO)*

by @y ° (AL KL S0)F (S.419)
with A%, given by the wedlth evolution equation (2.8). Binding cash congtraints (2.2)-(2.3) are
used to diminate Cj,, Cr,, and H,” as separate decisions. Also, from the foreign exchange
market allocation (2.1) we have A° - N +aW,°H" = MJ +eM 2, . Consequently, choice
of Mg, isimplied by choicesof N, H", and M 2, , since AP is predetermined and
g and W,° are taken by the household as given. Optimdity conditions for

N®, KC, M2, H 2L are

Lpoa R
“Ueg, 5 FPo O, o F(Sa19) =0 (2.16)
t

t+1



2 R Ry 0
" O3, ? *bolgp pt_Dl{ feo, +1- d”}+F (S.19)=0 (2.17)

e t+1 ’ t+2 a

1 1
-U, —+U, =0 (2.18)
Co RD Ce QRF
WD (1- a ) \ uCDD,1+1 -
"l e ape >§ OPo o F(8418)=0 (219
D

fo- \% R =0 (2.20)

t

where Uo isthe period t margina utility of leisure, and the period t margind products of

domestic |abor and capital are denoted, respectively, by f . andf, . .

D
Ht

24 The Economy’s State and Equilibrium

The dtate of the world economy in period t is characterized by values for

Mo M ke kAP ATKD K h,andS. M2 (ML) andk” (k") are per domestic
(foreign) household money and capital stocks. A° (A7) and K (K,") are the domestic
(foreign) representative household' s beginning currency and capita stocks.  § denotes the
vector of innovations to money growth in the home and foreign country while b, denotes belief

probabilities over the states of global monetary policy (the belief processis described below).
An equilibrium involves state-contingent prices, wages, interest rates, exchange rates,
and optimal household decison rules satisfying market clearing and aggregete consgstency

conditions. Market dearing conditionsare: H® =H>° , H.F = H " for labor;

Y0 = o Gt 1P and Y = G+ C o+ I for goods 2 = L2 and [F = L for loens



and A’ + X" =M +M7 and A" + X" =M +M_, for foreign exchange. Aggregate
consistency requiresthat A° =M., A" =M., for money stocks, and

K =k, K[ =k for capital stocks.

3. Solving the Model

We solve the modd using Chrigtiano’s (1991,1998) method of undetermined coefficients. This
method is used because it can easily handle modds in which different time t endogenous
variables are functions of different information sets. Thus, the method can handle cases where
the time t deposit decison and/or capital decison is made prior to the redization of thetimet
money shock. The method involves linearizing equilibrium conditions around Steedy Sate,
subdtituting in hypothesized decision rules for endogenous variables, and using the time series
representation for the exogenous driving processes to derive a system of nonlinear equationsin
decison rule coefficients.

We begin by combining the modd’sfirgt order conditions and subgtituting for the utility
and production functions to get a system of six Euler equations (three for each country) that
completdy describe the evolution of the economy. Though there isno long-run real growth in
the modd, the money stock is growing, o wages and prices are nondtationary varigbles. To
render them dationary they are deflated by the level of the money stock. Thus, define

p>=P°/MP andw®’ =W,° /M P . Findly, define x” =M, /M - 1. Then, the

equilibrium conditions characterizing the domestic economy are given by:

10
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u 5 D D ..
S W x o) 0_
o 7 QAo g fup H(1-80) ==
Pe Toe [}

5 o]
E ébD Cown Wera (fro, +azp%t’;1 fio (1- d®)+(-a,)1- dD)i

Py o b
The following conditions aso hold on the equilibrium path:
Y? = (KO (H)" ™ exp((1- @)z”)
ItD = Kﬁl- - dD)KtD
Co. = (Y- 1Y)
Ce, =(-a7)(%" - 1)

D — 1- (1' al)NtD +a1XtD
YtD - (1' alaZ)ItD

P

o NP +x°-a,p’l°
HD

t

D D ;&

R =(1- a)%f%g exp((1-a)z’)

An andogous st of equations characterizes the foreign country.
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3.1 Exogenous State Variable Evolution

The exogenous state variables for the economy are the shocks to technology and the money
growth processes. By deriving an autoregressive representation of the exogenous shock
process, we can easily backdate to time t system variables dated t+1 and higher.

Shocks to technology are assumed to follow afirst order VAR:

7P () VIR ThalV
&L G=P, g; a*teé wu (3.11)
& 0 ezt 10 éJ a

with the vector of innovationsiid norma with mean zero, and covariance matrix S, .
To derive the AR(1) representation of the money growth process, consder first the

evolution of the monetary regime state vector S =[s,1- §]  where 51 {01} . Let

=[1,0]" denote the high money growth regime and S+ =[0,1]" denote the low money

growth regime stae. The regime state vector evolves according to:
S=PS.,+y (312)

where the trangtion matrix P has dements

p= ephh P U
é U
éebPy P G

and p; isasdefinedin (2.14). Since § isdiscrete, the innovation vector can take on four

vaues,

7z

e Py U
6' Pul

u= S'P31

12



ép, u
& ¢=S - PS,
e bBid
e‘ﬂ

"0=S - PS,
epmu
e-p u
& "g=S - PSS}
€ Pm U

Define the vector of mean long-run money growth rates z =", mt] . For the univariate case,
we can write the money growth rate process as.

X-2§=rX,- zS.)+e (3.13)
whichin AR(D) formis

éxu_eér ZP-rZueX[lu ée +zvu
é é é (3.14)
S8 P T8 v g

The extenson to the case where X, isa 2x1 vector is straightforward.

3.2 Steady State
To implement the method of undetermined coefficients, we need to linearize equilibrium

conditions around steady dtate vaues. The steady State for the modd can be difficult to
caculate numerically, so we provide a method to calculate steedy state capitd and hours
andytically. Once steady dtate capital and hours are known, steady state vaues for the other
mode variables can easly be found.

L et the capital/labor ratio be denoted by V = K/H. Use equations (2.20), (3.1), and

(3.3) to solvefor V asafunction of parameters and the exogenous mean money growth rate X :

13



V= eigei-(l d)é I*X) L 1-a ):1 (3.15)

From (3.2) we can derive an expression for C2, and H asafunction of parameters,
exogenous variables, and V :

(1-9)Cp _ b fHagl+b(1-a1)§
q°g(l- H) 1+x "§& 1+X g

(3.16)

Note that (3.6) gives Cp = H(V? - dV). Substitutethisinto (3.16) and solvefor H asa

function of V. Findly, solve for K asH*V. Given seady state K and H, we can then solve for
deady state values of dl other mode varigbles usng (3.4)-(3.10).

The steady State vaue of money growth used to caculate steady State capitd and hours
is the mean vaue of money growth caculated using the ergodic probatilities of the Markov
chain for the regime evolution process. The ergodic probabilities are given by the eigenvector of

P associated with the unit eigenvaue.

3.3 System Solution

We solve the modd by subdtituting equations (3.4)-(3.10) into the Euler equations (3.1)-(3.3)
to get a system of equationsin capita, hours, and deposits. Expectations are dropped and
Euler equations are linearized around steedy state values to get a prototypica domestic

economy equetion of the form:

14



7D 7 F ¢ D / F 1D JF (D qF
I th+2+ I ZKt+2+I3Kt+l+ I4Kt+l+ I5Ht+l + |6Ht+l + I7|\It+l + |8Nt+l +

l QKtD + IlOKtF + |];I.|:|tD + |12 HF + l 13 ND+| 14 NF+I 15~£1+| 162'4:-1-'- (317)
|17f(t?-l +| 18)’<F+1+| l;[aD -H 2(;'[~F +I ZL)’(ID +I ZQ)ZIF :O

where X° ° XP - X2 and |, isalinearization coefficient. To ease the implementation, we
cdculate the linearization coefficients numericaly, though they can be computed andyticaly.
Next, we postulate decision rulesfor K,,H,, and N, . Let t, denote the vector of exogenous
datevarigbles, including S, and let t, denote the state vector deviations from mean val ues.

We write the hypothesized decison rules as.

Kia =hi K P +h K +h £ +h b (3.18)
H~ti :hiHl |<D +h|i-|2 KlF +hiHSt~t +hli-l4t~t-l (3-19)
N/ =h K +h K +hif (3.20)

Note that timet decisions on deposits are made prior to the redization of timet shocks. By
setting h, to zero we can also examine a case where both capital and deposit decisions are
made prior to observing current period shocks. We experimented with both timing conventions
in our andysis of the model and generadly found that nomina interest rates were too variablein
the case where only deposit decisions are made prior to current period shock redlizations.
Thus, in our smulations we focus on the case where both capita and deposits are duggish (we
st h} ,to zero).

The decison rules (3.18)-(3.20) are subdtituted into the linearized Euler equations
(3.17) and variables dated higher than period t are backdated using the AR(1) model for the

exogenous date variables. For the capital Euler equation (3.3) and the deposits Euler equation

15



(3.1), wecollect termsin KP,KF, and t",_, , Since households make decisions on these

variables prior to observing the current period shock. For the hours Euler equation (3.2), we

collect termsin K, K t7, and t",_, , Since households make hours decisions after observing

current period shocks. For the linearized Euler equationsto hold for al vaues of

PN

2,KP.t,, and ", the coefficients on these terms must be equal to zero. Thus, setting the
coefficient expressonson KP°,K t°, and t",_, to zero gives a system of nonlinear equationsin
the coefficients of (3.18)-(3.20). This equation system can be solved using any one of severd
standard nonlinear equation solvers. The system of equationsis not too nonlinear, so typicaly
the problem iswell behaved and solves quickly. See the computer code in the Appendix and
Chrigtiano (1991) for details. Note that the recursive subgtitution of the decison rulesinto the
linearized Euler equations can quickly become complicated and tedious. Christiano (1998) has
amatrix representation of the system that is easier to work with. Alternatively, one can use a
symbolic agebra package such as MuPad or Maple to generate the subtitutions and derive the
nonlinear equation system. That isthe route we followed. The computer code in the Appendix

has the explicit nonlinear system for the model worked ouit.

4. Simulating the Model

To smulate the model, one must generate time-series redlizations for the exogenous variables,
use the decision rules to generate time series on capital, hours, and deposts, and then use
equilibrium conditions to generate time series on the other modd varidbles. Thisis completey

sraightforward except, perhaps, for generating a Markov-switching money growth rate

16



process. Note aso that up until now we haven't worried about beliefs agents may hold over the
date of monetary policy. Beliefs comeinto play a the modd smulation sage. Basicdly, we
generate a sequence of beliefs conditioned on redizations of money growth rates and subdtitute

these beliefs about the state of monetary policy for valuesof S in the decison rules.

