Federal Reserve Bank of Philadelphia
Ten Independence Mall
Philadelphia, Pennsylvania 19106-1574
(215) 574-6428, www.phil.frb.org

Working
 Papers

Research Department

WORKING PAPER NO. 99-14

SOLVING AND SIMULATING A SIMPLE
OPEN-ECONOMY MODEL WITH MARKOV-SWITCHING
DRIVING PROCESSES AND RATIONAL LEARNING

Keith Sill
Federal Reserve Bank of Philadelphia

Jeffrey Wrase
Federal Reserve Bank of Philadelphia
October 14, 1999

Working Paper No. 99-14

Solving and Simulating a Simple
Open-Economy Model with Markov-Switching Driving Processes and Rational Learning

Keith Sill
Federal Reserve Bank
of Philadelphia

Jeff Wrase
Federal Reserve Bank
of Philadelphia

October 14, 1999

The views expressed in this paper are those of the authors and do not necessarily reflect those of the Federal Reserve Bank of Philadelphia or the Federal Reserve System.

1. Introduction

This paper provides detail on technical aspects of the methods used to solve and simulate the models in our Working Papers "Exchange Rates, Monetary Policy Regimes, and Beliefs" and "Exchange Rates and Monetary Policy Regimes in the U.S. and Canada." In those papers we solve and simulate a two-country, limited participation monetary model of the exchange rate. The models feature money supply growth rate processes that have regime-switching behavior as in Hamilton's (1989) Markov-switching model. We investigate the predictions of the models under the assumption of a nonlinear driving process. In addition, we look at the implications of environments where agents have full information about the monetary regime and when they must form inferences about the state of the monetary regime. In the latter case, agents form beliefs about the state of monetary policy and update beliefs rationally using a Bayesian updating procedure.

The models in our two Working Papers are distinguished by the time series processes that describe the evolution of the exogenous state variables: money growth and technology shocks. In "Exchange Rates, Monetary Policy Regimes, and Beliefs," we assume that the exogenous state variables driving the economies are independent in that there are no feedback effects between countries. In "Exchange Rates and Monetary Policy Regimes in the U.S. and Canada," we allow the two countries to have cross-correlated technology shocks and money growth rates. Consequently, the models of exogenous shocks and belief sequences differ across the two exercises.

This paper is in the nature of a technical appendix. Section 2 describes a theoretical open-economy model that features limited participation by households and firms in asset-trading markets. Section 3 gives details on how the model is solved. We use Christiano's $(1991,1998)$ method of undetermined coefficients. Section 4 describes the simulation methods used to generate second moments and impulse response functions. The Appendix provides a listing of computer programs that solve and simulate versions of the basic model. The programs are written in Python, an object-oriented scripting language that is freely available for a wide variety of computing platforms, including Windows, Unix, and Linux. The code listing provides a reference to much of the discussion in the text. All programs used to solve and simulate the models in the two Working Papers referred to above are available from the authors on request.

2. Models

The basic model is a two-country variant of that in Christiano (1991) and is similar to the model in Schlagenhauf and Wrase (1995). The trading opportunities, objectives, and constraints of households are assumed to be isomorphic across countries. Details are provided for the representative domestic household's decisions and opportunities only: the foreign analogs are straightforward and involve only obvious notational alterations.

The domestic household begins period t with K_{t}^{D} units of capital and A_{t}^{D} units of domestic currency. At the beginning of period t , nominal wealth A_{t}^{D} is divided by sending a deposit of N_{t}^{D} currency units to the domestic financial market. The remaining $A_{t}^{D}-N_{t}^{D}$ is
allocated to trade in the foreign exchange market. In the exchange market, domestic and foreign households trade currencies to arrange balances for use in purchasing consumption goods.

Domestic currency available to the domestic household in the exchange market consists of $A_{t}^{D}-N_{t}^{D}$ along with the household worker's wages. The worker supplies \tilde{H}_{t}^{D} labor units in the domestic labor market at nominal wage W_{t}^{D}. In the foreign exchange market $A_{t}^{D}-N_{t}^{D}+\alpha_{1} W_{t}^{D} \tilde{H}_{t}^{D}$ units of domestic currency are divided into a domestic currency balance, $M_{D, t}^{D}$, and a foreign currency balance, $M_{F, t}^{D}$, at nominal exchange rate e_{t} (expressed in domestic per foreign currency units). We allow for some of the worker's wage receipts, $\alpha_{1} W_{t}^{D} \tilde{H}_{t}^{D}$, with $0 \leq \alpha_{1} \leq 1$, to be used in currency trades in the foreign exchange market. The household's nominal allocation in the foreign exchange market is:

$$
\begin{equation*}
A_{t}^{D}-N_{t}^{D}+\alpha_{1} W_{t}^{D} \tilde{H}_{t}^{D}=M_{D, t}^{D}+e_{t} M_{F, t}^{D} \tag{2.1}
\end{equation*}
$$

The household shopper purchases $C_{D, t}^{D}$ units of home-produced goods at price P_{t}^{D}, and $C_{F, t}^{D}$ units of foreign goods at price P_{t}^{F}, subject to the cash constraints:

$$
\begin{gather*}
P_{t}^{D} C_{D, t}^{D} \leq M_{D, t}^{D} \tag{2.2}\\
P_{t}^{F} C_{F, t}^{D} \leq M_{F, t}^{D} \tag{2.3}
\end{gather*}
$$

When the constraints bind as equalities, the shopper and worker combine to return home at the end of the period with goods, but no cash.

The financial intermediary receives a monetary injection X_{t}^{D} in the financial market,
which is deposited on behalf of the household. The intermediary can then lend $N_{t}^{D}+X_{t}^{D}$ units of cash to domestic firms. Loanable cash supplied by the intermediary is:

$$
\begin{equation*}
\tilde{L}_{t}^{D}=N_{t}^{D}+X_{t}^{D} \tag{2.4}
\end{equation*}
$$

The firm manager hires workers, undertakes investment, and holds the household's capital stock K_{t}^{D}. Prior to producing output, the firm borrows L_{t}^{D} domestic currency units from an intermediary to finance acquisition of H_{t}^{D} units of labor at wage W_{t}^{D} per unit and to potentially finance capital accumulation, in the face of a cash constraint:

$$
\begin{equation*}
W_{t}^{D} H_{t}^{D}+\alpha_{2} P_{t}^{D} I_{t}^{D} \leq L_{t}^{D} \tag{2.5}
\end{equation*}
$$

The firm purchases $I_{t}^{D}=K_{t+1}^{D}-\left(1-\delta^{D}\right) K_{t}^{D}$ units of home-produced goods to add to the household's capital stock and finances fraction $\alpha_{2} P_{t}^{D} I_{t}^{D}$, with $0 \leq \alpha_{2} \leq 1$, representing the fraction of investment financed by loans. Capital and consumption goods are indistinguishable in the domestic goods market and sell at a common price P_{t}^{D}.

From (2.1)-(2.3), the shopper and the worker bring home goods but no cash when the constraints bind as equalities. The firm manager, after the close of trading in the goods markets, pays loan obligation $R_{L, t}^{D} L_{t}^{D}$, where $R_{L, t}^{D}$ is the gross domestic loan rate. The manager brings home capital and cash profits of:

$$
\begin{equation*}
P_{t}^{D} Y_{t}^{D}-R_{L, t}^{D} L_{t}^{D}-\left(1-\alpha_{2}\right) P_{t}^{D} I_{t}^{D} \tag{2.6}
\end{equation*}
$$

where Y_{t}^{D} is real output per domestic household.

The intermediary receives loan repayments $R_{L, t}^{D} \tilde{L}_{t}^{D}=R_{L, t}^{D}\left(N_{t}^{D}+X_{t}^{D}\right)$ and pays a gross deposit return $R_{D, t}^{D}\left(N_{t}^{D}+X_{t}^{D}\right)$. The intermediary returns home at the end of the period with its household's own deposit return, $R_{D, t}^{D}\left(N_{t}^{D}+X_{t}^{D}\right)$, plus cash derived from intermediation $R_{L, t}^{D}\left(N_{t}^{D}+X_{t}^{D}\right)-R_{D, t}^{D}\left(N_{t}^{D}+X_{t}^{D}\right)$. Thus, the intermediary brings home a cash balance of:

$$
\begin{equation*}
R_{L, t}^{D}\left(N_{t}^{D}+X_{t}^{D}\right) \tag{2.7}
\end{equation*}
$$

Combining cash brought home by the household firm manager in (2.6), the intermediary in (2.7), and cash that the household worker did not send to the foreign exchange market gives the household's end-of-period nominal wealth:

$$
\begin{align*}
A_{t+1}^{D}= & P_{t}^{D} Y_{t}^{D}-R_{L, t}^{D} L_{t}^{D}-\left(1-\alpha_{2}\right) P_{t}^{D} I_{t}^{D}+ \tag{2.8}\\
& R_{L, t}^{D}\left(N_{t}^{D}+X_{t}^{D}\right)+\left(1-\alpha_{1}\right) W_{t}^{D} \tilde{H}_{t}^{D}
\end{align*}
$$

2.1 Preferences, Technology, and Shocks

The household maximizes utility measure:

$$
\begin{equation*}
U=E_{t} \sum_{j=0}^{\infty} \beta_{D}^{t+j} u\left(C_{t+j}^{D}, l_{t+j}^{D}\right) \tag{2.9}
\end{equation*}
$$

with $0 \leq \beta_{D} \leq 1$. Domestic consumption of home-produced goods, $C_{D, t}^{D}$, and foreignproduced goods, $C_{F, t}^{D}$, is aggregated via a Cobb-Douglas function:

$$
\begin{equation*}
C_{t}^{D}=\left(C_{D, t}^{D}\right)^{\theta^{D}}\left(C_{F, t}^{D}\right)^{1-\theta^{D}} \tag{2.10}
\end{equation*}
$$

and momentary utility takes the form:

$$
\begin{equation*}
u\left(C_{D, t}^{D}, C_{F, t}^{D}, 1-\tilde{H}_{t}^{D}\right)=\frac{1}{\varphi^{D}}\left\{\left(C_{t}^{D}\right)^{\gamma}\left(l_{t}^{D}\right)^{1-\gamma}\right\}^{\varphi^{D}} \tag{2.11}
\end{equation*}
$$

Leisure is $l_{t}^{D}=1-\tilde{H}_{t}^{D}$, with the time endowment normalized to unity. Foreign utility is the same as (2.9)-(2.10) except for the obvious notational alterations.

For output production, each domestic firm possesses the technology:

$$
\begin{equation*}
Y_{t}^{D}=f^{D}\left(K_{t}^{D}, H_{t}^{D}\right)=\left(K_{t}^{D}\right)^{\alpha}\left(H_{t}^{D}\right)^{1-\alpha} \exp \left((1-\alpha) z_{t}^{D}\right) \tag{2.12}
\end{equation*}
$$

with $0<\alpha<1$. z_{t}^{D} is a mean-zero technology shock, so there is no long-run growth in the model. The technology for foreign firms is the same as above except for notation.

Monetary injections are given by $X_{t}^{D}=M_{s, t+1}^{D}-M_{s, t}^{D}$ and $X_{t}^{F}=M_{s, t+1}^{F}-M_{s, t}^{F}$, where $M_{s, t}^{D}$ and $M_{s, t}^{F}$ are per own-country-household stocks of domestic and foreign currencies. The exogenous money growth rates $\chi_{t}^{D}=X_{t}^{D} / M_{s, t}^{D}$ and $\chi_{t}^{F}=X_{t}^{F} / M_{s, t}^{F}$ depend on the monetary policy regime. We assume that there are two monetary policy regimes: a high-mean money growth state and a low-mean money growth state.

2.2 Monetary Policy

Money growth is exogenous and follows a Markov-switching process in the mean and, possibly, in the variance. We consider two parameterizations of the money supply process. The first is one in which money growth rates are independent across countries. For this case we estimate univariate Markov-switching models for each country. Alternatively, we allow for
money supply feedback across countries. We then model the money supply process as a Markov-switching vector autoregression. ${ }^{1}$

First, consider the case where money growth is independent across countries. Let s_{t} indicate the unobserved regime with $s_{t} \in\{0,1\}$. Mean money growth can take on values $\mu\left(s_{t}\right) \in\left\{\mu^{L}, \mu^{H}\right\}$ with $\mu^{L}<\mu^{H}$. The time series process for money growth follows:

$$
\begin{equation*}
\left(x_{t}-\mu\left(s_{t}\right)\right)=\rho\left(x_{t-1}-\mu\left(s_{t-1}\right)\right)+\varepsilon_{t} \tag{2.13}
\end{equation*}
$$

The monetary control error ε_{t} is assumed to be distributed iid normal, drawn from a statedependent distribution with mean 0 and standard deviation that possibly depends on the state. Mean money growth switches back and forth according to a Markov transition law with known parameters:

$$
\begin{equation*}
p_{i j}=\operatorname{Pr}\left[\mu\left(s_{t}\right)=\mu^{j} \mid \mu\left(s_{t-1}\right)=\mu^{i}\right] \text { for } i, j=H, L \tag{2.14}
\end{equation*}
$$

For the case where money growth is not assumed independent across countries we use a Markov-switching vector autoregression framework. The time series process for money growth is assumed to be:

$$
\begin{equation*}
\left(X_{t}-v\left(s_{t}\right)\right)=A\left(X_{t-1}-v\left(s_{t-1}\right)\right)+\omega_{t} \tag{2.15}
\end{equation*}
$$

with $X_{t}, v\left(s_{t}\right), \omega_{t} 2 \times 1$ vectors, and A a 2×2 matrix of coefficients. Note that this parameterization assumes both countries are in the same regime at the same time. The independent money supply model allows countries to be in different regimes at the same time (though there are no monetary interactions between countries). Thus, under the independent

[^0]money case, there are four states for monetary policy, while under the dependent case there are two states for monetary policy.

