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ABSTRACT

We propose methods for evaluating and improving density forecasts. We focus primarily
on methods that are applicable regardless of the particular user’s loss function, though we take
explicit account of the relationships between density forecasts, action choices, and the
corresponding expected loss throughout. We illustrate the methods with a detailed series of
examples, and we discuss extensions to improving and combining suboptimal density forecasts,
multistep-ahead density forecast evaluation, multivariate density forecast evaluation, monitoring
for structural change and its relationship to density forecasting, and density forecast evaluation
with known loss function.
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 See, for example, the discussion of construction of density forecasts using resampling1

techniques surveyed in Berkowitz and Kilian (1996).
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1.  Introduction

Prediction occupies a distinguished position in econometrics; hence, evaluating predictive

ability is a fundamental concern.  Reviews of the forecast evaluation literature, such as Diebold

and Lopez (1996), reveal that most attention has been paid to evaluating point forecasts.  In fact,

the bulk of the literature focuses on point forecasts, while conspicuously smaller sub-literatures

treat interval forecasts (e.g., Chatfield, 1993; Christoffersen, 1997) and probability forecasts

(e.g., Wallis, 1993; Clemen, Murphy and Winkler, 1995).

Remarkably little attention has been given to evaluating density forecasts.  At least three

factors explain this neglect.  First, analytic construction of density forecasts has historically

required restrictive and sometimes dubious assumptions, such as Gaussian innovations and no

parameter estimation uncertainty.  Recent work using numerical and simulation techniques to

construct density forecasts, however, has reduced our reliance on such assumptions.   In fact,1

improvements in computer technology have rendered the provision of credible density forecasts

increasingly straightforward.

Second, until recently there was little demand for density forecasts; historically, point and

interval forecasts proved adequate for most users’ needs.  Again, however, recent developments

have changed the status quo, particularly in quantitative finance.  The booming area of financial

risk management, for example, is effectively dedicated to providing density forecasts of future



 Moreover, scalar distillations of densities into "risk measures," such as value at risk, are2

often inadequate for risk assessment.  See, for example, Guthoff, Pfingsten and Wolf (1997).
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portfolio values and to tracking certain aspects of the densities.   In fact, the day will soon arrive2

in which risk management will routinely entail nearly real-time issuance and evaluation of such

density forecasts.

Finally, the problem of density forecast evaluation appears difficult.  Although it is

possible to adapt techniques developed for the evaluation of point, interval, and probability

forecasts to the evaluation of density forecasts, such approaches lead to incomplete evaluation of

density forecasts.  Using, for example, Christoffersen’s (1997) method for evaluating interval

forecasts, we can evaluate whether the series of 90% prediction intervals corresponding to a

series of density forecasts is correctly conditionally calibrated, but that leaves open the question

of whether the corresponding prediction intervals at other confidence levels are correctly

conditionally calibrated.

In this paper we treat density forecasting and density forecast evaluation.  We explicitly

account for the relationships between the density forecast, the action choice, and the resultant

expected loss, and we evaluate density forecasts in their entirety.  For the reasons discussed

above, there is very little literature on the topic, although professional interest is increasing, as

evidenced by the contemporaneous and independent work of Granger and Pesaran (1996) and

Crnkovic and Drachman (1996), which is closely related and highly complementary. To the best

of our knowledge, there is no other literature that bears directly on the issues we address.  In

section 2, we present a detailed statement and discussion of the problem, and we provide the

theoretical underpinnings of the methods that we introduce subsequently.  In section 3 we present
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 We indulge in the standard abuse of notation, which favors convenience over precision,3

by failing to distinguish between random variables and their realizations.  The meaning will be
clear from context.
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methods of density forecast evaluation when the loss function is unknown, which is likely to be

important in practice.  In section 4, we provide a series of detailed examples to density

forecasting in environments with time-varying volatility.  In section 5 we discuss extensions to

improving suboptimal density forecasts, evaluating multi-step and multivariate density forecasts,

monitoring for structural change when density forecasting, and evaluating density forecasts when

the loss function is known.  We conclude in section 6.