Generating the technology shocks for the modd is completely straightforward and will
not be discussed further. Wefirgt generate atime series on money growth with Markov-
switching means and variances for the case where money growth is independent across
countries. The extension to the case where there is monetary feedback between countriesisa

draightforward extension.

4.1 Generating a Markov-Switching Money Growth

Sequence

Our method of generating money growth sequencesis asfollows. We sat up two gaussian
random number generators to generate monetary control errors. Both generators return mean
zero variables, however, one sequence is high standard deviation and one is low standard
deviation. We dlow for both state-dependent means and variancesinthe model. Let etabea
2x1 vector that holds the regime indicators. For a high-growth regime eta =[ 1, 0] and for a
low growth regime eta = [0,1]. Suppose we want to generate a sequence of N money growth
rate reglizations.

Let x be an Nx1 vector of uniform random numbers between zero and one. Let pll
denote the probakility of a high-growth regime to a high-growth regime trangtion, p21 the

probability of alow-growth regime to high-growth regime trangition, and p22 the probability of

17



alow-growth regime to low-growth regime trangtion.  Suppose we gtart in a high money
growth regime. The probability of staying in a high-growth regimeis p11. We draw x[0] and
seeif itislessthan p11. If o, we st the tate indicator to high growth, set mean money growth
to high growth, and draw a monetary control error from the high-growth regime digtribution. If
X[Q] is greater than pl1, we set the state indicator to low growth, set mean money growth to
low growth, and draw a monetary control error from the low-growth regime distribution. Given
the innovations and means, we can use (3.14) to generate a money growth rate observation.
This sequence of steps then continues N times. An agorithm to do thisfollows. 1t isamodified
extract from the computer code listed in the Appendix. Note that array indicies are zero offset.

Definevl1l =[ p12, -pl12], v12 = [-pl1, p11], v21 = [p22, -p22], and v22 = [-p21,
p21]. Thevariableetaisa2x1 array, and X isan Nx1 array. Recal that the form of the
money growth rate processis given by:

X =ms)+Yx. - Yms.,)+e

# This pseudo-code generates a Mar kov-switching money growth rate sequence.
# The money growth rate isthe variable mu_hat

for i inrange(N): # Do the following steps N times
ifeta[0] == land x[i] <= pll: #Ahigh-to-hightransition
v=v1l

e = gauss(0.0,std_high)
mean = mu_high
elif eta[0] == 1and x[i] > p11: # A high-to-low transition
v=v12
e = gauss(0.0,std_low)
mean = mu_low
elif eta[0] == 0and x[i] <= p21: # Alow-to-high transition
v=v21
e = gauss(0.0,std_high)
mean = mu_high
elif eta[0] == 0and x[i] > p21: #Alow-to-low transition
v =v22
e = gauss(0.0,std_low)
mean = mu_low

18



eta= P*eta+ v # update the stateindicator vector

# generate the money growth rate. Meanl isinitially set prior to the start of the for loop
#
mu_hat = mean + Psi*mu_hat - Psi*meanl + e

meanl = mean # save the mean, since next period it becomes M(S,_; )

muVec[i,0:2] = eta # save the state indicator matrix
muVec[i,2] = mu_hat # save the money growth rate observation

end for
end program

For the case in which there is monetary feedback between countries, the algorithm listed above
is essentidly the same. We draw two innovations from a bivariate distribution with low or high
variance-covariance matrix. In addition, the means are 2x1 vectors of high or low vaues.

Findly, Ps is replaced by a 2x2 matrix of coefficients.

4.2 Rational Learning

Given redlizations on money growth rates, agents who are not fully informed about the monetary
regime will have to form inferences about the state of monetary policy. Our introduction of
learning into the mode framework follows Andolfatto and Gomme (1997). If monetary
policymakers are not credible, agents will not know with certainty the monetary policy regime.
Instead, they use dl relevant information at their disposal to learn about the long-run money
growth rate. We model monetary policy as an exogenous process, so the only information
relevant for determining the policy regimeis current and past vaues of money growth. Let

W, ={X,, %1, %.,,...} denotetheinformation set congsting of current and past vaues of money

growth. Agents assign a probability to the current-period regime being low growth, which we

19



denote b, = Pr{m(s,) = mt |W,] . Agents enter period t with beliefs b, , observe W, , and
update their current-period beliefs by . Agents are assumed to share the same beliefs and by is

given. Bdlief updating isrationd, following a Bayes rule recurson:

i gL(u.li()tiilg’:t()b.p X) @
with:
9. =h..p fi(€) + @ b)p, fu(E’) 42)
9y =0.uPi fin(@") + @~ ) Py T (€")
and:
e =(% -m')-r (x.,- m) (4.3)

with f, (e ") the normal pdf for €. Aswritten, we have arecursion that generates a belief
sequence for atwo-state economy given an initia value for beliefs b, and atime serieson
money growth rates { x} . For the case where monetary policy isindependent across countries,

there are four states for monetary policy: two states in each of two countries. Assuming
independence, the trangtion probabilities for the globa state are products of individua country
trangtion probabilities. Denote the product of the trangition probability and density function for

atrangtion from eate i to state | for country k hy:

iy =R feE) (4.4)

Then:
O =0T Gl et B Bl Gt B e R S G (4.5)
T ey I I oy IV B o el Pl o R (4.6)
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Ouw =T At BT A0 G D e RS 4.7)
o= e ) P i I R o Y P e (4.8)

and:
B = 2 @9

O 90 t00w 00
with b’ denoting the belief that the home country isin regime i and the foreign country isin
regime j .

Given belief sequences, we can then smulate the model under two different
assumptions. One caseisfull information in which there is no uncertainty about the state of
monetary policy and the modd is smulated using the processin (3.14). The other isacase
where there is uncertainty about the state of monetary policy. In that case households do not
know § . Instead, the modedl is smulated with S being replaced by the belief sequence, by , in
the decison rules, though the money growth sequenceitsdf is generated using (3.14).

The parameterization of the belief process potentialy has implications for how model
variables respond to different types of monetary shocks. If bdiefs adjust dowly, households
may adjust dowly to monetary shocks. We can examine how rapidly bdiefs adjust asa
function of the process parameterization using an argument in Moran (1997). Suppose the
economy has been in a high money growth state for some time, and the monetary authority

switches policy to low growth. Let f (m(s) | m) denote the pdf of m(s) if households believe

theregime at timetis m. The oddsratio is given by:

21



_ f(m(g)|nt)
C () nT)

and the belief that the regime is low can be expressed in terms of the odds rtio:

__ b 410
h b(—lrt +(1' hl) ( )

with kb /qIr, >0. Thedigtribution of the oddsrtio is:

etz +(et +nt - mH)2 99

] ® e
—expg0.5¢— ; : (4.11)
S e esS. Sh 20
Setting the disturbances e, to zero:
2 et - o0
_Sku 0.5¢ - (4.12)
S e Su @ 5

We see then that:
If the spread between means in the high and low Sate is larger, bdiefs converge more
quickly: it is eader for agents to distinguish aregime shift after it has occurred.
As s | increases, the convergence is dower. With awide distribution about the new meean,
redlized growth rates around the low-growth mean will be given lessweight. The effect of
anincreasein s , dependsonitssize. If s, > (nt - M) convergenceis faster;

otherwisg, it isdower.
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Appendix

The following programs were used to solve and smulate the modd in our paper “Exchange
Rates and Monetary Policy Regimesin the U.S. and Canada.”” The programs are written in
Python, which has a syntax that is close to pseudo-code. Thus, the programs should be fairly
easy to follow and, to that extent, should clear up ambiguitiesin the text discusson. Thereis
some duplication across programs in the functions called—but each program is self-contained.
The program pvauespy sets parameter values and estimates for the model driving processes.
The program solvemodd .py solves two versions of the modd: one with duggish capitd and
duggish deposits and one with duggish deposts only. The program msvcap.py Smulates the
model. Details on obtaining and ingaling Python can be found at: http:/Amww.python.org.
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# Nuneric Python (NunPy)
# Ml tipack-0.6 (http://oliphant.netpedia.net)
#
# # These two nodules are linked to the python web site. Both are
# availabel for a wide variety of platforns, including NT and Linux.
# This program runs under Linux and NT (provided you have the nodul es!).
# Program pval ues. py z Make sure the nodule files are in your Python path.
#
# Set nodel parameters for 2-country nodel that assumes independent z Keith Sill
# Markov swi tching nodels for each country: US and Canada. z EsiBt Eh;:f?gﬁﬁm .afrb‘ org
# Setting al and a3 automatically sets the output file names for the z Last updated 8/23/99
# appropriate solution vector #
p_al = 1.0 # how nuch wage bill gets sent to FX market ; f
p_a3 = 0.0 # how nuch investment is financed by borrow ng :‘:Tgomnpv'a\\lluggglicnport *
p_alpha = 0.36 # capital share ; i i ;
p_beta - 0 99 % discount factor # Define a bunch of functions that will be called by the nain program
p_delta = 0.025 # depreciation rate .
p_gamma = 0.24 # consunption utility share de; savem(name, m:
p_Psi =-1.0 # crra ) ) # Save a matrix in ascii format
p_thd = 0.5 # hone share in consunption aggregator #
p_t hf = 0.5 # foreign share in consunption aggregator i mport sys
p_zrhod = 0.987 # AR coefficient on home technol ogy AR(1) process - !
p_zrhof = 0.976 # AR coefficient on foreign technol ogy AR(1) process fp open(name, " w )
. _ for i in range(m shape[O0]):
p_ZS!g? = 0.0134 for j in range(m shape[1]):
p_zsigf = 0.0127 fp.wite(str(nfi,j]) + "\t")
. . . . fp.wite('\n")
# The regime switching process parameters for noney growth are estimated
# using the nsvar ox package by Krolzig (1998). The paranmeters are estimated fp.close()
# using quarterly data on US and Canada reserve noney over the sanple period ’
# 19xx:x to 19xx:Xx
import Numeric def steadyState( nud, nuf ):
p_plow = .98927 # prob of lowto low transition # takes as input the money growth rates in the home and foreign
p_phigh = .96872 # prob of high to high transition # countries. Returns a 6-tuple of calculated steady states for
p_mveans = Nuneric.array( [ [ 1.7656e-2, 1.1365e-2 ], # capital, hours, and deposits.
[ 2.6279e-2, 0.7918e-2] ]) xx = Nuneric.zeros(6,'d")
p_nSi gbow = Nuneric.array([ [ 0.23394e-4, -0.005687e-4], for i in range(2):
o ah = ) [ -0.005687e-4, 1.0188e-4] ] ) vtl = ( p_a3 * (1l+nud) / p_beta ) * ( 1.0 / p_beta - (1-p_delta) )
p_n6i gHi gh = p_nSi glLow vt2 = (1-p_a3) * ( 1/p_beta - (1-p_delta
_ . vd = ( 1/p_alpha * ( vtl + vt2 ) )**( 1.0/ (p_al pha-1) )
p_mCoeffs = Nuneric.array( [ [ 0.73987, 0.024559 ], tempd = ( p_gamme/(1-p_gamma) )*( p_beta/ (1+nud) ) * ( (1-
[ -0.02685, 0.23105] ] ) p_al pha) *vd**p_al pha / - -
(vd**p_al pha - p_delta*vd) )* ( p_al + (1-p_al) * p_beta / ( 1+nud )
# Program sol venodel . py )
# hd = tempd / ( 1l+tenpd )
kd = hd * vd
# Solve a two-country nonetary nodel with rational |earning.
yd = kd**p_al pha * hd**(1-p_al pha)
# The information structure is that of a Lucas-Fuerst nodel. zd = ( p_al * (1-p_alpha) * yd * p_beta / ( 1+nud ) - ( yd- p_delta * kd )
) 1 (
# Two solution cases are programed: a nodel w th sluggish deposits (1-p_alpha) * p_beta * yd / ( 1+nud ) + p_a3 * p_delta * kd )
# only, and a nodel with both capital and deposits sluggish. nd =(21+mnmd*zd) / (1-zd)
#
# Money driving process is a two state markov swi tching VAR xx[i] = kd
# with a constant covariance matrix. xx[i+2] = hd
# This programis witten in Python, available for downl oad at xx[i+4] = nd
#
# http://ww. pyt hon. org mud = nuf
#
# The routine makes use of the follow ng extension nodul es: return xx
#
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def transition_probs( p_plow, p_phigh ):
#

