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ABSTRACT

We propose a constructive, multivariate framework for assessing agreement between
(generally misspecified) dynamic equilibrium models and data, which enables a complete
second-order comparison of the dynamic properties of models and data. We use bootstrap
algorithms to evaluate the significance of deviations between models and data, and we use
goodness-of-fit criteria to produce estimators that optimize economically relevant loss functions.
We provide a detailed illustrative application to modeling the U.S. cattle cycle.
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 Among many others, see Kydland and Prescott (1982), Hansen (1985), Christiano and1

Eichenbaum (1995), and Rotemberg and Woodford (1996) (business cycles), Lucas (1988), Jones
and Manuelli (1990), Rebelo (1991), and Greenwood, Hercowitz, and Krusell (1997) (growth),
and Lucas (1990), Cooley and Hansen (1992), and Ohanian (1997) (policy effects).

 Among many others, see Backus, Kehoe and Kydland (1994) (international economics),2

Auerbach and Kotlikoff (1987) (public economics), Ericson and Pakes (1995) (industrial
organization), Rust (1989) (labor economics), and Rosen, Murphy and Scheinkman (1994)
(agricultural economics).

 See Kydland and Prescott (1996), Sims (1996) and Hansen and Heckman (1996).3

1. Introduction  

Dynamic equilibrium models are now used routinely in many fields. For example, such models

have been used to address a variety of macroeconomic issues, including business-cycle

fluctuations, economic growth, and the effects of government policies.   Additional prominent1

fields of application include international economics, public economics, industrial organization,

labor economics, and agricultural economics.2

At present, however, many important questions regarding the empirical implementation

of dynamic equilibrium models remain incompletely answered.  The questions fall roughly into

two methodological groups.  The first group involves issues related to assessing model adequacy,

and the second involves issues related to model estimation. We contribute to an emerging

literature that has begun to deal with both issues, including Watson (1993), King and Watson

(1992, 1996), Canova, Finn and Pagan (1994), Kim and Pagan (1994), Pagan (1994), Leeper and

Sims (1994), Cogley and Nason (1995), and Hansen, McGrattan and Sargent (1997).  A 1996

Journal of Economic Perspectives symposium focused on these issues, and two important

messages emerged:   (1) dynamic equilibrium models, like all models, are intentionally simple3
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 He also notes that his failure to study cross-variable relationships is a potentially4

important omission.

abstractions and therefore should not be construed as the true data generating process, and (2)

formal methods should be developed and used to help us assess the models more thoroughly.  In

this paper, we take a step in that direction.

Some parts of our framework are new, while others build on earlier work in interesting

ways.  In many respects, our work begins where Watson’s (1993) ends.  With an eye toward

future research, Watson notes that "... one of the most informative diagnostics ... is the plot of the

model and data spectra," and he recommends that in the future researchers "present both model

and data spectra as a convenient way of comparing their complete set of second moments."   Our4

methods, which are based on comparison of model and data spectral density functions, can be

used to assess the performance of a model (for a given set of parameters), to estimate model

parameters, and to test hypotheses about parameters or models.  To elaborate, our approach is:

A.  Frequency-domain and multivariate.  Working in the frequency domain enables
decomposition of variation across frequencies, which is often useful, and the
multivariate focus facilitates simple examination of cross-variable correlations
and lead-lag relationships, at the frequencies of interest.

B.  Based on a full second-order comparison of model and data dynamics.  This is in
contrast to a common approach used in the business cycle literature of comparing
only a few variances and covariances of detrended variables from the model
economy and the actual economy.  The spectrum provides a complete summary of
Gaussian time series dynamics and an approximate summary of non-Gaussian
time series dynamics.

C.  Based on the realistic assumption that all models are misspecified.  We regard all of
the models we entertain as false, in which case traditional statistical methods lose
some of their appeal.

D.  Graphical and constructive.  The framework permits one to assess visually and
quickly the dimensions along which a model performs well, and the dimensions
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along which it performs poorly.

E.  Based on a common set of tools that can be used by researchers with potentially very
different objectives and research strategies.  The framework can be used to
evaluate strictly calibrated models, and it can also be used formally to estimate
and test models.

F.  Designed to facilitate statistical inference about objects estimated from data, including
spectra, goodness-of-fit measures, model parameters, and test statistics.  Bootstrap
methods play an important role in that regard; we develop and use a simple
nonparametric bootstrap algorithm.

G.  Mathematically convenient.  Under regularity conditions, the spectrum is a bounded
continuous function, which makes for convenient mathematical developments.

All of the classical ideas of business-cycle analysis discussed, for example, by Lucas

(1977) have spectral analogs, ranging from univariate persistence (typical spectral shape) to

multivariate issues of comovement (coherence) and lead-lag relationships (phase shifts) at

business-cycle frequencies.  We highlight these links and draw upon the business-cycle literature

for motivation in the methodological sections 2 and 3.  The methods we develop, however, are

not wed to macroeconomics in any way; rather, they can be used in a variety of fields.  Therefore,

to introduce researchers in different areas to the use of our framework, we apply our methods to a

simple and accessible, yet rich, microeconomic model in section 4.  We conclude in section 5.

2.  Assessing Agreement Between Model and Data

Our basic strategy is to assess models by comparing model spectra to data spectra. Our

goal is provision of a graphical framework that facilitates visual comparisons of model spectra to

interval estimates of data spectra.  We compute model spectra exactly (either analytically or

numerically); thus, they have no sampling uncertainty.  Sampling error does, however, affect the

sample data spectra, which are of course just estimates of true but unknown (population) data

spectra.  We exploit well-established procedures for estimating spectra, and we develop and use
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 Alternatively, one could fix the data spectrum and assess sampling error in the model5

spectrum by simulating repeated realizations from the model.  The two approaches are essentially
complementary, corresponding to the "Wald" and "Lagrange multiplier" testing perspectives. 
See, for example, Gregory and Smith (1991).