2.  Loss Functions, Action Choices, and Density Forecast Evaluation 

Statement and Discussion of the Problem

Let  be the data-generating process governing a series , where  contains all

relevant conditioning variables.  Let  denote the corresponding series of realizations.  3

Suppose that a series of 1-step-ahead density forecasts of  is available, made over m periods.  

The forecasts might be available in closed form, or they might be constructed from large sets of

simulated draws from the densities.  In any case, we represent the series of forecasts by

 where  is the information set used by the forecaster.  For notational

convenience, we will often not indicate the information set and simply write  and ,

but the dependence on  and  should be understood.  

We wish to evaluate these density forecasts by considering the historical performance of

the forecaster.  The solution would seem to lie in the application of the well-known fact that if a

sequence of realizations corresponds to iid draws from a fixed density, then the probability

integral transforms of the realizations with respect to the density are iid U(0,1).  However, there
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be convex in a.
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are two complicating factors.  First, we are not dealing with iid realizations from a fixed density. 

Instead, the realizations come from a series of generally time-varying and dependent densities. 

Second, we may need to account for the forecast user’s loss function when evaluating density

forecasts.  We will address both complications.

The Decision Environment

The intimate relationship between density forecasts, action choices, and loss functions is

relevant when evaluating density forecasts.  In this section, we consider this relationship in a one-

period context, and hence we drop the time subscripts for notational convenience.  

Each forecast user has a loss function , where  refers to an action choice.  The

action choice need not be a prediction of .  For example,  may refer to the amount of

insurance coverage to purchase, with  representing the realized loss.  The user chooses an

action to minimize expected loss computed using the density believed to be the data-generating

process.  If she believes that , the prediction from the forecaster for the current period, is the

correct density, then she chooses an action  by solving4

The action choice defines the loss  faced for every realization of the process . 

This loss is a random variable and possesses a distribution function, which we will call the loss

distribution, and which depends only on the action choice.  Expected loss with respect to the true

data-generating process is
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The effect of the density forecast on the user’s expected loss is easily seen.  A density

forecast translates into a loss distribution.  Two different forecasts will, in general, lead to

different action choices and, hence, different loss distributions.  Different forecasts that lead to

the same action choice are, to the user, equivalent.  A “good” forecast will lead to an action

choice that results in a comparatively low expected loss with respect to the true data-generating

process.

Ranking Two Forecasts

Suppose the user has the option of choosing between two forecasts in a given period,

denoted by  and , where the subscript refers to the forecast.  The forecast user will

prefer the forecast  if the expected loss associated with using  is less than the

expected loss associated with using  instead; that is, if 

where  denotes the action that minimizes expected loss, given that the user bases the action

choice on forecast j.

 Ideally, we would like to find a way of assigning to each forecast a score ,

constructed from the history of density forecasts and realizations, which would measure the

divergence of the realization from the forecast density, such that all users, regardless of loss

function, would prefer the forecast with the lower divergence.  This would allow us to rank the

forecasts.  Unfortunately, the following proposition shows that no such divergence score exists.
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Proposition 1.  Let  be the density of ,  be a density forecast of , and  be the set of

action choices.  Let  be the optimal action based on forecast .  Then no score  exists

such that for arbitrary forecast densities  and , both distinct from f , and for all possible loss

functions ,

Proof.  In order to establish the result, it is sufficient to find a pair of loss functions  and , a

density function f governing y, and a pair of forecasts,  and , such that

while 

That is, user 1 does better on average under forecast k, while user 2 does better under forecast j. 

It is straightforward to construct such an example.  Suppose the true density function is N(0,1),

and suppose that user 1's loss function is  and user 2's loss function is

.  The optimal action choices are then  and 

respectively.  That is, user 1 bases her action choice on the mean, with higher expected loss

occurring with larger errors in the forecast mean, while user 2's actions and expected losses

depend on the error in the forecast of the uncentered second moment.  In this context, consider

two forecasts:  forecast j is N(0,2) and forecast k is N(1,1).  User 1 prefers forecast j, because it
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 The result is analogous to Arrow's celebrated impossibility theorem.  D(•) is effectively5

a social welfare function, which the proposition shows does not exist.

