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Abstract

Optimal monetary policy for an economy with seasonal fluctuations and a
cash-in-advance requirement on the purchase of consumption goods is stud-
ied. The short delay in the availability of newly acquired funds for consump-
tion purchases (the hallmark of cash-in-advance models) typically makes the
seasonal steady state inefficient. Monetary policy can overcome this ineffi-
ciency induced by the payment-system friction by keeping nominal interest
rates constant over the seasons. An analytical model is also presented to
explore the effects of seasonal smoothing of nominal interest rates on the
seasonal amplitude of other, closely related, variables.
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1 The Seasonal Monetary Policy Puzzle

Seasonal fluctuations in economic activity result in seasonal variations in the
demand for money. Generally speaking, most central banks follow a policy of
accommodating seasonal movements in the demand for money. The growth
rate of money supply is raised when the demand for money is seasonally
high and lowered when that demand subsides. Since seasonally high money
demand, if not accommodated, leads to an increase in nominal interest rates,
such a policy is rightly seen as one that reduces seasonal fluctuations in
nominal interest rates.!

Despite the prevalence of seasonal monetary policy, the literature on the
appropriate stance of monetary policy toward seasonal fluctuations in money
demand is surprisingly sparse. The only authors to discuss this issue in any
depth are Mankiw and Miron (1991).2 For the most part, Mankiw and Miron
focus on the effects of seasonal monetary policy in a sticky-price IS-LM model,
but they do touch upon the role of seasonal monetary policy when prices are
assumed to be flexible.

Their brief discussion of effects of seasonal monetary policy for the flexible-
price case is carried out in the context of a model in which money is superneu-
tral. They argue that such a model implies that welfare is improved by a
policy that keeps the nominal interest rate (rather than the money supply)
constant over the seasons. The key idea underlying their argument is the
one familiar from Friedman’s discussion of the optimum quantity of money,
namely, that lower nominal interest rates increase welfare by reducing the
economy’s need to economize on cash. By lowering nominal interest rates at
a time when the demand for cash is high and raising them at a time when
the demand for cash is low, a policy that smooths seasonal fluctuations in
nominal interest rates will raise welfare.

IThe central bank’s seasonal smoothing of nominal interest rates has been documented
for the U.S. (Diller (1969), Shiller (1980), Barsky and Miron (1989), among others), for
a group of OECD countries, and Japan (Beaulieu and Miron (1990)). Still, such policies
are not universal. For instance, short-term interest rates in India display pronounced
seasonality.

2In a different vein, researchers have explored the role of U.S. seasonal monetary pol-
icy in eliminating bank runs and financial panics in turn-of-the-century United States
(see, among others, Miron (1986), Calomiris and Gorton (1990), and Champ, Smith, and
Williamson (1996)).



However, a justification of seasonal monetary policy based on the logic of
the optimum quantity of money is not entirely convincing because it carries
with it the awkward implication that the optimal nominal interest rate is
zero. From the perspective of this logic, the fact that central banks stand
ready to eliminate seasonality in nominal interest rates but do not display
any comparable readiness to reduce nominal interest rates on short-term
risk-free assets to very low levels is a puzzle. Why is it sensible for central
banks to eliminate the additional transaction costs induced by seasonality
in nominal interest rates but not the transactions costs induced by positive
(and for some countries, high) nominal interest rates??

Mankiw and Miron suggest two possible resolutions to this puzzle. One
resolution, which they do not pursue in detail, is along lines familiar from
the optimal taxation literature. Since inflation generates seignorage revenue,
a government that can levy only distortionary taxes might find it optimal
to keep nominal interest rates positive. Thus, a central bank might well
eliminate seasonality in interest rates to reduce transactions costs but, for
revenue reasons, balk at reducing nominal interest rates to zero.

Since elimination of seasonality in nominal interest rates is unlikely to
have important effects on government revenue, this suggestion appears plau-
sible. But, to be persuasive, the suggestion should factor in the possible
deadweight loss from distortionary taxation when the inflation tax rate (i.e.,
the nominal interest rate) is held constant in the face of seasonal fluctuations
in fundamentals. The issue is this: Under what conditions do Ramsey-style
optimal tax rules prescribe constant tax rates over time when there are fluc-
tuations (seasonal or otherwise) in preferences and technology? Existing
derivations of optimal tax rules for a monetary economy do not shed light
on this issue because they assume either that all fundamentals are constant
over time (see the discussion in Woodford (1990)) or that government expen-
diture is the only factor that varies over time (Chari, Christiano, and Kehoe
(1993)).* Furthermore, it is not clear that existing derivations of optimal

3Note, however, that some central banks do pay interest on bank reserves and so
eliminate some of the transactions costs induced by positive nominal interest rates. Also,
in recent years several central banks (e.g., Canadian and Mexican) have eliminated reserve
requirements on commercial bank deposits. This move may have been motivated by a
desire to reduce transactions costs.