2.3 Household Decisions

The household maximizes utility measure (2.9) subject to the trading opportunities and constraints in (2.1)-(2.8) and technology (2.12).

Consider a case of full information, that is, a case in which households and firms have full knowledge of all current period shocks prior to making consumption and investment decisions. Let $V^{D}\left(A_{t}^{D}, K_{t}^{D}, S_{t}\right)$ be the value function corresponding to the domestic household's problem. $V(\bullet)$ satisfies the functional equation:

$$
\begin{aligned}
V^{D}\left(A_{t}^{D}, K_{t}^{D}, S_{t}\right)= & \max _{\left\{N_{t}^{D}, K_{t+1}^{D}, M_{P, t}^{D} \tilde{H}_{t}^{D}, L_{t}^{D}\right\}}\left(u\left(C_{t}^{D}, 1-\tilde{H}_{t}^{D}\right)+\right. \\
& \left.\beta_{D} \int V^{D}\left(A_{t+1}^{D}, K_{t+1}^{D}, S_{t+1}\right) \Phi\left(S_{t+1} \mid S_{t}\right)\right)
\end{aligned}
$$

with A_{t+1}^{D} given by the wealth evolution equation (2.8). Binding cash constraints (2.2)-(2.3) are used to eliminate $C_{D, t}^{D}, C_{F, t}^{D}$, and H_{t}^{D} as separate decisions. Also, from the foreign exchange market allocation (2.1) we have $A_{t}^{D}-N_{t}^{D}+\alpha_{1} W_{t}^{D} \tilde{H}_{t}^{D}=M_{D, t}^{D}+e_{t} M_{F, t}^{D}$. Consequently, choice of $M_{D, t}^{D}$ is implied by choices of $N_{t}^{D}, \tilde{H}_{t}^{D}$, and $M_{F, t}^{D}$, since A_{t}^{D} is predetermined and e_{t} and W_{t}^{D} are taken by the household as given. Optimality conditions for $N_{t}^{D}, K_{t+1}^{D}, M_{F, t}^{D}, \tilde{H}_{t}^{D}, L_{t}^{D}$ are:

$$
\begin{equation*}
-u_{C_{D, t}^{D}} \frac{1}{P_{t}^{D}}+\beta_{D} \int u_{C_{D, t+1}^{D}} \frac{R_{L, t}^{D}}{P_{t+1}^{D}} \Phi\left(S_{t+1} \mid S_{t}\right)=0 \tag{2.16}
\end{equation*}
$$

$$
\begin{gather*}
-\int\left(u_{C_{D, t+1}^{D}} \frac{P_{t}^{D}}{P_{t+1}^{D}}+\beta_{D} u_{C_{D, t+2}^{D}} \frac{P_{t+1}^{D}}{P_{t+2}^{D}}\left\{f_{K_{t+1}^{D}}+1-\delta^{D}\right\}\right) \Phi\left(S_{t+1} \mid S_{t}\right)=0 \tag{2.17}\\
-u_{C_{D, t}^{D}} \frac{1}{P_{t}^{D}}+u_{C_{F, t}^{D}} \frac{1}{e_{t} P_{t}^{F}}=0 \tag{2.18}\\
-u_{l_{t}}+u_{C_{D, t}^{D}} \alpha \frac{W_{t}^{D}}{P_{t}^{D}}-\frac{\left(1-\alpha_{1}\right)}{1+x_{t}^{D}} \int \beta_{D} \frac{u_{C_{D, t+1}^{D}}}{P_{t+1}^{D}} \Phi\left(S_{t+1} \mid S_{t}\right)=0 \tag{2.19}\\
f_{H_{t}^{D}}-\frac{W_{t}^{D}}{P_{t}^{D}} R_{L, t}^{D}=0 \tag{2.20}
\end{gather*}
$$

where $u_{l_{t}^{D}}$ is the period t marginal utility of leisure, and the period t marginal products of domestic labor and capital are denoted, respectively, by $f_{H_{t}^{D}}$ and $f_{K_{t}^{D}}$.

2.4 The Economy's State and Equilibrium

The state of the world economy in period t is characterized by values for $M_{s, t}^{D}, M_{s, t}^{F}, \kappa_{t}^{D}, \kappa_{t}^{F}, A_{t}^{D}, A_{t}^{F}, K_{t}^{D}, K_{t}^{F}, b_{t}$, and $S_{t} . M_{s, t}^{D}\left(M_{s, t}^{F}\right)$ and $\kappa_{t}^{D}\left(\kappa_{t}^{F}\right)$ are per domestic (foreign) household money and capital stocks. $A_{t}^{D}\left(A_{t}^{F}\right)$ and $K_{t}^{D}\left(K_{t}^{F}\right)$ are the domestic (foreign) representative household's beginning currency and capital stocks. S_{t} denotes the vector of innovations to money growth in the home and foreign country while b_{t} denotes belief probabilities over the states of global monetary policy (the belief process is described below).

An equilibrium involves state-contingent prices, wages, interest rates, exchange rates, and optimal household decision rules satisfying market clearing and aggregate consistency conditions. Market clearing conditions are: $\tilde{H}_{t}^{D}=H_{t}^{D}, \tilde{H}_{t}^{F}=H_{t}^{F}$ for labor; $Y_{t}^{D}=C_{D, t}^{D}+C_{D, t}^{F}+I_{t}^{D}$ and $Y_{t}^{F}=C_{F, t}^{F}+C_{F, t}^{D}+I_{t}^{F}$ for goods; $\tilde{L}_{t}^{D}=L_{t}^{D}$ and $\tilde{L}_{t}^{F}=L_{t}^{F}$ for loans;
and $A_{t}^{D}+X_{t}^{D}=M_{D . t}^{D}+M_{D, t}^{F}$ and $A_{t}^{F}+X_{t}^{F}=M_{F, t}^{F}+M_{F, t}^{D}$ for foreign exchange. Aggregate consistency requires that $A_{t}^{D}=M_{s, t}^{D}, A_{t}^{F}=M_{s, t}^{F}$ for money stocks, and $K_{t}^{D}=\kappa_{t}^{D}, K_{t}^{F}=\kappa_{t}^{F}$ for capital stocks.

3. Solving the Model

We solve the model using Christiano's $(1991,1998)$ method of undetermined coefficients. This method is used because it can easily handle models in which different time t endogenous variables are functions of different information sets. Thus, the method can handle cases where the time t deposit decision and/or capital decision is made prior to the realization of the time t money shock. The method involves linearizing equilibrium conditions around steady state, substituting in hypothesized decision rules for endogenous variables, and using the time series representation for the exogenous driving processes to derive a system of nonlinear equations in decision rule coefficients.

We begin by combining the model's first order conditions and substituting for the utility and production functions to get a system of six Euler equations (three for each country) that completely describe the evolution of the economy. Though there is no long-run real growth in the model, the money stock is growing, so wages and prices are nonstationary variables. To render them stationary they are deflated by the level of the money stock. Thus, define $p_{t}^{D}=P_{t}^{D} / M_{t}^{D}$ and $w_{t}^{D}=W_{t}^{D} / M_{t}^{D}$. Finally, define $x_{t}^{D}=M_{t+1}^{D} / M_{t}^{D}-1$. Then, the equilibrium conditions characterizing the domestic economy are given by:

$$
\begin{gather*}
\frac{u_{C_{D, t}^{D}}}{p_{t}^{D}}=E_{t}\left(\beta_{D} \frac{u_{C_{D, t+1}^{D}}}{p_{t+1}^{D}} \frac{R_{t+1}^{D}}{1+x_{t+1}^{D}}\right) \tag{3.1}\\
-u_{l_{t}^{D}}+\frac{u_{C_{D, t}^{D}}}{p_{t}^{D}} \alpha_{1} w_{t}^{D}=-E_{t}\left(\beta_{D} \frac{u_{C_{D,+1}^{D}}}{p_{t+1}^{D}}\left(1-\alpha_{1}\right) \frac{w_{t}^{D}}{1+x_{t}^{D}}\right) \tag{3.2}\\
\frac{u_{C_{D, t}^{D}}}{p_{t}^{D}} \frac{w_{t}^{D}}{f_{H_{t}^{D}}^{D}}\left(\alpha_{2} \frac{p_{t}^{D}}{w_{t}^{D}} f_{H_{t}^{D}}+\left(1-\alpha_{2}\right)\right)= \tag{3.3}\\
E_{t}\left(\beta_{D} \frac{u_{C_{D, t+1}^{D}}}{p_{t+1}^{D}} \frac{w_{t+1}^{D}}{f_{H_{t+1}^{D}}^{D}}\left(f_{K_{t+1}^{D}}+\alpha_{2} \frac{p_{t+1}^{D}}{w_{t+1}^{D}} f_{H_{t+1}^{D}}\left(1-\delta^{D}\right)+\left(1-\alpha_{2}\right)\left(1-\delta^{D}\right)\right)\right.
\end{gather*}
$$

The following conditions also hold on the equilibrium path:

$$
\begin{gather*}
Y_{t}^{D}=\left(K_{t}^{D}\right)^{\alpha}\left(H_{t}^{D}\right)^{(1-\alpha)} \exp \left((1-\alpha) z_{t}^{D}\right) \tag{3.4}\\
I_{t}^{D}=K_{t+1}^{D}-\left(1-\delta^{D}\right) K_{t}^{D} \tag{3.5}\\
C_{D, t}^{D}=\theta^{D}\left(Y_{t}^{D}-I_{t}^{D}\right) \tag{3.6}\\
C_{F, t}^{D}=\left(1-\theta^{F}\right)\left(Y_{t}^{F}-I_{t}^{F}\right) \tag{3.7}\\
p_{t}^{D}=\frac{1-\left(1-\alpha_{1}\right) N_{t}^{D}+\alpha_{1} x_{t}^{D}}{Y_{t}^{D}-\left(1-\alpha_{1} \alpha_{2}\right) I_{t}^{D}} \tag{3.8}\\
w_{t}^{D}=\frac{N_{t}^{D}+x_{t}^{D}-\alpha_{2} p_{t}^{D} I_{t}^{D}}{H_{t}^{D}} \tag{3.9}\\
R_{t}^{D}=(1-\alpha) \frac{p_{t}^{D}}{w_{t}^{D}}\left(\frac{K_{t}^{D}}{H_{t}^{D}}\right)^{\alpha} \exp \left((1-\alpha) z_{t}^{D}\right) \tag{3.10}
\end{gather*}
$$

An analogous set of equations characterizes the foreign country.

3.1 Exogenous State Variable Evolution

The exogenous state variables for the economy are the shocks to technology and the money growth processes. By deriving an autoregressive representation of the exogenous shock process, we can easily backdate to time t system variables dated $t+1$ and higher.

Shocks to technology are assumed to follow a first order VAR:

$$
\left[\begin{array}{c}
z_{t}^{D} \tag{3.11}\\
z_{t}^{F}
\end{array}\right]=\Pi_{z}\left[\begin{array}{c}
z_{t-1}^{D} \\
z_{t-1}^{F}
\end{array}\right]+\left[\begin{array}{c}
v_{t}^{D} \\
v_{t}^{F}
\end{array}\right]
$$

with the vector of innovations iid normal with mean zero, and covariance matrix Σ_{z}.