# The ordering of the input sequence is inportant. It should be

# home high-to-high, home |owto-low, foreign high-to-high, and
# foreign |l owto-low
#
P = Nuneric.zeros(4,'d")
P[0] = p_plow
P[1] = 1-p_phigh
P[2] = 1-p_plow
P[3] = p_phigh
return Nuneric.reshape( P, (2,2) )
def eulerld( x ):
#
# Eul er equation for consunption evolution (home country):
#
# U / p = p_beta * Uc'" / p' * (1+R) / (1+x)
#
([ kdpp, kf pp, kdp, kf p, hdp, hf p, ndp, nf p, kd, kf, hd, hf, nd, nf,
zdp, zf p, mudp, nmuf p, zd, zf, nud, muf]) = x
yd = kd**p_al pha * hd**(1-p_al pha) * Numeric.exp((1-p_al pha)*zd)
yf = kf**p_al pha * hf**(1-p_al pha) * Numeric.exp((1-p_alpha)*zf)
ydp = kdp**p_al pha * hdp**(1-p_al pha) * Nuneric.exp((1-p_al pha)*zdp)
yfp = kfp**p_al pha * hfp**(1-p_al pha) * Nuneric.exp((1-p_al pha)*zfp)
Id = kdp - (1-p_delta) * kd
If = kfp - (1-p_delta) * kf
ldp = kdpp - (1-p_delta) * kdp
Ifp = kfpp - (1-p_delta) * kfp
cdd = p_thd * ( yd - 1d)
cdf:(lpthf)*(yf- 1f)
cddp = p_thd * ( ydp - Idp )
cdfp = (1-p_thf) * ( yfp - Ifp)
pd =(1-nd* (1-p_al) + p_al * nud ) / ( yd - (1l-p_al*p_a3) * Id)
pdp = ( 1 - ndp * (1-p_al) + p_al * nudp ) / ( ydp - (1-p_al*p_a3) * Idp )
wd = ( nd +nud - p_a3 * pd * Id) / hd

R = pd / wd ) * (1l-p_alpha) * ( kd / hd )**p_al pha * Nuneric.exp((1-
p_al pha) *zd)

mic = ( p_thd * p_gamm * cdd**(p_t hd*p_gamm*p_Psi-1) * cdf**((1-
p_thd)*p_gamme*p_Psi) *
(1- hd)**((l p_gamm)*p_Psi) ) / pd
mucp = ( p_thd * p_i garma * cddp**(p_thd*p_gamma*p_Psi-1) * cdf p**((1-

p_thd)* p gamma*p_Psi)
(1-hdp)**((1-p_gamme)*p_Psi) ) / pdp

return -muc + p_beta * R* nmucp / (1+nud)

def euler2d( x ):
#

# Eul er equation for hours evolution (honme country):
#

# -Ul + U * p_al * wp + p_beta * Uc'/p' * (1l-p_al) * w/ (1+x)
#
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([ kdpp, kf pp, kdp, kf p, hdp, hf p, ndp, nf p, kd, kf,

hd, hf, nd, nf,

zdp, zf p, nudp, muf p, zd, zf, mud, nuf]) = x

( g
p_ thd) p_gamma* p_Psi

kd**p_al pha * hd**(1-p_al pha) * Numeric.exp((1-p_al pha)*zd)
kf**p_al pha * hf**(1-p_al pha) * Nuneric.exp((1-p_al pha)*zf)
kdp**p_al pha * hdp**(1-p_al pha) * Nuneric.exp((1-p_al pha)*zdp)
kf p**p_al pha * hfp**(1-p_al pha) * Nuneric.exp((1-p_al pha)*zfp)
kdp - (1-p_delta) * kd
kfp - (1-p_delta) * kf
kdpp - (1-p_delta) * kdp
kfpp - (1-p_delta) * kfp

thd * ( yd - 1d)
(lpthf)*(yf- 1f)
= p_thd * ( ydp - Idp )
= (1-p_thf) * ( yfp - Ifp)
(1-nd* (1-p_al) + p_al * nud ) / ( yd - (1-p_al*p_a3) * Id
(1- ndp* (1-p_al) + p_al * nudp ) / ( ydp - (1-p_al*p_a3) *

( nd + nud -

rmc—(

p_t hd) *p_gamme* p

muc

p_thd)* p gamm*

p

1-

p_

p_a3 * pd * Id) / hd

amm) * ( cdd**(p_thd*p_game*p_Psi) * cdf **((1-

(1-hd)**((1-p_gamm) *p_Psi-1) )

p_thd * p_gamma * cdd**(p_t hd*p_gama*p_Psi-1) * cdf**((1-
_Psi) *

(1- hd)**((l p_gamm)*p_Psi) ) / pd

= ( p_thd * p_ garma * cddp**(p_thd*p_gamma*p_Psi-1) * cdf p**((1-

(1-

return -nul

def

#
#
#
#
#

([ kdpp, kf pp, kdp, kf p, hdp, hf p, ndp, nf p, kd, kf,

-Uc/p * (Wp
(

Eul er equation for

fk'

_Psi)
hdp)**((1-p_ganm)*p_Psi) ) / pdp

+ muc * p_al * wd + p_beta * nucp * (1-p_al)

euler3d( x ):

capital evolution (home country):
*(plfh) +pbeta* Uc'/p' * (w/p') *

(w /p’ ( h) *
(p'/w) h' * (1-p_delta) + (1-p_a3

) p'/f
+ p_a3 )*(1-p_delt

hd, hf, nd, nf,

zdp, zf p, nudp, muf p, zd, zf, mud, nuf]) = x

kd**p_al pha * hd**(1-p_al pha)
kf**p_al pha * hf**(1-p_al pha)

kdp**p_al pha * hdp**(1-p_al pha)
kf p**p_al pha * hfp**(1-p_al pha)

kdp -
kfp -

kdpp -
kfpp -

p_thd * (
(lpthf)

(
(

p_thd * (
(1-p_thf)

1
1

(1-p_delta)
(1-p_delta)

* Nuneric.exp((1

- p_al pha) *zd)

* Nuneric.exp((1-p_
(1
(1

al pha) *zf)

* Nuneric. exp(
* Nuneric. exp(

_al pha) *zdp)
_al pha) *zf p)
* kd
* kf

(1-p_delta)
(1-p_delta)

* kdp
* kfp

yd - 1d)
Oyt - 0f)

ydp - 1dp)
*(yfp - Ifp)

nd * (1-p_al) + p_al * nmud ) / ( yd -

_ (1-p_al*p_a3) * Id
ndp * (1-p_al) + p_al * nudp ) / ( ydp -

(1-p_al*p_a3) *

)
Idp )

*wd / (1+nud)

a) )

)
Idp )



wd = ( nd+nmd- p_ad3* pd=*1Id) / hd

wdp = ( ndp + nmudp - p_a3 * pdp * Idp ) / hdp

fh = (1-p_alpha) * ( kd / hd )**p_al pha * Nuneric.exp((1-p_al pha)*zd)
fhp = (1-p_alpha) * ( kdp / hdp )**p_al pha * Nuneric.exp((1-p_al pha)*zdp)
fkp = p_alpha * ( kdp / hdp )**(p_al pha-1) * Nuneric.exp((1-p_al pha)*zdp)

= ( p_thd * p_gamm * cdd**(p_thd*p_gamm*p_Psi-1) *
p_ thd) p_gamma*p_Psi) *
(1-hd)**((1-p_gammm)*p_Psi) ) / pd

mucp = p_thd * p_gamma * cddp**(p_t hd*p_gamm*p_Psi-1)
p_thd) *p_gamma*p_Psi) *
(1-hdp)**((1-p_ganmma)*p_Psi) ) / pdp
terml = -muc * (wd / fh) * ( p_a3 * (pd/wd) * fh + (1-p_a
tern2 = p_beta * nmucp * (wdp / fhp) * ( fkp + p_a3 * (pdp
(1-p_delta) + (1-p_

return terml + terng

def eulerlf( x ):
#
# Eul er equation for consunption evolution (foreign count
#
# U / p = p_beta * Uc'" / p' * (1+R) / (1+x)
#
([ kdpp, kf pp, kdp, kf p, hdp, hf p, ndp, nf p, kd, kf, hd, hf, nd, nf,
zdp, zf p, nudp, nuf p, zd, zf, nud, nuf]) = x
yd = kd**p_al pha * hd**(1-p_al pha) * Numeric.exp((1l-p_alp
yf = kf**p_al pha * hf**(1-p_al pha) * Numeric.exp((1l-p_alp
ydp = kdp**p_al pha * hdp**(1-p_al pha) * Nuneric.exp((1
yfp = kfp**p_al pha * hfp**(1-p_al pha) * Nuneric.exp((1
Id = kdp - (1-p_delta) * kd
If = kfp - (1-p_delta) * kf
ldp = kdpp - (1-p_delta) * kdp
Ifp = kfpp - (1-p_delta) * kfp
cff = p_thf * ( yf - 1f )
cfd:(lpthd)*(yd- 1d )
cffp = p_thf * (yfp - Ifp)
cfdp = (1-p_thd) * ( ydp - Idp)
pf =(1-nf * (1-p_al) + p_al * muf ) / ( yf - (1l-p_al
pfp = ( 1 - nfp * (1-p_al) + p_al * mufp ) / ( yfp - (1-p_
wi = ( nf + muf - p_a3 * pf * If ) / hf