4Mankiw and Miron cite Mankiw’s (1987) article on the optimal collection of seignorage
in support of their assertion. However, the focus of that paper did not require a derivation



tax rules are appropriate for the problem at hand because it is unrealistic to
assume that income tax rates can be varied over the seasons. Thus, the rel-
evant optimal taxation problem is a “third-best” one where the government
can change the inflation tax rate (i.e., the nominal interest rate) over the
seasons but not the income tax rate. If it turns out that these optimal tax
considerations dictate some seasonality in nominal interest rates, then the
deadweight loss induced by a policy of seasonal smoothing of interest rates
would have to be set against the benefit from reduced transactions costs.
Since these (potential) costs and benefits are likely to be of a similar order of
magnitude, the prospect of justifying seasonal monetary policy along optimal
taxation lines is uncertain.

The second resolution suggested by Mankiw and Miron, and the one they
stress in their paper, is based on the possibility that a central bank is more
efficient in bringing about seasonal changes in the quantity of real money
supply than the market. The idea is this: If a central bank did not increase
the nominal money supply in the high demand season or lower it in the low
demand season, the economy would attempt to “produce” the desired change
in real balances through changes in the price level in the opposite direction.
The price level would tend to fall in the high money demand season and tend
to rise in the low money demand season. But if strategic considerations (or
physical costs of changing prices) make firms reluctant to vary prices, the
required seasonal adjustment in the real value of the money supply may not
happen. While the idea is plausible, Mankiw and Miron do not provide a
model that demonstrates this possibility.

In this paper, a different resolution is offered for the seasonal monetary
policy puzzle. The basic point is this: If it were the case that some benefit of
a seasonal monetary policy rose from a factor unconnected with lowering of
transactions costs, then central banks’ readiness to eliminate seasonal fluc-
tuations wouldn’t seem at odds with their reluctance to reduce transactions
costs (by lowering nominal interest rates to very low levels). The first (of two)
objective of this paper is to point out that one doesn’t have to look far for
a monetary model with such a property: a cash-in-advance monetary model
of the type analyzed in Stockman (1981), and in more depth by Abel (1985),
does the trick. In this type of a model, the monetary equilibrium with sea-

of the welfare cost of inflation from primitive considerations. Thus, arguments presented
there are suggestive but not definitive.



sonal fluctuations in fundamentals (preferences and technology) is typically
inefficient, but this inefficiency is not a consequence of positive nominal in-
terest rates. It derives, instead, from an intertemporal distortion created by
the interaction of seasonal fluctuations in fundamentals and the delay in the
availability, for consumption purposes, of newly acquired funds. Monetary
policy can overcome this inefficiency induced by the payment-system friction
by keeping the nominal interest rate constant over the seasons. Once the
nominal interest rate is constant, there is no further welfare gain to reducing
it to zero.

The other objective of this paper is to present a parametric version of
this model for which the seasonal steady state can be analytically worked
out. The aim is to trace the full general equilibrium consequences of moving
from a policy that keeps the money supply constant over the seasons to an
optimal policy that keeps the nominal interest rates constant. In particular,
the focus is on how the removal of seasonality in nominal interest rates affects
the seasonality in other variables, such as the real interest rate and the price
level.

2 Seasonality in a Cash-in-Advance Monetary
Model

This section describes a cash-in-advance model of the type presented in Stock-
man (1981), augmented with seasonal fluctuations in fundamentals.

Preferences
The lifetime utility function of the representative agent is:

U(c,co,...) = ioﬁtu(ct, St) (1)

where ¢; is the single consumption good available in the economy and s; is
an indicator variable that varies with the seasons.



Technology

The technology for producing the single good is:

Y = f(ku, 51) (2)

where y; is the output in period ¢, and k; is the beginning of period capital
stock. Technological opportunities are also affected by the season. Holding
fixed s;, f is assumed to be differentiable and strictly concave in k;.

The evolution of s; is periodic:

St = St+J (3)

where J > 1 is the length of the seasonal cycle. J is 12 if a period is a month,
J is 4 if a period is a quarter, etc.

The technology for accumulating capital over time is:

kt+1 == Z‘t —|— (]_ - 6)]{?,5 (4)

where i; is gross investment in period ¢ and ¢ is the rate of depreciation of
capital.

Markets

As is typical in cash-in-advance models, there is a specific sequence of
allowable trades within a period. The agent enters a period with a portfolio
of currency, privately issued debt, and capital stock. In the first half of
the period he participates in a centralized asset market where he can adjust
his portfolio of financial assets at competitively determined prices. In the
second half of the period he uses his stock of capital to produce output and
participates in the goods market simultaneously as a buyer and a seller. His
purchase of consumption goods is constrained by the real value of his currency
holdings at the end of the first half of the period. His purchase of investment
goods is not subject to this constraint. The currency accumulated from sale
of his goods cannot be used for purchases until the next period. Therefore,
he exits the period with a portfolio of currency, privately issued debt, and a
new stock of capital.



Monetary Authority

It is assumed that the monetary authority maintains a constant stock
of money supply. Later on, we allow it to alter the money stock through
lump-sum taxes.