To derive the $\mathrm{AR}(1)$ representation of the money growth process, consider first the evolution of the monetary regime state vector $S_{t}=\left[s_{t}, 1-s_{t}\right]^{T}$ where $s_{t} \in\{0,1\}$. Let $S_{t}^{H}=[1,0]^{T}$ denote the high money growth regime and $S_{t}^{L}=[0,1]^{T}$ denote the low money growth regime state. The regime state vector evolves according to:

$$
\begin{equation*}
S_{t}=P S_{t-1}+v_{t} \tag{3.12}
\end{equation*}
$$

where the transition matrix P has elements:

$$
P=\left[\begin{array}{ll}
p_{h h} & p_{l l} \\
p_{h l} & p_{l l}
\end{array}\right]
$$

and $p_{i j}$ is as defined in (2.14). Since S_{t} is discrete, the innovation vector can take on four values:

$$
\left[\begin{array}{c}
p_{h l} \\
-p_{h l}
\end{array}\right]=S_{t}^{H}-P S_{t-1}^{H}
$$

$$
\begin{aligned}
& {\left[\begin{array}{c}
p_{l l} \\
-p_{l l}
\end{array}\right]=S_{t}^{H}-P S_{t-1}^{L}} \\
& {\left[\begin{array}{c}
-p_{l h} \\
p_{l h}
\end{array}\right]=S_{t}^{L}-P S_{t-1}^{L}} \\
& {\left[\begin{array}{c}
-p_{l h} \\
p_{h h}
\end{array}\right]=S_{t}^{L}-P S_{t-1}^{H}}
\end{aligned}
$$

Define the vector of mean long-run money growth rates $\zeta=\left[\mu^{H}, \mu^{L}\right]$. For the univariate case, we can write the money growth rate process as:

$$
\begin{equation*}
x_{t}-\zeta S_{t}=\rho\left(x_{t-1}-\zeta S_{t-1}\right)+\varepsilon_{t} \tag{3.13}
\end{equation*}
$$

which in $\operatorname{AR}(1)$ form is:

$$
\left[\begin{array}{l}
x_{t} \tag{3.14}\\
S_{t}
\end{array}\right]=\left[\begin{array}{cc}
\rho & \zeta P-\rho \zeta \\
0 & P
\end{array}\right]\left[\begin{array}{l}
x_{t-1} \\
S_{t-1}
\end{array}\right]+\left[\begin{array}{c}
\varepsilon_{t}+\zeta v_{t} \\
v_{t}
\end{array}\right]
$$

The extension to the case where x_{t} is a 2 x 1 vector is straightforward.

3.2 Steady State

To implement the method of undetermined coefficients, we need to linearize equilibrium conditions around steady state values. The steady state for the model can be difficult to calculate numerically, so we provide a method to calculate steady state capital and hours analytically. Once steady state capital and hours are known, steady state values for the other model variables can easily be found.

Let the capital/labor ratio be denoted by $\mathrm{V}=\mathrm{K} / \mathrm{H}$. Use equations (2.20), (3.1), and (3.3) to solve for V as a function of parameters and the exogenous mean money growth rate \bar{x} :

$$
\begin{equation*}
V=\left[\frac{1}{\alpha}\left(\frac{1}{\beta}-(1-\delta)\right)\left(\frac{\alpha_{2}(1+\bar{x})}{\beta}+\left(1-\alpha_{2}\right)\right)\right]^{\frac{1}{\alpha-1}} \tag{3.15}
\end{equation*}
$$

From (3.2) we can derive an expression for C_{D}^{D}, and H as a function of parameters, exogenous variables, and V :

$$
\begin{equation*}
\frac{(1-\gamma) C_{D}^{D}}{\theta^{D} \gamma(1-H)}=\frac{\beta}{1+\bar{x}} f_{H}\left(\alpha_{1}+\frac{\beta\left(1-\alpha_{1}\right)}{1+\bar{x}}\right) \tag{3.16}
\end{equation*}
$$

Note that (3.6) gives $C_{D}^{D}=H\left(V^{\alpha}-\delta V\right)$. Substitute this into (3.16) and solve for H as a function of V. Finally, solve for K as $\mathrm{H}^{*} \mathrm{~V}$. Given steady state K and H , we can then solve for steady state values of all other model variables using (3.4)-(3.10).

The steady state value of money growth used to calculate steady state capital and hours is the mean value of money growth calculated using the ergodic probabilities of the Markov chain for the regime evolution process. The ergodic probabilities are given by the eigenvector of P associated with the unit eigenvalue.

3.3 System Solution

We solve the model by substituting equations (3.4)-(3.10) into the Euler equations (3.1)-(3.3) to get a system of equations in capital, hours, and deposits. Expectations are dropped and Euler equations are linearized around steady state values to get a prototypical domestic economy equation of the form:

$$
\begin{align*}
& \lambda_{1} \tilde{K}_{t+2}^{D}+\lambda_{2} \tilde{K}_{t+2}^{F}+\lambda_{3} \tilde{K}_{t+1}^{D}+\lambda_{4} \tilde{K}_{t+1}^{F}+\lambda_{3} \tilde{H}_{t+1}^{D}+\lambda_{8} \tilde{H}_{t+1}^{F}+\lambda_{1} \tilde{N}_{t+1}^{D}+\lambda_{8} \tilde{N}_{t+1}^{F}+ \\
& \lambda_{9} \tilde{K}_{t}^{D}+\lambda_{10} \tilde{K}_{t}^{F}+\lambda_{11} \tilde{H}_{t}^{D}+\lambda_{12} \tilde{H}_{t}^{F}+\lambda_{13} \tilde{N}_{t}^{D}+\lambda_{14} \tilde{N}_{t}^{F}+\lambda_{15} \tilde{z}_{t+1}^{D}+\lambda_{16} \tilde{z}_{t+1}^{F}+ \tag{3.17}\\
& \lambda_{17} \tilde{x}_{t+1}^{D}+\lambda_{18} \tilde{x}_{t+1}^{F}+\lambda_{1 \sigma_{t}} \tilde{z}^{D}+\lambda_{2 \tilde{\sigma}_{t}} \tilde{z}^{F}+\lambda_{21} \tilde{x}_{t}^{D}+\lambda_{22} \tilde{x}_{t}^{F}=0
\end{align*}
$$

where $\tilde{X}_{t}^{D} \equiv X_{t}^{D}-X_{s s}^{D}$ and λ_{i} is a linearization coefficient. To ease the implementation, we calculate the linearization coefficients numerically, though they can be computed analytically. Next, we postulate decision rules for K_{t}, H_{t}, and N_{t}. Let τ_{t} denote the vector of exogenous state variables, including S_{t}, and let $\tilde{\tau_{t}}$ denote the state vector deviations from mean values. We write the hypothesized decision rules as:

$$
\begin{gather*}
\tilde{K}_{t+1}^{i}=\eta_{K 1}^{i} \tilde{K}_{t}^{D}+\eta_{K 2}^{i} \tilde{K}_{t}^{F}+\eta_{K 3}^{i} \tilde{\tau}_{t}+\eta_{K 4}^{i} \tilde{\tau}_{t-1} \tag{3.18}\\
\tilde{H}_{t}^{i}=\eta_{H 1}^{i} \tilde{K}_{t}^{D}+\eta_{H 2}^{i} \tilde{K}_{t}^{F}+\eta_{H 3}^{i} \tilde{\tau}_{t}+\eta_{H 4}^{i} \tilde{\tau}_{t-1} \tag{3.19}\\
\tilde{N}_{t}^{i}=\eta_{N 1}^{i}{\tilde{K_{t}}}^{D}+\eta_{N 2}^{i}{\tilde{K_{t}}}^{F}+\eta_{N 3}^{i} \tilde{\tau}_{t-1} \tag{3.20}
\end{gather*}
$$

Note that time t decisions on deposits are made prior to the realization of time t shocks. By setting $\eta_{K 3}^{i}$ to zero we can also examine a case where both capital and deposit decisions are made prior to observing current period shocks. We experimented with both timing conventions in our analysis of the model and generally found that nominal interest rates were too variable in the case where only deposit decisions are made prior to current period shock realizations. Thus, in our simulations we focus on the case where both capital and deposits are sluggish (we set $\eta_{K 3}^{i}$ to zero).

The decision rules (3.18)-(3.20) are substituted into the linearized Euler equations (3.17) and variables dated higher than period t are backdated using the $\operatorname{AR}(1)$ model for the exogenous state variables. For the capital Euler equation (3.3) and the deposits Euler equation
(3.1), we collect terms in $\tilde{K}_{t}^{D}, \tilde{K}_{t}^{F}$, and $\tilde{\tau}_{t-1}$, since households make decisions on these variables prior to observing the current period shock. For the hours Euler equation (3.2), we collect terms in $\tilde{K}_{t}^{D}, \tilde{K}_{t}^{F}, \tau_{t}$, and $\tilde{\tau}_{t-1}$, since households make hours decisions after observing current period shocks. For the linearized Euler equations to hold for all values of $\tilde{K}_{t}^{D}, \tilde{K}_{t}^{D}, \tilde{\tau}_{t-1}$ and $\tilde{\tau}_{t}$, the coefficients on these terms must be equal to zero. Thus, setting the coefficient expressions on $\tilde{K}_{t}^{D}, \tilde{K}_{t}^{F}, \tilde{\tau}_{t}$, and $\tilde{\tau}_{t-1}$ to zero gives a system of nonlinear equations in the coefficients of (3.18)-(3.20). This equation system can be solved using any one of several standard nonlinear equation solvers. The system of equations is not too nonlinear, so typically the problem is well behaved and solves quickly. See the computer code in the Appendix and Christiano (1991) for details. Note that the recursive substitution of the decision rules into the linearized Euler equations can quickly become complicated and tedious. Christiano (1998) has a matrix representation of the system that is easier to work with. Alternatively, one can use a symbolic algebra package such as MuPad or Maple to generate the substitutions and derive the nonlinear equation system. That is the route we followed. The computer code in the Appendix has the explicit nonlinear system for the model worked out.

4. Simulating the Model

To simulate the model, one must generate time-series realizations for the exogenous variables, use the decision rules to generate time series on capital, hours, and deposits, and then use equilibrium conditions to generate time series on the other model variables. This is completely straightforward except, perhaps, for generating a Markov-switching money growth rate
process. Note also that up until now we haven't worried about beliefs agents may hold over the state of monetary policy. Beliefs come into play at the model simulation stage. Basically, we generate a sequence of beliefs conditioned on realizations of money growth rates and substitute these beliefs about the state of monetary policy for values of S_{t} in the decision rules.

Generating the technology shocks for the model is completely straightforward and will not be discussed further. We first generate a time series on money growth with Markovswitching means and variances for the case where money growth is independent across countries. The extension to the case where there is monetary feedback between countries is a straightforward extension.

4.1 Generating a Markov-Switching Money Growth

Sequence

Our method of generating money growth sequences is as follows. We set up two gaussian random number generators to generate monetary control errors. Both generators return mean zero variables; however, one sequence is high standard deviation and one is low standard deviation. We allow for both state-dependent means and variances in the model. Let eta be a 2 x 1 vector that holds the regime indicators. For a high-growth regime eta $=[1,0]$ and for a low growth regime eta $=[0,1]$. Suppose we want to generate a sequence of N money growth rate realizations.

Let x be an Nx 1 vector of uniform random numbers between zero and one. Let p 11 denote the probability of a high-growth regime to a high-growth regime transition, p21 the probability of a low-growth regime to high-growth regime transition, and p22 the probability of
a low-growth regime to low-growth regime transition. Suppose we start in a high money growth regime. The probability of staying in a high-growth regime is p 11 . We draw $\mathrm{x}[0]$ and see if it is less than p 11 . If so, we set the state indicator to high growth, set mean money growth to high growth, and draw a monetary control error from the high-growth regime distribution. If $\mathrm{x}[0]$ is greater than p 11 , we set the state indicator to low growth, set mean money growth to low growth, and draw a monetary control error from the low-growth regime distribution. Given the innovations and means, we can use (3.14) to generate a money growth rate observation. This sequence of steps then continues N times. An algorithm to do this follows. It is a modified extract from the computer code listed in the Appendix. Note that array indicies are zero offset.

$$
\text { Define v11 }=[\mathrm{p} 12,-\mathrm{p} 12], \mathrm{v} 12=[-\mathrm{p} 11, \mathrm{p} 11], \mathrm{v} 21=[\mathrm{p} 22,-\mathrm{p} 22], \text { and } \mathrm{v} 22=[-\mathrm{p} 21,
$$

p21]. The variable eta is a 2 x 1 array, and x is an Nx1 array. Recall that the form of the money growth rate process is given by:

$$
x_{t}=\mu\left(s_{t}\right)+\Psi x_{t-1}-\Psi \mu\left(s_{t-1}\right)+\varepsilon_{t}
$$

```
\# This pseudo-code generates a Markov-switching money growth rate sequence.
\# The money growth rate is the variable mu_hat
for i in range \((N): \quad\) \# Do the following steps \(N\) times
    if eta[0] == 1 and \(x[i]<=p 11\) : \# A high-to-high transition
        \(v=v 11\)
        \(e=\operatorname{gauss}\left(0.0, s t d_{-} h i g h\right)\)
        mean \(=\) mu_high
    elif eta[0] \(=1\) and \(x[i]>p 11:\) \# A high-to-low transition
        \(v=v 12\)
        \(e=\operatorname{gauss}(0.0\), std_low)
        mean \(=\) mu_low
    elif eta[0] \(=0\) and \(x[i]<=p 21: \#\) A low-to-high transition
        \(v=v 21\)
        \(e=\) gauss(0.0,std_high)
        mean \(=\) mu_high
    elif eta[0] \(==0\) and \(x[i]>p 21: \#\) A low-to-low transition
        \(v=v 22\)
        \(e=\operatorname{gauss}(0.0\), std_low)
        mean \(=\) mu_low
```

```
    eta = P*eta +v # update the state indicator vector
# generate the money growth rate. Meanl is initially set prior to the start of the for loop
#
    mu_hat = mean + Psi*mu_hat - Psi*meanl + e
    meanl = mean # save the mean, since next period it becomes }\mu(\mp@subsup{s}{t-1}{}
    muVec[i,0:2] = eta # save the state indicator matrix
    muVec[i,2]= mu_hat # save the money growth rate observation
end for
end program
```

For the case in which there is monetary feedback between countries, the algorithm listed above is essentially the same. We draw two innovations from a bivariate distribution with low or high variance-covariance matrix. In addition, the means are $2 x 1$ vectors of high or low values. Finally, Psi is replaced by a 2×2 matrix of coefficients.