I ow )

R = pf * (1-p_al pha)
p_al pha) *zf)

* (Kf o/

mic = ( p_thf * p_ garrma * cff**(p_thf*p_gamm*p_Psi-1) *
p_thf)*p_gamma*p_Psi)
(1-hf)**((1-p_gamm)*p_Psi) ) / pf

( p_thf *
gamma*p_Psi )
(1-hfp)**((1-p_gamme)*p_Psi) ) / pfp

nmucp p_t garma * cffp**(p_thf*p_gamm*p_Psi-1)

_thf)*p_

return -muc + p_beta * R* nmucp / (1+nuf)

cdf **((1-

* cdf p**((1-

3))
/ wdp) * fhp *
a3) * (1l-p_delta) )

ry):

ha) * zd)
ha) * zf )

_al pha) *zdp)
—al pha) * zf p)

*p_a3) * If
al*p_a3) *

hf )**p_al pha *Nuneric. exp((1-

cfd**((1-

* cfdp**((1-

)
Ifp)
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def
#

# Eul er equation for
#

#
#

([ kdpp, kf pp, kdp, kf p, hdp, hf p, ndp, nf p, kd, kf,

euler2f( x ):

hours evolution (foreigh country):

Ul + Uc * p_al * wp + p_beta * Uc'/p'" * (1-p_al)

hd, hf, nd, nf,

zdp, zf p, nudp, muf p, zd, zf, mud, nuf]) = x

yd = kd**p_al pha * hd**(1-p_al pha) * Numeric.exp((1l-p_alp

yf = kf**p_al pha * hf**(1-p_al pha) * Numeric.exp((1l-p_alp

ydp = kdp**p_al pha * hdp**(1-p_al pha) * Nuneric.exp((1

yfp = kfp**p_al pha * hfp**(1-p_al pha) * Nuneric.exp((1

Id = kdp - (1-p_delta) * kd

If = kfp - (1-p_delta) * kf

ldp = kdpp - (1-p_delta) * kdp

Ifp = kfpp - (1-p_delta) * kfp

cff = p_thf * (yf - If)

cfd = (I-p_thd) * ( yd - I1d)

cffp = p_thf * (yfp - Ifp)

cfdp = (1-p_thd) * ( ydp - Idp)

pf = 1 - nf * (1-p_al) + p_al * muf ) / ( yf - (1-p_al

pfp = ( 1 - nfp * (1-p_al) + p_al * mufp ) / ( yfp - (1-p_
wi = ( nf + muf - p_a3 * pf * If ) / hf

= (1-p_gamm) * ( cff**(p_thf*p_ganma*p_Psi) * cfd**(
p_ thf) p_gamma*p_Psi) *
(1-hf)**((1-p_gamm)*p_Psi-1) )

muc = ( p_thf * p_ garrma * cff**(p_thf*p_gamm*p_Psi-1) *

p_thf)*p_gamma*p_Psi)
(1-hf)**((1-p_gamm)*p_Psi) ) / pf

mucp = ( p_thf * p_i garma * cffp**(p_thf*p_gamm*p_Psi-1)

_thf)*p_gamm*p_Psi

return -nul

def

#
#
#
#
#

([ kdpp, kf pp, kdp, kf p, hdp, hf p, ndp, nf p, kd, kf,

)
(1-hfp)**((1-p_gamme)*p_Psi) ) / pfp
+ muc * p_al * wf + p_beta * nucp * (1-p_al)

euler3f( x ):

Eul er equation for

capital evolution (foreign country):
Uc'/p' * (w/p') *

Uc/p * (wp) * (plfh) + p bet a* ( p'
( w) h' * (1-p_delta) + (1-p_a

fk' + p_a3 * (p

hd, hf, nd, nf,

zdp, zf p, nudp, muf p, zd, zf, mud, nuf]) = x

k

kf**p_al pha * hf**(1-p_al pha)

k

kfp -

d**p_al pha * hd**(1-p_al pha) * Numeric.exp((1

! -p_alp
* Nuneric.exp((1-p_al
(1
(1

alp

kdp**p_al pha * hdp**(1-p_al pha)
kf p**p_al pha * hfp**(1-p_al pha)

* Nuneric. exp(
* Nuneric. exp(

* kd
* kf

(1-p_delta)
(1-p_delta)

dp -

(1-p_delta)
(1-p_delta)

* kdp
* kfp

kdpp -
kfpp -

thf *

(yf - 1f)
(lpthd)*

(yd-1d)

* w/ (1+x)

ha) * zd)
ha) * zf )

_al pha) *zdp)
—al pha) * zf p)

*p_a3) * If
al*p_a3) *

)
Ifp)
(1-

cfd**((1-

* cfdp**((1-

*wh [ (1+nuf)

(p'/fh) *
3)*(1-p_delta) )
ha) *zd)

ha) *zf)

_al pha) *zdp)
—al pha) * zf p)



cffp = p_thf * ( yfp - Ifp)

cfdp = (1-p_thd) * ( ydp - Idp )

pf =(1-nf * (1-p_al) + p_al * muf ) / ( yf - (1-p_al*p_

pfp=( 1- nfp * (1-p_al) + p_al * mufp ) / ( yfp - (1-p_al*p_a3) *

wi = ( nf + muf - p_a3 * pf * If ) / hf

wip = ( nfp + mufp - p_a3 * pfp * Ifp ) / hfp

fh = (1-p_alpha) * ( kf / hf )**p_alpha * Nuneric.exp((1-

fhp = (1-p_alpha) * ( kfp / hfp )**p_alpha * Nuneric.exp((1-p_alpha)*zfp)
fkp = p_alpha * ( kfp / hfp )**(p_al pha-1) * Nuneric.exp((1-p_al pha)*zfp)

a3) * If

= ( p_thf * p_gamma * cff**(p_thf*p_gamm*p_Psi-1) * cfd**((1-

p_ thf) p_gamma*p_Psi) *
(1-hf)**((1-p_gamm)*p_Psi) ) / pf

mucp = ( p_thf * p_gamm * cffp**(p_thf*p_gamma*p_Psi-1) * cfdp**((1-
p_thf)*p_game*p_Psi) * .
(1-hfp)**((1-p_gammm)*p_Psi) ) / pfp
terml -muc * (wf / fh) * ( p_

a3 * (pf/wf) * fh + (1-p_a3)
fhp) * ( fkp + p_a3 *

erm2 k .
(1-p_delta) + (1-p_a3)

p_beta * nucp * (wip /
return terml + terng

def gradient( fcn, xbar,typx ):

# Find the gradient of fcn evaluated at xbar.

# size of xbar[i]

typx[i]

eps = 4.441e-16
cuberteta = eps**(.332)
m = | en(xbar)

y = Nuneric.zeros( m,"'d" )

for i in range( m):
h = cuberteta * Numeric. maxi mum( Nuneric. absol ute(xbar[i]),
h = h * sign(xbar[i])
if h ==

h = Numeric. sqrt(eps)

tenp = xbar[i]

xbar[i] = xbar[i] + h
fp = fecn( xbar
xbar[i] = temp - h

fm= fcn( xbar )
y[i] =0.5*( fp - fm) / h
xbar[i] = tenp

return y

def sign( x ):
if x <O

return 1
def sysnodel 1( x ):
#

# Find the solution to the nonlinear system of equations

)
(pfp I wp) p
* (1-p_delta) )

* fh

is the typical

typx[i]

p_al pha) *zf)

)

)
Ifp)

*
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# This set of equations was generated using the synbolic
# al gebra package MuPAD and is for the case where deposits
# only are sluggish.
#
negs = len(x)
Kdl = x[0]
Kd2 = x[1]
Kdvl = array([ x[2], x[3], x[4], x[5], x[6], x[7] 1)
Kdv2 = array([ x[8], x[9], x[10], x[11], x[12] x[13] 1)
Kf1 = x[14]
Kf2 = x[15]
Kfvl = array([ x[16], x[17], x[18], x[19], x[20], x[21] ])
Kfv2 = array([ x[22], x[23], x[24], x[25], x[26], x[27] ])
Hdl = x[28]
Hd2 = x[29]
Hdvl = array([ x[30], x[31], x[32], x[33], x[34], x[35] ])
Hdv2 = array([ x[36], x[37], x[38], x[39], x[40], x[41] ])
Hf 1 = x[42]
Hf 2 = x[43]
Hfvl = array([ x[44], x[45], x[46], x[47], x[48], x[49] ])
Hfv2 = array([ x[50], x[51], x[52], x[53], x[54], x[55] ])
Nd1 = x[56]
Nd2 = x[57]
Ndv2 = array([ x[58], x[59], x[60], x[61], x[62], x[63] ])
Nf1 = x[64]
Nf2 = x[65]
Nfv2 = array([ x[66], x[67], x[68], x[69], x[70], x[71] ])
workl = zeros((4, 14) 'd)
work2 = zeros((2,8),'d")
for i in range(4):
e = jacobian[i,:]
evl = array([ e[14], e[15], e[16], e[17], 0.0, 0.0 ])
ev2 = array([ e[18], e[19], e[20], e[21], 0.0, 0.0 ])
yl = ( ev2 + dot(evl, Rmat) + Kdvl*e[2] + Kfvl*e[3] + Hdvili*e[10]
Hfvi*e[11] + (Ndv2 + Nd1*Kdvl + Nd2*Kfvl)*e[6] +
Nfv2 + Nf1*Kdvl + Nf 2*Kfvl)*e[7] +
(Hdv2 + dot (Hdvl, Rmat) + Hd1*Kdvl + Hd2*Kfv1)*e[4] +
(Kdv2 + dot (Kdvl, Rmat) + Kd1*Kdvl + Kd2*Kfv1)*e[0] +
(Hfv2 + dot(Hfvl, Rmat) + Hf 1*Kdvl + Hf 2*Kfv1l)*e[5] +
(Kfv2 + dot(Kfvl, Rmat) + Kfl*Kdvl + Kf2*Kfvl)*e[1] )

y2 = ( Kdv2*e[2]
Ndv2* e[ 12]