 Granger and Pesaran (1996) independently arrive at a similar result.6
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leads to an action choice that, in turn, leads to a loss distribution with lower expected loss, but

user 2 prefers forecast k for the same reason.  ~

To repeat:  there is no way to rank two incorrect density forecasts such that all users will

agree with the ranking.   However, if a forecast coincides with the true data-generating process, 5

it will be the forecast, among the class of forecasts that uses the same information set, that

minimizes expected loss for all forecast users, regardless of their loss function.   We show this in

the following proposition.6

Proposition 2.  Suppose that the forecast, , is identical to the data-generating process, i.e.,

, and hence minimizes the actual expected loss. Then for all possible density

forecasts , choosing the action according to the true density gives the least expected loss

among all forecasts with the same information set.  That is,

Proof.  The result follows immediately from the assumption that  minimizes expected loss

over all possible actions, including those that might be chosen under alternative densities of . 

~

The case where different information sets are used to produce the forecasts is somewhat

less clear cut.  For instance, it can be shown that a correct density forecast will be weakly

preferred to another correct density based on a smaller information set, but not much can be said
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about two correct forecasts based on information sets where neither subsumes the other. 

Nonetheless, the preceding propositions do suggest a useful direction for evaluating density

forecasts.  Even without taking loss functions into consideration, we know that the correct

density, correct relative to some information set, is weakly superior to all forecasts with either the

same or smaller information set.  This suggests evaluating forecasts by assessing whether the

forecast densities, conditioned on some information set, are correct, i.e., whether

 = .  We do so by assessing whether the realizations

, come from the forecast densities .  If not, we know that some users,

depending on their loss functions, could potentially be better served by a different density

forecast.

3.  Evaluating Density Forecasts

The Probability Integral Transform

Our methods are based on the relationship between the data-generating process, ,

and the sequence of density forecasts,  , as related through the probability integral

transform, , of the realization of the process, taken with respect to the density forecasts.  The

following lemma describes the distribution, , of the probability integral transform.

Lemma 1.  Let  be the variable of interest with  as its density, and let  represent a

density forecast of .  Let the variable  be the probability integral transform of  with respect

to .  That is,
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variable that can help in forecasting y, although the proof must be modified slightly.
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Then assuming that  is continuous and non-zero over the support of ,   will have

support on the unit interval with density function

Proof:  Use the facts that  and .  ~

Note that in the well-known special case where ,  is simply the U(0,1)

density.  While this special case is all we will need for the evaluation of density forecasts, the

general form of the density  will be useful for the purpose of improving suboptimal density

forecasts.

As pointed out earlier, the realizations are typically dependent draws from a sequence of

dependent densities, not iid draws from a single density.  We thus need a complete probabilistic

characterization of the z series when the density forecasts are correct.  We do so in the following

proposition.  Note that for ease of exposition, we restrict the information set at each time period

to comprise only the history of past ; that is, .7

Proposition 3.  Suppose a series  is generated from  where

.  If a sequence of density forecasts  coincides with
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, then under the usual conditions of a non-zero Jacobian and the continuity of its

partial derivatives, we have

That is, the sequence of probability integral transforms of  with respect to  is

iid U(0,1).

Proof:  The joint density of  can be decomposed as

We therefore compute the joint density of  using the change of variables formula 

because the Jacobian of the transformation is lower triangular.  Thus we have
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From Lemma 1, under the assumed conditions, each of the ratios above is a U(0,1) density, the

product of which yields an m-variate U(0,1) distribution for .  Because the joint

distribution is the product of the marginals, we have that  is distributed iid U(0,1).  ~

Practical Application

The theory developed thus far suggests that we use the series , derived from the

history of realizations and density forecasts, to evaluate forecasts.  We simply check whether

 is iid U(0,1).  As noted earlier, we effectively check whether a random sample  is

drawn from density  by taking the probability integral transform of the sample with respect

to .  In this paper, we effectively consider a sample  that is a realization from a

sequence of time-varying and dependent densities, but Proposition 3 reveals that if a forecaster

manages to capture the sequence of densities that forms the true data-generating process, the

probability integral transforms are still iid U(0,1).

