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ABSTRACT

Broadly defined, macroeconomic forecasting is alive and well. Nonstructural forecasting, which

is based largely on reduced-form correlations, has always been well and continues to improve. 

Structural forecasting, which aligns itself with economic theory and, hence, rises and falls with

theory, receded following the decline of Keynesian theory. In recent years, however, powerful

new dynamic stochastic general equilibrium theory has been developed, and structural

macroeconomic forecasting is poised for resurgence.
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The reports of the death of large-scale macroeconomic forecasting models are not

exaggerated. But many observers interpret the failure of the early models as indicative of a bleak

future for macroeconomic forecasting more generally. Such is not the case. Although the large-

scale macroeconomic forecasting models didn’t live up to their original promise, they

nevertheless left a useful legacy of lasting contributions from which macroeconomic forecasting

will continue to benefit: they spurred the development of powerful identification and estimation

theory, computational and simulation techniques, comprehensive machine-readable

macroeconomic databases, and much else. Moreover, past failures do not necessarily imply a

bleak future: we learn from our mistakes. Just as macroeconomics has benefitted from rethinking

since the 1970s, so, too, will macroeconomic forecasting.

Understanding the future of macroeconomic forecasting requires understanding the

interplay between measurement and theory and the corresponding evolution of the nonstructural

and structural approaches to forecasting. Nonstructural macroeconomic forecasting methods

attempt to exploit the reduced-form correlations in observed macroeconomic time series, with

little reliance on economic theory. Structural models, in contrast, view and interpret economic

data through the lens of a particular economic theory.

Structural econometric forecasting, because it is based on explicit theory, rises and falls

with theory, typically with a lag. Structural Keynesian macroeconomic forecasting, based on

postulated systems of decision rules, enjoyed a golden age in the 1950s and 1960s, following the

advances in Keynesian theory in the 1930s and 1940s, and the two declined together in the 1970s

and 1980s. The evolution of nonstructural economic forecasting, in contrast, is less bound to
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fashions in economic theory; its origins long predate structural Keynesian macroeconomic

forecasting, and progress continues at a rapid pace.

One is naturally led to a number of important questions. What of the impressive advances

in economic theory of the 1980s and 1990s? Should we not expect them to be followed by a new

wave of structural macroeconomic forecasting, or has nonstructural forecasting permanently

replaced structural forecasting? And a related question: is it necessary to choose between the

structural and nonstructural approaches, or might the two be complements rather than

substitutes? If a new structural forecasting is likely to emerge, in what ways will it resemble its

ancestors? In what ways will it differ? Our answers will take us on a whirlwind tour of the past,

present, and future of both structural and nonstructural forecasting. We’ll begin by tracing the

rise and fall of the structural Keynesian system-of-equations paradigm, then we’ll step back to

assess the long-running and ongoing progress in the nonstructural tradition. Finally, we’ll assess

the rise of modern dynamic stochastic general equilibrium macroeconomic theory, its

relationship to nonstructural methods, and its implications for a new structural macroeconomic

forecasting.

1.  The Rise and Fall of Keynesian Macroeconomic Theory and Structural Forecasting

Some important forecasting situations involve conditional forecasts, that is, forecasts of

one or more variables conditional on maintained assumptions regarding, for example, the

behavior of policymakers. Conditional forecasts require structural models. Structural

econometrics, and hence structural macroeconomic forecasting, makes use of macroeconomic

theory, which implies that developments in structural forecasting naturally lag developments in

theory. The first major wave of 20th-century macroeconomic theory was the Keynesian theory of
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 For a concise history of the Chicago days of the Cowles Commission, see Hildreth1

(1986, ch. 1).

the 1930s and 1940s, and it was followed by major advances in structural macroeconomic

forecasting.

When Keynes’ General Theory was published in 1936, theory was distinctly ahead of

measurement. Measurement soon caught up, however, in the form of the systems of equations

associated with Klein’s (1946) Keynesian Revolution and Klein and Goldberger’s (1955)

Econometric Model of the United States: 1929-1952. Indeed, the period following the publication

of the General Theory was one of unprecedented and furious intellectual activity directed toward

the construction, estimation, and analysis of Keynesian structural econometric models. The

statistics side of the structural econometrics research was fueled by the advances of Fisher,

Neyman, Pearson, and many others earlier in the century. The economics side, of course, was

driven by Keynes’ landmark contribution, which spoke eloquently to the severe economic

problems of the day and seemed to offer a workable solution.

The intellectual marriage of statistics and economic theory was reflected in the growth of

the Econometric Society and its journal, Econometrica, and beautifully distilled in the work of

the Cowles Commission for Research in Economics at the University of Chicago in the 1940s

and early 1950s.  The intellectual focus and depth of talent assembled there were unprecedented1

in the history of economics: Cowles researchers included T.W. Anderson, K. Arrow, G. Debreu,

T. Haavelmo, L. Hurwicz, L.R. Klein, T. Koopmans, H. Markowitz, J. Marshak, F. Modigliani,

H. Simon, A. Wald, and many others. A central part (although by no means the only part) of the

Cowles research program was identification and estimation of systems of stochastic difference
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equations designed to approximate the postulated decision rules of Keynesian macroeconomic

theory.