+ Kfv2*e[3] + Hdv2*e[10] + Hfv2*e[11] +

+ Nfv2*e[13] + (Hd1*Kdv2 + Hd2*Kfv2)*e[4] +
(Kd1*Kdv2 + Kd2*Kfv2)*e[ O
(Hf 1*Kdv2 Hf 2*Kfv2) *e[ 5
( Kf 1*Kdv2 Kf 2*Kfv2) *e[ 1
(Nd1*Kdv2 Nd2* Kf v2) *e[ 6
(Nf 1*Kdv2 Nf 2*Kf v2) *e[ 7 )

+ 4+ +

+
+
+
+

y3 = ( e[8] + Kdi*e[2] + Kfl*e[3] + Hdl*e[10] +
Hf 1*e[ 11] + Ndl*e[12] + Nf1*e[13] +
(Hd1*Kd1l + Hd2*Kf1)*e[4] + (Hf1*Kdl + Hf2*Kf1)*e[5] +
(Kd1*Kf1 + Kf1*Kf2)*e[1] + (Kd1*Nd1 + Kf1*Nd2)*e[6] +
(Kd1*Nf1 + KfF1*Nf2)*e[7] + e[0]*(Kd2*Kf1l + Kdl*Kdl ) )

y4 = ( e[9] + Kd2*e[2] + Kf2*e[3] + Hd2*e[1l0] +
Hf 2*e[ 11] + Nd2*e[12] + Nf2*e[13] +
(Hd1*Kd2 + Hd2*Kf2)*e[4] + (Kd1*Kd2 + Kd2*Kf 2)*e[ 0]
(Hf 1*Kd2 + Hf2*Kf2)*e[5] + (Kd2*Ndl1 + Kf2*Nd2)*e[ 6]
(Kd2*Nf 1 + KF2*Nf2)*e[ 7] + e[ 1] *(Kd2*Kf1 + Kf2*Kf2

+
+

) )

+



Kf1 = x[8
tenpl = array([y3,y4]) Kf2:x{9%
workl[i,:] = concatenate((yl,y2,tenpl), 1) Kfv2 = Nuneric.array([ x[10], x[11], x[12], x[13], x[14], x[15] ])
R2 = dot (Rmat, Rmat) Hdl = x[16]
Hd2 = x[17]
for i in range(2): Hdvl = Nuneric.array([ x[18], x[19], x[20], x[21], x[22], x[23] ])
Hdv2 = Nuneric.array([ x[24], x[25], x[26], x[27], x[28], x[29] ])

e = jacobian[4+i,:]

evl = array([ e[14], e[15], e[16], e[17], 0.0, 0.0 ]) Hf 1 = x[30]
ev2 = array([ e[18], e[19], e[20], e[21], 0.0, 0.0 ]) Hf 2 = x[31]
Hfvl = Numeric.array([ x[32], x[33], x[34], x[35], x[36], x[37] ])
y5 = ( e[8] + Kdl*e[2] + Kfl* e[3] + Hdl*e[10] + Hf1*e[11] + Hf v2 = Nuneric.array([ x[38], x[39], x[40], x[41], x[42], x[43] ])
Nd1*e[ 12] + Nf1*e[13] + (Hd1*Kdl + Hd2*Kf1l)*e[4] +
(HF1*Kd1l + Hf2*Kf1)*e[5] + (Kd1*Kf1 + Kf1*Kf2)*e[1] + Nd1 = x[ 44]
(Kd1*Nd1 + Kf1*Nd2)*e[6] + (KA1*Nf1l + Kf1*Nf2)*e[7] + Nd2 = x[45]
e[ 0] *( Kd2*Kf1l + Kdi1*Kdl ) ) Ndv2 = Nuneric.array([ x[46], x[47], x[48], x[49], x[50], x[51] ])
y6 = ( e[9] + Kd2*e[2] + Kf2*e[3] + Hd2*e[10] + Hf2*e[11] + Nf1 = x[52]
Nd2*e[ 12] + Nf2*e[13] + ( Hd1*Kd2 + Hd2*Kf2 )*e[4] + Nf2 = x[53]
( Kd1*Kd2 + Kd2*Kf2 )*e[0] + ( Hf1*Kd2 + Hf2*Kf2 )*e[5] + Nfv2 = Numeric.array([ x[54], x[55], x[56], x[57], x[58], x[59] 1)
( Kd2*Nd1 + Kf2*Nd2 )*e[6] + ( Kd2*Nf1l + KF2*Nf2 )*e[7] +
e[ 1] *( Kd2*Kf1l + Kf2*Kf2 ) ) workl = Nuneric.zeros((2,14),'d")
wor k2 = Nuneric.zeros((4,8),'d")
tl = ( dot(ev2, Rmat) + Ndv2*e[12] + Nfv2*e[13] +
dot (evl, R2) + (Kdv2 + dot(Kdvl, Rmat))*e[2] + for i in range(2):
(Hdv2 + dot(Hdvl, Rmat) )*e[10] +
( Kfv2 + dot(Kfvl, Rmat) )*e[3] + e = jacobian[i,:]
( Hiv2 + dot(Hfvl, Rmat) )*e[11] ) evl = Nuneric.array([ e[14], e[15], e[16], e[17], 0.0, 0.0 ])
ev2 = Nuneric.array([ e[18], e[19], e[20], e[21], 0.0, 0.0 ])
t2 = ( ( dot(Ndv2, Rmat) + Nd1*( Kdv2 + dot(Kdvl, Rmat) ) +
Nd2*( Kfv2 + dot(Kfvl, Rmat) ) )*e[6] +
( dot(Nfv2, Rmat) + Nf1*( Kdv2 + dot(Kdvl, Rmat) ) +
Nf 2*( Kfv2 + dot(Kfvl,Rmat) ) )*e[7] ) yl = ( ev2 + Nuneric.dot(evl, Rmat) + Kdv2 * e[0] + Kfv2 * e[1l] + Hdvl * e[10]
+
t3 = ( e[4]*( dot(Hdv2, Rmat) + Hd1*( Kdv2 + dot(Kdvl, Rmat) ) + Hfvl * e[11] + Ndv2 * e[6] + Nfv2 * e[7] + (Hdv2 +
Hd2* *

Kfv2 + dot(Kfvl, Rmat) ) + dot(Hdvl, R2) ) + Nuneri c. dot (Hdv1, Rmat))
e[ 0] *( dot(Kdv2, Rmat) + Kdl*( Kdv2 + dot(Kdvl, Rmat) ) + e[4] + (Hfv2 + Nunmeric.dot(Hfvl, Rmat)) * e[5] )
Kd2*( Kfv2 + dot(Kfvl, Rmat) ) + dot(Kdvl, R2) ) )
y2 = ( Kdv2 * e[2] + Kfv2 * e[3] + Hdv2 * e[10] + Hfv2 * e[11] +

t4 = ( e[5]*( dot(Hfv2, Rmat) + Hf1*( Kdv2 + dot(Kdvl, Rmat) ) + Ndv2 * e[12] + Nfv2 * e[13] + (Hdl * Kdv2 + Hd2 * Kfv2) * e[4] +
Hf 2*( Kfv2 + dot(Kfvl, Rmat) ) + dot(Hfvl, R2) ) + (Kdl * Kdv2 + Kd2 * Kfv2) * e[0] + (Hf1 * Kdv2 + Hf2 * Kfv2) * e[5] +
e[1] *( dot (Kfv2, Rmat) + Kf1l*( Kdv2 + dot(Kdvl, Rmat) + (KfF1 * Kdv2 + Kf2 * Kfv2) * e[1] + (Nd1 * Kdv2 + Nd2 * Kfv2) * e[6] +
Kf2*( Kfv2 + dot(Kfvl, Rmat) ) + dot(Kfvl, R2) ) ) (Nf1 * Kdv2 + Nf2 * Kfv2) * e[7] )
y7 = tl +t2 +t3 + t4 y3 = ( e[8] + Kdl * e[2] + Kf1l * e[3] + Hdl * e[10] + Hf1 * e[11] +
Nd1 * e[12] + Nf1 * e[13] + (Hdl * Kdl + Hd2 * Kf1) * e[4] +
tenp2 = array([y5,y6]) (HF1 * Kdl + Hf2 * Kf1l) * e[5] + (Kdl * Kf1 + Kf1 * Kf2) * e[1] +
work2[i,:] = concatenate((y7,tenp2),1) (Kd1 * Nd1 + Kf1 * Nd2) * e[6] + (Kdl * Nf1 + Kf1 * Nf2) * e[7] +
e[0] * (Kd2 * Kf1l + Kd1*Kdl ) )
wor k3 = reshape( workl, (1,56) )
wor k4 = reshape( work2, (1,16) ) y4 = ( e[9] + Kd2 * e[2] + Kf2 * e[3] + Hd2 * e[10] + Hf2 * e[11] +
Nd2 * e[12] + Nf2 * e[13] + (Hdl * Kd2 + Hd2 * Kf2) * e[4] +
fvec = reshape(concatenate((work3, work4), 1), (neqgs,)) (Kdl * Kd2 + Kd2 * Kf2) * e[0] + (Hf1 * Kd2 + Hf2 * Kf2) * e[5] +
(Kd2 * Nd1 + Kf2 * Nd2) * e[6] + (Kd2 * Nfl1 + Kf2 * Nf2) * e[7] +
return fvec e[1]* (Kd2 * Kf1l + Kf2*Kf2 ) )
tenpl = Nuneric.array([y3,y4])
def sysnodel 2( x ): work1[i,:] = Numeric.concatenate((yl,y2,tenpl), 1)
# Find the solution to the nonlinear system of equations R2 = Nureric. dot (Rmat, Rmat)
# This set of equations was generated using the synbolic
# al gebra package MuUPAD and is for the case where deposits for i in range(4):
# and capital are sluggish. e = jacobian[2+i,:]
# evl = Nuneric.array([ e[14], e[15], e[16], e[17], 0.0, 0.0 ])
negs = len(x) ev2 = Nuneric.array([ e[18], e[19], e[20], e[21], 0.0, 0.0 ])
Kdl = x[0]
Kd2 = x[1