Individual Optimization

With only one agent, private indebtedness must be zero in equilibrium.
To conserve on notation, the agent’s optimization problem is stated without
reference to the centralized asset market. Once the equilibrium path of con-
sumption and price level are determined, the asset market can be put back
into the analysis and the “no-trade” condition used to infer the equilibrium
path of real and nominal interest rates.

Thus, the agent’s optimization problem reads:
o
max Z Bu(es, st)
t=0

subject to:

e+ My 1 /P + ki < f(keyse) + (1 —8)ky + M/ P,
¢ < Mt/Pt

0< ki

0< M

0<¢

given { P}, {s:}, My and kg .
Anticipating the fact that equilibrium consumption, money holdings, and

capital stock must be positive every period, the first order necessary condi-
tions reduce to the following:

uy (e, St) = A+ p (5)
A = B[P/ Prya][Ae1 + prega] (6)
A = Blf1(ker1, se41) + (1 = 0)] Mg (7)



Market Balance

The sequences {c¢;}, {ki1}, and {M;;1} must satisfy the following two
market clearing conditions

My, =M (8)
e+ keyr = f(keyse) + (1= 6)ke (9)

For future reference, note that the nominal interest rate in the (beginning-
of-period) asset market is implicitly defined by the condition that the equi-
librium marginal rate of substitution in consumption be equal to the real
interest rate:

ui(cy, 8¢) = B(1+ Rev1)(Pr/ Pry1)ua (Cest, Se41) (10)

Optimal Allocation

An optimal allocation is a pair of sequences, {¢;} and {k;,1}, that solve
the following programming problem:

(o)
max Z Blu(cy, s¢)
t=0

subject to:

e+ ki1 < f(ke,s0) + (1 —0)ky
0 < ki
0 S Ct

given {s;} and k.

Evidently, an optimal allocation takes only physical resource constraints
into account. Its relevance to the monetary economy is that the monetary
authority can implement this allocation (in the monetary economy) if it has
access to non-distorting taxes. This claim is verified below.



The two necessary conditions for an allocation to be optimal are:

U1(Ct, St) = ﬁ[fl(kt+1a 8t+1) + (1 - 5)]U1(Ct+1, St+1) (11)
Cct + kt+1 = f(k’t, St) + (1 - 6)]43,5 (12)

In addition, if the following transversality condition is satisfied, the three
conditions together are sufficient as well:

Him B (o, se1)kess =0 (13)

3 Steady States

We focus on equilibria that have a periodicity of J, i.e., equilibria in which
the equilibrium path of any endogenous variable z; satisfies z; = 2, ;. To
begin with, we study economies for which J = 1. In this case there is no
seasonal variability in s at all, and the corresponding equilibrium is referred
to as the steady state. For economies with J > 1, the periodic equilibrium is
referred to as the seasonal steady state.

The Steady State

Since consumption is constant in a steady state, equation (5) implies that
At + gt is constant. Since the price level is constant, equation (6) implies that
A¢ is constant. Hence p; is constant. Since consumption is positive, both A
and p, are positive.

Equation (7), along with the constancy of \;, implies that the constant
level of capital satisfies the following condition:

f(k,s)=1/8—1+6 (14)
Then equation (9) implies that the constant level of consumption satisfies

c= f(k,s)— ok (15)

Since the multiplier p; is constant and positive each period, the cash-in-
advance constraint binds in every period. Hence, the constant price level
satisfies

P = My/c (16)



Efficiency of the Steady State

We now turn to the issue of whether the steady state is efficient. We ask,
if starting with an initial capital stock of k (the capital stock in the steady
state) there is an optimal allocation that coincides with the consumption and
capital stock sequence in the seasonal steady state.

By substituting ¢ and & in equations (11) and (12) we see that the allo-
cation from the steady state satisfies the necessary and sufficient conditions
for an optimal allocation. Thus the steady state is efficient. The fact that
the steady state is efficient when the cash-in-advance constraint applies only
to purchase of consumption goods was noted in Stockman (1981).

The Seasonal Steady State with Small Seasonal Fluctu-
ations

We now consider the case where J > 1. The analysis of the seasonal
steady state is more difficult because the cash-in-advance constraint need
not bind every period. However, since the cash-in-advance constraint binds
every period in the steady state, it will continue to do so in the seasonal
steady state provided the seasonal fluctuations in preference and technology
are small. This section considers only small seasonal fluctuations and assumes
that the cash-in-advance constraint binds every period.

Denote the periodic values ¢, k,and P by c;, k;, and P;, where j = 1,2, ...J.
Equations (6) and (7) now imply:

<Pij+2> <U1(Cj+1,8j+1)> = B(fi(kji1,85401) + (1 —8))for j =1,2,..0

Pj2+1 u1(Cjia, Sjta)
(17)

where the indices J + 1 and J + 2 refer to the indices 1 and 2.