Simple tests of iid U(0,1) behavior are readily available.  Recall, for example, that if

 then .   Hence, if z is iid U(0,1), then , which yields a8

simple significance test.  Alternatively, we could perform any of the various well-known tests for

uniformity, such as a runs test or a Kolmogorov-Smirnov test, all of which are actually joint tests

of uniformity and iid.

Such tests, however, are not likely to be of much value in practical applications, because

they are not constructive; that is, when rejection occurs, the tests generally provide no guidance

as to why.  If, for example, such a statistic rejects the hypothesis of iid U(0,1) behavior, is it

because of violation of unconditional uniformity, violation of iid, or both?  Moreover, even if we
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know that rejection comes from violation of uniformity, we’d like to know more:  What,

precisely, is the nature of the violation of uniformity, and how important is it?  Similarly, even if

we know that rejection comes from a violation of iid, what precisely is its nature?  Is z

heterogeneous but independent, or is z dependent?  If z is dependent, is the dependence operative

primarily through the conditional mean, or are higher-ordered conditional moments, such as the

variance, relevant?  Is the dependence strong and important, or is iid an adequate approximation,

even if strictly false?

The nonconstructive nature of tests of iid U(0,1) behavior, and the nonconstructive nature

of related separate tests of iid and U(0,1), make us eager to adopt more revealing methods of

exploratory data analysis.  First, as regards evaluating unconditional uniformity, we suggest

visual assessment using the obvious graphical tool, a density estimate.  Simple histograms are

attractive in the present context, because they allow straightforward imposition of the constraint

that z has support on the unit interval, in contrast to more sophisticated procedures such as kernel

density estimates with the standard kernel functions.  The estimated density can be visually

compared to a U(0,1).

Second, as regards evaluating whether z is iid, we again suggest visual assessment using

the obvious graphical tool, the correlogram. Because we’re interested in potentially sophisticated

forms of dependence—not just linear dependence—we examine not only the correlogram of

, but also those of powers of .  In practice, examination of the correlograms of

, ,  and  is usually adequate; it will reveal dependence operative

through the conditional mean, conditional variance, conditional skewness, or conditional

kurtosis.
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The presence of particular forms of dependence in z can be informative in guiding

forecasters and users about how to improve density forecasts.  For instance, serial correlation in

the z series may indicate that the mean dynamics have been inadequately modeled by the

forecaster.  A caveat, however, is that there is in general no one-to-one correspondence between

the type of dependence found in z and the dependence in y missed by the forecasts.  For example,

assume that the true data-generating process is GARCH(p,q).  Even if a forecaster correctly

specifies the conditional variance function and perfectly estimates its parameters, there may be

dependence in z if the forecaster assumes the wrong conditional density.

In closing this section, we note that our methods of density forecast evaluation have

interesting parallels with well-known methods of evaluating point and interval forecasts.  It is

well known, for example, that under certain conditions optimal point forecasts have

corresponding 1-step-ahead errors that are iid with zero mean.  In addition, Christoffersen (1997)

shows that the hit series corresponding to a series of correctly calibrated (1- )% interval forecasts

is iid Bernoulli(1- ).   Our methods, in parallel, are based on the fact that the z series9

corresponding to a series of correct density forecasts is iid U(0,1).

4.  Examples

Here we illustrate our methods with four examples.  Throughout, we use a t-GARCH(1,1)

data-generating process,
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 The process as specified does have mean zero and variance 1, but it is neither iid nor10

unconditionally Gaussian.

 The dashed lines superimposed on the histogram are approximate 95% confidence11

intervals for the individual bin heights under the null that z is iid U(0,1).
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with parameters  = 0.01, =0.13, =0.86 and v=6 chosen to mimic values typically obtained

when fitting GARCH models to asset returns.  We simulate a series of length 8000, again chosen

to mimic typical analyses of high-frequency financial data, and we plot it in Figure 1.  The

persistence in conditional variance is visually obvious.

First, we evaluate forecasts that are based on an incorrect assumption that the process is

iid N(0,1).   We make forecasts from period 4001 through 8000.  In Figure 2 we show the two10

histograms of z (one with 20 bins and the other with 40 bins) and the correlograms of ,

,  and .   The histograms and correlograms indicate poor density11

forecasts.  In particular, note the obvious non-uniformity of the histogram and the strong

autocorrelations in squares and fourths of .  Notice that the peaks at the ends of the

histogram are even more accentuated as we take a larger number of bins.