4.2 Rational Learning

Given realizations on money growth rates, agents who are not fully informed about the monetary regime will have to form inferences about the state of monetary policy. Our introduction of learning into the model framework follows Andolfatto and Gomme (1997). If monetary policymakers are not credible, agents will not know with certainty the monetary policy regime. Instead, they use all relevant information at their disposal to learn about the long-run money growth rate. We model monetary policy as an exogenous process, so the only information relevant for determining the policy regime is current and past values of money growth. Let $\Omega_{t}=\left\{x_{t}, x_{t-1}, x_{t-2}, \ldots\right\}$ denote the information set consisting of current and past values of money growth. Agents assign a probability to the current-period regime being low growth, which we
denote $b_{t}=\operatorname{Pr}\left[\mu\left(s_{t}\right)=\mu^{L} \mid \Omega_{t}\right]$. Agents enter period t with beliefs b_{t-1}, observe Ω_{t}, and update their current-period beliefs b_{t}. Agents are assumed to share the same beliefs and b_{0} is given. Belief updating is rational, following a Bayes' rule recursion:

$$
\begin{equation*}
b_{t}=\frac{g_{L}\left(b_{t-1}, x_{t}\right)}{g_{L}\left(b_{t-1}, x_{t}\right)+g_{H}\left(b_{t-1}, x_{t}\right)} \tag{4.1}
\end{equation*}
$$

with:

$$
\begin{align*}
& g_{L}=b_{t-1} p_{l l} f_{l l}\left(\varepsilon_{t}^{l l}\right)+\left(1-b_{t-1}\right) p_{h l} f_{h l}\left(\varepsilon_{t}^{h l}\right) \\
& g_{H}=b_{t-1} p_{l h} f_{l h}\left(\varepsilon_{t}^{l h}\right)+\left(1-b_{t-1}\right) p_{h h} f_{h h}\left(\varepsilon_{t}^{h h}\right) \tag{4.2}
\end{align*}
$$

and:

$$
\begin{equation*}
\varepsilon_{t}^{i j}=\left(x_{t}-\mu^{j}\right)-\rho\left(x_{t-1}-\mu^{i}\right) \tag{4.3}
\end{equation*}
$$

with $f_{i j}\left(\varepsilon_{t}^{i j}\right)$ the normal pdf for $\varepsilon_{t}^{i j}$. As written, we have a recursion that generates a belief sequence for a two-state economy given an initial value for beliefs b_{0} and a time series on money growth rates $\left\{x_{t}\right\}$. For the case where monetary policy is independent across countries, there are four states for monetary policy: two states in each of two countries. Assuming independence, the transition probabilities for the global state are products of individual country transition probabilities. Denote the product of the transition probability and density function for a transition from state i to state j for country k by:

$$
\begin{equation*}
\varphi_{i j}^{k}=p_{i j}^{k} f_{i j}^{k}\left(\varepsilon_{t}^{k, i j}\right) \tag{4.4}
\end{equation*}
$$

Then:

$$
\begin{gather*}
g_{H H}=b_{t-1}^{H H} \varphi_{H H}^{D} \varphi_{H H}^{F}+b_{t-1}^{H L} \varphi_{H H}^{D} \varphi_{L H}^{F}+b_{t-1}^{L H} \varphi_{L H}^{D} \varphi_{H H}^{F}+b_{t-1}^{L L} \varphi_{L H}^{D} \varphi_{L H}^{F} \tag{4.5}\\
g_{H L}=b_{t-1}^{H H} \varphi_{H H}^{D} \varphi_{H L}^{F}+b_{t-1}^{H L} \varphi_{H H}^{D} \varphi_{L L}^{F}+b_{t-1}^{L H} \varphi_{L H}^{D} \varphi_{H L}^{F}+b_{t-1}^{L L} \varphi_{L H}^{D} \varphi_{L L}^{F} \tag{4.6}
\end{gather*}
$$

$$
\begin{gather*}
g_{L H}=b_{t-1}^{H H} \varphi_{H L}^{D} \varphi_{H H}^{F}+b_{t-1}^{H L} \varphi_{H L}^{D} \varphi_{L H}^{F}+b_{t-1}^{L H} \varphi_{L L}^{D} \varphi_{H H}^{F}+b_{t-1}^{L L} \varphi_{L L}^{D} \varphi_{L H}^{F} \tag{4.7}\\
g_{L L}=b_{t-1}^{H H} \varphi_{H L}^{D} \varphi_{H L}^{F}+b_{t-1}^{H L} \varphi_{H L}^{D} \varphi_{L L}^{F}+b_{t-1}^{L H} \varphi_{L L}^{D} \varphi_{H L}^{F}+b_{t-1}^{L L} \varphi_{L L}^{D} \varphi_{L L}^{F} \tag{4.8}
\end{gather*}
$$

and:

$$
\begin{equation*}
b_{t}^{i j}=\frac{g_{i j}}{g_{H H}+g_{H L}+g_{L H}+g_{L L}} \tag{4.9}
\end{equation*}
$$

with $b_{t}^{i j}$ denoting the belief that the home country is in regime i and the foreign country is in regime j.

Given belief sequences, we can then simulate the model under two different assumptions. One case is full information in which there is no uncertainty about the state of monetary policy and the model is simulated using the process in (3.14). The other is a case where there is uncertainty about the state of monetary policy. In that case households do not know S_{t}. Instead, the model is simulated with S_{t} being replaced by the belief sequence, b_{t}, in the decision rules, though the money growth sequence itself is generated using (3.14).

The parameterization of the belief process potentially has implications for how model variables respond to different types of monetary shocks. If beliefs adjust slowly, households may adjust slowly to monetary shocks. We can examine how rapidly beliefs adjust as a function of the process parameterization using an argument in Moran (1997). Suppose the economy has been in a high money growth state for some time, and the monetary authority switches policy to low growth. Let $f\left(\mu\left(s_{t}\right) \mid \mu^{i}\right)$ denote the pdf of $\mu\left(s_{t}\right)$ if households believe the regime at time t is μ^{i}. The odds ratio is given by:

$$
r_{t}=\frac{f\left(\mu\left(s_{t}\right) \mid \mu^{L}\right)}{f\left(\mu\left(s_{t}\right) \mid \mu^{H}\right)}
$$

and the belief that the regime is low can be expressed in terms of the odds ratio:

$$
\begin{equation*}
b_{t}=\frac{b_{t-1} r_{t}}{b_{t-1} r_{t}+\left(1-b_{t-1}\right)} \tag{4.10}
\end{equation*}
$$

with $\partial b_{t} / \partial r_{t}>0$. The distribution of the odds ratio is:

$$
\begin{equation*}
\frac{\sigma_{H}}{\sigma_{L}} \exp \left(0.5\left(\frac{-\varepsilon_{t}^{2}}{\sigma_{L}^{2}}+\frac{\left(\varepsilon_{t}+\mu^{L}-\mu^{H}\right)^{2}}{\sigma_{H}^{2}}\right)\right) \tag{4.11}
\end{equation*}
$$

Setting the disturbances ε_{t} to zero:

$$
\begin{equation*}
=\frac{\sigma_{H}}{\sigma_{L}}\left(0.5\left(\frac{\mu^{L}-\mu^{H}}{\sigma_{H}}\right)^{2}\right) \tag{4.12}
\end{equation*}
$$

We see then that:

- If the spread between means in the high and low state is larger, beliefs converge more quickly: it is easier for agents to distinguish a regime shift after it has occurred.
- As σ_{L} increases, the convergence is slower. With a wide distribution about the new mean, realized growth rates around the low-growth mean will be given less weight. The effect of an increase in σ_{H} depends on its size. If $\sigma_{H}>\left(\mu^{L}-\mu^{H}\right)$ convergence is faster; otherwise, it is slower.

References

Andolfatto, D. and P. Gomme (1997), "Monetary Policy Regimes and Beliefs," Center for Research on Economic Fluctuations and Employment Working Paper No. 48.

Christiano, L.C. (1991), "Modeling the Liquidity Effect of a Money Shock," Federal Reserve Bank of Minneapolis Quarterly Review, Winter: 3-34.

Christiano, L.C. (1998), "Solving Dynamic Equilibrium Models by a Method of Undetermined Coefficients," Manuscript, Northwestern University.

Hamilton, J.D. (1989), "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, 57(2): 357-384.

Moran, K. (1997), "Bayesian Updating and Welfare Costs of the Transition to a Lower Inflation Rate," Manuscript, University of Rochester.

Schlagenhauf, D. and J. Wrase (1995), "Liquidity and Real Activity in a Simple Open Economy Model," Journal of Monetary Economics, 35: 432-462.

Sill, K. and J. Wrase (1999), "Exchange Rates, Monetary Policy Regimes, and Beliefs," Philadelphia Federal Reserve Bank Working Paper No. 99-6.

Sill, K. and J. Wrase (1999), "Exchange Rates and Monetary Policy Regimes in the U.S. and Canada," Philadelphia Federal Reserve Bank Working Paper No. 99-13.

Appendix

The following programs were used to solve and simulate the model in our paper "Exchange Rates and Monetary Policy Regimes in the U.S. and Canada." The programs are written in Python, which has a syntax that is close to pseudo-code. Thus, the programs should be fairly easy to follow and, to that extent, should clear up ambiguities in the text discussion. There is some duplication across programs in the functions called-but each program is self-contained. The program pvalues.py sets parameter values and estimates for the model driving processes. The program solvemodel.py solves two versions of the model: one with sluggish capital and sluggish deposits and one with sluggish deposits only. The program msvcap.py simulates the model. Details on obtaining and installing Python can be found at: http://www.python.org.

