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A junior credit analyst’s observation
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Figure: The growth rate of a cumulative ABS loss curve slows to an
apparent equivalence between higher-risk or subprime pools (top curves)
and lower-risk or prime pools (bottom curve).
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Regulation AB

The Securities and Exchange Commission (SEC) recently
implemented changes to the rules governing the issuance of
asset-backed securities (ABS) (Securities and Exchange
Commission, 2014, 2016).

Notably, it requires public issuers of ABS to make freely available
pertinent loan-level information and payment performance on a
monthly basis beginning in 2017.

The data in xml format may be accessed via the Electronic Data
Gathering, Analysis, and Retrieval (EDGAR) system operated by
the SEC.
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Selected Bonds

We wrote Python code to scrape SEC filings to amass over
275,000 consumer automobile loans from the ABS bonds:

▶ CarMax Auto Owner Trust 2017-2 (CarMax, 2017);

▶ Ally Auto Receivables Trust 2017-3 (Ally, 2017);

▶ Santander Drive Auto Receivables Trust 2017-2 (Santander, 2017b);

▶ Drive Auto Receivables Trust 2017-1 (Santander, 2017a).

These four bonds were selected because:

(i) Taken together, they span the full consumer credit profile;

(ii) No issuer is a subsidiary of an auto manufacturer;

(iii) The paying periods span the same macroeconomic
environment (i.e., actively paying starting in March-April-May
2017 for 44-52 months).
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Loan selection

We filtered the original sample of 275,000+ loans to be as
homogeneous as possible (aside from risk classification.)1

That is, no co-borrowers, same income underwriting level (“stated
not verified), no subvention, used vehicles only, loan term (72-73
months), etc.

Number of loans left for statistical analysis: 58,118.

1We are diversified to “noise” (i.e., largest geographic concentration: TX
(13%); largest manufacturer concentration: Nissan (13%)), and we provide
thorough sensitivity testing to loan selection parameters in the manuscript.
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Risk-Based Pricing

Following Phillips (2013), a borrower’s interest rate in risk band a,
ra, is

ra = rc +m + la,

where rc is the cost of capital, m is the added profit margin, and la
is a factor that varies by risk band. More generally,

la ≡ f (PTI,%Down, Loan AMT,Vehicle Val.,Credit, etc.).

That is, the interest rate is the market’s reflection of a borrower’s
(i.e., loan’s) risk profile.
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Risk band assignment

Hence, we can defer to the market and assign borrowers to risk
bands via interest rate. Specifically,

Risk Band APR Range Count Default%2

deep subprime 20%+ 21,630 52%
subprime 15-20% 21,332 37%
near prime 10-15% 6,677 21%

prime 5-10% 6,300 10%
super prime 0-5% 2,179 4%

58,118

Note: The terms “deep subprime”, “subprime”, etc. also
correspond well to the traditional credit score ranges (Consumer
Financial Protection Bureau, 2019); see next slide.

2We define 3 consecutive months of missed payments = default.
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Summary of 58,118 loans
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Figure: Details by bond, assigned risk band

J.P. Lautier Credit Risk Convergence 10 / 36



Table of Contents

1 Data

2 Credit Risk Convergence
Relevant Statistical Results
Empirical Results

3 Financial Implications
Lender Profitability Analysis
A Consumer Perspective

4 Conclusion

5 Appendix
Statistical Details

J.P. Lautier Credit Risk Convergence 11 / 36



“Hazard”-ing a guess

Can we empirically demonstrate what appears to be an equivalence
of credit risk, once a loan survives a minimal amount of time?

This is an ideal problem for the hazard rate,

λ(x) = Pr(X = x | X ≥ x),

because it is a conditional probability of default.

Goal (almost): Estimate λ(x) by loan age and risk band for
consumer loan data sampled from ABS.
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Competing Risks

We desire to differentiate between a loan contract terminating due
to default or due to prepayment.

Hence, our goal is to estimate the cause-specific hazard rate,

λi (x) = Pr(X = x ,Zx = i | X ≥ x),

from loans sampled from ABS, where Zx denotes a random
variable dependent on x in the spirit of a multistate process (e.g.,
Beyersmann et al., 2009).