Just as the blending of mathematical statistics and economics associated with the Cowles 

commission was historically unprecedented, so too was the optimism for solving pressing

macroeconomic problems. Early on, the macroeconomic system-of-equations research program

appeared impressively successful, and structural econometric forecasting blossomed in the late

1950s and 1960s, the heyday of the large-scale Keynesian macroeconomic forecasting models. 

There was strong consensus regarding the general paradigm, even if there was disagreement on

details such as the relative slopes of IS and LM curves, and the models were routinely used for

forecasting and policy analysis in both academia and government.

But cracks in the foundation, which began as intellectual dissatisfaction with the

underpinnings of Keynesian macroeconomic systems of equations, began to appear in the late

1960s and early 1970s. First, economists became dissatisfied with the lack of foundations for the

disequilibrium nature of the Keynesian model. A new and still-ongoing research program began,

which sought microfoundations for Keynesian macroeconomic theory, particularly for the central

tenets of sticky wages and prices. Many key early contributions appear in the classic volume by

Phelps et al. (1970), and more recent contributions are collected in Mankiw and Romer (1991).

Second, just as macroeconomists became increasingly disenchanted with the ad hoc

treatment of sticky prices in traditional models, they became similarly disenchanted with ad hoc

treatment of expectations. Building on early work by Muth (1960, 1961), who introduced the

idea of rational expectations and showed that schemes such as adaptive expectations were

rational only in unlikely circumstances, the “rational expectations revolution” quickly took hold;
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Sargent and Wallace (1975) is an important and starkly simple early paper.

Third, and most generally, economists became dissatisfied not only with certain parts of

the Keynesian macroeconometric program, such as the assumptions about price behavior and

expectations formation, but rather with the overall modeling approach embodied in the program. 

The approach was dubbed the “system-of-equations” approach by Prescott (1986), in reference to

the fact that it concentrated on the estimation of parameters of equation systems representing ad

hoc postulated decision rules (“consumption functions,” “investment functions,” etc.) as opposed

to more fundamental parameters of tastes and technology. Newly emerging macroeconomic work

in the late 1960s and early 1970s, in contrast, was firmly grounded in tastes and technology;

Lucas and Prescott (1971) and Lucas (1972) remain classic examples. Work in the tastes-and-

technology tradition accelerated rapidly following Lucas’ (1976) formal critique of the system-

of-equations approach, based on the insight that analysis based on decision rules is a

fundamentally defective paradigm for producing conditional forecasts, because the parameters of

decision rules will generally change when policies change.

Finally, if the cracks in the foundation of Keynesian structural forecasting began as

intellectual dissatisfaction, they were widened by the economic facts of the 1970s, in particular

the simultaneous presence of high inflation and unemployment, which naturally led economists

to question the alleged inflation/unemployment tradeoff embedded in the Keynesian systems of

equations. In addition, a series of studies published in the early 1970s revealed that simple

statistical extrapolations, making no assumptions at all about economic structure, often

forecasted macroeconomic activity just as well as large-scale Keynesian macroeconomic models;

Nelson (1972) remains a classic. Keynesian macroeconomics soon declined, and Keynesian
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structural econometric forecasting followed suit.

2.  Nonstructural Forecasting

By the late 1970s, it was clear that Keynesian structural macroeconomic forecasting, at

least as traditionally implemented, was receding. One response was to augment the traditional

system-of-equations econometrics in attempts to remedy its defects. Important work along those

lines was undertaken by R. Fair and J. Taylor (see, e.g., Fair, 1984, 1994 and Taylor, 1993), who

developed methods for incorporating rational expectations into econometric models, as well as

methods for rigorous assessment of model fit and forecasting performance. Models in the Fair-

Taylor spirit are now in use at a number of leading policy organizations, including the Federal

Reserve Board and the International Monetary Fund, as described for example in Brayton et al.

(1997). They are an important step forward, even if the theory on which they are built remains

largely in the system-of-equations tradition.

Another response, involving a more radical change of direction, was to explore

alternative, nonstructural forecasting methods. Many forecasting chores involve unconditional,

rather than conditional, forecasts—that is, interest often centers on the likely future path of the

economy when policy remains unchanged, so that the Lucas critique is not relevant—and

unconditional forecasting does not require a structural model. That insight, together with the

emerging discontent with Keynesian macroeconomic theory and the lack of a well-developed

alternative, produced tremendous interest in nonstructural econometric forecasting in the 1970s. 

The title of an important paper by Sargent and Sims (1977), “Business Cycle Modeling Without

Pretending to Have too Much a Priori Theory,” nicely summarizes the spirit of the times.