\# Program pvalues.py

\# Set model parameters for 2 -country model that assumes independent
\# Markov switching models for each country: US and Canada.
\# Setting al and a3 automatically sets the output file names for the
appropriate solution vector
$\begin{array}{ll}\text { p_a1 }=1.0 & \text { \# how much wage bill gets sent to FX market } \\ \text { p_a }^{2}=0.0 & \text { \# how much investment is financed by borrowing }\end{array}$
p_alpha $=0.36$
$\begin{aligned} \text { P_alpha } & =0.36 \\ \text { p-beta } & =0.99 \\ \text { p_delta } & =0.025\end{aligned}$
$\begin{aligned} \text { p_delta } & =0.025 \\ \text { p_gamma } & =0.24 \\ \text { P-Psi } & =-1.0\end{aligned}$
$\begin{array}{ll}\text { P_Psi } & =-1.0 \\ \text { P_thd } & =0.5 \\ \text { p_thf } & =0.5\end{array}$
\# capital share
\# discount facto
\# discount factor
\# depreciation rate
\# crra share in consumption aggregator
p_zrhod $=0.987$
p_zrhof $=0.976$
\# AR coefficient on home technology AR(1) process
\# AR coefficient on foreign technology AR (1) process
p_zsigd $=0.0134$
p_zsigf $=0.0127$
\# The regime switching process parameters for money growth are estimated
\# using the msvar ox package by Krolzig (1998). The parameters are estimated using the msvar ox package by Kronada reserve money over the sample period 19xx:x to 19xx:x
import Numeric

p_plow = . 98927 \#	\# prob of low to low transition \# prob of high to high transition	
p_phigh = . 96872 \#		
p_mSigLow = Numeric.array ${ }^{\text {c }}$	$\left.\left[\begin{array}{ll} 0.23394 e-4, & -0.005687 e-4], \\ {[-0.005687 e-4,} & 1.0188 e-4] \end{array}\right]\right)$	
p_mSigHigh = p_mSigLow		
y([$\left[\begin{array}{ccc} {[} & 0.73987, & 0.02 \\ {[-0.02685,} & 0.2 \end{array}\right.$	$\begin{aligned} & 24559 \text {], } \\ & 23105 \text { j' } \end{aligned}$

\# Program solvemodel.py
\#
\# Solve a two-country monetary model with rational learning.
\# The information structure is that of a Lucas-Fuerst model.
\# Two solution cases are programmed: a model with sluggish deposits
\# only, and a model with both capital and deposits sluggish.
\# only, and a model with both capital and deposits sluggish
\# Money driving process is a two state markov switching VAR.
with a constant covariance matrix.
\# with a constant covariance matrix.
http://www.python.org
\# The routine makes use of the following extension modules:

Numeric Python (NumPy)
Multipack-0.6 (http://oliphant.netpedia.net)
\# These two modules are linked to the python web site. Both are availabel for a wide variety of platforms, including NT and Linux.
This program runs under Linux and NT (provided you have the modules!) Make sure the module files are in your Python path

Keith Sill
FRB Philadelphia
keith.sillaphil
keith.sill@phil.frb.org
\# Last updated 8/23/99
import Numeric
from pvalues import
\# Define a bunch of functions that will be called by the main program
def $\underset{\#}{\text { s }}$ savem (name,m):
\# \# Save a matrix in ascii format
import sys
$\mathrm{fp}=\mathrm{open}\left(\right.$ name, $\left.{ }^{\prime} \mathrm{w}^{\prime}\right)$
for i in range (m.shape[0]):
for j in range $(m . s h a p e[1]): ~$

fp.write(')(n')
fp.close()
def steadyState(mud, muf):
\# takes as input the money growth rates in the home and foreign
\# countries. Returns a 6-tuple of calculated steady states for
\# capital, hours, and deposits.
\# capital, hours, and deposits.
$\mathrm{xx}=$ Numeric.zeros(6,'d')

p_alpha) $\begin{aligned} \text { tempd } * * \text { p_alpha }\end{aligned}$
,
(vd**p_alpha - p_delta*vd)) * (p_a1 + (1-p_a1) * p_beta / ($1+$ mud)
$h d=$ tempd $/(1+$ tempd $)$
$k d=$ hd $*$ dd

$x[i]=\mathrm{kd}$
$\mathrm{xx[i+2]}=\mathrm{hd}$
$x \times[i+4]=$ nd
mud $=$ muf
return xx
def transition_probs(p_plow, p_phigh):
\# The ordering of the input sequence is important. It should be home high-to-high, home low-to-low, foreign high-to-high, and
foreign low-to-low

P = Numeric.zeros(4,'d'
$\begin{aligned} \mathrm{P}[0] & =\text { p_plow } \\ \mathrm{P}[1] & =1-\mathrm{p}-\mathrm{phigh}\end{aligned}$
$\begin{aligned} P[2] & =1-\mathrm{p} \text {-plow } \\ \mathrm{P}[3] & =\text { p_phigh }\end{aligned}$
return Numeric.reshape($\mathrm{P},(2,2)$)
ef euler1d(x)
\# Euler equation for consumption evolution (home country):
Uc /p = p_beta * UC' / p' * (1+R) / (1+x)
($k d p p, k f p p, k d p, k f p, h d p, h f p, n d p, n f p, k d, k f, h d, h f, n d, n f$
$z d p, z f p$, mudp, mufp, $z d, z f$, mud, muff $)=x$

$\mathrm{Id}=\mathrm{kdp}-(1-\mathrm{p}$ _delta) $) ~ * ~ \mathrm{kd}$
$\mathrm{If}=\mathrm{kfp}-(1-\mathrm{p}$ delta)

* kf

wd $=($ nd + mud - p_a3 * pd * Id) / hd
$\underset{p-a l p h a) * z d)}{R}(\underset{\sim}{p d})$ * (1-p_alpha) * (kd / hd)**p_alpha * Numeric.exp((1-
muc $=($ p_thd * p_gamma * cdd**(p_thd*p_gamma*p_Psi-1) * cdf**((1-

mucp $=($ p_thd * p_gamma * cddp**(p_thd*p_gamma*p_Psi-1) * cdfp**((1-

return -muc + p_beta * R * mucp / (1+mud)
def euler2d(x)
\# Euler equation for hours evolution (home country)
- U_l + Uc * p_al * w/p + p_beta * Uc'/p' * (1-p_al) * w / (1+x)
([kdpp, $k f p p, k d p, k f p, h d p, h f p, n d p, n f p, k d, k f, h d, h f, n d, n f$
zdp,zfp,mudp,mufp,zd,zf,mud,muf]) $=$

$\mathrm{Id}=\mathrm{kdp}-(1-\mathrm{p}$ _delta)
$\mathrm{If}=\mathrm{kfp}-(1-\mathrm{kd}$ delta) $\underset{\mathrm{kf}}{\mathrm{k}}$
Idp $=\mathrm{kdpp}-(1-\mathrm{p}-\mathrm{delta})$
$\mathrm{Ifp}=\mathrm{kfpp}-(1-\mathrm{kdp}$ delta $)$

wd = (nd + mud - p_a3 * pd * Id) / hd
mul $=\left(1-\right.$ p_gamma) ${ }^{*}$ (cdd**(p_thd*p_gamma*p_Psi) * cdf**((1
p_thd)*p_gamma*p_Psi) ** (1-hd) **((1-p_gamma)*p_Psi-1))
muc $=($ p_thd * p_gamma * cdd**(p_thd*p_gamma*p_Psi-1) * cdf**((1-

mucp $=($ p_thd * p_gamma * cddp**(p_thd*p_gamma*p_Psi-1) * cdfp**((1-

return -mul + muc * p_al * wd + p_beta * mucp * (1-p_a1) * wd / (1+mud)
\#
\# Euler equation for capital evolution (home country):

Id $=\mathrm{kdp}-(1-\mathrm{p}-\mathrm{delta})$
$\mathrm{If}=\mathrm{kfp}-(1-\mathrm{p} \quad \mathrm{delta})$
*

kf
Idp $=\mathrm{kdpp}-\left(1-\mathrm{p} _\right.$delta $) * \mathrm{kdp}$
Ifp $=\mathrm{kfpp}-(1-\mathrm{p}$ delta $) * \mathrm{kfp}$

fkp = p_alpha * (kdp / hdp) **(p_alpha-1) * Numeric.exp ((1-p_alpha)*zdp)

return term1 + term2

```
def eulerlf( x ):
    \# Euler equation for consumption evolution (foreign country) :
        Uc / p = p_beta * Uc' / p' * ( \(1+\mathrm{R}\) ) / ( \(1+\mathrm{x}\) )
    ([kdpp,kfpp,kdp,kfp,hdp,hfp,ndp,nfp,kd,kf,hd,hf,nd,nf,
    \(z d p, z f p\), mudp, mufp, zd, \(z f\), mud, muf] \()=x\)
```



```
wf = ( nf + muf - p_a3 * pf * If ) / hf
\(R=(\mathrm{pf} / \mathrm{wf})\) * (1-p_alpha) * (kf / hf ) **p_alpha *Numeric.exp ( \((1\)
```



```
return -muc + p_beta * R * mucp / (1+muf)
```

def euler2f(x):
\# \# Euler equation for hours evolution (foreigh country):
-U_1 + Uc * p_al * w/p + p_beta * Uc'/p' * (1-p_a1) * w / (1+x)
([kdpp, $k f p p, k d p, k f p, h d p, h f p, n d p, n f p, k d, k f, h d, h f, n d, n f$, zap,z1p,muap,mufp,za,z1,mua,muf) -

$I d p=k d p p-\left(1-p _\right.$delta $) * k d p$
$I f p=k f p p-\left(1-p _d e l t a\right) * k f p$

wf = (nf + muf - p_a3 * pf * If) / hf

(1-hf)**((1-p_gamma)*p_Psi-1)

return -mul + muc * p_al * wf + p_beta * mucp * (1-p_al) * wf / (1+muf)
def euler3f(x):
\# Euler equation for capital evolution (foreign country):

([kdpp,kfpp,kdp,kfp,hdp,hfp,ndp,nfp,kd,kf,hd,hf,nd,nf,
zdp,zfp,mudp,mufp,zd,zf,mud,muf]) $=x$

$\mathrm{fkp}=\mathrm{p}$ _alpha * $(\mathrm{kfp} / \mathrm{hfp})$ **(p_alpha-1) * Numeric.exp ((1-p_alpha)*zfp)

mucp $=\left(\right.$ p_thf * p_gamma * cffp**(p_thf*p_gamma*p_Psi-1) *cfdp**($(1$

return term1 + term2
def gradient (fcn, xbar, typx):
\# Find the gradient of fcn evaluated at xbar. typx[i] is the typical
\# size of xbar[i]

$$
\begin{aligned}
& \text { eps }=4.441 \mathrm{e}-16 \\
& \text { cuberteta } \text { eps }^{\star \star}(.332) \\
& \mathrm{m}=\text { len(xbar) } \\
& \left.\mathrm{y}=\text { Numeric.zeros (} \mathrm{m}, \mathrm{~d}^{\prime}\right)
\end{aligned}
$$

for i in range(m):
$\begin{aligned} & h \\ & h \\ & h\end{aligned}=$ cuberteta * Numeric.maximum(Numeric.absolute (xbar[i]), typx[i])
if $h==0:$
= Numeric.sqrt(eps)
temp = xbar[i]

$\mathrm{xbar}[i]=$ temp
$\mathrm{fm}=\mathrm{fcn}(\mathrm{xbar})$
$y[i]=0.5 *(f p-f m) / h$
xbar[i] = temp
return y
def $\operatorname{sign}(x)$:
if x < 0 :
else:
return 1
def sysmodell(x):
\# Find the solution to the nonlinear system of equations
\# This set of equations was generated using the symbolic
\# algebra package MupAD and is for the case where deposits
\# only are sluggish. only are sluggish.
neqs $=1 e n(x)$
$\mathrm{Kd1}=\mathrm{x}[0]$
$\mathrm{Kd} 2=\mathrm{x}[1]$
Kdv1 $=\operatorname{array}([x[2], x[3], x[4], x[5], x[6], x[7]])$
$\operatorname{Kdv} 2=\operatorname{array}([x[8], x[9], x[10], x[11], x[12], x[13]])$
$\mathrm{Kf1}=\mathrm{x}[14]$
$\mathrm{Kf} 2=\mathrm{x}[15]$
Kfv1 $=\operatorname{array}([x[16], x[17], x[18], x[19], x[20], x[21]])$
Kfv2 $=\operatorname{array}([x[22], x[23], x[24], x[25], x[26], x[27]])$
$\mathrm{Hd} 1=x[28]$
$\mathrm{Hd} 2=x[29]$
Hd2 $=x[29]$
Hdv1 $=\operatorname{array}([x[30], x[31], x[32], x[33], x[34], x[35]])$
Hdv2 $=\operatorname{array}([x[36], x[37], x[38], x[39], x[40], x[41]])$ $\begin{aligned} \mathrm{Hf} 1 & =x[42] \\ H f 2 & =x[43]\end{aligned}$
Hfv1 $=\operatorname{array}([x[44], x[45], x[46], x[47], x[48], x[49]])$
Hfv2 $=\operatorname{array}([x[50], x[51], x[52], x[53], x[54], x[55]])$
$\mathrm{Nd} 1=\mathrm{x}[56]$
$\mathrm{Nd} 2=\mathrm{x}[57]$
$\mathrm{Nd} 2=\mathrm{x}[57]$
$\mathrm{Ndv} 2=\operatorname{array}([\mathrm{x}[58], \mathrm{x}[59], \mathrm{x}[60], \mathrm{x}[61], \mathrm{x}[62], \mathrm{x}[63]])$
$\mathrm{Nf} 1=\mathrm{x}[64]$
$\mathrm{Nf} \mathrm{L}=\mathrm{x}[65]$
Nfv2 $=$ array $([x[66], x[67], x[68], x[69], x[70], x[71]])$
work1 $=$ zeros $((4,14), ' d ')$
work2 $=$ zeros $\left.\left((2,8), d^{\prime}\right)^{\prime}\right)$
for i in range (4):
e = $=$ jacobian $[i,:]$
ev1 $=$ array $(1) e[14]$, e[15], e[16], e[17], $0.0,0.0])$
ev2 $=\operatorname{array}([$ e[18], e[19], e[20], e[21], $0.0,0.0])$

 $(\mathrm{Hdv} 2+\operatorname{dot}(\mathrm{Hdv} 1, \mathrm{Rmat})+\mathrm{Hd} 1 * \mathrm{Kdv} 1+\mathrm{Hd} 2 * \mathrm{Kfv} 1) *[4]+$