Second, we evaluate forecasts that are based on the incorrect assumption that the process

is iid, but we base the forecasts on an estimate of the correct unconditional distribution rather

than a N(0,1).  We estimate the unconditional distribution as the empirical distribution of

observations 1-4000.  Figure 3 contains the results.  The histogram is, of course, almost perfect,

but the correlograms, which show strong persistence in the squares and fourths of z, correctly

continue to indicate neglected volatility dynamics.

Third, we evaluate forecasts that are based on an estimated GARCH(1,1) model, but with

the incorrect assumption that the conditional density is Gaussian.  We use observations 1-4000
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for estimation, and we forecast from 4001 through 8000.  The estimated conditional variance

function is

Figure 4 contains the z histogram and correlograms.  The correlograms show no evidence of

neglected conditional volatility dynamics.  The histogram is improved, but it still displays slight

peaks at either end and a hump in the middle.  This pattern is expected, because allowance for

conditionally Gaussian GARCH effects should account for some, but not all, unconditional

leptokurtosis, given that the data-generating process is conditionally fat-tailed.

Finally, we forecast with an estimated GARCH(1,1) model based on the correct

specification.  The estimated conditional variance function is

and the estimated degrees of freedom are 6.2466.  In Figure 5 we show the z histogram and

correlograms. Because we are forecasting with a correctly specified model, estimated using a

large sample, we expect both the histogram and the correlograms to look good, and they do.

5.  Extensions

Improving Density Forecasts

We have approached forecast evaluation from an historical perspective, evaluating the

ability of a forecaster based on past realizations.  The intent, of course, is to gauge the likely



ŷ

ym%1

f m%1 (ym%1 ) ' pm%1 (ym%1 ) qm%1 (P(ym%1 ) )

' pm%1 (ym%1 ) qm%1 (zm%1 ).

qm%1 (zm%1 ) f m%1 (ym%1 )

qm%1 (zm%1 ) q̂m%1 (zm%1 )

{z t }
m
t '1 f̂ m%1 (ym%1 )

{z t}
m
t '1

q̂m%1 (zm%1) qm%1 (zm%1)

 Such a regression is sometimes called a Mincer-Zarnowitz regression, after Mincer and12

Zarnowitz (1969).

18

future accuracy of the forecaster based on past performance, assuming that the relationship

between the correct density and the forecaster’s predictive density remains fixed.  Given that we

observe systematic errors in the historical forecasts, we may wish to simply reject the forecast.  It

may also turn out that the errors are irrelevant to the user, a case we further examine when we

explicitly account for the user’s loss function.  Nevertheless, it is possible to take the errors into

consideration when using the current forecast, just as it is possible to do so in the point forecast

case.  In the point forecast case, for example, we can regress the y's on the 's, the predicted

values, and use the estimated relationship to construct an adjusted point forecast.12

In the context of density forecasts, we can construct a similar procedure by rewriting the

relationship in Lemma 1.  Suppose that the user is in period m and possesses a density forecast of

.  From Lemma 1, we have

Thus if we know  , we would know the actual distribution .  Because

 is unknown,  an estimate  can be formed using the historical series of

, and an estimate of the true distribution  can then be constructed.  If the

sample  turns out to be iid, then standard density estimation techniques can be used to

produce the estimate .  Otherwise, the estimation of  becomes a non-

trivial matter, which we defer to future research.
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Multi-Step-Ahead Density Forecasts

The evaluation of h-step ahead forecasts can also be evaluated using our methods, except

that provisions must be made for autocorrelation in z.  This is analogous to expecting MA(h-1)

autocorrelation structures for optimal h-step ahead point forecast errors.  In this case, it will

probably be easier to partition the z series into groups for which we expect iid uniformity if the

forecasts were indeed correct.  For instance, for correct 2-step ahead forecasts, the sub-series

and should each be iid U(0,1), although the full series would not be

iid U(0,1).