Interestingly, the impressive intellectual development of nonstructural forecasting spans
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many decades; it predates the Keynesian episode and continues to the present. Macroeconomists

and econometricians didn’t pay much attention at first, in spite of the fact that key early

contributions were made by economists; they were too busy with Keynesian theory and

Keynesian structural econometrics. Nevertheless, rapid development took place in the hands of

some of the most talented mathematicians, statisticians, and engineers of the 20  century.th

Let us begin our account in the 1920s, which were a period of fertile intellectual

development in nonstructural modeling and forecasting. Many ideas were hatched and nurtured,

and the groundwork was laid for the impressive technical advances of the ensuing decades. In

particular, Slutsky (1927) and Yule (1927) argued that simple linear difference equations, driven

by purely random stochastic shocks, provide a convenient and powerful framework for modeling

and forecasting a variety of economic and financial time series. Such stochastic difference

equations are called autoregressive processes, or autoregressions. They amount to regression

models in which the current value of a variable is expressed as a weighted average of its own

past values, plus a random shock. Autoregressive processes are closely related to moving average

processes, also studied by Slutsky and Yule, in which the current value of a variable is expressed

as a weighted average of current and lagged random shocks alone. In fact, under reasonable

conditions, one can convert an autoregressive process to a moving average process, and

conversely. Either way, the key insight is that system dynamics can convert random inputs into

serially correlated outputs, a phenomenon often called the Slutsky-Yule effect. Frisch (1933) put

the Slutsky-Yule insight to work in formulating the idea of “impulse” and “propagation”

mechanisms in economic dynamics.

In the 1930s, the mathematician-turned-economist H. Wold made a stunning contribution,



-8-

 See Harvey (1989) for extensive discussion of state space representations and the2

Kalman filter in relation to forecasting.

paving the way for later work by the mathematicians N. Wiener and A. Kolmogorov, and the

engineer R. Kalman. Wold showed that, given sufficient stability of the underlying probabilistic

mechanism generating a time series, its stochastic part can be represented as a model of the form

studied by Slutsky and Yule. Thus, the Slutsky-Yule models are not only convenient and

powerful, they are absolutely central—they’re the only game in town. Wiener and Kolmogorov

worked out the mathematical formulae for optimal forecasts from models of the type studied by

Slutsky, Yule, and Wold. Kalman extended the theory in the late 1950s and early 1960s by

relaxing some of the conditions that Wiener and Kolmogorov required; his forecasting formulae,

known as the Kalman filter, are designed to work with a powerful model representation known as

state-space form and have a convenient recursive form amenable to real-time forecasting.   The2

Wold-Wiener-Kolmogorov-Kalman theory, which effectively represents the pinnacle of the

Slutsky-Yule research program, is beautifully exposited in Whittle (1963, second edition 1983). 

Appropriately enough, a leading economist, T. Sargent, wrote the second edition’s introduction,

which catalogs the tremendous impact of the prediction theory on modern dynamic economics.

In part, the nonstructural econometric forecasting explosion of the 1970s was driven by

econometricians absorbing the powerful earlier advances made by the likes of Wold, Wiener,

Kolmogorov, and Kalman. But there was a major additional push: in 1970, just as discontent

with Keynesian structural econometric forecasting was beginning to emerge, Box and Jenkins

(1970; third edition Box, Jenkins and Reinsel, 1994) published a landmark book on nonstructural

time series analysis and forecasting.
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 Processes with stochastic trend are also called integrated processes, or unit-root3

processes. The pioneering work of Dickey and Fuller (e.g., Fuller, 1976) on unit root testing grew
from a desire, motivated by Box and Jenkins, to determine whether various series displayed
stochastic trend. The similarly pioneering work of Granger and Joyeux (1980) on “long
memory,” or “fractionally integrated,” processes grew from attempts to generalize the idea of
integration on which Box and Jenkins relied so heavily; see Diebold and Rudebusch (1989) for a
macroeconomic application of long memory models and Baillie (1996) for an insightful recent
survey.

Many of the Box-Jenkins insights started literatures that grew explosively. For example,

prior to Box and Jenkins, trend was typically modeled as a simple linear deterministic function of

time, whereas Box and Jenkins allowed trend to be driven by the cumulative effects of random

shocks, resulting in “stochastic trend.”  Stock and Watson (1988a) provide an insightful3

discussion of stochastic trend and its wide-ranging implications. Shocks to series with stochastic

trend have permanent effects, an idea amplified in the empirical macroeconomics literature

associated with Nelson and Plosser (1982) and Campbell and Mankiw (1987), among others. 

The direct implication for forecasting is that long-run forecasts fail to revert to any fixed trend;

effectively, the underlying trend location is redefined each period, as emphasized, for example, in

Diebold and Senhadji (1996).