$\mathrm{y}^{2}=(\operatorname{Kdv} 2 \star \mathrm{e}[2]+\operatorname{Kfv} 2 \star \mathrm{e}[3]+\operatorname{Hdv} 2 \star \mathrm{e}[10]+\operatorname{Hfv} 2 \star \mathrm{e}[11]+$ Ndv2*e[12] + Nfv2*e[13] + (Hd1*Kdv2 $\left.+{ }^{+} \mathrm{Hd2} 2 * \mathrm{Kfv} 2\right) *$ e $[4]+$ $\underset{\text { Hf1*Kdv2 }}{\text { Kd1 }}$ Kd2*Kfv2)*e[0] +

$\mathrm{y} 3=(\mathrm{e}[8]+\mathrm{Kd1*e}[2]+\mathrm{Kf1*e}[3]+\mathrm{Hd} 1 * e[10]+$
(Hd1*Kd1 + Hd2*Kf1)*e[4] + (Hf1*Kd1 + Hf2*Kf1)*e[5] +

$\mathrm{y}^{4}=(\mathrm{e}[9]+\mathrm{Kd} 2 \star e[2]+\mathrm{Kf} 2 \star \mathrm{e}[3]+\mathrm{Hd} 2 \star \mathrm{e}[10]+$

temp1 = array ([y3, y4])
(y1,y2,temp1),1)
R2 $=\operatorname{dot}($ Rmat, Rmat $)$
for i in range (2):
$e=$ jacobian $[4+i,:]$
ev1 $=\operatorname{array}([$ e[14], e[15], e[16], e[17], $0.0,0.0])$
ev2 $=\operatorname{array}([$ e[18], e[19], e[20], e[21], $0.0,0.0])$

 $(K d 1 * N d 1+K f 1 * N d 2) * e[6]+(K d 1 * N f 1+K f 1 * N f 2) * e[7]+$ e[0]*(Kd2*Kf1 + Kd1*Kd1))

 e[1]*(Kd2*Kf1 + Kf2*Kf2))
t1 = (dot (ev2,Rmat) + Ndv2*e[12] + Nfv2*e[13] + $\begin{aligned} & \text { dot (ev1,R2) }+(\text { Kdv } 2+\operatorname{dot}(K d v 1, R m a t)) \\ & (H d v 2+\operatorname{dot}(H d v 1, R m a t)\end{aligned}+$

$\mathrm{t} 2=(\quad(\operatorname{dot}(\mathrm{Ndv} 2, \mathrm{Rmat})+\mathrm{Nd} 1 *(\mathrm{Kdv} 2+\operatorname{dot}(\mathrm{Kdv} 1, \mathrm{Rmat}))+$

$\mathrm{t} 4=(\mathrm{e}[5] *(\operatorname{dot}(\mathrm{Hfv} 2, R \mathrm{Rmat})+\mathrm{Hf1*}(\mathrm{Kdv} 2+\operatorname{dot}(\mathrm{Kdv} 1, R m a t))+$ e[1]*(dot (Kfv2,Rmat) + Kf1* $($ Kdv2 $2+\operatorname{dot}($ Kdv1, Rmat $))$) +
$y^{7}=t 1+t 2+t 3+t 4$
temp $2[$ array $([y 5, y 6])$
work2 $[i,:]=$ concatenate $((y 7$, temp2 $), 1)$
work3 $=$ reshape (work1, $(1,56)$)
work4 $=$ reshape (work2, $(1,16)$)
Evec $=$ reshape (concatenate ((work3, work4), 1),(neqs,))
return fvec
def sysmodel2(x):
\# Find the solution to the nonlinear system of equations
This set of equations was generated using the symbolic
algebra package MuPAD and is for the case where deposits
\# and capital are sluggish.
$\stackrel{\#}{\text { neqs }}=1 \mathrm{len}(\mathrm{x})$
$\mathrm{Kd1}=\mathrm{x}[0]$
$\mathrm{Kd} 2=\mathrm{x}[1]$
Kdv2 = Numeric.array([x[2], x[3], x[4], $x[5], x[6], x[7]$])
$\mathrm{Kf1}=\mathrm{x}[8]$
$\mathrm{Kf} 2=\mathrm{x}[9]$
$\begin{aligned} & \text { Kf2 } \\ & \text { Kfv2 }\end{aligned}=$ N Numeric.array $([x[10], x[11], x[12], x[13], x[14], x[15]$]
$\mathrm{Hd} 1=\times[16]$
$\mathrm{Hd} 2=\times[17]$
Hd2 $=x[17]$
Hdv1 $=$ Numeric.array $([x[18], x[19], x[20], x[21], x[22], x[23]])$
Hdv2 $=$ Numeric.array $([x[24], x[25], x[26], x[27], x[28], x[29]])$ $\mathrm{Hf1}=\mathrm{x}[30]$
$\mathrm{Hf2}=\mathrm{x}[31]$

Hfv1 = Numeric.array $([x[32], x[33], x[34], x[35], x[36], x[37]])$
Hfv2 $=$ Numeric.array $([x[38], x[39], x[40], x[41], x[42], x[43]])$ $\mathrm{Nd} 1=x[44]$
$\mathrm{Nd} 2=\mathrm{x}[45]$
Ndv2 $=$ Numeric.array ([x[46], $x[47], x[48], x[49], x[50], x[51]])$ $\mathrm{Nf} 1=\mathrm{x}[52]$
$\mathrm{Nf} 2=\mathrm{x}[53]$
Nfv2 = Numeric.array([x[54], x[55], x[56], x[57], x[58], x[59]])
work1 $=$ Numeric.zeros $\left((2,14)\right.$, 'd $^{\prime}$
for i in range (2) :
e = jacobian[i,:]

$\mathrm{y} 1=(\mathrm{ev} 2+$ Numeric. dot (ev1,Rmat) + Kdv2 * e[0] + Kfv2 * e[1] + Hdv1 * e[10]
Hfv1 * e[11] + Ndv2 * e[6] + Nfv2 * e[7] + (Hdv2 + dot (Hdv1, Rmat) $)$
$\mathrm{e}[4]+(\mathrm{Hfv} 2+\mathrm{Numeric} . \operatorname{dot}(H f v 1$, Rmat $))$ * e[5])
y2 = (Kdv2 * e[2] + Kfv2 * e[3] + Hdv2 * e[10] + Hfv2 * e[11] +

 (Kf1 * Kdv2 + Kf2 * Kfv2) * e[1] +
$(\mathrm{Nf} 1 \times \mathrm{Kdv2}+\mathrm{Nf} 2 * \mathrm{Kfv2)}$ * e[7])
$\mathrm{y} 3=\left(\mathrm{e}[8]+\mathrm{Kd1}{ }^{*} \mathrm{e}[2]+\mathrm{Kf1}\right.$ * e[3] + Hd1 * e[10] +Hf1 * e[11]

temp1 = Numeric.array ([y3, y $\left.{ }^{4}\right]$
R2 = Numeric.dot (Rmat,Rmat)
for i in range (4):
$\mathrm{e}=$ jacobian [2+i,:]
ev1 $=$ Numeric.array $([$ e[14], e[15], e[16], e[17], $0.0,0.0])$
ev2 = Numeric.array([e[18], e[19], e[20], e[21], $0.0,0.0$])
y5 = (e[8] + Kd1 * e[2] + Kf1 * e[3] + Hd1 * e[10] + Hf1 * e[11] + Nd1 * e[12] + Nf1 * e[13] + (Hd1 * Kd1 + Hd2 * Kf1) * e[4] +

 Nfv2 * e[13] + (Hdv2 + Numeric.dot(Hdv1,Rmat)) * e[10] + (Numeric.dot(Hfv1,Rmat)) * e[11] + (Numeric.dot(Kdv2,Rmat)
Kdi kdv2 ${ }^{\text {Kd2 }}$ * Kfv2) * e[0] + (Numeric.dot (Kfv2,Rmat) + Kf1 * Kdv2 + Kf2 *
Kfv2) * e[1] + (Numeric.dot(Ndv2,Rmat) + Nd1 * Kdv2 + Nd2 * Kfv2) * e[6] +
 Numeric.dot (ev1,R2) +e[4] * (Numeric. dot (Hdv2, Rmat)
Hd1 * Kdv2 + Hd2 e[5] * (Numeric.dot(Hfv2,Rmat) + Hf1 * Kdv2 + Hf2 * Kfv2 + Numeric.dot(Hfv1,R2)),
temp2 = Numeric.array([y5, y6])
work2[i,: $]=$ Numeric.concatenate ($(\mathrm{y} 7$, temp 2$), 1$
work3 = Numeric.reshape (work1, (1,28))
work4 $=$ Numeric.reshape (work2, $(1,32)$)
fvec $=$ Numeric.reshape (Numeric.concatenate((work3, work4),1),(neqs,)) return fvec
def make_Rmat().
\#
\# Construct the exogenous shock AR matrix
\#
\# Markov transition probability matrix

Pmat $=$ transition_probs (p_plow, p_phigh)
\# Money growth AR process coefficient matrix is set
\# as matrix Rmat
temp $=$ Numeric.zeros $\left((2,2)\right.$, d' $\left.^{\prime}\right)$
temp1 $=$ Numeric.dot (p_mMeans,Pmat) - Numeric.dot (p_mCoeffs, p_mMeans)
temp2 $=$ Numeric.concatenate ((temp, p_mCoeffs,temp1), 1)
temp3 = Numeric.concatenate((Numeric.zeros((2,4),'d'),Pmat),1)
temp4 $=$ Numeric.concatenate((temp2,temp3))
temp1 = Numeric.zeros ($\left.(1,6), \mathrm{d}^{\prime}\right)$
temp1 $[0,0]=$ p_zrhod
temp2 $=$ Numeric...zeros
temp2 $[0,1]=$ p_zrhof
temp = Numeric.concatenate ((temp1,temp2))
Rmat $=$ Numeric.concatenate((temp,temp4))
return Rmat
def ergodic_state()
\#
\# Calculate steady state at ergodic means
\#
pih $=(1-$ p_plow) $/(2-$ p_plow-p_phigh $)$
pil $=(1-$ p_phigh $) /(2-$ p_plow-p_phigh $)$
emean $=$ pil * p_mMeans[:,0] + pih * p_mMeans[:,1]
[kds,kfs,hds,hfs, hds, nfs] $=$ steadyState(emean[0],emean[1])
return emean, $k d s, k f s, h d s, h f s, n d s, n f s$
if __name__== '__main__'
\#
\# Driver program for nonlinear equation solver
import Multipack
import time
a = time.clock()
\# Which model, sysmodell (sluggish deposits) or sysmodel2 (sluggish capital \# and deposits).
model $=$ 'sysmodel2
[emean, $\mathrm{kds}, \mathrm{kfs}, \mathrm{hds}, \mathrm{hfs}, \mathrm{nds}, \mathrm{nfs}$] = ergodic_state()
$z d s=0.0$
$z f s=0.0$
ssvec $=\left[\begin{array}{l}k d s, k f s, k d s, k f s, h d s, h f s, ~ h d s, ~ \\ \text { nfs, } \\ \mathrm{nfs}, \mathrm{zds}, \mathrm{zds}, \mathrm{kfs}, \mathrm{emean}[0], \mathrm{hds}, \mathrm{hfs}, \mathrm{nds}\end{array}\right.$
ean[1],zds,zfs,emean[0],emean[1]]
\# Construct Euler equation jacobian matrix
g1 $=$ gradient (euler2d, ssvec, ssvec
g2 = gradient (euler2f, ssvec, ssvec
g3 $=$ gradient (euler3d, ssvec, ssvec
g 4 gradient (euler3f, ssvec,ssec
g5 = gradient (euler1d, ssvec, ssvec $)$
g6 $=$ gradient (euler1f, ssvec, ssvec $)$
global jacobian
global ${ }^{\text {jacobian }}$
jacobian $=$ Numeri
Rmat $=$ make_Rmat()
if model == 'sysmodel1':
print 'Solving sluggish deposits case.'
outfile = 'solvec1.out'
xguess $=$ Numeric.ones (72,'d')*. 0
g = Multipack.fsolve(sysmodell,xguess)
if $g[0]>1$ or $g[15]>1$:
print 1*************************************
print '***** unstable solution $* * * * * * *$ ',

print 'Home capital coefficient: ', g[0]
print 'Foreign capital coefficient:' ', g[15
print '
savem (outfile, g[:, Numeric.NewAxis])
$\mathrm{b}=$ time.clock()
print 'elapsed execution time: ', b-a, 'secs'
print elapsed exec
print 'norm is: ', Numeric.sqrt(Numeric.add.reduce(svec*svec))
print 'solution written to: ' + outfile
print ''
if model == 'sysmodel2':
print 'Solving sluggish capital and deposits case.
utfile = 'solvec2.out
xguess = Numeric.ones(60,'d')*.1
g = Multipack.fsolve(sysmodel2,xguess)
if $g[0]>, 1$ or $g[9]>1$
print 1*************************************

print 'Home capital coefficient: ', g[0]

print '
$\stackrel{\text { savem (outfile, }}{=}$ t: $:$,Numeric.NewAxis]
= time.clock ()
print 'elapsed execution time: ', b-a, 'secs'
svec = sysmodel2(g)
rint 'norm is: ', Numeric.sqrt(Numeric.add.reduce(svec*svec))
rint 'solution written to:
print
if model == 'sysmodel2'
execfile ('msvcap.py')
elif model $==$ 'sysmodel1':
execfile(' ',)