If a formal test is desired, it may be obtained via Bonferroni bounds, as suggested in a

different context by Campbell and Ghysels (1995). Under the assumption that the z series is (h-

1)-dependent, each of the following h sub-series will be iid:  {z , z , z , ...}, {z , z , z ,1 1+h 1+2h 2 2+h 2+2h

...}, ..., {z , z , z , ...}.  Thus, a test with size bounded by  can be obtained by performing hh 2h 3h

tests, each of size /h, on each of the h z sub-series, and rejecting the null hypothesis of iid

uniformity if the null is rejected for any of the h sub-series.  With the huge high-frequency data

sets now available in finance, such sample splitting, although inefficient, is not likely to cause

important power deterioration.

Multivariate Density Forecasts

The principle that governs the univariate techniques in this paper readily extends to the

multivariate case, as shown in Tay (1997).  Suppose that the variable of interest y is now an (N x

1) vector and that we have on hand m multivariate forecasts and their corresponding multivariate

realizations.  Further suppose that we are able to decompose each period’s forecasts into their

conditionals, i.e., for each period’s forecasts we can write



p(y1t , y2t ,... , yNt | t&1 ) ' p(yNt | yN&1, t ,... , y1t , t&1) ... p (y2t | y1t , t&1 )p(y1t | t&1 ).

f (y1t , y2t ,... , yNt | t&1 ) ' k
N

i'1
[p(yit | yi&1,t ,... , y1t , t&1) q(P(yit | yi&1,t ,... , y1t , t&1 ) ) ]

' p(y1t , y2t ,... , yNt | t&1 ) q(z1t , z2t ,... , zNt | t&1 ) .

j
m

t'1
zt - N

m
2

,
m
12

,

( y1t , y2t ,..., yNt )

zt

iid
- U(0,1) zt

iid
-

1
2

,
1
12
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Then for each period we can transform each element of the multivariate observation

 by its corresponding conditional distribution.  This procedure will produce a set

of N z-series that will be iid U(0,1) individually, and also when taken as a whole.  Note that we

will have N! sets of z series, depending on how the joint density forecasts are decomposed,

giving us a wealth of information with which to evaluate the forecasts.  In addition, the univariate

formula for the adjustment of forecasts, discussed above, can be applied to each individual

conditional, yielding

Monitoring for Structural Change When Density Forecasting

Real-time monitoring of adequacy of density forecasts using CUSUM techniques is a

simple matter, because under the adequacy hypothesis the z series is iid U(0,1), which is free of

nuisance parameters.  In particular, if , then , so that asymptotically

in m,

which yields the approximate 95% confidence interval for the CUSUM,



a (

p ' a (

f

j
m

t'1
zt 0

m
2

± 1.96 m
12

.

j
m

t'1
z 2

t - N
m
3

,
4m
45

,

j
m

t'1
z 2

t 0 m
3

± 1.96 4m
45

.

z 2
t

iid
-

1
3

,
4
45

a(

p

 Because we have assumed a unique optimal action choice, .13
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Similar calculations hold for the CUSUM of squares.  Trivial calculations reveal that under the

adequacy hypothesis , so that asymptotically in m,

which yields the approximate 95% confidence interval for the CUSUM of squares,

Evaluating Density Forecasts Using a Specific Loss Function

If a series of density forecasts has been systematically in error, it may still be the case that

for a particular user, depending on her loss function, the systematic errors may be irrelevant.  To

be precise, the forecast may be such that the action choice induced by the forecast, ,

minimizes the user’s actual expected loss.   In such cases, which we now consider, the user’s13



dt ' L(a (

p,t , yt ) ! 1
m j

m

t'1
L(a (

p,t , yt ).

{pt (yt )}m
t'1

{a (

p, t }
m
t'1

L(a (

p, t , yt )

Ef, t [L(a (

f,t , yt )]

a (

p, t ' a (

f , t

Ef, t [L(a (

f,t , yt )]

Ep, t [L(a (

p, t , yt )] Ef, t [L(a (

f,t , yt )]

Ef, t [L(a (

f,t , yt )] ' Ep,t [L(a (

p, t ' a (
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loss function can be incorporated into the evaluation process, as is done in other forecasting

contexts by Diebold and Mariano (1995) and Christoffersen and Diebold (1996, 1997a, 1997b).