The most important contribution of Box and Jenkins, however, is their sweeping vision,

articulation, and illustration of an operational framework for applied nonstructural forecasting,

consisting of iterative cycles of model formulation, estimation, diagnostic checking, and

forecasting. Autoregressive moving average (ARMA) models are the centerpiece of the Box-

Jenkins framework. ARMA models are simple combinations of the autoregressive and moving

average models of Slutsky and Yule, and they have the potential to approximate dynamics more

parsimoniously than purely autoregressive or moving average models.
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 Ben McCallum notes in private communication that in an important sense, the situation4

was even worse: the endogenous-exogenous labeling was, arguably, not arbitrary, but rather
systematic, with policy variables labeled as “exogenous” on the grounds that they could have
been managed exogenously by policymakers if they had been unorthodox enough to do so.

An ongoing flood of work followed Box and Jenkins. Macroeconomics, in particular, is

crucially concerned with cross-variable relationships, whereas the basic approach of Box and

Jenkins uses only the past of a given economic variable to forecast its future. In other words,

much of macroeconomics is concerned with multivariate relationships, whereas the basic Box-

Jenkins models are univariate. Thus, many extensions of the Box-Jenkins program involve

multivariate modeling and forecasting, and vector autoregressive models have emerged as the

central multivariate model. Vector autoregressions were forcefully advocated in econometrics by

Sims (1980) as a less restrictive alternative to traditional econometric system-of-equations

models, in which variables were arbitrarily labeled “endogenous” or “exogenous.”  In vector4

autoregressions, in contrast, all variables are endogenous.

The mechanics of vector autoregressions are simple. Recall that we approximate

dynamics with a univariate autoregression by regressing a variable on its own past values. In a

vector autoregression, by way of logical extension, we regress each of a set of variables on past

values of itself and past values of every other variable in the system. Cross-variable linkages are

automatically incorporated because we include lags of all variables in each equation and because

we allow for correlations among the disturbances of the various equations. It turns out that one-

equation-at-a-time least squares estimation of vector autoregressions is statistically efficient in

spite of the potential correlation of disturbances. Moreover, it is simple and numerically stable, in

contrast to the tedious numerical optimization required for estimation of multivariate ARMA
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models.

Many multivariate extensions of the Box-Jenkins paradigm are conveniently implemented

in the vector autoregressive framework. Here we introduce a few; most will feature in the sequel,

and all will help convey a feel for the breadth of modern time-series econometrics and

forecasting. The discussion is necessarily brief; for a more detailed introduction to modern time

series forecasting, see Diebold (1998).

Granger (1969) and Sims (1972) made important early multivariate contributions,

providing tools for exploring causal patterns in multivariate systems. The Granger-Sims causality

notion is predictive; we say that x Granger-Sims causes y if the history of x is useful for

forecasting y, over and above the history of y. We commonly use Granger-Sims causality tests to

help identify and understand the patterns of cross-linkages and feedback in vector

autoregressions.

The dynamic factor model of Sargent and Sims (1977) and Geweke (1977) is another

important early multivariate contribution. The essential idea of dynamic factor models is that

some economic shocks are common across sectors and others are idiosyncratic, so that large sets

of variables may depend heavily on just a few common underlying sources of variation, a

common feature of economic models and evidently also of economic data. The common shocks,

or “factors,” produce comovements and facilitate parsimonious modeling and forecasting of large

numbers of variables. Dynamic factor models have proved particularly useful with the emergence

of macroeconomic panel datasets, including cross-country, cross-region, and cross-state data. 

Important recent contributions include Stock and Watson (1989), Quah and Sargent (1993), Forni

and Reichlin (1997), and Stock and Watson (1997).
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 For a good exposition of econometrics in the LSE tradition, see Hendry (1995).5

Granger (1981) and Engle and Granger (1987) develop the related idea of cointegration. 

We say that two series are cointegrated if each contains a stochastic trend, yet there exists a linear

combination that does not. Thus, for example, each of two series x and y may contain stochastic

trend, but the spread x-y may not. It is apparent that in such situations stochastic trends are

shared, which makes the series move together. This is the essence of the Stock-Watson (1988b)

“common trends” representation of cointegrated systems and is precisely the same idea as with

the intimately related dynamic factor model: comovements may be due to dependence on

common factors. Cointegration is also intimately connected to the idea of error-correction,

pioneered by Sargan (1964) and long a cornerstone of “LSE econometrics,” in which the current

deviation of a system from equilibrium conveys information regarding its likely future course and

is therefore useful for forecasting.  Indeed, there is a formal equivalence between cointegration5

and error correction, as established by Engle and Granger (1987).

All of the discussion thus far has been based on linear models. Nonlinear forecasting

methods have also received increasing attention in recent years, as the Slutsky-Yule theory of

linear modeling and forecasting has matured, and that trend will likely continue. Models of

volatility dynamics, which permit volatility forecasting, are an important example; the literature

began with Engle’s (1982) seminal contribution, and recent surveys include Bollerslev, Chou and

Kroner (1992) and Bollerslev, Engle, and Nelson (1994). We will, however, avoid discussion of

nonlinear methods for the most part because, although they are clearly of value in areas such as

finance, they are less useful in macroeconomics. There are two reasons. First, many of the

nonlinear methods require large amounts of high-quality data for successful application, whereas
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 For overviews, see, for example, Moore (1983) and Zarnowitz (1992).6

in macroeconomics we typically have short samples of data contaminated by substantial

measurement error. Second, many of the nonlinearities relevant in fields such as finance simply

don’t appear to be important in macroeconomics, perhaps because macroeconomic data are

highly aggregated over both space and time. Early on, for example, ARCH models were fitted to

macroeconomic data, such as aggregate inflation, but those ventures were quickly abandoned as

it became clear that volatility dynamics were much more important in high-frequency financial

data.