Program msveap.py

\# Simulate the open-economy model with Markov-switching money growth process and rational learning.
\# \#
\# Written in Python. Uses the NumPy module
\#
\# Keith Sill
\# FRB Philadelphia
\# 07/19/99
import Numeric
import RandomArray
import LinearAlgebra
from random import *
from pvalues import *
infile = 'solvec2.out
def loadm(name,nr,nc):
\# Load an ascii format matrix
import string
numCols $=\mathrm{nc}$
numRows $=n r$
z = Numeric.zeros([numRows,numCols],Numeric.Float)
$\mathrm{i}=0$; $\mathrm{j}=0$
f = open(name,'r')
for line in f.readlines():
cols = string.split (line)
for i in range(numCols) :
$\underset{j}{\mathrm{z}} \underset{=j+1}{ } \mathrm{j}, \mathrm{i}]=$ string.atof(cols[i])
f.close()
return z
def savem(name,m):
\# Save a matrix in ascii format
import sys
$\mathrm{fp}=$ open(name,'w')
for i in range (m.shape [0]) :
for j in range (m.shape [1]

fp.write('\n')
fp.close()
def $\underset{\#}{\operatorname{diag}(v e c, k}$):
Insert the vector k along the kth diagonal
$\begin{aligned} & \# \\ & n\end{aligned}=$ len (vec) + Numeric.absolute (k)
$h=$ Numeric.zeros $\left((n, n), d^{\prime}\right)$
if $k>0$:

elif k < 0
for i in range(len(vec))
$\mathrm{M}[-\mathrm{k}+\mathrm{i}, \mathrm{i}] \stackrel{\operatorname{vec}[\mathrm{i}]}{ }$
lse

return M

```
ef invM( nr,lam ):
    We pull this op out to speed up the simulation
    loop
M = Numeric.zeros((nr,nr),'d')
d1 = Numeric.ones(nr-2,'d')
d1 = d1*1am
d2 = Numeric.ones(nr-1,'d')
d2 = d2* (-4.0*lam
d2[nr-2] = - 2* lam
d3 = Numeric.ones(nr,'d')
d3 = d3* (1+6*lam)
d3[0] = 1+1am
d 3[nr-2] = 1+5*lam
1] = 1+lam
M1 = diag(d1,2)
M2 = diag(d2,1)
44 = diag(d2,-1
M = diag(d1,-2)
M = M1 + M2 + M3 + M4 + M5
return LinearAlgebra.inverse (M)
def hpf( Minv,y):
\# Calculate the hp trend of \(y\)
\(\mathrm{g}=\) Numeric.dot( Minv, y )
urn \(g\)
def steadyState( mud, muf)
\# takes as input the money growth rates in the home and foreign \# countries. Returns a 6-tuple
\# capital, hours, and deposits.
```

x $\mathrm{x}=$ Numeric.zeros(6,'d')

p_alpha) $\mathrm{vdd}^{\star \star}=$ palpha
)
hd $=$ tempd $/(1+$ tempd $)$
$k d=$ hd $* v d$

) / (
(p_beta (1+mud) (yd- p_delta * kd

$x \times[i]=k d$
$x \times[i+2]=h d$
$x \times[i+4]=n d$
mud $=\operatorname{muf}$
return xx
def simulate_tfp(zrho,std,T):
\# Generate time series for TFP shock
theta $=$ Numeric.zeros(T,'d')
for i in range (1,T) :
theta[i] $=$ p_zrho
theta[i] = p_zrhod*theta[i-1] + gauss (0.0, std)
return theta
def choleski (x)
\# An inefficient implementation of the choleski
decomposition. Returns a matrix with choleksi factors
\# on the lower triangle, except for the diagonal, which is
\# returned in p .
$\mathrm{n}=1 \mathrm{ln}(\mathrm{x})$
$\mathrm{p}=$ Numeric.zeros($\mathrm{n}, \mathrm{A}^{\prime}$ ')
$a=x . a s t y p e(' d ')$
sum $=0.0$
for i in range ($1, \mathrm{n}+1$)
sum in range ($\mathrm{i}, \mathrm{n}+1$
for $=a[i-1, j-1]$
for k in range (i-1, $0,-1)$:
sum $=\operatorname{sum}-a[i-1, k-1] * a[j-1, k-1]$
sum $=$ sum $-a[i-$
$i f==j:$
if sum $<=0.0$:
print 'choldc failed'
$\mathrm{p}[\mathrm{i}-1]=$ Numeric.sqrt(sum)
$a[j-1][i-1]=$ sum $/ \mathrm{p}[\mathrm{i}-1]$
return a, p
def simVAR(mPsi,mLlow, mLhigh, vMeanLow, vMeanHigh, probLow, probHigh):
\# Simulate a markov-switching money growth process on a two-element VAR(1).
p11 $=$ probHigh $\quad \begin{aligned} & \text { \# high-to-high transition prob } \\ & \text { p22 }\end{aligned}=$ probLow \quad \# low-to-low transition prob

```
\({ }_{\substack{\mathrm{p} 12 \\ \mathrm{p} 21 \\=}}^{=\binom{1.0-\mathrm{p} 11}{(1.0-\mathrm{p} 22)}}\)
vEta \(=\) Numeric.array \(([0,1])\)
muVec \(=\) Numeric. \(\operatorname{zeros}\left((T, 3), '^{\prime}\right)\)
\(\mathrm{mP}=\) Numeric.array([ [ p11, p21 ], [ p12, p22 ] ])
```



```
22 = Numeric.array([ -p21, p21 ])
Mu_hat = vMeanLow
\# Draw an \(N\)-vector of \((0,1)\) random variables. We use
this to indicate which transition to make
this to indicate which transition to make
\(\mathrm{x}=\) RandomArray.random (T)
\(\mathrm{x}=\) RandomArray.ran
MeanLg \(=\) vMeanLow
\# Generate the Markov process. The vector eta is a 2 -element
\# vector of \([1,0]\) or \([0,1]\). Thus, the v's are defined so that
    vector of \([1,0]\) or \([0,1]\). Thus, the \(v\) 's are defined so that
eta(t) \(=p^{*}\) etaa \((t-1)+\mathrm{v}\) gives a \(0-1\) or \(1-0\) vector. The variabl
\(\neq e\) is a monetary control error, drawn from the appropriate high
\# or low distribution.
tol \(=1 \mathrm{e}-8\)
for \(i\) in range ( \(T\) )
absolute(vEta[0]-1) < tol and \(x[i]\) <= p11 : \# A high-to-high
        \(\mathrm{v}=\mathrm{vl1}\)
\(\mathrm{ve}=\) Numeric.array \(([\) gauss \((0.0,1)\), gauss \((0.0,1)])\)
        \(\mathrm{ve}=\) Numeric. dot (ve, mLhigh
    elif Numeric.absolute (vEta[0]-1) < tol and x[i] > p11 : \# A high-to-low
ransition \(\mathrm{v}=\mathrm{v} 12\)
        ve \(=\) Numeric.array ([gauss \((0.0,1)\), gauss \((0.0,1)])\)
        ve = Numeric. dot (ve, mLlow)
        vMean \(=\) vMeanLow
lif Numeric.absolute (vEta[0])
transition
            \(\mathrm{v}=\mathrm{v} 21\)
            ve \(=\) Numeric.array \(([\) gauss \((0.0,1)\), gauss \((0.0,1)])\)
            ve \(=\) Numeric. dot (ve,mLhigh)
            VMean = vMeanHigh
elif Numeric.absolute (vEta[0]) < tol and \(x[i]>p 21\) : \# A low-to-low
\(\begin{aligned} & \text { transition } \\ & \mathrm{v}=\mathrm{v} 22\end{aligned}\)
            ve \(=\) Numeric.array \(([\) gauss \((0.0,1)\), gauss \((0.0,1)])\)
            ve \(=\) Numeric.dot(ve,mLlow)
    = vMeanLow
    print 'vEta elements are not 0 or 1
    vEta \(=\) Numeric. dot (mP, vEta) +v
```



```
    vMeanLg = vMean
    nuVec \([i, 0]=\) vEta \([0]\)
    return muVec
def mshock ( vMean1, vMean2,mPsi,mMgrowth ):
```

\# Given an AR1 sequence of money growth rates, and the parameters \# governing the process, return the implied innovations.
\# ${ }^{\text {mShocks }}=$ Numeric.zeros $\left(~(2, T), ' d^{\prime}\right)$
for i in range ($1, \mathrm{~T}$):
mShocks[:,i] $=($ mMgrowth[i,:]-vMean2) - Numeric.dot(mPsi,(mMgrowth[i-1,:] vMean1)
return Numeric.transpose(mShocks)

```
def npdf( mX,mSig ):
    \# Multivariate normal pdf. mX is mean zero
    \# Returns a vector of length mX with npdf(mX(i))
    \(\stackrel{\#}{\mathrm{n}}=1 \mathrm{len}(\mathrm{mSig})\)
```

 \(\mathrm{c} 0=\) LinearAlgebra.inverse (mSig
 Numeric.sqrt(LinearAlgebra.determinant (co)))
 \(c 2=\) Numeric.dot \((m x, c 0)\)
 $c 3=$ Numeric.dot $(c 2$, Nume
$\underset{\text { return }}{\mathrm{fn}}=\mathrm{fn}$ * Numeric.exp ($-0.5 *$ Numeric.diagonal(c3))
$\mathrm{fn}=\mathrm{cl}$
return fn
def beliefs(mMgrow, mSigLow, mSigHigh,plow,phigh):
\# Calculate regime belief, returns prob regime is low
\#
$\begin{aligned} \mathrm{vml} & =\mathrm{p} \text { _mMeans }[:, 1] \\ \mathrm{vmh} & \left.=\text { p_mMeans }^{2}:, 0\right]\end{aligned}$

mell $=$ mshock $(v m l, v m l, p$ mCoeffs, mMgrow $)$
melh
melh $=$ mshock (vm, vmh, pmcoeffs,mMgrow
mehl $=$ mshock (vmh, vml, p _mCoeffs, mMgrow
meh1 $=$ mshock (vmh, vml, p _mCoeffs, mMgrow $)$
mehh $=$ mshock ($\mathrm{vmh}, \mathrm{vmh}, \mathrm{p}$ _mCoeffs, mMgrow $)$
mfll $=$ npdf $\binom{$ mell, mSigLow $)}{$ mflh } npdf(melh,mSigHigh $)$
mflh $=$ npdf $\left(\begin{array}{ll}\text { melh, mSigHigh }\end{array}\right)$
mfhl

vblow $=$ Numeric.zeros(T, 'd'
vblow $[0] \xlongequal{=} 0.5$

vblow[i] = gl / (gl + gh)
return vblow
def ergodic_state():
$\stackrel{\text { \# Return ergodic probs and steady state vals }}{\#}$
pil $=(1-p-p h i g h) /\left(2-p _\right.$plow-p_phigh $) ~$
vEmean $=$ pil * p_mMeans[:,1] + pih * p_mMeans[:,0]
[kds,kfs,hds,hfs,nds,nfs] = steadyState(vEmean[0], vEmean[1])
return vemean,kds,kfs,hds,hfs, nds, hfs
$\underset{\#}{\text { def }}$ make_stateb(mState, vEmean):
\# Calculate state matrix for active beliefs

mMgrow $=$ simVAR(P_mCoeffs,mLl,mLl, P_mMeans[:, 1], p_mMeans[:, 0$]$, p_plow, p_phigh)
vblow = beliefs(mMgrow [:, 1:],p_mSigLow, p_mSigHigh, p_plow, p_phigh)
avgb $=$ Numeric.add.reduce(
mState [0,:] = vHtfp
mState $[1,:]=$ vFtfp
mState $[2,:]=$ mMgrow $[:, 1]-\operatorname{VEmean}[0]$
mState $[3,:]=$ mMgrow $[:, 2]$ - vEmean $[1]$
mState $[4,:]=$ vblow
mState $[4,:]=$ vblow - avgb
mState $[5,:]=$ avgb - vblow
return mState, mMgrow, vHtfp, vFtfp
def make_statec (mState, vEmean):
\# Calculate state for inactive beliefs
\#

mMgrow $=\operatorname{simVAR}(\mathrm{p}$ _mCoeffs,mL1,mL1,p_mMeans[:,1],p_mMeans[:,0],
p_plow,p_phigh)

return mState,mMgrow, vHtfp, vFtfp
$\underset{\#}{\text { def }}$ capital_path (coeff,state,kdss,kfss):
\# Calculate the equilibrium path for the level of home and foreign \# capital stocks. Returns Tx1 vectors for home capital and foreign
\# capital. The inputs are: capital. The inputs are:
coeff: a 28-element vector of solution coefficients
state: a 6xT matrix of states, assumed to be ordered row-wise
as home money growth (dev from ss)
belief for home-high, foreign-high (ss dev) belief for high, low (ss dev) belief for low, high (ss dev)
belief for low, low (ss dev)
kdso,kfs0 : Initial steady states for home and foreign
kds1,kfs1 : final steady states for home and foreign
$\mathrm{kd}=$ Numeric.zeros $(\mathrm{T}, ' \mathrm{~d}$ ')
$\mathrm{kf}=$ Numeric.zeros $(\mathrm{T}, ' \mathrm{~d}$ ' $)$
$\mathrm{kdv2}=\operatorname{coeff}[2: 8]$
$\mathrm{kfv} 2=\operatorname{coeff}[10: 16]$
for i in range $(2, T)$:
kd[i] $=($ coeff[0]*kd[i-1] + coeff[1]*kf[i-1] +