Kdv2 = Nu]meric.array([ x[2], x[3], x[4], x[5], x[6], x[7] 1)
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y5 = ( e[8] + Kdl * e[2] + Kf1l * e[3] + Hdl * e[10] + Hf1l * e[11] +
Nd1 * e[12] + Nf1 * e[13] + (Hd1l * Kdl + Hd2 * Kf1) * e[4] +
(Hf1 * Kdl + Hf2 * Kf1) * e[5] + (Kdl * Kfl + Kf1l * Kf2) * e[1] +
(Kdl * Nd1 + Kf1 * Nd2) * e[6] + (Kdl1 * Nfl + Kf1 * Nf2) * e[7] +
e[0] * (Kd2 * Kf1l + Kdi1*Kdl ) )
y6 = ( e[9] + Kd2 * e[2] + Kf2 * e[3] + Hd2 * e[10] + Hi2 * e[11] +
Nd2 * e[12] + Nf2 * e[13] + (Hdl * Kd2 + Hd2 * Kf2) * e[4] +
(Kdl * Kd2 + Kd2 * Kf2) * e[0] + (Hf1 * Kd2 + Hf2 * Kf2) * e[5]+
(Kd2 * Nd1 + Kf2 * Nd2) * e[6] + (Kd2 * Nf1 + Kf2 * Nf2) * e[7] +
e[1] * (Kd2 * Kf1 + Kf2*Kf2 ) )
y7 = ( Numeric.dot(ev2, Rmat) + Kdv2 * e[2] + Kfv2 * e[3] + Ndv2 * e[12]
Nfv2 * e[13] + (Hdv2 + Nuneric.dot(Hdvl, Rmat)) * e[10] +
(Hfv2 + Nuneric.dot(H vl, Rmat)) * e[11] + (Nuneric.dot(Kdv2, Rmat)
Kdl * Kdv2 +
Kd2 * Kfv2) * e[0] + (Numeric.dot(Kfv2, Rmat) + Kf1l * Kdv2 + Kf2 *
Kfv2) *
e[ 1] + (Numeric.dot(Ndv2, Rmat) + Nd1 * Kdv2 + Nd2 * Kfv2) * e[6]
(Nurmeric.dot(Nfv2, Rmat) + Nf1 * Kdv2 + Nf2 * Kfv2) * e[7] +

Nuneric.dot(evl, R2) + e[4] * (Nurmeric.dot(Hdv2, Rmat) +
Hdl * Kdv2 + Hd2 * Kfv2 + Nuneric.dot(Hdvl, R2)) +
e[5] * (Nuneric.dot(H v2, Rmat) + Hf1 * Kdv2 + Hf2 *
Nuneric.dot (Hf vl, R2)) )

Kfv2 +

tenp2 = Nuneric.array([y5,y6])
= Nuneric.concatenate((y7,tenp2), 1)

work2[i,:]
wor k3 = Numeric.reshape( workl, (1,28) )
wor k4 = Numeric.reshape( work2, (1,32) )

fvec = Nuneric.reshape(Nuneric.concatenate((work3, work4), 1), (neqgs,))
return fvec
def nmake_Rmat ():
#
# Construct the exogenous shock AR nmatrix

#
# Markov transition probability matrix
Pmat

= transition_probs( p_plow, p_phigh)

# Money growth AR process coefficient matrix is set
# as matrix Rmat
#

tenp = Nuneric.zeros((2,2),'d")

tenpl = Nunmeric.dot(p_mveans, Pmat) - Numeric. dot (p_nCoeffs, p_mVeans)
tenp2 = Nuneric.concatenate((tenp, p_nCoeffs,tenpl),1 )

tenp3 = Nuneric.concatenate( (Nunmeric.zeros((2,4),'d ),Pmat),1)
tenp4 = Numeric.concatenate( (tenp2,tenp3) )

tenpl = Nuneric.zeros((1,6),'d")

tenpl[0,0] = p_zrhod

temp2 = Nuneric.zeros((1,6),'d")

tenp2[ 0, 1]

= p_zr hof

tenp = Nuneric.concatenate( (tenpl,tenp2) )

Rmat

= Nuneric.concatenate((tenp, tenp4))

+

+

+
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def

if

return Rmat

ergodic_state( ):

#

# Calculate steady state at

ergodi c neans

#

pih = (1-p_plow)/ (2-p_pl ow p_phi gh)

pil = (1-p_phigh)/(2-p_pl ow p_phi gh)

emean = pil * p_mMveans[:,0] + pih * p_mMeans[:, 1]

[ kds, kf s, hds, hfs, nds, nfs] = steadyState( enean[O0], enean[1] )

return enean, kds, kfs, hds, hfs, nds, nfs

__name__=="'__main

#

# Driver program for nonlinear equation solver
#

Ml ti pack
time

i mport
i mport

a = tine.clock()

# Wi ch nodel, sysnodell (sluggish deposits) or
# and deposits).

sysnodel 2 (sl uggi sh capital

nmodel = 'sysnodel 2'

[ emean, kds, kf s, hds, hfs, nds, nfs] = ergodi c_state()

zds = 0.0

zfs = 0.0

ssvec = [ kds, kfs, kds, kfs, hds, hfs, nds, nfs, kds, kfs, hds, hfs, nds,
nfs, zds, zf s, enean[ 0] , enean[ 1], zds, zf s, enean[ 0], enean[ 1] ]

# Construct Euler equation jacobian matrix

gl = gradient( eul er2d, ssvec, ssvec )

g2 = gradient( eul er2f, ssvec, ssvec )

g3 = gradient( eul er3d, ssvec, ssvec )

g4 = gradient( eul er3f,ssvec, ssvec )

g5 = gradient( eul erld, ssvec, ssvec )

g6 = gradient( eulerlf, ssvec, ssvec )

gl obal jacobian

jacobian = Nuneric.reshape(Nuneric.concatenate((gl, g2, g3, g4, g5,96)), (6, 22))

Rmat = make_Rmat ()
if model == 'sysnodel 1':
print 'Solving sluggish deposits

case.'



outfile = "solvecl. out’
xguess = Nunmeric.ones(72,'d" )*.01
g = Multipack. fsolve( sysnodel 1, xguess )

if g[0] >1 or g[15] > 1:
int '

ri

p i Phkkhkhhhhhhhhkhkhkhkhhhhhhhhhkhkhkhkkhhhhhhkhk k!
print

print 'oxxEEx unst abl e sol ution *ok ok kk
print '***** try npew starting val ues **xx*xx!
NI AR RS A R A A RS S A A A L AR S A S A AN

print 'Home capital coefficient: ', g[0]
print 'Foreign capital coefficient: ', g[15]
print *'

savem(outfile,

g[:, Nuneric. NewAxi s])
b = tine.clock()

print 'elapsed execution tine: ', b-a, 'secs'
svec = sysnodel 1(g)
print **
print 'normis: ', Numeric.sqrt(Nuneric.add.reduce(svec*svec))
print **
print 'solution witten to: ' + outfile
print **
if model == 'sysnodel 2':

print 'Solving sluggish capital and deposits case.
outfile = "solvec2. out’

xguess = Numeric.ones(60,'d" )*.1
g = Multipack. fsolve( sysnodel 2, xguess )

if g[0] >1or g[9] > 1:
nt "'

ri

p i Phkkhkhhhhhhhhkhkhkhkhhhhhhhhhkhkhkhkkhhhhhhkkk k!
print

print ‘'oxxEEs unst abl e sol ution *ok ok kk
print '***** try npew starting val ues **xx*xx:
NI AR RS A R A A RS S A A A L AR S A S A AN

print 'Home capital coefficient: ', g[0]
print 'Foreign capital coefficient: ', g[9]
print *'

savem(outfile,

g[:, Nuneric. NewAxi s])
b = tine.clock()

print 'elapsed execution tine: ', b-a, 'secs'
svec = sysnodel 2(g)
print **
print 'normis: ', Numeric.sqrt(Nuneric.add.reduce(svec*svec))
print **
print 'solution witten to: ' + outfile
print **
if model == 'sysnodel 2':

execfile( 'msvcap.py' )
elif nodel == 'sysnodel1':

execfile( '

Program nsvcap. py

Simul ate the open-econony nodel with Markov-sw tching noney
growth process and rational |earning.
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#

Witten in Python. Uses the NunPy nodul e.

Keith Sill
FRB Phi | adel phi a

H* OH ®H H B

07/ 19/ 99

import Numeric
i mport RandomArray

import LinearAl gebra

fromrandom inport *
from pval ues inport *
infile = 'solvec2. out’
def | oadn{name, nr, nc):
#
# Load an ascii format matrix
#
inmport string
nunCol s = nc
nunmRows = nr
z = Nuneric. zeros([ numRows, nunCol s], Nuneri c. Fl oat)
i=0; j=0
f = open(nane,'r')
for line
cols =
for i
z[j
=1

in f.readlines():

string.split(line)
in range(nunCol s):
,i] = string.atof(cols[i])

j +1

f.close()

return z

def saven(name, m:
#
# Save a matrix in ascii format
#
import sys
fp = open(nane,'w)
for i in range(m shape[O0]):
for j in range(m shape[1]):
fp.wite(str(nfi,j]) + "\t")
fp.wite('\n")
fp.close()
def diag( vec,k ):
#

# Insert the vector k along the kth diagonal
# and return a nmatrix.



#
n
M

= len( vec ) + Nuneric.absolute( k)
= Nuneric.zeros((n,n),"'d")

if k>0:

for i in range( len(vec) ):
Mi,k+i] = vec[i]

elif k < 0:

for i in range( len(vec) ):
M-k+i,i] = vec[i]

el se:

for i i]n range( len(vec) ):
I

Mi, = vecli]

return M

def invM nr,lam):

Invert the hp filter coefficient matrix
We pull this op out to speed up the sinulation
| oop

T

= Nuneric.zeros((nr,nr),"'d")

dl = Nuneric.ones(nr-2,'d")
dl = di*lam

d2 = Nuneric.ones(nr-1,'d")
d2 = d2*(-4.0*| am

d2[0] = -2*lam
d2[nr-2] = -2*lam
d3 Numeric. ones(nr,'d")

= d3*(1+6*1 am)
d3[0] = 1+l am
d3[1] = 1+5*lam
d3[nr-2] = 1+5*| am
d3[nr-1] = 1+l am

di ag(d1, 2)
di ag(d2, 1)
di ag(d3, 0)
di ag(d2, - 1)
di ag(d1, - 2)

EEERE
o

M=M + M + M3 + MM + Mo

return LinearAl gebra.inverse(M
def hpf( Mnv,y ):

ﬁ Cal cul ate the hp trend of y

g = Nuneric.dot( Mnv,y )

return g

def steadyState( nud, nuf ):
# takes as input the noney growth rates in the home and foreign
# countries. Returns a 6-tuple of calculated steady states for
# capital, hours, and deposits.

xX = Nuneric.zeros(6,'d")
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for i in range(2):
vtl = ( p_a3 * (1+nud) / p_beta ) * ( 1.0/ p_beta - (1-p_delta) )
vt2 = (1-p_a3) * ( 1l/p_beta - (1-p_delta) )
vd = ( 1/p_alpha * ( vtl + vt2 ) )**( 1.0/ (p_al pha-1) )
tenpd = ( p_gamm/ (1l-p_gamm) )*( p_beta/(1l+nud) ) * ( (1-

(vd**p_al pha - p_delta*vd) )* ( p_al + (1-p_al) * p_beta / ( 1+nud )

)
hd = tempd / ( 1l+tenpd )
kd = hd * vd
yd = kd**p_al pha * hd**(1-p_al pha)
zd = ( p_al * (1-p_alpha) * yd * p_beta / ( 1+mud ) - ( yd- p_delta * kd )
) 1 (
(1-p_alpha) * p_beta * yd / ( 1+nud ) + p_a3 * p_delta * kd )
nd=(1+nmd?*zd) / (1-zd)
xx[i] = kd
xx[i+2] = hd
xx[i+4] = nd
mud = nuf
return xx

def sinulate_tfp( zrho,std, T ):
#

# Generate tine series for TFP shock
#

theta = Numeric.zeros(T,'d")

for i in range(1,T):
theta[i] = p_zrhod*thetal[i-1] + gauss(0.O0,std)

return theta

def chol eski( x ):

#

# An inefficient inplenentation of the chol eski

# deconposition. Returns a matrix with chol eksi factors
# on the lower triangle, except for the diagonal, which is
# returned in p.