One strand of nonlinear literature, however, is potentially relevant for macroeconomic

forecasting: the idea that business-cycle expansions and contractions might be usefully viewed as

different regimes, which focuses attention on tracking the cycle, charting the timing of turning

points, and constructing business-cycle chronologies and associated indexes of leading, lagging,

and coincident indicators (Diebold and Rudebusch, 1996, 1998). Burns and Mitchell (1946) is a

classic distillation of early work in the nonlinear tradition, much of which was done in the first

four decades of the 20th century, and which was extended in breadth and depth by G. Moore, V.

Zarnowitz, and their colleagues at the National Bureau of Economic Research in the ensuing

decades.6

Regime-switching models are a modern embodiment of certain aspects of the Burns-

Mitchell nonlinear forecasting tradition. The idea of regime switching is implemented through

threshold models, in which an indicator variable determines the current regime (say, expansion or

contraction). In the observed indicator models of Tong (1990) and Granger and Teräsvirta

(1993), the indicator variable is some aspect of the history of an observable variable. For



-14-

example, the current regime may be determined by the sign of last period’s growth rate. In

contrast, Hamilton (1989) argues that models with unobserved regime indicators may be more

appropriate in many business, economic, and financial contexts. In Hamilton’s widely applied

model, sometimes called a “Markov-switching” or “hidden-Markov” model, the regime is

governed by an unobserved indicator.

The future of nonstructural economic forecasting will be more of the same—steady

progress—fueled by cheap, fast computing, massive storage, and increased sophistication of

numerical and simulation techniques. Such techniques are rapidly allowing us to estimate

complicated models not amenable to treatment with standard methods, and to dispense with the

unrealistic assumptions often invoked in attempts to quantify forecast uncertainty. Efron and

Tibshirani (1993) and Gourieroux and Monfort (1996), for example, provide good examples of

recent developments. The future of nonstructural macroeconomic forecasting will likely also

involve combining aspects of the linear and nonlinear traditions, as for example with vector

autoregressive models that allow for factor structure and regime switching (Diebold and

Rudebusch, 1996; Kim and Nelson, 1998a, 1998b).

3.  A New Wave of Macroeconomic Theory—and Structural Forecasting

Nonstructural models are unrestricted reduced-form models. As such, they are useful for

producing unconditional forecasts in a variety of environments ranging from firm-level business

forecasting to economywide macroeconomic forecasting. Again, however, in macroeconomics

we often want to analyze scenarios that differ from the conditions presently prevailing, such as

the effects of a change in a policy rule or a tax rate. Such conditional forecasts require structural

models.
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As we have seen, an early wave of structural econometrics followed the development of

Keynesian theory. But the Keynesian theory was largely based on postulated decision rules,

rather than the economic primitives of taste and technology; the system-of-equations approach to

structural econometric forecasting inherited that defect and hence wasn’t really structural. 

Ultimately the system-of-equations approach to both theory and forecasting declined in the

1970s.  

Progress toward a new and truly structural macroeconomic forecasting had to await a new

wave of powerful theory developed in the 1970s and 1980s. The new theory has its roots in the

dissatisfaction, percolating in the late 1960s and early 1970s, with the system-of-equations

approach. In many respects, the essence of the new approach is methodological and reflects a

view of how macroeconomics should be done. Lucas (1972), in particular, paved the way for a

new macroeconomics based on dynamic stochastic model economies with fully articulated

preferences, technologies, and rules of the game. Hence, the descriptively accurate name: 

dynamic stochastic general equilibrium (DSGE) modeling. The key innovation is that DSGE

models are built on a foundation of fully-specified stochastic dynamic optimization, as opposed

to reduced-form decision rules, and are therefore not subject to the Lucas critique. But ultimately

the “new” theory is neither new nor radical; rather, it is very much in the best tradition of

neoclassical economics.

The new research program has sought from the outset to make clear that DSGE models

can address practical, empirical questions. Early on, for example, Kydland and Prescott (1982)

used DSGE models to argue that a neoclassical model driven purely by real technology shocks

could explain a large fraction of U.S. business-cycle fluctuations. Hence, the early name “real
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business cycle” models.  Later work, however, broadened the approach to allow for rich

demographic structures, imperfect competition, and sticky prices (and, hence, real effects of

monetary shocks), and much else; the papers collected in Cooley (1995) offer a good overview. 