Observe
∑

i λi (x) = λ(x).
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Statistical challenges of ABS data

We are not building a model. We are letting the data completely
inform an estimate of the underlying cause-specific hazard rate
distribution by risk band.

When estimating the time-to-event distribution from loans sampled
from a securitization pool, however, there are incomplete data
challenges due to left-truncation, right-censoring, and
discrete-time.

These challenges for ABS data are rigorously studied in Lautier
et al. (2023a) and Lautier et al. (2023b).
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Estimating λ0i
τ (competing risks with censoring)

Define f 0i∗,τ (x) = Pr(X = x ,X ≤ C ,Zx = i | X ≥ Y ), i = 1, 2 and
Uτ (x) = Pr(Y ≤ x ≤ min(X ,C) | X ≥ Y ). It is may be shown

λ0i
τ (x) =

Pr(X = x ,Zx = i)

Pr(X ≥ x)
=

f 0i∗,τ (x)

Uτ (x)
. (1)

Estimation of (1) follows naturally with

f̂ 0i∗,τ,n(x) =
1

n

n∑
j=1

1Xj≤Cj1ZXj
=i1min(Xj ,Cj )=x ,

Ûτ,n(x) =
1

n

n∑
j=1

1Yj≤x≤min(Xj ,Cj );

that is, λ̂0i
τ,n(x) = f̂ 0i∗,τ,n(x)/Ûτ,n(x), i = 1, 2.

Pleasingly, λ̂0i
τ,n(x) corresponds with classical treatments, such as Huang and

Wang (1995), despite starting from the necessary ABS assumptions

(discrete-time, sampling differences, etc.).
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Hypothesis test

Lautier et al. (2023c, Proposition 1, Lemma 1), which derive the
asymptotic properties of λ̂0i

τ,n, lead to a straightforward large sample
financial econometric hypothesis test.

Specifically, let a, a′ be two different risk bands (e.g., subprime vs. prime,
etc.). Then we may test

H0 : λ
01
τ,(a) = λ01

τ,(a′) vs. H1 : λ
01
τ,(a) ̸= λ01

τ,(a′),

for each age x by determining if the asymptotic confidence intervals in
(2) overlap. Decision rule:

▶ Confidence intervals overlap =⇒ fail to reject H0 =⇒ can’t claim
λ01
τ,(a) ̸= λ01

τ,(a′) =⇒ conditional default risk potentially converged.

▶ Confidence intervals do not overlap =⇒ reject H0 =⇒ accept
λ01
τ,(a) ̸= λ01

τ,(a′) =⇒ conditional default risk has not converged.
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Credit Risk Convergence Visualization

Approx. Mar 2020 + 3 mo.
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Credit risk convergence matrix (months)

deep sub. subprime near-prime prime sup.-prime

deep sub. 10 36 50 50 52
subprime 10 41 42 48
near-prime 10 13 43

prime 10 10
sup.-prime 10

Note: The first of three consecutive months of confidence interval
overlap after month 10 for 72/73-month auto loans.
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Robustness analysis

▶ COVID-19 plays some role but not the whole story
(one-in-a-hundred-year events happen twice a decade...)

▶ Results hold for collateral type (new cars) and eliminating
CarMax loans (different business model than banks)

▶ More analysis needed before generalizing to other loan types
(auto loans generally considered to be a high priority of
payment loan for consumers)

See Lautier et al. (2023c) for details.
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Sometimes, a simple line plots suffices
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Figure: New cars, no CarMax, sans asymptotic confidence intervals
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Lender Profits “Backloaded”

Backloaded profits necessary: Conventional wisdom is that the
high-returns of high-risk loans that don’t default help repay the
lender for the loans that do default.

The loans we consider are sampled from securitization pools,
however, and so the risk has already been transferred off the
lender’s books.3

Nonetheless, a risk-adjusted profitability analysis is instructive.