#

n = len(x)

p = Nuneric.zeros(n,'d")

a = x.astype('d")

sum = 0.0

for i in range(1, n+l):

for j in range( i,n+l ):
sum = af[i-1,j-1]
for k inrange( i-1,0,-1):
sum = sum - a[i-1,k-1]*a[j-1,k-1]
if i ==j:
if sum<= 0.0 :
print '‘choldc failed'
p[1-1] = Nuneric.sqrt(sum
el se:
a[j-1][i-1] = sum p[i-1]

return a, p
def simVAR( nPsi, nLl ow, nLhi gh, vMeanLow, vMeanHi gh, probLow, pr obHi gh ):
#

# Simulate a markov-switching noney growth process on
# a two-elenment VAR(1).

#
pll = probHi gh # high-to-high transition prob
p22 = probLow # lowto-low transition prob



pl2
p21

(1.0-p11)
(1.0-p22)

vEta = Numeric.array([O,1])
nmuVec = Nuneric.zeros((T,3),'d")

nP = Nuneric.array([ [ pl1, p21 ], [ pl2, p22] ])

v1ll = Nuneric.array([ pl2, -pl2])
v12 = Nuneric.array(|[ -pll, pll ])
v21 = Nuneric.array(|[ p22, -p22])
v22 = Nuneric.array([ -p21, p21l])

vMu_hat = vMeanLow

# Draw an N-vector of (0,1) random variables. We use
# this to indicate which transition to make

#
X = RandomArray.randonm(T)
vMeanLg = vMeanLow

# Generate the Markov process. The vector eta is a 2-el enent

# vector of [1,0] or [0,1]. Thus, the v's are defined so that

# eta(t) = P*eta(t-1) + v gives a 0-1 or 1-0 vector. The variable
# e is a nonetary control error, drawn fromthe appropriate high
# or low distribution.

#

tol = le-8

for i in range(T):

if Numeric.absolute(vEta[0]-1) < tol and x[i] <= pll :
transition
v = vil
ve = Nuneric.array([gauss(0.0,1), gauss(0.0,1)])
ve = Nuneric.dot(ve, nLhi gh)
vMean = vMeanHi g
elif Nunmeric.absolute(vEta[0]-1) < tol and x[i] > pll :
transition
v = v12
ve = Nuneric.array([gauss(0.0,1), gauss(0.0,1)])
ve = Nuneric.dot(ve, nLl ow)
vMean = vMeanLow
elif Nunmeric.absolute(vEta[0]) < tol and x[i] <= p21 : # A lowto-high
transition
v = v21
ve = Nuneric.array([gauss(0.0, 1), gauss(0.0,1)])
ve = Nuneric.dot(ve, nLhi gh)
vMean = vMeanHi gh
elif Nuneric.absolute(vEta[0]) < tol and x[i] > p21 :
transition
v = v22
ve = Nuneric.array([gauss(0.0,1), gauss(0.0,1)])
ve = Nuneric.dot(ve, nLl ow)
vMean = vMeanLow
el se:
print 'vEta elenents are not 0 or 1 '

# A high-to-high

# A high-to-low

# A lowto-Ilow

vEta = Nuneric.dot(nP,vEta) + v

vMi_hat = ( vMean + Nuneric.dot(nPsi,vMi_hat) -
Nuneri c. dot (nPsi , vMeanLg) + ve )

vMeanLg = vMean

muVec[i, 0] = vEta[O0]
muVec[i, 1l:] = vMi_hat

return nmuVec

def nmshock( vMeanl, vMean2, nPsi, mvgrowth ):
#
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# G ven an ARl sequence of npney growth rates, and the paraneters
# governing the process, return the inplied innovations.

#
nmShocks = Nuneric.zeros( (2,T),"'d )
for i in range(1,T):
mShocks[:,1] = (mvgrowm h[i,:]-vMean2) - Numeric.dot(nPsi, (mvgrowmt h[i-1,:]
vMeanl))

return Nuneric.transpose(nShocks)

def npdf( mX,nSig ):
#

# Multivariate nornal pdf. mX is mean zero

# Returns a vector of length mX with npdf (mX(i))
#

n

= |l en(nSig)
c0 = LinearAlgebra.inverse( nSig )
cl =1/ ( (Numeric.pi**(n/2.0)) *
Nurmeric.sqrt( LinearAl gebra.determinant( c0 )))
c2 = Nuneric.dot( mX, cO
c3 = Nuneric.dot( c2, Nuneric.transpose(nX) )

fn =cl * Numeric.exp( -0.5*Nuneric.diagonal ( c3 ) )
return fn

def beliefs( nmvgrow, nSi gLow, nSSi gHi gh, pl ow, phigh ):
# Cal culate regine belief, returns prob regine is | ow
#

v
virh

p_m\eans|:, 1]

p_m\eans] :, 0]

mP = Nureric.array([ { phi gh, (1»p|ow)%,]
R

(1-phigh), plow

mel | = mshock( vm ,vm, p_nCoeffs, mvgrow )
mel h = mshock( vm , vmh, p_nCoef fs, mvgrow )
mehl = mshock( vmh, v, p_nCoef fs, mvgrow )
mehh = mshock( vmh, vimh, p_nCoef f s, mvgrow )
nfll = npdf( nell, nSigLow )

nflh = npdf ( mel h, nSi gHi gh )

nfhl = npdf( nmehl, nSi gLow )

nfhh = npdf ( mehh, nSi gHi gh )

vbl ow = Nunmeric.zeros(T,'d")
vblow 0] = 0.5
for i in range(1,T):
gl = ( vblowi-1] * nP[1,1] * nfll[i]
(1-vblowi-1])*nP[1,0]*nfhl[i]

gh = ( vblowi-1]*mP[0, 1] *nflh[i]
(1-vblowi-1])*nP[0, 0] *nfhh[i] )

vblowi] =gl / ( gl + gh)
return vbl ow
def ergodic_state():
% Return ergodic probs and steady state vals

pil =

1- p_phi gh) / (2- p_pl ow- p_phi gh)
pih pil

(
1 -

vEmean = pil * p_mMeans[:,1] + pih * p_mMVeans[:, 0]



[ kds, kf s, hds, hfs, nds, nfs] = steadyState(vEmean[ 0], vEnean[1])

return vEnean, kds, kfs, hds, hfs, nds, nfs

def neke_stateb( nState, vEnean ):
# Calculate state matrix for active beliefs
#

VHt f p

sinmulate_tfp( p_zrhod, p_zsigd, T)
VFtfp

= sinmulate_tfp( p_zrhof, p_zsigf,T)
mvgrow = si MVAR( p_nCoeffs, nLl, nLl, p_m\eans[:, 1], p_mveans|[:, 0],
p_pl ow, p_phi gh )

vblow = beliefs( mvgrow :, 1:], p_nSi gLow, p_nSi gHi gh, p_pl ow, p_phi gh )
avgb = Nuneric.add.reduce( vblow )/ T

nState[0,:] = vHtfp

nState[1,:] = vFtfp

nState[2,:] = mvgrow :, 1] - vEnean[O0]
nState[3,:] = mvgrow :, 2] - vEnean[1]
nState[4,:] = vblow - avgb
nState[5,:] = avgb - vbl ow

return nState, mvgrow, vHt f p, vFtf p
def neke_statec( nState, vEnean ):
#
# Calculate state for inactive beliefs
#

VHt f p

sinmulate_tfp( p_zrhod, p_zsigd, T)
VFtfp

sinmulate_tfp( p_zrhof, p_zsigf,T)

mvgr ow = si MVAR( p_nCoeffs, nLl, nLl, p_mVeans[:, 1], p_mveans|[:, 0],

Nuneric. dot( kdv2,state[:,i-2]) )

kf[i] = ( coeff[8]*kd[i-1] + coeff[9]*kf[i-1] +
Nuneric.dot( kfv2,state[:,1-2]) )

return kd, kf, kd+kdss, kf+kfss

def hours_path( coeff, kd, kf, state, hss ):

#

# Equilibriumpath for hours worked. Returns the Tx1 vector for

# hours as deviations fromsteady state. |nputs are:

#

# coeff : a 14 element vector of solution coefficients

# kd, kf: Tx1 vectors of capital stock deviations fromsteady state
# state : The 6xT matrix of states, as defined in function

# capi tal _path(

# hs0,hsl : Initial and final steady states for hours

#

h = Nuneric.zeros( T,'d" )

hvl = coeff[2:8]
hv2 = coeff[8: 14]
for i in range(1,T):
h[i] = ( coeff[0]*kd[i] + coeff[1]*kf[i] +
Nuneric.dot( hvl,state[:,i] ) + Nunmeric.dot( hv2,state[:,i-1] ) )
return h, h + hss

def deposits_path( coeff, kd, kf,state, nss ):

Equilibrium path for deposits. Returns a Tx1 vector of deviations

p_pl ow, p_phi gh )

of deposits from steady state.

I nputs are the a 8x1l vector of

sol ution coefficients,

the Tx1 vectors of hone and foreign capital

stocks (expressed as deviations fromsteady state) and the 6xT matrix

of state variables,

as defined in function capital _path( ).