Ultimately, again, the essence of the new approach is not about whether the shocks that drive the

cycle are real or monetary, whether prices are flexible or sticky, or whether competition is perfect

or imperfect, but rather about the way macroeconomic questions should be approached.

The earliest and still rapidly developing strand of the DSGE literature makes use of

simple “linear-quadratic” models, in which agents with quadratic preferences make optimizing

decisions in environments with linear production technologies. Linear-quadratic models are

surprisingly more flexible than a superficial assessment might indicate; they nest a variety of

popular and useful preference and technology structures. Linear-quadratic models are also

convenient, because a large literature provides powerful methods for solving, analyzing, and

forecasting with them. Moreover, it turns out that optimizing behavior within linear-quadratic

economic models implies decision rules, such as those that govern consumption or investment

behavior, that are stochastic linear functions of other variables. In particular, the decision rules

conform to the great workhorse nonstructural model, the vector autoregression, subject to

restrictions arising from theory. The result is a marvelous union of modern macroeconomic

theory and nonstructural time-series econometrics, paving the way for a new structural

econometrics

Maximum likelihood methods are central to linear-quadratic DSGE modeling and trace to

the important early work of Hansen and Sargent (1980); the modern approach is to construct and

maximize the likelihood function using a state-space representation in conjunction with the
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 See, for example, Rust (1996) and Judd (1998), who describe and contribute to the7

impressive advances being made for solving nonlinear-quadratic stochastic dynamic
programming problems.

Kalman filter. Initially, maximum likelihood estimation was challenging in all but the simplest

cases, but recent improvements in numerical algorithms and computing power have begun to

make estimation and forecasting with linear-quadratic DSGE models workable for routine

analysis and forecasting. Hansen and Sargent (1998) provide a powerful overview, synthesis, and

extension of linear-quadratic DSGE modeling; interestingly, chapter drafts circulated for a

decade before the authors finally let go, as the furious pace of advancement necessitated

continuous reworking and extending of the manuscript.

Kydland and Prescott (1982) started a distinct, but intimately related and equally

important, strand of the DSGE literature. Two key features differentiate their product. First,

Kydland and Prescott do not require that preferences be quadratic and technology be linear;

instead, they use nonlinear-quadratic models that are (arguably) more natural. Nonlinear-

quadratic models are challenging to solve, and the Kydland-Prescott program spurred a great deal

of important research on numerical and computational aspects of model solution.  One7

interesting outcome of that research is that although nonlinear-quadratic models don’t have tidy

vector-autoregressive systems of decision rules, they nevertheless often have decision rules that

can be accurately approximated by vector autoregressions.

Second, Kydland and Prescott acknowledge from the outset that their models, like all

models, are false, and they recognize that traditional econometric estimation procedures, such as
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 The reasoning is simple. Loosely speaking, under correct specification, Gaussian8

maximum likelihood estimates converge to the true parameter values as the sample size grows;
hence, the estimated model converges to the true model, which is the best model to use for any
purpose. Under misspecification, however, the parameters can’t converge to the “true” values,
because an incorrect model has been fitted. Instead, the parameters converge to values that make
the fitted model the best approximation to the data, where the measure of goodness of
approximation is induced by the estimation procedure. The key insight is that, under
misspecification, the best approximation for one purpose may differ from the best approximation
for another purpose. The measure of goodness of approximation associated with Gaussian
maximum likelihood estimation is one-step-ahead mean squared forecast error. Thus, if the
model is to be used for one-step-ahead forecasting, and if mean squared error is the relevant loss
function, Gaussian maximum likelihood estimation is a logical choice. If, on the other hand, the
model is to be used for another purpose, such as four-step-ahead forecasting, Gaussian maximum
likelihood estimation is less appealing.

 Important exceptions exist, however, such as McGrattan, Rogerson, and Wright (1997),9

who estimate nonlinear-quadratic DSGE models by maximum likelihood methods.

Gaussian maximum likelihood, may lose some of their appeal in such situations.  Partly for that8

reason, and partly because of the sheer difficulty, nonlinear-quadratic DSGE modelers often

eschew formal estimation in favor of less structured “calibration” methods, as described in

Kydland and Prescott (1996).  Calibration means different things to different people, but the9

central idea is learning about the properties of a complicated DSGE model, and attempting to

assess its agreement with the data, based on simulations of the model economy. The parameters

underlying the simulated model economy are typically set informally, sometimes by statistical

considerations, such as generating realistic amounts of volatility in observed variables;

sometimes by economic considerations, such as producing “reasonable” steady-state behavior;

and sometimes by appealing to previous empirical studies.