Since the cash-in-advance constraint is assumed to bind every period,
equation (8) implies:

Pj = Mo/Cj for j = ].,2, o (18)



Equation (17) can then be written as:

( o ) (m(CﬂLSHI)) = Bf1(kjs1, 8541) + (1 = 6) for j =1,2,..J (19)

cjcjvz) \u1(Cjr2, Sjr2

The goods market clearing condition is:

¢+ ki1 = f(kj,85) + (L= 0)k; for j =1,2,..J (20)

In principle, equations (19) and (20) provide 2.J equations to determine the
2J unknowns {c¢;} and {k;} and equation (18) can be used to determine .J
remaining unknowns, P;.

Inefficiency of the Seasonal Steady State

We now turn to the issue of the efficiency of a seasonal steady state.
Once again, we ask if starting in any season j, the optimal program with
ko = k; coincides with the ensuing (periodic) consumption and capital stock
sequence in the seasonal steady state.

For the seasonal steady state to be optimal, ¢; and k; must satisfy these
conditions that follow from equations (11) and (12):

(M> =B (fi(kjs1,8501) + (1= 6))for j=1,2,..J (21)
u1(Cjy1, 8541)

¢+ ki1 = f(kj,85) + (L= 0)k; for j =1,2,..J (22)

Obviously, the second set of conditions is satisfied by the seasonal steady
state. For the first set of conditions to be satisfied, it must be the case that:

CGar \ (ualeian,sin) | _ [ wales,s)) (23)
cjciyz ) \ui(cjt2, Sjt2) u1(Cjy1,8541)

In other words, it must be the case that:

(Ul (Cj+1, 3j+1)cj+1)2
(u1(cj, s5)ci)(ur(cjpa, $j12)ci42)

=1 (24)

10



This condition will be satisfied if the s’s and the ¢’s are all constant, which
agrees with the fact that the steady state is efficient and it will be satisfied
if uy(cj,5)c; is a constant for all j, which happens if u(c;, s;) is given by
A(s;) + Bln(c;).5 Therefore, in this environment, the steady state is always
efficient, but the seasonal steady state typically is not.

The fact that the seasonal steady state typically does not coincide with
the allocation from the programming problem clarifies a closely related re-
sult in the cash-in-advance literature. Abel (1985) has noted that in an
equilibrium in which the cash-in-advance constraint on consumption binds
every period, the transition path to the monetary steady state typically does
not coincide with the transition path to steady state in the programming
problem. The result derived above shows that the seasonal steady state of a
monetary equilibrium in which the cash-in-advance constraint on consump-
tion binds every period need not coincide with the seasonal steady state of
the programming problem.

4 Optimal Seasonal Monetary Policy

This section investigates the monetary policy rule that implements the effi-
cient allocation. The monetary authority alters the money supply through
lump-sum taxes or transfers, denoted by Hy, that take place in the first half of
a period. The budget and liquidity constraints in the optimization problem
of the representative agent are replaced by

et + Myp1 /Py + kepr < f(ke,se) + (1 —6)ky + My /P, + Hy /P,
¢ < M;/P,+ Hy/ P,

It is easily verified that the first-order necessary conditions are again those
given by equations (5) - (7). The only other change is that the money market
clearing condition now becomes

Mt+1 - Mt + Ht (25)

5Actually, since the above calculations are valid for small seasonal fluctuations, the
requirement is that the utility function be locally logarithmic for values of ¢ around the
steady state value.

11



To fix ideas, suppose that the economy is in an inefficient seasonal steady
state with a constant stock of money. Unbeknown to agents, the government
appoints a “monetary commission” to recommend the best monetary policy
starting period j = 1. Thus, members of the commission know that at the
start of the new policy, the beginning-of-period capital stock will be k;.What
path of money supply should the commission recommend?

The commission would want to implement the optimal allocation start-
ing from a capital stock of k;. This allocation can be found by solving the
programming problem described earlier for an initial capital stock of k. Let
c; and K denote the solution. Since this solution will not start out being
periodic, but will become so only in the limit, the time subscript ¢ rather
than j is used.® Then, equation (11) implies:

(e, s0) = B (Fulkirs se) + (1= 6)) un(efiy, se41) (26)

Furthermore, if this allocation is to be a monetary equilibrium, then equa-
tions (5) and (7) imply:
At + pe = ua(cf, 8¢)

and
A =P <f1(k’f+17 i) + (1= 5)) At41 (27)
Taken together, these three equations imply:

At + e A1t g

= 28
At At+1 (28)

Next, note that the interest rate on nominal bonds in the monetary equi-
librium supporting the optimal allocation must satisfy:

ui(c;, s¢) = B(1+ Rig1) P/ Prpaua (cfyy, Se41) (29)
Then, equations (5) and (6) imply:

ui(cf, 8t) — pe = B(Ly/ Pry1)ur(cyy 1, Se41) (30)

which, using equation (29), gives:

SFor a proof of the statement that (for small seasonal fluctuations) the allocation con-
verges to a seasonal steady state, see Chatterjee and Ravikumar (1992).

12



Ri1 /(14 Riga) = pe/ua(cq, s¢) (31)
Rearranging the LHS and using equation (5) on the RHS yields:

L= [(L4 Rern)] ™ = e/ (e + o) (32)

or, equivalently:

(14 Repr) ™ = X/ (e + Ao) (33)
From equation (28) it follows that R; must be constant over time.