3ABS investors may be pricing in backloaded profits at the point of sale, but
the main idea is that all our analysis is from a sample of loans the lender has
already sold =⇒ lender portfolio level profitability not directly applicable here.
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Deriving a month-by-month risk-adjusted return

Ba|x

Ba|x+1 + Pa

Rx+1

1− λ01
τ,(a)(x)

λ01
τ,(a)(x)

Note: The assumed recovery, Rx+1, may be estimated from the ABS data.
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Figure: Est. conditional monthly risk-adjusted return
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Estimated Savings (Deep Subprime Borrowers)

Averages Mo Pmt Savings ($) Total Savings ($)
Age # Bal Pmt APR(%) # Pmts S NP P SP S NP P SP
12 17,558 14,245 365 22.58 65
15 16,125 13,844 364 22.56 62
18 14,375 13,520 363 22.54 60
24 11,628 12,836 361 22.50 56
30 9,492 11,973 361 22.46 50
36 7,746 10,985 359 22.46 44 16 586
42 6,050 9,833 357 22.46 38 16 490
48 4,899 8,799 358 22.43 33 18 438
50 4,622 8,312 358 22.44 30 12 33 52 267 729 1,153
54 3,568 7,485 360 22.37 26 11 30 47 61 193 531 845 1,093
60 12 6,923 377 22.00 23 21 39 54 63 251 466 643 759

We find that deep subprime borrowers that remain current can maximize
their savings by refinancing after about 48-50 months, when they
converge in risk to prime/super prime borrowers.

Most current borrowers have prepaid by about loan age 60.
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Estimated Savings (Subprime Borrowers)

Averages Mo Pmt Savings ($) Total Savings ($)
Age # Bal Pmt APR(%) # Pmts S NP P SP S NP P SP
12 18,261 16,693 395 17.97 64
15 17,021 16,126 394 17.96 61
18 15,487 15,619 393 17.95 59
24 12,997 14,621 389 17.94 54
30 11,021 13,420 388 17.94 48
36 9,309 12,194 386 17.94 42
42 7,481 10,835 384 17.93 37 29 54 857 1,616
48 6,192 9,506 383 17.92 31 22 44 61 526 1,055 1,473
50 5,901 8,953 383 17.93 29 23 44 60 508 963 1,325
54 4,542 7,975 386 17.94 25 22 40 55 389 723 988
60 22 7,021 414 17.47 20 25 40 50 299 477 596

We find that subprime borrowers that remain current can maximize
their savings by refinancing after about 42 months, when they
converge in risk to prime borrowers.

Again, most current borrowers have prepaid by about loan age 60.
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Estimated Savings (Near-prime Borrowers)

Averages Mo Pmt Savings ($) Total Savings ($)
Age # Bal Pmt APR(%) # Pmts S NP P SP S NP P SP
12 5,807 19,111 411 12.79 64
15 5,587 18,245 407 12.76 60 39 2,206
18 5,315 17,617 405 12.74 58 40 2,158
24 4,692 16,204 402 12.72 52 35 1,657
30 4,146 14,694 400 12.71 47 37 1,546
36 3,592 13,187 398 12.71 41 31 1,116
42 3,041 11,446 394 12.67 35 28 847
48 2,622 9,862 394 12.68 29 21 39 494 928
50 2,455 9,283 395 12.69 27 20 37 436 811
54 1,663 8,218 400 12.69 24 29 44 526 798
60 63 6,435 413 11.98 17 13 22 160 269

We find that near-prime borrowers that remain current can
maximize their savings by refinancing as soon as 15 months into
the loan, when they converge in risk to prime borrowers.

Surprisingly, it appears many current near-prime borrowers follow a
similar prepayment pattern as deep subprime, subprime borrowers
(i.e., waiting until about loan age 60).

J.P. Lautier Credit Risk Convergence 27 / 36



Estimated Savings (Prime Borrowers)

Averages Mo Pmt Savings ($) Total Savings ($)
Age # Bal Pmt APR(%) # Pmts S NP P SP S NP P SP
12 5,173 18,582 358 7.83 64 39 2,327
15 5,283 17,611 354 7.81 60 33 1,880
18 5,315 16,706 350 7.78 57 30 1,627
24 4,971 15,097 346 7.76 52 32 1,535
30 4,538 13,503 345 7.74 46 30 1,245
36 4,096 11,866 344 7.73 39 21 755
42 3,697 10,274 342 7.72 34 23 703
48 3,191 8,615 343 7.71 28 21 513
50 2,963 8,101 345 7.71 26 21 460
54 1,898 7,075 351 7.66 22 18 324
60 92 4,756 328 7.38 16 22 261

We find that prime borrowers that remain current can maximize
their savings by refinancing as soon as 12 months into the loan,
when they converge in risk to super prime borrowers.