Calibration is the natural response of economic theory to the computer age; hence, the

commonly used synonym “quantitative economic theory.” Calibration, however, fails to provide

a complete and probabilistic assessment of agreement between model and data and therefore fails
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 See also Hansen and Heckman (1996), in the same symposium, the lead paper in which10

is Kydland and Prescott (1996).

to deliver the goods necessary for forecasting with DSGE models. Econometric discontent based

on recognition of that fact has been simmering for some time and is expressed forcefully by Sims

(1996) in the Winter 1996 symposium on calibration and econometrics in the Journal of

Economic Perspectives.  The growing list of such symposia includes a special issue of Journal10

of Applied Econometrics (see the introduction by Pagan, 1994) and an Economic Journal

“Controversy” section (see the introduction by Quah, 1995).

If DSGE models are to be used for forecasting, formal econometric analysis is desirable

for at least two reasons. First, forecasting is intimately concerned with the quantification of the

uncertainties that produce forecast errors. Accurate assessment of such uncertainties is key, for

example, for producing credible forecast confidence intervals. Calibration methods, unlike

probabilistic econometric methods, are ill-suited to the task.

Second, simply using a priori “reasonable” parameter values, although useful as a

preliminary exercise to gauge agreement between model and data, is not likely to produce

accurate forecasts. For example, it might be commonly agreed that a technology shock is likely to

be serially correlated, and for purposes of a preliminary calibration exercise, we might adopt a

simple first-order autoregressive scheme and set the serial correlation coefficient to an arbitrary

but “reasonable” value, such as .95. But the first-order autoregressive process might be an

oversimplification of reality, and even if adequate, the serial correlation coefficient that

maximizes forecast accuracy might be, say, .73, not .95. Although such details might make little

difference to a qualitative analysis of the model’s properties, they are likely to make a major
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 Nevertheless, if calibration and Gaussian maximum likelihood estimation were the only11

strategies available for parameterizing a serious DSGE forecasting model, the choice would
probably not be difficult:  maximum likelihood estimation appears preferable, because (a) it
enables probabilistic inference, (b) recent improvements in computing and algorithms are making
implementation less tedious, especially in the linear-quadratic case, and (c) although the measure
of goodness of approximation associated with Gaussian maximum likelihood estimation is one-
step-ahead mean squared forecast error, which may not be appropriate in all situations—such as
when interest centers on longer-horizon forecasts—short-horizon forecasts often are of interest.

difference for forecast accuracy. In short, accurate forecasting demands quantitative precision.

The upshot is that for forecasting we need to take seriously the “fit” of DSGE models and

search for best-fitting parameters. Moreover, we need estimation methods that are tractable yet

capable of delivering probabilistic inference, and we need to take misspecification seriously. 

Calibration and maximum likelihood estimation meet some, but not all, of those goals. 

Calibration is tractable and takes misspecification seriously, but it is not probabilistic. Maximum

likelihood is probabilistic, but it is often challenging to implement and may not take

misspecification seriously enough.11

The choice set, however, now includes a number of procedures other than calibration and

maximum likelihood; in particular, new estimation procedures are being developed that attempt

to find a middle ground. The basic idea is to explore goodness-of-fit measures other than the one-

step-ahead mean squared prediction error measure implicit in Gaussian maximum likelihood;

there are a variety of ways to proceed. Sims and his co-authors, including Leeper and Sims

(1994), Leeper, Sims and Zha (1996), and Sims and Zha (1996), use a strategy based on

examining the entire likelihood function, rather than just its maximum. Christiano and

Eichenbaum (1992) match selected moments of real macroeconomic data and data simulated

from a DSGE model. In similar fashion, Canova, Finn, and Pagan (1994) match vector
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 The work of Sims and his coauthors has already reached that point.12

autoregressions, Rotemberg and Woodford (1997) match impulse-response functions, and

Diebold, Ohanian, and Berkowitz (1997) match spectra. Finally, Rotemberg and Woodford

(1996) and Diebold and Kilian (1997) develop procedures that enable us to assess agreement

between model and data predictability at various horizons of interest. 

If structural modeling and forecasting have come a long way, they still have a long way to

go; in closing this section, it is tempting to comment on a few aspects of their likely future

development. DSGE theory will continue to improve and will begin to take certain aspects of

reality, such as heterogeneity, more seriously. The stochastic dynamics of driving variables, such

as technology shocks, will be similarly enriched to reflect recent developments in nonstructural

modeling, such as the possibility of regime switching and to allow for multiple sources of

uncertainty, including measurement error. The resulting models will have approximate

representations as VARs with factor structure, possibly involving cointegration, as in King,

Plosser, Stock, and Watson (1991), and possibly with regime switching, as in Diebold and

Rudebusch (1996) and Kim and Nelson (1998a, 1998b). Formal econometric procedures will be

used to diagnose possible model inadequacies, as in Chow and Kwan (1997).