Thus, a necessary condition for implementing the optimal allocation is
that the nominal interest be constant. The commission would recommend
moving from a policy that keeps the money supply constant over the seasons
to one that keeps the nominal interest rate constant.

The constancy of the nominal interest rate is the only requirement of
optimality. It does not matter at what level the nominal interest rate is set.
To see this, suppose that the commission recommends keeping the nominal
interest rate constant at R* > 0. Then equation (29) implies that the (gross)
inflation rate along the optimal path must be:

B+ R*)ui(cfiy, S41)
ul(@?v St)

P
P

= (1 + P;:k+1) =

Next, note that equation (31) implies that the cash-in-advance constraint
binds along the optimal path. Therefore, the path of money supply that
supports the optimal allocation solves the difference equation:

Mt*+1 =(1+ P:Jrl)(Mt*/C?)

where the money stock at the start of the period in which the optimal al-
location is first implemented is given by history. Given this path of money
supply, the equilibrium path of the price level can be inferred from the bind-
ing cash-in-advance constraint:

Bl = M;/c;

Clearly, the collection {c}, k;, M, P;;, R*} satisfies all conditions of a mone-
tary equilibrium. Since the choice of nominal interest rate was arbitrary, it

13



follows that optimality does not require that the nominal interest rate be set
at some particular level.

Why does the optimal monetary policy have this property? To see the
reason, note that an individual who accumulates an additional unit of capital
in period t without altering his consumption in period ¢ reduces his holding
of money balances at the beginning of next period by FP;. Against this loss in
money balances, the individual has additional income of P, 1 (f1(kti1, St41) +
1 — §). Because of the one-period delay in converting income into cash bal-
ances, this additional nominal income is worth [P, 1(f1(kit1,Se401) + 1 —
8)]/(1 + Ryy2) units of money. At an optimum, these quantities must be
exactly equal; otherwise, the individual would be carrying too little or too
much capital. Thus, individual optimization requires:

(14 Riyo) = (fr(kerr, 8e41) + 1= 6)Pa /By (34)

Using equation (10), the above condition may be re-written as:

;;1((02:;5:2)) = (fi(kis1,8t01) + 1 = 8)(Prv1/P) (Prya1/ Pryo) (35)

In contrast, in the optimal allocation, the marginal rate of substitution
between c¢;1and ¢y 9 is equated to the marginal product of physical capital
in period t 4+ 2 :

U (Coy1, Se41) = Bua(Cepo, Seg2) (f1(Firo, Ser2) +1—0) (36)

In general, the path of capital implied by equation (35) will not coincide with
the path implied by equation (36). However, if the path implied by equation
(35) also happened to satisfy the condition:

(fi(ker1, sev1) + 1= 6)(Prva/P)(Piy1/ Piv2) = (fi(keva, Se42) +1—9)

then the two paths would coincide. The above condition can be rearranged
to yield:

(1 + fi(kesr, se01) = 6)(Pra/P) = (1 + fi(kir2, sev2) — 6)(Prr2/ Pri1)

which states that the nominal interest rate in period ¢ + 1 be equal the
nominal interest rate in period t + 2.

14



Note that without the delay in converting income into cash balances, there
is no reason for equation (34) to hold and the rest of the derivation does not
follow. Thus, it is the delay in converting cash income into consumption that
is fundamental to the result that nominal interest rates must be smoothed
to guarantee efficiency.

The result that constant nominal interest rates guarantee efficiency for
this class of cash-in-advance models was first noted by Fuerst (1994), al-
though the idea was implicit in Abel’s paper. In particular, Abel noted the
difference between equations (35) and (36) but did not point out that the
difference vanished if nominal interest rates were constant in the monetary
economy. However, the significance of this result for the seasonal monetary
policy puzzle has not been noted before.

For the above result to be a persuasive justification of seasonal smoothing
of interest rates, one issue needs to be addressed. Observe that this result
applies to all types of fluctuations in preferences and technology, not just
seasonal fluctuations.” Thus, the implication of this class of models is that
nominal interest rates should be kept constant from one period to the next.
But what we see central banks actually doing is accommodating seasonal
pressures on the nominal interest rates but not necessarily ones perceived
to be non-seasonal. For instance, in the United States the Federal Reserve
typically lowers the short-term interest rate during recessions and raises it in
booms. While suggesting a reason for seasonal smoothing of nominal interest
rates, the model generates a different puzzle: Why don’t central banks keep
interest rates constant at all times?

One answer to this question is to say that the current central bank prac-
tice of moving interest rates in response to the cyclical phase of business
activity is misguided and that central banks ought to keep nominal interest
rates constant. There is, however, another answer. This answer notes that
the implication of this class of models for monetary policy is that central
banks should accommodate pressures on nominal interest rates that origi-
nate in shocks to fundamentals, i.e., shocks to technology and preferences.
Obviously, the model is silent on the correct response of monetary policy
to non-fundamental shocks such as shocks to beliefs about future business
conditions. Therefore, the appropriate conclusion to draw from this class

"For instance, Carlstrom and Fuerst (1995) exploit this result in a environment where
there are stochastic shocks to technology.