 In many cases, detrending of some sort will be necessary to achieve covariance6

stationarity.

bootstrap techniques to assess the sampling uncertainty of estimated spectra.5

2a.  Estimating Spectra

Consider the N-variate linearly regular covariance stationary stochastic process,

where  B  = I, and the coefficients are square summable (in the matrix sense).   The0
6

autocovariance function is  and the spectral density function is

Consider now a generic off-diagonal element of F(), f ( ).  In polar form, the cross-kl

spectral density is f () = ga ( ) exp[i ph ( )], where ga ( ) = [re (f ( )) + im (f ( ))]  is thekl kl kl kl kl kl
2 2 1/2

gain or amplitude, and where ph () = arctan{im(f ( )) / re(f ( ))} is the phase.  As is wellkl kl kl

known, the gain tells how the amplitude of y  is multiplied in contributing to the amplitude of yl k

at frequency , and phase measures the lead of y  over y  at frequency .  (The phase shift in timek l

units is ph( )/ .)  We shall often find it convenient to examine coherence rather than gain, where

the coherence is defined as  which measures the squared correlation
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 Alternatively, of course, one may smooth the sample spectral density function directly. 7

The duality between the two approaches, for appropriate window choices, is well known.  See
Priestley (1981).

 The Cholesky factor bootstrap is closely related to the Ramos (1988) bootstrap.  We8

develop the Cholesky factor bootstrap in the time domain, however, whereas Ramos proceeds in
the frequency domain.

between y  and y  at frequency .k l

Given a sample path  we estimate the Nx1 mean vector µ with

  From this point onward, we assume that all sample paths have been centered

on this sample mean.  We estimate the autocovariance function with   (k = 1, ...,

N, l = 1, ..., N), where    We estimate the

spectral density matrix using the Blackman-Tukey lag-window approach in which we replace the

sample spectral density function,  (  )

with one involving the "windowed" sample autocovariance sequence,

 where 

 is a matrix of lag windows.  The Blackman-Tukey procedure results in a consistent

estimator if we adjust the lag window ( ) with sample size in such a way that variance and bias

decline simultaneously.   We then obtain the sample coherence and phase at any frequency  by7

transforming the appropriate elements of 

2b.  Assessing Sampling Variability

A key issue for our purposes is how to ascertain the sampling variability of the estimated

spectral density function.  To do so, we use an algorithm for resampling from time series data,

which we call the Cholesky factor bootstrap.   The basic idea is straightforward.  First, we8

compute the Cholesky factor of the sample covariance matrix of the series of interest.  We then



z (i) ' µz % Pg(i),

zt ' (y1t, ..., yNt)
),

z ' (z )

1, z )

2, ..., z)T)). z - (1¤µ, ),

' Toeplitz( (0), (1), ..., (T&1)).

' PP),

ˆ ' Toeplitz(̂ (0), ˆ (1), ..., ˆ (T&1)), ˆ ( ) '
1
T j

T&* *

t'1
zt z )

t%* *
, ' 0, ±1, ..., ±(T&1);

ˆ ' P̂P̂), P̂

{
*i&j*}

T&1
*i&j*'0

ˆ , (. P( (.

z - (1¤µ, PP)) g(i)
iid
- (0, INT)

µz ' 1¤µ,

-8-

 Note that the Cholesky factor bootstrap will miss nonlinear dynamics such as GARCH -9

- it is designed to capture only second-order dynamics, in identical fashion to standard (as
opposed to higher-order) spectral analysis.  Users should be cautious in employing our procedure
if nonlinearities are suspected to be operative, as would likely be the case, for example, for high-
frequency financial data.  Such nonlinearities are not likely to be as important for the lower-
frequency data typically analyzed in many areas of macroeconomics, public finance, international
economics, industrial organization, agricultural economics, etc.

exploit the fact that, up to second order, the series of interest can be written as the product of the

Cholesky factor and serially uncorrelated disturbances, which can be easily bootstrapped using

parametric or non-parametric procedures.   An important feature of this very simple approach is9

that it can be used to bootstrap objects other than the spectral density function.  Later, for

example, we will use it to assess the uncertainty in a model’s estimated parameters.

First, we need some definitions and notation.  Let  and let

  Then  where 1 is an N-dimensional column vector of ones,

and   By symmetry and positive definiteness, we can

write  where the unique Cholesky factor P is lower triangular.  We estimate G by

 where  

this ensures that we can write  where the unique Cholesky factor  is lower triangular. 

Now let  be a set of decreasing weights applied to the successive off-diagonal blocks

of  and call the resulting matrix   Finally, let  be the Cholesky factor of 

The fact that  implies that data generated by drawing 

and forming 

where  will have the same second-order properties as the observed data.  In practice
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we replace the unknown population first and second moments with the consistent estimates

described above.  Thus, to perform a parametric bootstrap, we draw  form 

where  and then compute both the estimates  i = 1, ..., R and

confidence intervals.  Alternatively, to perform a nonparametric bootstrap, we note that

  In practice, we draw  with replacement from  form

from which we compute  i = 1, ..., R, and then construct confidence

intervals.

In summary, there are several appealing features of the Cholesky factor bootstrap:  (1)  it

is a very simple procedure, (2)  it can be used to bootstrap a variety of objects, (3)  it does not

involve conditioning on a fitted model and therefore imposes minimal assumptions on dynamics. 

This last feature may be attractive for researchers who choose not to view the data through the

lens of an assumed parametric model.  Alternative bootstrap procedures include the VAR

bootstrap (e.g., Canova, Finn and Pagan, 1994), which can be a useful approach for those

interested in fitting a specific parametric model to the data.  Thus, the Cholesky approach and the

VAR approach can be viewed as complementary procedures.

We hasten to add, however, that the literature on bootstrapping time series in general --

and spectra in particular -- is very young and very much unsettled.  We still have a great deal to

learn about the comparative properties of various bootstraps, both asymptotically and in finite
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      In this section, for notational simplicity we focus on confidence tunnels for univariate10

spectra.  As will be clear, the extension to cross spectra is immediate.

samples, and the conditions required for various properties to obtain.  Presently available results

differ depending on the specific statistic being bootstrapped, and moreover, only scattered first-

and second-order asymptotic results are available, and even less is known about actual finite-

sample performance.  With this in mind, we present both theoretical and Monte Carlo analyses of

the performance of the Cholesky factor bootstrap in two appendices to this paper. In Appendix 1,

we establish first-order asymptotic validity, and in Appendix 2, we document good small-sample

performance.