Numeric.dot(kdv2,state[:,i-2])

return kd, kf, kd+kdss, kf+kfss
def hours_path(coeff,kd,kf,state,hss):
\# Equilibrium path for hours worked. Returns the Tx1 vector for
hours as deviations from steady state. Inputs are
coeff
$k d, ~ k f: ~ T x 1 ~ v e c t o r s ~ o f ~ c a p i t a l ~ s t o c k ~ d e v i a t i o n s ~ f r i c t ~$
state : The 6xT matrix of states, as defined in function state
hs0,hs1 : inital_path ()
h = Numeric.zeros(\quad,' 'd')
hv1 $=\operatorname{coeff}[2: 8]$
hv2 $=\operatorname{coeff}[8: 14]$

Numeric.dot(hv1,state[:,i]) + Numeric.dot(hv2, state[:,i-1]))
return h, h + hss
$\underset{\#}{\text { def }}$ deposits_path(coeff,kd,kf,state, nss):
\# Equilibrium path for deposits. Returns a Tx1 vector of deviations
\#
\# of deposits from steady state. Inputs are the a 8×1 vector of \# solution coefficients, the Tx1 vectors of home and foreign capital \# stocks (expressed as deviations from steady state) and the 6xT matrix \# of state variables, as defined in function capital_path ().
$\mathrm{n}=$ Numeric.zeros ($\mathrm{T}, \mathrm{C}^{\prime} \mathrm{d}$
nv1 $=\operatorname{coeff}[2: 8]$

return n, $n+n s s$
def mvarsi($k, h, n, u, t f p)$:
Calculate time paths for model variables. Inputs are levels of
capital, hours, deposits, \# capital, hours, deposits, and money growth
$\operatorname{lm}=$ Numeric.ones(T,' $\left.d^{\prime}\right)$
ivest $=$ Numeric.zeros(T, ' $^{\prime}$
for i in range (T):
(Numeric.exp(u[:i+1]))
for i in range (T-1):

$y=k * * p _a l p h a * h * *\left(1-p _a l p h a\right) * N u m e r i c . e x p\left(\left(1-p _a l p h a\right) * t f\right)$

return $1 p, 1 w, r a t e, i v e s t, y$
def mvars2(lpd,lpf,yd,yf,ivestd,ivestf):
\# Calculate time series for nominal $f x$ rate, real fx rate Calculate time series for nominal fx rate,
domestic consumption, foreign consumption.
$\underset{f_{x}}{\#}=\left(1 p^{*} \star\left(1-p _t h d\right) *(y d-i v e s t d)\right) /\left(1 p f *\left(1-p_{-} t h f\right) *(y f-i v e s t f)\right)$
$\mathrm{rx}=\mathrm{fx} * \mathrm{lpf}_{\mathrm{p}} / \mathrm{lpd}$

return $\mathrm{fx}_{\mathrm{x}} \mathrm{rx}, \mathrm{cd}, \mathrm{cf}$
def stdvec(matrix):
\# Calculate standard deviation of series in the Txn matrix 'matrix
temp $=$ Numeric. $\operatorname{dot}($ Numeric.transpose(matrix), matrix $)$
temp $=$ Numeric.dot(Numeric.transpose (matrix), matrix $)$
temp $=$ Numeric.sqrt(Numeric.diagonal(temp)/(1en(matrix)-1)
return temp
def lag(mx,k):
\# lag the matrix mX by k periods
$\underset{\mathrm{nr}}{\#}=\mathrm{mX}$.shape [0]
try:
nc
$\mathrm{nc}=\mathrm{mx}$.shape [1]
xcept:
nc $=0$
$m X=m X[:$,Numeric.NewAxis
if $\mathrm{nc}>0$:
padding = zeros((Numeric.absolute (k), nc),'d')
if $\mathrm{nc}==0$:
meric.zeros(Numeric.absolute(k), 'd')

if $k<0$:
temp $=$ Numeric.concatenate (mx, pad
rmat $=$ temp [Numeric.absolute $(k):$,]
if $\begin{aligned} & \mathrm{k}=\mathrm{F}=0 \text { : } \\ & \mathrm{rmat}=\mathrm{mX}\end{aligned}$
return rmat
def correlate (X):
\# correlation between the column vectors
\# of X
\# $=$ x.shape [0]
covar $=$ (Numeric.dot (Numeric.transpose (X), X) /n -
var = Numeric.diagonal(covar)
return covar / Numeric.sqrt(Numeric.multiply.outer(var, var))
def acfi(var):
\# First order autocorrelation of var
$\mathrm{n}=\mathrm{len}(\operatorname{var})$
xSs $=$ Numeric.innerproduct $(\operatorname{var}[0: T-1], \operatorname{var}[1: T])$
ssq $=$ Numeric.innerproduct $(\operatorname{var}[0: T-1], \operatorname{var}[0: T-1])$
return xss/ssq

\#

\# Simulation Driver Program

if __name__ == '__main__':
import time
iter $=100$
$\mathrm{~T}=500$
\# Number of times to run the simulation
\# Length of the time series.
a = time.clock()
\# Start timer
coeffs = loadm(infile, 60,1)
coeffs.shape $=(60$,
$\mathrm{vK}=\operatorname{coeffs}[0: 16]$
$\mathrm{vHH}=\operatorname{coeffs}[16: 30]$
$\mathrm{vHH}=$ coeffs $[16: 30$
$\mathrm{vFH}=$ coeffs
VFH $=$ coeffs $130: 44$
vHD $=$ coeffs $[44: 52$
$\mathrm{vFD}=\operatorname{coeffs}[52: 60]$
Minv $=$ invM (T, 1600)
mState $=$ Numeric.zeros (($6, T$), 'd' $)$
$[v E m e a n, k d s, k f s, h d s, h f s, n d s, n f s] ~=$
[mLl, vpl] = choleski(p_mSigLow)
$\operatorname{mL1}[0,0]=\operatorname{vp} 1[0]$
$\operatorname{mLL}[1,1]=\operatorname{vp1}[1]$
$\operatorname{mL1}[0,1]=0.0$
print ',
print ',
print 'Simulations for sluggish deposits, sluggish capital model'
print 'Model parameterization is a1 $=\% 3.2 f, ~ a 3=\% 3.2 f$ ' $\%\left(\right.$ p_a1, $p _a 3$)
print 'Statistics for Hp-Filtered series'
print 'Running \%d iterations on series of length \%d' \% (iter, T)
print ','
for count in range(1):
temp $=$ Numeric.zeros((T, 1$),$ 'd' $\left.^{\prime}\right)$
homecount $=0.0$
awaycount $=0$
hst dvec $=0.0$
fstdvec $=0.0$
stdvec $=0$.
nstdvec $=0$.
rhohi $=0.0$
rhofi $=0.0$
rhofi $=0.0$
rhofx $=0.0$
rhorx $=0.0$
if count $==0$:
print
Results
for model with active beliefs
if count $==1$:
for index in range(iter):
if count $==0$:
[mState, mMoney,vHtfp,vFtfp] = make_stateb(mState, vEmean)
if count $==1:$:
[mState, mMoney, vHtfp, vFtfp] $=$ make_statec (mState, vEmean)

\# Time paths for prices, wages, nominal interest rates,

$\begin{aligned} & \text { hvmat }= \text { Numeric.concatenate ((lpd[:, Numeric.NewAxis], } \\ & \text { lwd }[:, \text { Numeric.NewAxis }],\end{aligned}$
$1 \mathrm{wd}[$, Numeric.NewAxiss,
nrd $[:$, Numeric. NewAxis $]$, ivestd[:,Numeric.NewAxis],
yd[:,Numeric.NewAxis]),
fvmat $=$ Numeric.concatenate((lpf[:,Numeric.NewAxis], $\operatorname{lwf}[:$, Numeric.NewAxis $]$
nrf $[:$, Numeric.NewAxis $]$ ivestf $[:$, Numeric.NewAxis]
yf[:,Numeric.NewAxis]), yf[:,Numeric.NewAxis]),1)
nvmat $=$ Numeric.concatenate ((fx[:,Numeric.NewAxis], rx[:,Numeric.NewAxis],
cd $[:$, Numeric.NewAxis $]$,
for ${ }^{j}$ in range (T):
$\begin{aligned} & \text { if hvmat }[j, 2]<1: \\ & \text { homecount }\end{aligned}=$ homecount +1
homecount $=$ homecount +1
if fvat $[j, 2]<1:$
awaycount $=$ awaycount +1
hvmat $=$ Numeric.log(hvmat)
$\left.\begin{array}{l}\text { fvmat }=\text { Numeric.log }\left(\begin{array}{l}\text { fvmat }) \\ \text { nvmat }\end{array}=\text { Numeric.log (}\right. \\ \text { nvmat }\end{array}\right)$
empo $=$ nvmat [:,0]
emp $=$ Numeric.concatenate((temp, tempo[:,Numeric.NewAxis]), 1)
hpf_hvmat $=$ hvmat $-\operatorname{hpf}($ Minv, hvmat $)$
hpf_fvmat $=$ fvmat $-\mathrm{hpf}($ Minv, fvmat
hpf_nvmat $=$ nvmat - hpf (Minv, nvmat
hpf_hstd $=$ stdvec (hpf _hvmat $)$
hpf fstd
hpf_fstd $=$ stdvec (
hpf_nstd_fvmat $)$
hstdvec $=$ hstdvec $+(1.0 /(1+$ index $)) *($ hpf_hstd - hstdvec $)$ fstdvec $=$ fstdvec $+(1.0 /(1+$ index $)) \star($ hpf - fstd - fstdvec $)$
nstdvec $=$ nstdvec $+(1.0 /(1+$ index $)) *(h p f$ nstd - nstdvec $)$
rhohi $=$ rhohi $+(1.0 /(1+$ index $)) *($ acf1 (hpf_hvmat $[:, 2])-$ rhohi $)$
hofi $=$ rhofi $+(1.0 /(1+$ index $)) *(\operatorname{acf1}(\operatorname{hpf} f$ fvmat $[:, 2])-$ rhofi
hofx $=$ rhofx $+(1.0 /(1+$ index $)) *(a c f 1(h p-n v m a t:, 0])-r h o f x$ horx $=$ rhorx $+(1.0 /(1+i n d e x)) *\left(a c f 1\left(h p f _n v m a t[:, 1 j)\right.\right.$ - rhorx
End of iteration loop
print print
print '
print
print
'Inv/y
Home
$\because 6.5 \mathrm{f}$
$\div 6.5 \mathrm{f}$
Foreign'

print Cons/y
$\% 6.5 f$
$0.5 \mathrm{O} \quad \begin{gathered}\text { (nstdvec }[2] / \text { hstdvec }[4] \\ \text { nstdvec }[3] / \text { fstdvec }[4]\end{gathered}$
print 'Prices
print 'Nom fx
print 'Frac i < 0
$\% 6.5 f$
$\% 6.5 \mathrm{f} \quad \begin{gathered}\text { ' } \quad(\text { homecount } /(\text { iter } \\ \text { awaycount } /(\text { iter } * T))\end{gathered}$
print '
print 'Dom irate \%6.5f ' \% rhohi
print 'For irate $\% 6.5 \mathrm{f}$
', \% rhofx
savem('temp.dat',temp)
print 'Elapsed execution time: ', z - a, ' secs

[^0]: ${ }^{1}$ The Markov-switching models were estimated using Hans-Martin Krolzig's MSVAR package for Ox .