15



of models is that a central bank should accommodate nominal interest rate
pressures that stem from shocks that the bank is confident are fundamental.
In practice, this means accommodating seasonal shocks and, perhaps, shocks
that are clearly technological or preference-driven. Thus, the resolution of the
puzzle may simply be that central banks hesitate to view non-seasonal shocks
as purely fundamental and therefore do not feel impelled to smooth nomi-
nal interest rates in response to them. In contrast, they are confident that
seasonal pressures on interest rates have a fundamental source and therefore
smooth in response to them. The result is a short-term interest rate path
that displays (cyclical) variability but little or no seasonality.

5 The Effects of Optimal Seasonal Monetary
Policy: An Analytical Example

The previous section established that the cash-in-advance monetary model
provides a resolution to the seasonal monetary puzzle. This section explores
the impact of seasonal monetary policy on the seasonal behavior of other
variables. In particular, we are interested in seeing how the seasonal ampli-
tude on closely related variables, such as the real interest rate and the price
level, is affected by seasonal smoothing of nominal interest rates.

The model described in the previous section is too general to deliver sharp
predictions about the impact of a seasonal smoothing of nominal interest
rates on other variables. To make headway, the model needs to be specialized.
One possibility is to specialize it by choosing numerical analogs for model
primitives. An alternative is to alter it with a view to obtaining analytical
results. Both strategies are useful, but in this paper, the latter alternative is
explored.

To make the analysis interesting, the model is specialized to explore the
impact of seasonal monetary policy on a developing economy. The pre-
dominance of agriculture in these economies makes seasonality an important
source of fluctuations and the cash-in-advance constraint on the purchase of
goods is a reasonable approximation of payment arrangements in many devel-
oping countries. In keeping with the “developing economy” perspective, no
restriction on the size of seasonal fluctuations is imposed, since seasonal fluc-
tuations in agriculture can be very large. In this sense the model presented

16



below is more general.

The lifetime utility function is assumed to be:

cl}_"

> -1
Ule,c1,...) =D f (ﬁ) where 0 > 0 and # < 1 (37)
t=0

For o = 1, the momentary utility function is interpreted to be logarithmic.

The production function is assumed to be:

f(ke,s) =y - st (38)

where s; = 1 for ¢ even, and s; = 0 for ¢t odd. Thus the output stream is
exogenous; it is positive and equal to y in even numbered periods and zero
in odd numbered periods. In what follows, odd numbered periods will be
referred to as winter and even numbered periods as summer.

Since the output stream is exogenously given, the capital stock is to be
interpreted as inventories of goods. The inventory accumulation equation is:

ki1 = Aky +1i; where A < <1

Here, A is the fraction of goods left over after spoilage (in terms of the
notation of the previous section, A = (1 — 9)).

The first order conditions now read:

Ct_g =\ + L (39)
b

A= 0 2 (A1 + fre41) (40)
t+1

(41)

)\ = ﬂA)\t+1 fOI' t = 0,2,4, Ce
1 > BANy1 fort=1,3,5,...

Equation (41) reflects the fact that inventory holdings must be positive at
the end of the summer (otherwise consumption in winter will be zero) but
could be zero at the end of winter.

In addition to the individual optimization conditions, the sequences {c;},
{kt+1}, and {M;} must satisfy the following market balance conditions:

Cy — yt+Ak’t— kt+1 (43)
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As mentioned above, it is no longer assumed that seasonal fluctuations
are small (i.e., y could be considerably larger then 0). This means that the
liquidity constraint cannot be assumed to always bind. However, because the
periodicity of seasonal fluctuations is just 2, the seasonal steady state must
be one of three types: (i) the liquidity constraint binds only in the summer
(ii) it binds in both summer and winter, or (iii) it binds only in the winter.
It turns out that all three cases are possible, so the seasonal steady state is
solved for each case.

Seasonal Steady State When the Liquidity Constraint
Binds Only in the Summer

Denote the summer (winter) values of all endogenous variables by the
subscript s (w). Since the agent is unconstrained in winter, it follows that
ty = 0. Using equation (40), this implies that A\, = fBmsA,, where my =
P,/ P, is the anticipated real return on money between summer and winter.
However, equation (41) implies that A; = BAM\,,. Thus, 7, = A. Therefore, in
this case, the real return on money between summer and winter must equal
the return on inventories.

Using equation (39) and (40) for winter, and the fact that p,, = 0, implies
that ¢;,7 = B(Py/Ps)c;” = (8/m5)c;?. Therefore:

Csfew = (B/A)Y° (44)

Since m, = (1/75) = (1/A) > 1, it is clear that money dominates inventories
as a store of value between winter and summer and the agent will not carry
any inventories into summer. Therefore, the market clearing condition (43)
implies:

cw = Ay = ¢) (45)
Equations (44) and (45) can be used to solve for unique values of ¢, and c,,.