2c.  Constructing Confidence Tunnels10

If interest centers on only one frequency, we simply use the bootstrap distribution at that

frequency to construct the usual bootstrap confidence interval.  That is, we find  such

that  and  where (1- ) is the desired

confidence level, "L" stands for lower, "U" stands for upper, the "T" subscript indicates that we

tailor the band to the finite-sample size T, and the (.) superscript indicates that we take the

probability under the bootstrap distribution.  The (1- )% two-sided confidence interval is

However, one often wants to assess the sampling variability of the entire spectral density

function over many frequencies (e.g., business-cycle frequencies, or perhaps all frequencies) to

learn about the broad agreement between data and model.  One approach is to form the pointwise

bootstrap confidence intervals described above, and then to "connect the dots."  But obviously, a

set of  confidence intervals constructed for each of n ordinates will not achieve 
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 In the univariate case, typically n = T/2 - 1.  In the multivariate case, the question arises11

as to "how wide to cast the net" in forming confidence tunnels.  One might view each element of
the spectral density matrix in isolation, for example, in which case each of the respective
confidence tunnels would use n = T/2 -1.  At the other extreme, one could use ,
effectively forming a tunnel for the entire matrix.

 Bonferroni tunnels achieve the desired coverage only for (1) independent values of the12

estimated function across ordinates, which is clearly violated in spectral density estimation as the
smoothing required for consistency results in averaging across frequencies, and (2) large n,
because (1 - /n)  $ (1 - ), for any finite n.n

 This procedure is similar to the one advocated in Gallant, Rossi and Tauchen (1993).13

joint coverage probability.  Rather, the actual confidence level will be closer to , which

holds exactly if the pointwise intervals are independent.  A better approach is to use the

Bonferroni method to approximate the desired coverage level, by assigning 

coverage to each ordinate.   The resulting"confidence tunnel" has coverage of at least (1 - )%11

and therefore provides a conservative estimate of the tunnel.12

A third approach to confidence tunnel construction is the supremum method of

Woodroofe and van Ness (1967) and Swanepoel and van Wyk (1986), which uses an estimate of

the (standardized) distribution of    to

construct a confidence tunnel for the curve.  Specifically,13

(1)  Calculate .

(2)  Find c such that:

where we evaluate the probability with respect to the bootstrap distribution.

(3)  Construct the confidence tunnel,  
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 See Hannan (1970), p. 294.14

 For an interesting and early discussion of this and related points, see Pagan (1994).15

 Note that the model spectrum is either computable analytically or numerically to any16

desired degree of accuracy.  The data spectrum, on the other hand, is consistently estimable. 

Unlike the Bonferroni tunnels, the supremum tunnels attain asymptotically correct

coverage rates even with statistical dependence among ordinates.  Little is known, however,

about the comparative finite-sample performance of the Bonferroni and supremum tunnels, and

the supremum tunnels may require very large samples for accurate coverage.14

3.  Estimation:  Maximizing Agreement Between Model and Data

Now we consider estimation, together with the related issues of goodness-of-fit and

hypothesis testing.  To make the discussion as transparent as possible, we first discuss the

univariate case, and then we proceed to the multivariate case.

3a.  Univariate

Estimation requires a loss function, or goodness-of-fit measure, for assessing closeness

between model and data.  A strength of our approach is that many loss functions may be

entertained; the particular loss function adopted reflects the user’s preferences.   In most cases it15

would seem that a function of the form

will be adequate.  The function g measures the divergence between  (model spectrum)

and  (estimate of data spectrum).   We weight this divergence across frequencies by the16

function .  In practice, we replace the integral with a sum over frequencies 

  Quadratic loss with uniform weighting over all frequencies, for example,
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corresponds to  and  yielding 

The goodness-of-fit measure may readily be transformed into an estimation criterion by

taking

The Gaussian ML estimator is asymptotically of this form, for a particular and potentially

restrictive choice of g, , and w; it is 

To compute standard errors and interval estimates for parameters of interest, and to test

hypotheses about the elements of  we again use the Cholesky factor bootstrap.  We proceed

as follows:

(1)  At bootstrap replication (i), draw a bootstrap sample of size T using the Cholesky

factor algorithm.

(2)  Numerically minimize  to get 

(3)  Repeat R times.

(4)  Compute standard errors, form interval estimates, implement bias corrections, or test

hypotheses using the distribution of  i = 1, ..., R. 

Note that, unlike most implementations of the bootstrap, ours does not involve conditioning on

the model; instead, we generate the bootstrap samples directly from the autocovariance matrix of

the data. This is important in our environment, in which all models are best regarded as false.

In closing this section, let us elaborate on our allowance for differential weighting by

frequency.  There are at least two reasons for entertaining this possibility.  First, use of a loss

function that weights differentially by frequency may be helpful in dealing with measurement
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error, which often may not contaminate all frequencies equally.  Thus, it would seem prudent to

downweight those frequencies that are assumed to be more contaminated by measurement error.

Second, use of a loss function that weights differentially by frequency may be important

in misspecified models.  For example, as discussed by Hansen and Heckman (1996), model

misspecification may contaminate some frequencies more than others.  Examples of this include

potential contamination at seasonal frequencies, as in the work of Hansen and Sargent (1993) and

Sims (1993).  Watson (1993) also advocates the use of differential weighting in parameter

estimation, for the same reason, although he doesn't pursue the matter.  As Watson notes,

optimizing a loss function at particular frequencies corresponds to constructing an analog

estimator along the lines of Manski (1988).

3b.  Multivariate

The multivariate analog of our earlier loss function is

where  denotes component-by-component multiplication.  The multivariate analog of our

earlier univariate quadratic loss function, for example, is 

where ,   

The estimation criterion function has the same form as in the univariate case,

and the bootstrap approaches to computing standard errors, confidence intervals, and hypothesis

testing parallel the univariate case precisely.  Furthermore, as expected, the multivariate Gaussian
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ML estimator emerges as a special and potentially restrictive case; it is

It is worth emphasizing how all parts of the spectrum contribute to loss in the multivariate case. 