One might expect the scale of DSGE forecasting models to grow over time. That is likely

to happen, and current models that determine, for example, three or four variables in equilibrium,

are likely to evolve into richer models that determine, say, eight or10 variables in equilibrium.  12

But the expansion in scale is likely to stop there, for two reasons. First, the demise of the large-

scale models heightened professional awareness of the fact that bigger models are not necessarily
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 Keep It “Sophisticatedly Simple.”13

 For an extensive discussion, see Doan, Litterman, and Sims (1984). The Bayesian14

vector autoregressive tradition continues to progress, as, for example, with the work of Sims and
Zha (1997), who develop methods applicable to large systems.

better, an idea memorably enshrined in Zellner’s (1992) KISS principle.  Second, in contrast to13

models in the system-of-equations tradition, which are typically estimated equation-by-equation,

then assembled in modular fashion, the nature of DSGE models requires that their parameters be

jointly estimated, which limits the complexity of the models that can be entertained.

Last and not least, shrinkage will likely emerge as a key component of estimation

techniques for DSGE forecasting models. Shrinkage refers to the idea of coaxing, or “shrinking,”

parameter estimates in certain directions. Shrinkage can be implemented using Bayesian methods

to coax parameter estimates away from the likelihood maximum and toward the prior mean. It

seems obvious that shrinkage in a “correct” direction will likely improve forecast performance. 

Less obvious, but equally true, is the insight that even shrinkage in “incorrect” directions can

improve forecast performance, by drastically reducing forecast error variance at the potentially

low price of a small increase in bias.

Shrinkage has a long history of productive use in nonstructural modeling and forecasting. 

For example, it has long been known that vector autoregressions estimated using Bayesian

shrinkage techniques produce forecasts drastically superior to those from unrestricted vector

autoregressions. The “Minnesota prior,” a simple vector random walk, remains widely used.  14

Shrinkage has an equally bright future in the new structural modeling and forecasting. Shrinkage

is a potentially tailor-made device for estimating potentially misspecified DSGE forecasting

models, because, as we have seen, DSGE theory essentially amounts to restrictions on vector
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autoregressions. At one extreme, we can ignore the theory and forecast with an estimated

unrestricted vector autoregression (no shrinkage, loosely corresponding to a Bayesian analysis

with a diffuse prior). At the other extreme, we can directly impose the theory and forecast with a

restricted vector autoregression (complete shrinkage, loosely corresponding to a Bayesian

analysis with a “spiked” prior). Intermediate cases, corresponding to forecasting with vector

autoregressions estimated with various informative, but not spiked, priors, are potentially more

interesting. First, we may use statistically oriented priors, such as the familiar Minnesota prior,

which shrinks toward a vector random walk. Second, we may use statistically oriented, but

theory-inspired, priors, such as one corresponding to factor structure. Third, we may use DSGE

theory-based priors, as in Ingram and Whiteman (1994), to coax the estimates in directions

implied by an explicit economic theory, without forcing the theory on the data.

4.  Concluding Remarks

In a recent New York Times article entitled “The Model Was Too Rough: Why Economic

Forecasting Became a Sideshow,” economics writer Peter Passell noted that “Americans held

unrealistic expectations for forecasting in the 1960's—as they did for so many other things in that

optimistic age, from space exploration to big government...” Our expectations for forecasting

were quite appropriately revised downward in the 1970s and 1980s, and the ensuing era of

humility has been good for all. The new humility, however, is not symptomatic of failure, just as

the bravado of the 1960s was not symptomatic of success.

As the 1990s draw to a close, we find ourselves at a critical and newly optimistic

juncture, with the futures of structural and nonstructural forecasting very much intertwined. The

ongoing development of nonstructural forecasting, together with the recent developments in
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dynamic stochastic general equilibrium theory and associated structural estimation methods,

bode well for the future of macroeconomic forecasting. Only time will tell whether linear-

quadratic or nonlinear-quadratic approximations to the macroeconomy are the best approach for

practical macroeconomic forecasting, but regardless, the seeds have been sown for a new

structural econometrics and structural econometric forecasting, a modern and thorough

implementation of the Cowles vision. The new structural econometrics is emerging more slowly

than did the earlier wave following Keynes, because the baby was almost thrown out with the

1970s bathwater: the flawed econometrics that Lucas criticized was taken in some circles as an

indictment of all econometrics. It has taken some time to get on with macroeconometric work,

but progress is evident.

The hallmark of macroeconomic forecasting over the next 20 years will be a marriage of

the best of the nonstructural and structural approaches, facilitated by advances in numerical and

simulation techniques that will help macroeconomists to solve, estimate, simulate, and yes,

forecast with rich models. Moreover, related developments will occur in a variety of fields well

beyond macroeconomics. It’s already happening, and in some cases, progress has been under way

for years, as evidenced, for example, by the recent literatures in industrial organization (e.g.,

Ericson and Pakes, 1995), labor economics (e.g., Eckstein and Wolpin, 1989; Stock and Wise,

1990; Rust, 1994), public economics (e.g., Rios-Rull, 1995), agricultural economics (e.g., Rosen,

Murphy and Scheinkman, 1994), health economics (e.g., Gilleskie, 1997), development

economics (e.g., Rosenzweig and Wolpin, 1993), environmental economics (e.g., Rothwell and

Rust, 1995), and international economics (e.g., Backus, Kehoe and Kydland, 1994).
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