Finally, these values will constitute an equilibrium if the money market
clearing condition is satisfied. Since the agent is liquidity constrained in
the summer, it follows that P,c; = M. Hence Py, = M/cs. Since 7y =
A, it follows that P, = (1/A)M/cs. Now, money market equilibrium in
winter requires that P,c, < M. Thus, it requires that (1/A)c,/cs < 1.
Using equation (44), this requirement can be stated as (1/A) < (8/A)Y7.
Therefore, this particular seasonal steady state will arise only if the curvature
of the utility function is sufficiently low, i.e., o < In(A/3)/In A.
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Seasonal Steady State When the Liquidity Constraint
Binds in Summer and Winter

Since the agent is constrained in both seasons, ps > 0 and p,, > 0. Using
equations (39) and (40) for summer yields AG\, = Oms(Ay + pw), 1€, Ay =
(7w /A)( Ay + 1) - Using equation (40) for winter yields A, = (8/ms)(As+ ps)-
Using equation (39) for summer then gives:

2\ 1/e
== (5s) 10

Note that p,, > 0 in conjunction with ABA, = Bms(Ay + ) implies that
s < A. Also, ps > 0 implies that ¢, 7 > fmc,”. Using equation (46) this
implies that 7, > A/[3%. Therefore, in this case, the return on money must lie
in the open interval (A% A).

Once again, 7, (= 1/m,) exceeds 1.Thus, money dominates inventories
as a store of value between winter and summer and the agent will not carry
inventories into summer. Therefore, the goods market clearing is the same
as in equation (45).

Since the agent is liquidity constrained in both periods, the money market
clearing condition requires that Pscs = M = P,c,. This yields ¢,/c; =
P,/ P,, = ms. Therefore, equation (46) yields:

T = (AB)Y* ) (47)

Note that (A8)"® ?is a decreasing function of o over the range (0,2). It can
be solved for two values ojand o9 such that if ¢ lies in the interval (oq,09)
then 7y lies in the open interval (A3?, A). Clearly, o = In(A/3)/In A and
oy =In(AB?)/In(AB?) and 07 < 1 < 0.

Once the value of 7, has been obtained for a value of o between o; and
09, equations (45) and (46) can be solved for equilibrium values of ¢, and ¢,,.

Seasonal Steady State When the Liquidity Constraint
Binds Only in Winter

Since the agent is unconstrained in the summer, it follows that u, = 0.
Using equations (39) and (40) for summer gives ¢, 7 = fmyc,’ = As. Using
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equations (39) and (40) for winter yields A\, = (4/7s)c; . Using equation
(41) for summer yields Ay = BAM\,. Therefore, in this case m, = AS? and

Cuw 1/o

= (A3 48

- (a8%) (48)
Once again, note that s < 1 and hence (1/75) > 1. Therefore the agent

will not carry inventories into summer and the market clearing condition in

equation (45) applies. Equations (45) and (48) can be used to solve for the

unique equilibrium values of ¢, and ¢,,.

Since the agent is constrained in winter only, money market clearing re-
quires that P,c, = M. Therefore, P, = AB?*M/c,,. For money market bal-
ance in the summer, it is sufficient that ¢, P; < M. This requires that ¢s/c,, <
(1/(ApB?). Using equation (48), this requires o > In(AB%)/In(AB?) = 0.
Thus, this case will happen if the curvature of the utility function is suffi-
ciently high.

5.1 Key Properties of the Seasonal Steady State

The three cases worked out above correspond to a three-way partition of the
o space, with the low ¢ case corresponding to o < o7, the medium o case
corresponding to o € (07, 07), and the high o case corresponding to o > .
The following table displays the key properties of the seasonal steady state
with a constant money supply.

Table 1
Variable Low o Medium o High o
inventories [1+A(ﬁy/A)1/G] [1+A(Ag/wg)1/0] [HA(l/yﬂsA)l/a]
s A (AB)Y/(2=9) AB?
Cs/Cw (B/A)Ye (Ag/m)Me (1/AB)Ye

(1+ Ry) 1//3° 75/ AS? 1
(1+ Ry) 1 AYE 1/?
(1+7,) A/p? me /A Ap?
(14 7y) 1/A A/m? 1/Ap

There are several common themes across the three type of equilibria.
First, note that c,/c, is always greater than 1. Because it is costly to store
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goods over time and because utility is discounted (i.e., 3 and A are both less
than 1), the seasonality in output imparts a similar seasonality to consump-
tion.

Second, the value of 7, is always less than or equal to A. Thus, the nom-
inal price of goods is always higher in winter and the inflation rate between
summer and winter is at least 1/A. The lower bound on inflation between
summer and winter makes sense because if the inflation rate were to be any

lower, money would dominate inventories as store of value and no inventories
would be held.

Third, the real interest rate always reaches its seasonal low in the summer.
This is a reflection of the fact that consumption is highest in the summer:
the real interest rate must fall in order to sustain the relatively high level of
consumption.

The seasonal behavior of nominal interest rates varies across the three
cases. For o < 1, the nominal interest rate peaks in the summer, but for
o > 1 it peaks in the winter. For o = 1, there is no seasonality in interest
rates at all. Thus, one interesting implication of this environment is that the
seasonal pattern in real and nominal interest rates need not match.