Consider, for example, a bivariate model (variables x and y) under quadratic loss.  Then

where

Thus,



' d 2
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This expression shows clearly how the goodness of fit of both univariate spectra, as well as both

the real and imaginary parts of the cross spectrum, contribute to loss.

4.  Application:  The U.S. Cattle Cycle

Let us begin by summarizing the framework for assessing and estimating dynamic

stochastic models developed in sections 2 and 3 of this paper.  We first perform a full second-

order comparison of model and data by visually comparing model spectra, data spectra, and

associated confidence tunnels about the data spectra computed using the simple Cholesky factor

bootstrap. To formally assess divergence between model and data spectra and to estimate model

parameters, we develop an explicit loss function that reflects the specific objectives of the

investigation. Finally, we assess the sampling distributions of estimated parameters again using

the Cholesky factor bootstrap.

It is well known that cattle stock and consumption are among the most periodic time

series in economics, with a cycle of roughly 10 years in the U.S. ("the cattle cycle").  In this

section, we provide a detailed illustration of the use of our assessment and estimation techniques
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 The data were kindly supplied by Sherwin Rosen and were originally obtained from17

Historical Statistics:  Colonial Times to 1970 and Agricultural Statistics, published by the U.S.
Department of Agriculture.

 The fitted trends are also shown in Figures 1 and 2.18

 We smooth the sample autocovariance function using a Bartlett window with truncation19

lag 24.

by applying them to an important model of the cattle cycle developed by Rosen, Murphy, and

Scheinkman (RMS, 1994).  This simple yet rich model allows us to illustrate very clearly the

application of all the tools in our framework, and moreover, our findings provide new insight

into the RMS model and its agreement with the data.

4a.  The Data

We use annual data on U.S. cattle consumption and stock, 1900-1989.   We plot the17

series in Figures 1 and 2, and the cycle is visually apparent.  Moreover, the series are clearly

trending.  Following RMS, we remove a linear trend from each series prior to additional analysis,

allowing for a break in the slope of the trend in 1930.18

We present the estimated data spectrum in Figure 3.   We make use -- here and19

throughout — of a matrix graphic with univariate spectra plotted on the main diagonal,

coherence in the upper-right corner, and phase in the lower-left corner.  Not all frequencies are of

equal interest, however.  The frequencies most relevant to an investigation of the cattle cycle,

typically thought to have a period of roughly 10 years, are not those in the entire [0, ] range, but

rather those in a subset that excludes very low and very high frequencies.  This presents no

problem for our procedures and in fact provides a good opportunity to illustrate the ease with

which they can be tailored to study specific applications.  Thus, for much of our analysis, we

concentrate on the frequency band corresponding to periods of 30 years to four years, indicated
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 Phase shift is measured in years by which consumption leads stock.20

 The detrended consumption and stock data are nevertheless highly persistent.  We21

present some Monte Carlo evidence in Appendix 2 that indicates that the Cholesky factor
bootstrap performs well in such stationary, but highly persistent, environments.

 From this point onward, we adopt the log scale for consumption and stock spectra22

whenever confidence tunnels are included.

by the shaded region in Figure 3 and subsequent figures.

Four features of the point estimates of the data spectrum stand out.  First, the

consumption spectrum (and to a lesser extent, the stock spectrum) displays a power concentration

at roughly a 10-year cycle.  Second, both the consumption and stock spectra otherwise have

Granger’s (1966) typical spectral shape, with high power at low frequencies, and declining power

throughout the frequency range.  Third, the coherence between consumption and stock is

generally high and varies across frequencies, with a maximum (about .85) at roughly a 10-year

cycle.  Finally, the phase shift varies with frequency; within the band of interest, the maximum

(about one year) is again at roughly a 10-year cycle.20

In Figure 4 we present the data spectrum along with 90% confidence tunnels computed

using the conservative Bonferroni technique in conjunction with the Cholesky-factor bootstrap.  21

To facilitate evaluation, we plot the consumption and stock spectra on a logarithmic scale.   All22

of the point estimates display substantial uncertainty, as manifest in the 90% confidence tunnels. 

Such uncertainty associated with estimated spectra is typical of economic time series, although it

often goes unacknowledged.

4b.  The Model

We begin with some accounting identities.  The head count of all animals ( ) is the sum

of the adult breeding stock  the stock of calves (assumed equal to ), and the stock of
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yearlings (assumed equal to ), where g is a fertility parameter.  That is,

The adult breeding stock consists of surviving stock from the previous period (assumed equal to

) and the yearlings from t-1 entering the adult herd ( ) less the number that are

marketed ( ),

We are concerned with the equilibrium determination of c  and y .  The risk-neutralt t

rancher maximizes the present discounted value of expected profits, which involves equating the

expected marginal benefit of marketing an animal for consumption to the expected marginal

benefit of holding the animal for breeding.  First, suppose that the rancher markets the animal for

consumption.  He receives net revenue  where p  is price and m  is finishing cost. t t

Alternatively, suppose the rancher holds an animal for breeding.  Expected discounted net

revenue is the sum of expected discounted revenue from selling tomorrow plus expected

discounted revenue from marketing its offspring, less expected total holding costs (z ),t

  Total holding cost equals the sum of time t holding costs ,

discounted holding costs of the resultant time t+1 calves, and discounted holding costs of the

resultant time t+2 yearlings.  That is,  (assuming proportional costs for

calves and yearlings,  and ).

In equilibrium, the expected marginal net revenue from marketing for consumption

equals the expected marginal discounted net revenue from holding for breeding; that is,
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 d  is a preference shock.  We have not discussed the demand side of the model, because23
t

we do not use it in estimation.

We close the model by specifying the exogenous processes  as first-order

autoregressions.   Following RMS, we assume that each of the three shocks has common serial-23

correlation parameter .

The model structure implies that the reduced-form equations for c  and y  can bet t

expressed in terms of a single disturbance,  which is a linear combination of the independent

innovations from the three AR(1) driving processes.  In particular, ~ARMA(2,1) and

~ARMA(4,2):

where  is the one unstable root and  are the two stable roots of 

and  is the one stable root of

The associated univariate spectra are
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and the cross spectrum is

These equations provide a full description of the model in the frequency domain.   is a

complicated function of the structural parameters, including some from the demand side of the

model.  All of the parameters of present interest, however, may be identified from the other

reduced-form parameters, with the exception of  and .  We therefore treat  as a free0 1

parameter and estimate it subject to no restrictions.