Surprisingly, it appears many current prime borrowers follow a
similar prepayment pattern as deep subprime, subprime borrowers
(i.e., waiting until about loan age 60).
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Analyzing Consumer Behavior

We can use the sibling cause-specific hazard rate estimator for
prepayments, λ̂02

τ,n, to analyze prepayment behavior by risk band.

We also overlay the Manheim Used Vehicle Value Index (ticker:
MUVVI) and timing of the Economic Impact Payments for the 2017
and 2019 issuance.
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Analyzing Consumer Behavior (Cont.)
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Figure: Conditional prepayment behavior by risk band
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Concluding thoughts

▶ Consumerus Ignoramus? : Consumers have a poor reputation in
making financial decisions (e.g. Gross and Souleles, 2002; Stango
and Zinman, 2011; Lusardi and de Bassa Scheresberg, 2013;
Campbell, 2016; Heidhues and Kőszegi, 2016; Dobbie et al., 2021),
but prepayments do accelerate as loans mature. Encourage
borrowers to self-correct (questionable effectiveness (e.g., Keys
et al., 2016; Agarwal et al., 2017)).

▶ Financial innovation: Lenders offer loans structured with a reducing
payment based on good performance (may also act as an incentive
to keep borrowers current keeping costs stable).

▶ Competition: Competing lenders seek out these mature loans to
offer refinancing (similar to SOFI with student loans). That is,
borrower delay possibly driven by perceived hassle, lack of options.

▶ Regulation: Require ongoing loans to be “re-underwritten” after a
sustained period of good performance OR potentially offer
borrowers cash rebates/larger trade-in values to refinance.
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Thank you!
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Asymptotic properties

(Lautier et al., 2023c, Proposition 1)

Define Λ̂0i
τ,n =

(
λ̂0i
τ,n(∆ + 1), . . . , λ̂0i

τ,n(ξ)
)⊤

, where λ̂τ,n, where

λ̂0i
τ,n(x) = f̂ 0i∗,τ,n(x)/Ûτ,n(x), i = 1, 2. Then,

(i)

Λ̂0i
τ,n

P−→ Λ0i
τ , as n → ∞;

(ii)
√
n(Λ̂0i

τ,n −Λ0i
τ )

L−→ N(0,Σ0i ), as n → ∞,

where Λ0i
τ =

(
λ0i
τ (∆ + 1), . . . , λ0i

τ (ξ)
)⊤

with λ0i
τ = f 0i∗,τ/Uτ and

Σ = diag

(
f 0i∗,τ (∆ + 1){Uτ (∆ + 1)− f 0i∗,τ (∆ + 1)}

Uτ (∆ + 1)3
, . . . ,

f 0i∗,τ (ξ){Uτ (ξ)− f 0i∗,τ (ξ)}
Uτ (ξ)3

)
.

That is, the estimators λ̂0i
τ,n(∆+ 1), . . . , λ̂0i

τ,n(ξ) are consistent, asymptotically normal,

and independent.
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Asymptotic properties (cont.)

(Lautier et al., 2023c, Lemma 1)

The (1− θ)% asymptotic confidence interval bounded within (0, 1)
for λ0i

τ (x), x ∈ {∆+ 1, . . . , ξ}, i = 1, 2 is

exp

{
ln λ̂0i

τ,n(x)±Z(1−θ/2)

√√√√ Ûτ,n(x)− f̂ 0i∗,τ,n(x)

nÛτ,n(x)f̂ 0i∗,τ,n(x)

}
, (2)

where Z(1−θ/2) represents the (1− θ/2)th percentile of the
standard normal distribution.
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