Why is the curvature of the momentary utility function important for
the seasonal pattern of nominal interest rates? Note that in this model, the
nominal interest rate in the summer is given by:

1 { Cw 7 Py
— ) —=1+4+R,
b <cs> P, *

Comparing it to the situation where there is no seasonality, so that ¢, = c;
and Ry = R, seasonality makes c,, < c¢s and, holding prices fixed, lowers the
MRS between consumption in winter and summer. This MRS effect makes
R, < R,. But the movement in consumption makes P, > P,, which tends
to raise R, above R,,. In the case where ¢ is low (and consumption is very
substitutable over the seasons), the equilibrium change in the MRS is small
and consequently the price level effect dominates and the summer nominal
interest rate rises above the winter nominal interest rate. On the other hand,
when o is low (and consumption is not very substitutable over the seasons),
the change in MRS is large and the MRS effect dominates the price level
effect. In this case the winter nominal interest rate rises above the summer
nominal interest rate. For a developing economy (with low consumption
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levels), one would expect the intertemporal substitution in consumption to
be low and therefore o to be high. For such economies, the model suggests
that nominal interest rates should peak in the agriculturally lean season.

5.2 Key Properties of the Seasonal Steady State When
Nominal Interest Rates Are Smoothed

The seasonal steady state described in the previous section is generally in-
efficient for the same reasons the seasonal steady state was inefficient in the
general model. However, because agents do not accumulate any capital be-
tween winter and summer, the reason is less transparent in this model. As
before, the agent’s choice of inventory holdings (capital) is governed by the
equation myfu/(cwy = AB*W/(¢s)/ms where we have used the fact that both
the price level and consumption have a periodicity of 2. Now note that in the
efficient allocation u/(c;) = SAU/(¢,). From these two equations it is easily
verified that (i) equilibrium will be efficient only if the nominal interest rate is
constant across the seasons and (ii) this will happen without any intervention
only if 0 = 1, i.e., the utility function is In(c).

For this example, we can also determine the direction of inefficiency in
consumption. Clearly, there will be too much consumption in the summer
(i.e., too little inventory will be accumulated) if 72/Af is less than AS,i.e., if
(m/AB)? is less than 1. Similarly, there will be too little consumption in the
summer (i.e., too much inventory will be accumulated) if (m/Af3)? is greater
than 1. A glance at Table 1 shows that these two cases occur for o greater
than and less than 1, respectively.

The following table reports the allocation that comes about when the
government switches (unexpectedly) into a policy of keeping interest rates
constant over the seasons beginning in the summer. It is assumed that the
nominal interest rate is chosen in such a way that there is no trend in the
path of prices, i.e., the price level continues to remain periodic.
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Table 2

Variables Values When Seasonal Monetary Policy Is Optimal
Inventories Wyfj‘ml/a]
Cs/Cw (1/BA)°
(14+R,) = (1+Ry) 1/3
(14 ry) A
(1+7y) 1/AB?
s AS

The issue of interest is how an optimal seasonal monetary policy might
alter the seasonal amplitude in the real interest rate and the price level. In
particular, is it possible that the seasonal amplitude in these variables is
increased by a policy that smooths nominal interest rates? A comparison
of Table 1 with Table 2 shows that it is indeed possible for the seasonal
amplitude (measured as the ratio of the seasonal high to the seasonal low)
in other variables to rise with the seasonal smoothing of nominal interest
rates. The seasonal amplitude increases for the real interest rate when o < 1.
Recall that in the case where o < 1, there is too much inventory accumulated
in the seasonal steady state. Therefore, optimal monetary policy increases
consumption in the summer and reduces it in winter. However, this has the
effect of lowering the real interest rate even more in summer and raising it
further in winter. Thus, the seasonal amplitude in the real interest rate is
increased. For this case, optimal monetary policy also increases the seasonal
amplitude in prices. As noted earlier, the price level is always highest in
winter. A glance at Table 1 shows that when o is in the low range the
seasonal amplitude in the price level is 1/A, whereas under optimal seasonal
monetary policy it is 1/8A. It can also be verified that when o is in the
medium range but is less than 1, the seasonal amplitude in the price level is

less than 1/8A.

6 Conclusions

This paper studied the nature of optimal monetary policy for an economy
with seasonal fluctuations and a cash-in-advance constraint on the purchase
of the consumption goods. It showed that the short delay in the availability
of newly acquired funds for consumption purchases (the hallmark of cash-
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in-advance models) typically makes the seasonal steady state inefficient and
that this inefficiency can be removed by a monetary policy that keeps nominal
interest rates constant over the seasons. Thus, this class of monetary models
can justify the seasonal smoothing of nominal interest rates carried out by
many central banks. The paper also presented an analytical model in order
to explore the general equilibrium effects of seasonal smoothing of nominal
interest rates. An important finding was that the seasonal amplitude of the
real interest rate and the price level could increase as a result of seasonal
smoothing of nominal interest rates.
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