RMS do not estimate the cattle cycle model.  Rather, they choose values for the

behavioral parameters and report that the calibrated model fits the data well.  In the following

section, we explicitly estimate the model and compare our findings to those of RMS.

4c.  Assessing, Estimating, and Testing the Model

To assess agreement between a parameterized version of the model and the data, or to

estimate parameters formally, it is necessary to construct an explicit loss function.  We use a loss

function that explicitly incorporates the focus in the cattle cycle literature on cycles of roughly 10

years.  The loss function, which measures divergence between model and data spectra only

within a particular frequency band, leads us to an estimator that we call band-restricted maximum

likelihood (Band-ML).  We exclude frequencies corresponding to periods of more than 30 years
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 Gaussian Band-ML is the maximum likelihood analog of Engle’s (1974) band-spectral24

linear regression.  Band-ML may, of course, be undertaken for models much more complicated
than simple linear regression, such as the present one.

 When constructing the bootstrap confidence tunnel, we apply a Bartlett window to the25

off-diagonal elements of the covariance matrix, and we use a truncation lag of 24.

or less than four years.   From the standpoint of our earlier discussion of frequency24

downweighting, this corresponds to weighting frequencies in the band of interest equally and

giving frequencies outside the band zero weight.

In Figure 5 we display the model spectrum evaluated at the Band-ML parameter

estimates.  Given the objective of constructing a simple model that is consistent with periodic

behavior in these series, a surprising finding is that neither the consumption nor the stock model

spectrum has a peak corresponding to a 10-year cycle.  Instead, the main distinguishing feature of

both model spectra is Granger’s (1966) classic spectral shape.  This suggests that at the Band-ML

optimum, the model does not easily produce cyclical behavior.  The model phase shift also

declines monotonically, which contrasts somewhat with the point estimate of the phase shift,

which has a local peak at roughly the 10-year cycle.  Finally, the model coherence reminds us of

yet another of the model’s limitations:  because it is driven by a single shock, the model is

singular, which produces unit coherence at all frequencies regardless of the parameter

configuration.

To evaluate divergence between model and data, we plot the model spectrum in Figure 6,

together with the earlier-discussed 90% confidence tunnels for the data spectrum, produced with

200 replications of the non-parametric Cholesky factor bootstrap.   The diagonal elements25

provide comparative assessments of model and data univariate dynamics, and the off-diagonal
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 RMS did not report a value for the scale parameter; we start it at 1.7.26

elements provide comparative assessments of cross-variable dynamics.

Figure 6 reveals some divergence between model and data beyond the earlier-discussed

fact that the model spectrum fails to display the internal spectral peaks found in the data

spectrum.  First, the rate of decay of the model consumption spectrum appears significantly

slower than that of the data spectrum; thus, although the consumption model and data spectra

agree over most of the relevant frequency range, they begin to deviate substantially for cycles

with periods of four years or less.  Second, and conversely, the rate of decay of the model stock

spectrum appears significantly  faster than that of the data spectrum.  The two diverge not only at

high frequencies but also over much of the relevant frequency range.  In particular, the model

stock spectrum lies slightly outside the lower region of the 90% confidence tunnel for cycles of

about 20 years and less.  Third, the phase shift implied by the model tends to be significantly

larger than the phase shift found in the data over the frequencies of interest.  Finally, model and

data coherence diverge; in spite of the fact that the confidence tunnel is very wide, the unit model

coherence is always outside the confidence tunnel for the data coherence.

Let us now discuss the Band-ML estimation in greater detail.  We estimate model

parameters using the simplex algorithm, which is a derivative-free method, as implemented in

the Matlab fmins.m procedure. Using penalty functions, we constrain the discount factor to be

between 0.65 and 1.00, the fertility rate to be between 0.00 and 1.00, the death rate to be between

0.00 and 1.00, the persistence parameter to be between 0.00 and 1.00, and the scale parameter to

be between 0.10 and 7.00.  We start the iterations with the RMS parameter values for the

discount rate, fertility rate, death rate, and persistence parameter.   In our experience, estimation26
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is numerically straightforward and stable; the estimated parameter vector is always in the interior

of the constraint set, convergence is fast, and alternative starting values produce virtually

identical estimates.  In contrast, the RMS model has proven to be quite difficult to estimate using

more traditional approaches.  For example, Hansen, McGrattan, and Sargent (1997) find that

standard time-domain ML fails to converge unless the discount factor is fixed prior to estimation.

We present the Band-ML estimates and the RMS parameter values in Table 1.  We have

two main findings.  First, several of the parameter values obtained by band-restricted maximum

likelihood are similar to those chosen by RMS.  In particular, the estimate of the death rate

parameter (.08) is nearly identical to the RMS value (0.10), and the estimate of the producer’s

discount factor (.86) is close to the RMS value (0.91).  The estimated fertility parameter (0.67) is

lower than but nevertheless close to the RMS value (0.85), which RMS chose based on

biological considerations.

Our second main finding is that the Band ML estimate of the persistence parameter,

which is a fundamental object in the RMS model, differs substantially from the RMS value. 

RMS chose a fairly persistent value of 0.6.  In contrast, we find that optimizing the Band-ML

loss function requires very little persistence in the driving process (0.2).  This implies that the

RMS model has a strong internal propagation mechanism:  the model takes shocks with

relatively little serial correlation and transforms them into series that display substantial

persistence in equilibrium.  This dimension of the RMS model differs fundamentally from

standard dynamic equilibrium models used in macroeconomics, international economics, and

public finance.  As Watson (1993) and others have noted, models used in those fields typically

have weak internal propagation mechanisms -- they require highly persistent underlying shocks
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to generate a realistic amount of serial correlation in the variables determined in equilibrium. 

This is considered to be a shortcoming of the models and is the focus of much current research. 

Thus, a potentially important contribution of the RMS model is that the rich nature of its

dynamic propagation mechanisms may be adapted to help researchers in other fields construct

models with stronger internal propagation.

In addition to finding the parameter estimates that maximize agreement between model

and data, we can assess their sampling uncertainty within our framework.  Standard errors are of

some use in that regard, in spite of the fact that the sampling distributions need not be Gaussian. 