Consider a density forecast series, , and the corresponding action series,

, of a particular user.  The series of action choices results in a series of potential losses, 

.  We would like to compare each period’s realized loss with that period’s expected

loss under the optimal action choice .  The expected difference will be positive

unless .  

Unfortunately, we are unable to evaluate .  Instead, we will have to use

an estimate of  as a proxy for .  We can then compute the

difference,

Under the joint null hypothesis that the series of density forecasts is optimal relative to the user’s

loss function and that the forecaster correctly specifies the expected loss in each period, i.e.,

,  we have , which can be tested in the same

way that Diebold and Mariano (1995) test whether two point forecasts are equally accurate under

the relevant loss function.

6.  Summary and Concluding Remarks

We have provided a characterization of optimal density forecasts, and we have proposed

methods for evaluating whether reported density forecasts coincide with the true sequence of

conditional densities.  In addition to studying the decision problem associated with density

forecasting and showing how to use the series of probability integral transforms to judge the
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adequacy of a series of density forecasts, we also discussed how to improve a suboptimal density

forecast by using information on previously issued density forecasts and subsequent realizations,

how to evaluate multistep and multivariate density forecasts, and how to monitor for structural

change when density forecasting.  We did all of this in a framework not requiring specification of

the loss function, but when information on the relevant loss function is available, we also showed

how to evaluate a density forecast with respect to that loss function.

In closing, we note that the methods used to produce the density forecasts being evaluated

are inconsequential for application of our methods; the density forecasts could be produced by

any method, including Bayesian methods. This is so in spite of the fact that our methods have a

classical feel.  Superficially, it would seem that strict Bayesians would have little interest in our

evaluation methods; conditional on a particular sample path and specification of the prior and

likelihood, the predictive density simply is what it is, and there’s nothing to evaluate. But such is

not the case.  A misspecified likelihood, for example, can lead to poor forecasts, whether

classical or Bayesian, and density forecast evaluation can help us flag misspecified likelihoods. 

It comes as no surprise, therefore, that model checking by comparing predictions to data is

emerging as an integral part of modern Bayesian data analysis and forecasting, as highlighted for

example in Gelman, Carlin, Stern and Rubin (1995), and our methods are very much in that

spirit.
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Figure 1.   Plot of simulated t-GARCH(1,1) series, 8000 observations.  The parameters are =0.01, =0.13, and =0.86.  The
standardized realizations are distributed t(6).
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Figure 2a.  Histograms (with twenty and forty bins) of  z series produced from forecasts of simulated t-GARCH(1,1)
series based on an incorrect assumption that the series iid N(0,1).

Figure 2b.  Autocorrelations of various z series produced from forecasts of simulated t-GARCH(1,1) series based on an
incorrect assumption that the series is iid N(0,1).  Panels (a) to (d) show autocorrelations of , , 
and  respectively.
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Figure 3a.  Histogram of  z series produced from forecasts based on an incorrect assumption that the process is iid with
density equal to the empirical unconditional density estimated over periods 1-4000. 

Figure 3b.  Autocorrelations of various z-series produced from forecasts based on an incorrect assumption that the
process is iid with the empirical unconditional density estimated over periods 1-4000.  Panels (a) to (d) show
autocorrelations of , ,  and  respectively.
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Figure 4a.  Histograms of  z series produced from forecasts of simulated t-GARCH(1,1) series based on estimated
conditionally Gaussian GARCH(1,1).  We estimate parameters over 1-4000 and forecast over 4001-8000.

Figure 4b.  Autocorrelations of various z series produced from forecasts of simulated t-GARCH(1,1) series based on
estimated Gaussian GARCH(1,1) model.  Panels (a) to (d) show autocorrelations of , ,  and

 respectively.
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Figure 5a.  Histogram of  z series produced from forecasts of simulated t-GARCH(1,1) series based on estimated t-
GARCH model.  We estimate parameters over 1-4000 and forecast over 4001-8000.

Figure 5b.  Autocorrelations of various z-series produced from forecasts of simulated t-GARCH(1,1) series based on
estimated t-GARCH model.  Panels (a) to (d) show autocorrelations of , ,  and 
respectively.