3 R

nState[0,:] = vHtfp
nState[1,:] = vFtfp
nState[2,:] = mvgrow :, 1] - vEnean[O0]
nState[3,:] = mvgrow :, 2] - vEnean[1]
nState[4:6,:] = 0.0

return nState, mvgrow, vHt f p, vFtf p

def capital _path( coeff, state, kdss, kfss ):

#

# Calculate the equilibriumpath for the Ievel of home and foreign
# capital stocks. Returns Tx1 vectors for home capital and foreign
# capital. The inputs are:

#

# coeff: a 28-element vector of solution coefficients

# state: a 6xT matrix of states, assumed to be ordered row w se
# as hone noney growmh (dev fromss )

# foreign noney growth (dev fromss )

# belief for hone-high, foreign-high (ss dev)

# belief for high, low (ss dev)

# belief for low, high (ss dev)

# belief for low, low (ss dev)

#

# kdsO, kfsO : Initial steady states for home and foreign

# kds1,kfsl : final steady states for home and foreign

kd = Nureric.zeros( T,'d" )

kf = Numeric.zeros( T,'d" )

kdv2 = coeff[2:8]

kfv2 = coeff[10:16]

for i in range(2,T):

kd[i] = ( coeff[0]*kd[i-1] + coeff[1]*kf[i-1] +

n = Nuneric.zeros( T,'d" )
nvl = coeff[2:8]

for i in range(1,T):
nfi] = coeff[0]*kd[i] + coeff[1]*kf[i] + Numeric.dot( nvl,state[:,i-1] )

return n, n + nss

def nmvarsi( k,h,n,u, tfp ):
#

# Calculate tine paths for nodel variables. Inputs are |evels of
# capital, hours, deposits, and noney growth
#

I'm= Numeric.ones(T,"'d")
ivest = Nunmeric.zeros( T,'d" )

for i in range( T):
Infi] = Nuneric.multiply.reduce( Nunmeric.exp(u[:i+1]) )

for i in range(T-1):
ivest[i] = k[i+1] - (1.0- p_delta)*k[i]
ivest[T-1] = p_delta * k[T-1]

= k**p_al pha * h**(1-p_al pha) * Nuneric.exp((1-p_al pha)*tfp)
(1- (1l-p_al)*n + p_al*u ) / (y + (p_al*p_a3-1)*ivest )
=p*1Im

(n+wu- p_a3*p*ivest ) / h

lw=w?* Im

y

p =
|

w



def acfl1( var ):
rate = (1-p_alpha) * ( p/w) * ( k/h )**p_al pha * Nuneric.exp((1-p_al pha)*tfp) #
# First order autocorrelation of var

return Ip,lwrate,ivest,y #
n = len( var )
def nwvars2( |pd,|pf,yd, yf,ivestd,ivestf ): xss = Nuneric.innerproduct( var[0:T-1],var[1:T] )
# ssq = Nuneric.innerproduct( var[0:T-1],var[0:T-1] )

# Calculate tine series for nomnal fx rate, real fx rate

# domestic consunption, foreign consunption. return xss/ssq
#
fx = (Ipd*(1-p_thd)*(yd - ivestd))/(lpf*(1-p_thf)*(yf-ivestf))
rx = fx * Ipf / Ipd
cd = p_thd * (yd - ivestd) + (1-p_thf) * ( yf - ivestf ) #
cf = p_thf * (yf - ivestf) + (1-p_thd) * ( yd - ivestd) # Sinulation Driver Program

#
return fx,rx,cd,cf

def stdvec( matrix ): if __name__ =="'__main__'
#
# Calcul ate standard deviation of series in the inmport tine
# Txn matrix 'matrix’'
# iter = 100 # Number of tines to run the sinulation.
tenp = Nuneric.dot( Nunmeric.transpose(matrix),matrix ) T = 500 # Length of the tine series.
tenp = Nuneric.sqrt( Nuneric.diagonal (tenp)/(len(matrix)-1) )
a = tine.clock() # Start timer

return tenp
coeffs = loadnm(infile,60,1)

def lag( mX, k ): coef fs. shape=(60,)
#
# lag the matrix nmX by k periods vK = coeffs[0:16]
# VHH = coeffs[16:30]
nr = mX. shape[ 0] VFH = coeffs[30: 44]
vHD = coeffs[44:52]
try: VFD = coeffs[52:60]
nc = mX. shape[ 1]
except : Mnv = invM T, 1600 )
nc = 0 nState = Nuneric.zeros( (6, T),"'d )
mX = mX[:, Nuneri c. NewAxi s] [ vEmean, kds, kf s, hds, hfs, nds, nfs] = ergodi c_state()
if nc >0: [mLl, vpl] = chol eski ( p_nSi gLow )
paddi ng = zeros( (Nuneric.absolute(k),nc),'d )
mLl [0,0] = vpl[0]
if nc == 0: mil[1,1] = vpl[1]
paddi ng = Nuneric.zeros( Nuneric.absolute(k), 'd ) mlI[0,1] = 0.0
paddi ng = paddi ng[:, Nunmeri c. NewAxi s]
print *'
if k>0: print 'Sinulations for sluggish deposits, sluggish capital nodel'
tenp = Nuneric.concat enate((paddi ng, mX)) print 'Mdel paraneterization is al = 98.2f, a3 = 93.2f' 9% p_al, p_a3)
rmat = tenp[:nr,] print 'Statistics for HP-Filtered series’
if k <O print 'Running %l iterations on series of length %' %iter,T)
tenp = Nuneric.concat enate((nX, paddi ng)) print *'
rmat = tenp[ Nuneric. absolute(k):,]
if k == 0: for count in range(l):
rmat = mX

tenp = Nuneric.zeros((T,1),"'d")
return rnat

honecount = 0.0
def correlate( X ): awaycount = 0.0

# hstdvec = 0.0

# correlation between the colum vectors fstdvec = 0.0

# of X nstdvec = 0.0

# rhohi = 0.0

n = X. shape[ 0] rhofi = 0.0

mX = Numeric.sum(X)/n rhofx = 0.0

covar = ( Numeric.dot(Nuneric.transpose(X),X)/n - rhorx = 0.0

Nuneric. mul tiply.outer(nX, mX) )

if count == 0 :

var = Nuneric. di agonal (covar) print 'Results for nodel with active beliefs’
if count == 1 :

return covar / Nunmeric.sqrt(Nunmeric.nultiply.outer(var,var)) print 'Results for nodel with inactive beliefs’

for index in range(iter):
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fstdvec[3]/fstdvec[4])
if count == : print 'Cons/y %. 5f %.5f ' % (nstdvec|2]/hstdvec[4],
[ mSt at e, mvoney, vHt f p, vFtf p] = nmake_stateb( nState, vEnean ) nstdvec[ 3]/ fstdvec[4])
if count == 1 : print 'Int Rate %. 5f %.5f ' % (hstdvec[ 2], fstdvec[2])
[ mSt at e, mvoney, vHt f p, vFtfp] = nmake_statec( nState, vEnean ) print 'Prices %. 5f %.5f ' % (hstdvec[O], fstdvec[O0])
print 'Nom fx %.5f ' % (nstdvec[O0])
print 'Real fx %.5f ' % (nstdvec[1])
[ kdhat, kf hat, | kd, | kf] = capital _path( vK, nftate, kds, kfs ) print **
[ hdhat, | hd] = hours_path( vHH, kdhat, kf hat, nSt at e, hds ) print 'Frac i <0 %. 5f %.5f ' % (homecount/(iter*T),

[hfhat,| hf] = hours_path( vFH, kdhat, kf hat, nState, hfs ) awaycount/ (iter*T))

[ ndhat, | nd] = deposits_path( vHD, kdhat, kf hat, nSt ate, nds ) print **
[nfhat, | nf] = deposits_path( vFD, kdhat, kf hat, nState, nfs ) print 'First order autocorrelations:
print **
# Tinme paths for prices, wages, nom nal interest rates, print 'Domirate %. 5f ' % rhohi
# investnment, and out put print 'For irate %. 5f ' %rhofi
print 'Nfx rho 9%b.5f ' % rhofx
[Ipd, Iwd, nrd,ivestd,yd] = nvarsl( |kd,|hd,I|nd, mvbney[:,1],vHtfp ) print 'Rfx rho 9%b.5f ' % rhorx
[Ipf,IW,nrf,ivestf,yf] = nmvarsl( |kf,Ihf,Inf, mvbney[:, 2], vFtfp ) print **
[fx,rx, cd, cf] = mvars2( |pd,Ipf,yd, yf,ivestd,ivestf )

saven('tenp.dat', tenp)
z = tine.clock()

hvmat = Nuneric. concatenate( (| pd[:, Nuneric. NewAxi s]
I wd print 'Elapsed execution time: ', z - a, ' secs'

[:, Numeric. NewAxi s],
nrd[:, Numeric. NewAxi s],
ivestd[:, Nunmeric. NewAxi s],
yd[:, Numeric. NewAxi s]), 1)

fvmat = Nunmeric.concatenate((lpf[:, Numeric. NewAxi s],
Iwf[:, Numeric. NewAxi s],
nrf[:, Numeric. NewAxi s],
ivestf[:, Numeric. NewAxi s],
yf[:, Numeric. NewAxis]), 1)

nvmat = Nuneric.concatenate((fx[:, Nuneric. NewAxi s],
rx[:, Numeric. NewAxi s],
cd[:, Nuneri c. NewAxi s],
cf[:, Numeric. NewAxis]), 1)
for j in range(T):
if hvmat[j,2] < 1:
honecount = honecount + 1
if fvmat[j,2] < 1:
awaycount = awaycount + 1

hvmat = Nuneric.log( hvmat )
fvmat = Nuneric.log( fvmat )
nvmat = Nuneric.log( nvmat )

tenp0 = nvmat[:, 0]
tenp = Nuneric.concatenate((tenp,tenpO[:, Nuneric. NewAxis]), 1)

hpf _hvmat = hvmat - hpf (M nv, hviat)
hpf _fvmat = fvmat - hpf (M nv, fvmat)
hpf _nvmat = nvnat - hpf (M nv, nvnat)

hpf _hstd = stdvec( hpf_hvmat )
hpf _fstd = stdvec( hpf_fvmat )
hpf _nstd = stdvec( hpf_nvmat )

hstdvec = hstdvec + (1.0/(1+i ndex))*(hpf_hstd - hstdvec)
fstdvec = fstdvec + (1.0/(1+index))*(hpf_fstd - fstdvec)

nstdvec nstdvec + (1.0/(1+index))*(hpf_nstd - nstdvec)
rhohi = rhohi + (1.0/(1+index))*(acfl(hpf_hvmat[:,2]) - rhohi )
rhofi = rhofi + (1.0/(1+index))*(acf1l(hpf_fvmat[:,2]) - rhofi )
rhofx = rhofx + (1.0/(1+index))*(acfl(hpf_nvmat[:,0]) - rhofx )
rhorx = rhorx + (1.0/(1+index))*(acfl(hpf_nvmat[:,1]) - rhorx )
# End of iteration |oop
print
print ' Home For ei gn'
print ' CQutput %. 5f %.5f ' % (hstdvec[4], fstdvec[4])
print 'Inv/y %. 5f %.5f ' % (hstdvec|[3]/hstdvec[4],
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