We compute them using 200 replications of the Cholesky factor bootstrap procedure, and we

report them in parentheses below the estimated parameters in Table 1.  More generally, our

bootstrap procedures allow us to estimate the entire sampling distributions of the estimated

parameters; we report them in Figure 7.  The estimated sampling distributions of the discount

factor, the depreciation rate, and the persistence parameter are fairly concentrated, while the

estimated sampling distribution of fertility rate is more dispersed.

Our framework also enables us to examine the joint distribution of the estimated

parameters.  In Table 2 we present bootstrap estimates of the correlations between the estimated

parameters.  Perhaps the most interesting relationship is the strong negative correlation between

the discount factor and the fertility rate, which occurs because the discount factor and the fertility

rate enter multiplicatively in one of the cubic equations that define the ARMA polynomials.  This

implies that the loss function trades off high fertility rates for low discount factors and suggests

that fixing either one of the parameters at the higher RMS value would tend to result in an even

lower estimate for the other.
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5.  Concluding Remarks

We have described a framework for evaluating dynamic economic models that should be

useful to applied economists in many fields.  The framework is flexible -- it can be used by

researchers to formally evaluate purely calibrated models, and it can also be used by researchers

interested in estimating parameters and conducting inference.  Moreover, it is graphical and

constructive, and it takes seriously several important issues in the quantitative analysis of simple,

dynamic equilibrium models:  model misspecification, the user’s objectives, and small sample

sizes.  Its frequency-domain foundations provide useful diagnostics that nicely complement

alternative time-domain approaches, such as Canova, Finn and Pagan’s (1994) approach based on

estimated VARs.

Our analysis of the RMS model of cattle cycles illustrated the use of our tools for

assessing agreement between models and data at pre-set parameter values, as well as for formally

estimating models and performing statistical inference.  In addition, it shed new light on the

characteristics of the RMS model, and in particular, its strong internal propagation mechanism. 

Our analysis also revealed several deficiencies of the model, not the least of which is its inability

to generate internal spectral peaks in the model spectra evaluated at the Band-ML estimates.  

The ultimate goal of the research program of which this paper is a part is to facilitate

communication between researchers with potentially very different research objectives and

strategies, thereby bringing modern dynamic economic theory into closer and more frequent

contact with dynamic economic data.  As economists use richer and more complicated models to

understand a wider variety of data, we hope that our framework will find use in discerning the

dimensions along which models are consistent -- and inconsistent -- with data.  That information



-27-

can in turn be used to construct new and improved models.
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Table 1

Parameter Estimates
Band-Restricted Maximum Likelihood Estimation

:��������������������������������������������������������
Parameter:   

:��������������������������������������������������������
Estimation or
Calibration Method

           Band-ML .86 .67 .08 .21 2.10
(.03) (.09) (.03) (.10) (.37)

                RMS .909 .85 .10 .60 NA
(NA) (NA) (NA) (NA) (NA)

:��������������������������������������������������������8

Notes to Table:   is the discount factor, g is the is the fertility rate,  is the death rate, and  is the
persistence parameter.  Band-ML denotes band-restricted maximum likelihood estimation, with the
frequency band used for estimation corresponding to periods from 30 to 4 years.  Standard errors,
based on 200 bootstrap replications, appear in parentheses.  RMS denotes the Rosen-Murphy-
Scheinkman calibrated parameters.  (They have no standard errors, because they were not estimated.)
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Table 2
Estimated Parameter Correlations

Band-Restricted Maximum Likelihood Estimation

:���������������������������������

:���������������������������������
 1.00

 -.73 1.00

 .49 -.37 1.00

 -.19 .10 .06 1.00
:���������������������������������8

Notes to Table:   is the discount factor, g is the fertility rate,  is the death rate, and  is the
persistence parameter.  Estimated parameter correlations are based on 200 bootstrap replications.
The frequency band used for estimation corresponds to periods from 30 to 4 years.
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Figure 1
U.S. Cattle Consumption, 1900-1990
Actual and Estimated Trend

Figure 2
U.S. Cattle Stock, 1900-1990
Actual and Estimated Trend

Notes to Figure:  We show cattle consumption (solid line) and the estimated kinked-linear trend
(dashed line).

Notes to Figure:  We show cattle stock (solid line) and the estimated kinked-linear trend (dashed
line).
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Figure 3
Estimated Spectral Density Matrix
U.S. Cattle Consumption and Stock

Notes to Figure:  We detrend all data using the kinked-linear method.  We show the point estimate
of each element of the spectral density matrix.  The frequency band indicated by vertical dashed lines
corresponds to cycles with periods of 30 to 4 years and is the band of primary relevance for studying
cattle cycles.
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Figure 4
Estimated Spectral Density Matrix and Confidence Tunnels
U.S. Cattle Consumption and Stock

Notes to Figure:  We detrend all data using the kinked-linear method.  We show the point estimate
together with a 90% confidence tunnel for each element of the spectral density matrix.  The
frequency band indicated by vertical dashed lines corresponds to cycles with periods of 30 to 4 years
and is the band of primary relevance for studying cattle cycles.
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Figure 5
Model Spectrum Evaluated at Band-ML Estimates
U.S. Cattle Consumption and Stock

Notes to Figure:  We detrend all data using the kinked-linear method.  We show the model spectrum
evaluated at the band-restricted maximum likelihood parameter values, for each element of the
spectral density matrix.  The frequency band indicated by vertical dashed lines corresponds to cycles
with periods of 30 to 4 years and is the band of primary relevance for studying cattle cycles.
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Figure 6
Model Spectra, and Data Spectra Confidence Tunnels
U.S. Cattle Consumption and Stock

Notes to Figure:  We detrend all data using the kinked-linear method.  We show the 90% confidence
tunnel for the data spectrum, together with the model spectrum evaluated at the band-restricted
maximum likelihood parameter values, for each element of the spectral density matrix.  The
frequency band indicated by vertical dashed lines corresponds to cycles with periods of 30 to 4 years
and is the band of primary relevance for studying cattle cycles.
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Bootstrap Estimates of Sampling Distributions

Notes to Figure:  Estimated sampling distributions are based on 200 bootstrap replications.
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 This appendix was written by J. Hahn (Department of Economics, University of27

Pennsylvania) and F.X. Diebold.

 Many downweighting schemes are admissible; the situation is precisely analogous to28

the variety of admissible windows for estimating spectra.

Appendix 1

Asymptotic Properties  of the Cholesky Factor Bootstrap27

Under a normality assumption, Ramos (1988) proves first-order validity of what is

essentially a frequency-domain variant of the Cholesky factor bootstrap for smooth functionals of

the spectrum, but ironically enough, his proof does not cover the spectrum itself, on which our

attention centers.  In this appendix, we establish first-order asymptotic validity of the Cholesky

factor bootstrap for the spectrum.  The intuition is simple enough.  In the finite-ordered MA(q)

case in which a bound on the order m$q is known, the Cholesky factor bootstrap is obviously

valid, as all autocovariances beyond displacement m are known to be zero, which can be imposed

in construction of .  In the general case, which via Wold's theorem corresponds to an infinite-

ordered moving average with square summable coefficients, the key is to allow the number and

impact of the sample autocovariances included in the construction of  to grow with sample

size, but at a slower rate.  Hence the downweighting associated with the use of  rather than

.28

1.  Background and Assumptions

Let {y , t = 1, ..., T} be the sample path of a covariance stationary Gaussian time series. t

For simplicity, we assume that y  is a scalar random variable with known mean, which we take ast

0 without loss of generality.  Let
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We estimate the spectral density nonparametrically in the usual way as

for

We usually use
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where the kernel k (.) is a continuous symmetric function with k (0) = 1.

Assumption.   We assume that

for some strictly positive q and k.

Assumption.  We assume that 

for some strictly positive p.

Assumption.  We assume that

and

where m = min (p,q).  

The asymptotic properties of our spectral density estimator are well known.  Anderson

(1971), for example, discusses them in detail, and for convenience of exposition we will pattern

this appendix closely after Anderson’s Chapter 9.  In particular, we will characterize the

"bootstrap world" distribution using precisely the same flow of logic that Anderson uses to
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characterize the "real world" distribution.

2.  The Bootstrap World

We rely on the triangular nature of the bootstrap, which implies that we need not even

consider the bootstrap explicitly.  Instead, we need only consider a triangular array of univariate

time series that converges to the original time series.  We will invoke a number of regularity

conditions as we proceed, and we will verify them later.

Condition.   is a triangular array of zero mean stationary Gaussian random

variables.

Let

Condition.   for every r, and

Condition.  For any 
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Lemma 1

The proof of the lemma is trivial and we omit it.

2a.  Asymptotic Bias

We first consider the asymptotic bias of   By Anderson’s equation  (24), p. 524,

we have 

The first term on the right can be written
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for any integer   Because

for any  we can choose so that

Now set   If the first term in (2) is within
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and hence arbitrarily small.  If 
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The second term in (2) is in absolute value no greater than

which converges to 0.  The second term on the right hand side of (1) is in absolute value no

greater than

which converges to 0 if   The third term on the right hand side of (1) is an absolute

value no greater than

which converges to 0.  We thus conclude that the asymptotic bias of the triangular array is the

same as that given in Anderson.

2b.  Asymptotic Variance

Now we consider the asymptotic variance.  Using Anderson’s equation (44) we write
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For the exact value of  see Anderson.  Consider

The sum over r is 0 if the stated lower limit is greater than the stated upper limit.  The difference
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is less in absolute value than
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which is arbitrarily small if  is sufficiently large and if is bounded.  If k(x) is

continuous on [-1, 1], then for  and  sufficiently large, we have

for  and   From Anderson’s

equation (49), p. 529, we have, for 

The difference between (5) and

is arbitrarily small if T is sufficiently large.  If  the limit of the sum on
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 See Anderson’s Problem 9.23.29
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For m sufficiently large, the limit of (6) is arbitrarily close to

If then the limit of (6) equals 0 because29

Next from (3), we consider

We approximate (7) by
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which we in turn approximate by

because  can be approximated by  for large

K .  If  the limit of (8) isT

Otherwise, the limit is 0.  We thus conclude that the asymptotic variance from the triangular

array is the same as that given in Anderson Theorem 9.3.4.

2c.  Asymptotic Normality

We now discuss the asymptotic normality of the spectral estimate for the triangular array.

Assumption.  We assume that
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where v  is a sequence of i.i.d. zero mean normal random variables with variance equal to , andt
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We will find the limiting distribution of the difference between
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Using Anderson’s equations (11) and (12), pp. 535-536, we find that the variance of S  is3

bounded by

Using Anderson’s equation (13), p. 536, we find that the variance of S  and S are bounded by1 2 

Condition.  

Condition.  

Because the variance of S , S , S  disappears as n64, the limit distribution of U  is the limit of1 2 3 T
n

.  Notice, as in Anderson’s equation (15), that U  is the real part ofn
T
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The difference between the real parts of (10) and

has a mean square error that goes to 0 as T64, because for given r and s the difference between

the summands in (10) and (11) consists of the terms in the sums on h and q that are included in

one expression and not in the other.  The number of such terms is less than AK n+ BTn+Cn  forT
2

suitable A, B, C, the terms are uncorrelated, and the expected value of the square of the real part

of each terms is at most

Hence the expected value of the square of the difference for each r and s goes to zero as T64.  If
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where

has a mean square error that is arbitrarily small.  The difference between the real part of (12) and

where

has a mean square error that goes to 0 as T increases.  The process W  is stationary and finitelyqT

dependent, with
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Hence the variance of (13) is  times (14).

Now let N  be a sequence of integers such that K / N  6 0 and N  / T 6 0, let M  be theT T T T T

largest integer in T / N , and letT

Then Z   j = 1, ..., M  are i.i.d. with means zero and variance given by 1- K / N  times (14). jT T T T

Anderson (p. 539) notes that the difference between

is stochastically negligible as T64 and that the former has a limiting normal distribution.  Notice

that neither W  nor Z  depends on { }.  We thus find that we obtain the desired asymptotictT jT sT

normal distribution of 

3.  Verifying the Conditions

Let us recall the conditions needed for asymptotic validity of the Cholesky factor

bootstrap, and then verify the conditions.

Condition 1.  {y , t=1, ..., T} is a triangular array of zero mean stationary Gaussian randomtT
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variables.

Condition 2a.   (r) 6  (r) for every r.T

Condition 2b.  

Condition 3.  For any K  = O(K ), *
T T

Condition 4.  

Condition 5.  

Conditions 1 and 2a are obviously satisfied, as is Condition 3 so long as R = o(K ), whereT

for the Cholesky factor bootstrap we use  where R  is anT

increasing sequence of integers such that R 64 and R  = o(T).  To check Condition 4, note thatT T

where the extreme right side of the equation converges to   Thus, by the Dominated

Convergence Theorem, the asserted convergence holds.  To check Condition 5, all we need to

notice is that {y } is a finite moving average process.tT

Condition 2b is significantly more challenging to verify.  It suffices to show that

We first show that
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Observe that 

If {y } is a mixing sequence with either  (m) of size 2 or  (m) of size (2+2 ) / , > 0, and ift

 then by White (1984), Lemma 6.19, we have

for some  which does not depend on r.  It therefore follows that*
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we easily obtain

4.  Discussion

We have proved first-order asymptotic validity for the Cholesky factor bootstrap of the

spectral density function.  Note that we bootstrap the spectral density function directly; in

particular, the object bootstrapped is not asymptotically pivotal.  Second-order asymptotic

refinements are sometimes available when bootstrapping an asymptotically pivotal statistic, as

stressed in Hall (1992).  The issue of whether or not one should focus on asymptotically pivotal

statistics, however, is by no means uncontroversial.  Edgeworth expansions, although providing



 See, for example, Bühlmann (1997) and Bickel and Bühlmann (1996).30

asymptotic refinements, can and sometimes do make things worse in small samples, as stressed

in Efron and Tibshirani (1993), who generally prefer to bootstrap non-pivotal statistics.

In closing, we mention that the Cholesky factor bootstrap, which has a nonparametric

flavor, and alternatives such as the VAR bootstrap, which has a parametric flavor, are in fact

closely related.  A modern and unifying view, currently the focus of intense research in

mathematical statistics, is to interpret various time series bootstraps as sieves (in the sense of

Grenander, 1981) whose complexity increases with sample size at a suitable rate.   The30

Cholesky factor bootstrap has a sieve interpretation; the sieve is a spectrum estimated by

smoothing an increasing number of sample autocovariances.  Some alternative bootstraps such as

those based on VARs also have a sieve interpretation; the sieve is an estimated autoregression of

increasing length.  Thus, asymptotically in T, both the Cholesky factor and VAR bootstraps can

be effective algorithms for generating data with the same second-order properties as an observed

sample path.  Neither is in general "superior" to the other, and both are the subject of ongoing

research, as is the "block" bootstrap of Kunsch (1989) and Liu and Singh (1992) as modified for

spectra by Politis and Romano (1992), as well as the spectral bootstrap of Franke and Härdle

(1992).
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Appendix 2 

 Finite-Sample Properties of the Cholesky Factor Bootstrap

In this appendix, we describe the results of a Monte Carlo comparison of the finite-

sample properties of the Cholesky factor bootstrap and conventional asymptotics.  The

experiment is small by necessity, as Monte Carlo evaluation of bootstrap procedures is extremely

burdensome computationally, but we believe that it sheds some interesting light on the finite-

sample performance of the bootstrap.

We use a data-generating process with realistic dynamics, given by

which corresponds to Rudebusch’s (1993) estimate for detrended log GNP and is representative

of the dynamics of a typical detrended macroeconomic series.

We examine the empirical coverage of the nominal 80% and 90% intervals constructed

using the Cholesky factor bootstrap and conventional asymptotics.  We examine two bootstrap

intervals, parametric (Gaussian) and nonparametric.  At each of 1000 Monte Carlo replications,

we apply the Cholesky factor bootstrap with 2000 bootstrap replications.  At each bootstrap

replication we estimate the spectral density at frequencies  and .

In Table A1, we present the empirical coverage rates for bootstrap and asymptotic

confidence intervals for three innovation distributions.  First, we set  ~ iid N(0,1).  At

frequency , the actual coverage of all three intervals exceeds nominal coverage.  However,

both the parametric and nonparametric bootstrap coverage rates are much closer to nominal

coverage than those of the asymptotic approximation.  At frequency , the asymptotic intervals

similarly deliver excessively high coverage rates but the parametric bootstrap interval in



gt

2(2)

particular (and to a lesser extent the nonparametric) display nearly exact coverage.

Second, we set  to a conditionally Gaussian GARCH(1,1).  As expected, the

nonparametric bootstrap outperforms the parametric bootstrap in this case.  However, neither the

nonparametric bootstrap nor the asymptotic approximation appear definitively best in terms of

actual coverage.

Finally, the innovation is iid , normalized to have zero mean and unit variance.  As

with iid N(0,1) innovations, we find that the asymptotic approximation tends to give rise to

excessively wide confidence intervals.  At a nominal coverage level of 90%, both bootstraps

deliver more accurate coverage rates.  At the nominal 80% level, only the parametric bootstrap

dominates the asymptotic interval.
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Table A1
Empirical Coverage

Bootstrap and Asymptotic Confidence Intervals 

Parametric Nonparametric
Nominal Bootstrap Bootstrap Asymptotic
Coverage Interval Interval Interval

Gaussian Innovations
.80 .827                 .831                 .912
.90 .913                 .910                 .974

.80   .795                 .780                 .827

.90 .904                 .901                 .980

Conditionally Gaussian
GARCH(1,1) Innovations

.80 .696                  .718                .767

.90 .808                  .838                .845

.80 .770                  .818                .789 

.90 .863                  .905                .924

Standardized Chi-Square
Innovations

.80 .843                   .862                .913

.90 .916                   .933                .963
          

.80 .798                   .852                .824

.90 .901                   .939                .979

Notes to Table:  For each innovation distribution, we generate data from an AR(2) with
parameters 1.335 and -.401, with sample size T=100.  We perform 2000 bootstrap iterations in
each of 1000 Monte Carlo trials.
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