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This paper: combine fairness constraints + model 
improvement, characterize the resulting trade-offs
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Paper outline 

• Train default prediction models to generate credit scores for 
population

• Confirm results from recent literature regarding model 
improvement and inequality

• Generate single and group-specific decision thresholds (for higher 
and lower income areas)

• Generate profit – fairness trade-offs for more and less complex 
models

• Two dimensions: more / less advanced model and stronger / 
weaker fairness constraints 
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Meet the characters! 

• Model improvement
• LMI and non-LMI areas
• True positive rate (TPR) and 

false positive rate (FPR)
• ΔTPR
• Profit 

• Logistic (ridge) – traditional 
• XGBoost – ML
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LMI (Lower- and Moderate-
Income): 
census tracts with median 
income <80% of the MSA 
median income

Non-LMI:
census tracts with median 
income ≥80% of the MSA 
median income



Meet the characters! 

• Model improvement
• LMI and non-LMI areas
• True positive rate (TPR) and 

false positive rate (FPR)
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Meet the characters! 

• Model improvement
• LMI and non-LMI areas
• True positive rate (TPR) and 

false positive rate (FPR)
• ΔTPR
• Profit 

• TPR = TP / (TP + FN) 
“Out of all people who will pay 
back, how many were correctly 
identified by the model?” 

• FPR = FP / (FP + TN) 
“Out of all people who will 
default on the loan, how many 
were incorrectly identified by 
the model?” 
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Meet the characters! 

• Model improvement
• LMI and non-LMI areas
• True positive rate (TPR) and 

false positive rate (FPR)
• ΔTPR
• Profit 

We focus on 
ΔTPR = TPR(non-LMI) – TPR(LMI)
as the fairness metric

LMI (Lower- and Moderate-Income): census 
tracts with median income <80% of the MSA 
median income
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Meet the characters! 

• Model improvement
• LMI and non-LMI areas
• True positive rate (TPR) and 

false positive rate (FPR)
• ΔTPR
• Profit

Lender cares about FP more 
than about TP. 

We assume lender profits are 
TP - 𝜆𝜆FP, 𝜆𝜆 = 4 in main 
specification
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Default prediction models (skip today)
Model improvement and inequality

Single and group-specific thresholds
Profit—fairness trade-offs + model change
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Modeling choices 
improve overall 
default prediction
• This difference translates into 

about 1% increase in profits 
(under assumptions 
discussed below)
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Predictive power isn’t same for everyone
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Blind model, but gaps in data 
availability and structural inequality 

Non-LMI LMI



Default prediction models
Model improvement and inequality

Single and group-specific thresholds
Profit—fairness trade-offs + model change

28



Lending decision is a binary prediction problem

• Consider CS ∈[0,100], 
decreasing in P(default) 

29



Lending decision is a binary prediction problem

• Consider CS ∈[0,100], 
decreasing in P(default) 

• Lender picks CS threshold and 
lends above it

30



Lending decision is a binary prediction problem

• Consider CS ∈[0,100], 
decreasing in P(default) 

• Lender picks CS threshold and 
lends above it

• The truth is known when 
repayment or default happens

31



Lending decision is a binary prediction problem

• Consider CS ∈[0,100], 
decreasing in P(default) 

• Lender picks CS threshold and 
lends above it

• The truth is known when 
repayment or default happens

Threshold:
60
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Positive
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Positive outcome 
is non-default

Table is based
on simulated data 



Lending decision is a binary prediction problem

• Consider CS ∈[0,100], 
decreasing in P(default) 

• Lender picks CS threshold and 
lends above it

• The truth is known when 
repayment or default happens

Threshold:
60

Actual 
Positive

Actual 
Negative

Predicted 
Positive 40 10

Predicted 
Negative 20 30

Threshold:
40↓

Actual 
Positive

Actual 
Negative

Predicted 
Positive 50↑ 20↑

Predicted 
Negative 10↓ 20↓
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Incentives of lenders and the regulator differ
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True Positive Rate (TPR):  

TP/(TP + FN)
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True Positive Rate (TPR):  

TP/(TP + FN)
• Lender cares about profit: 

TP - 𝜆𝜆FP
• We set 𝜆𝜆 to 4
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Table is based
on simulated data 



TPR and FPR 
overall
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Single threshold 
leads to TPR
disparity

• Regulator cares about 
equalizing TPR

• Lender cares about 
profit: TP - 𝜆𝜆FP

• We set 𝜆𝜆 to 4
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Introducing 
separate thresholds 
can reduce ΔTPR

• Regulator cares about 
equalizing TPR

• Lender cares about 
profit: TP - 𝜆𝜆FP

• We set 𝜆𝜆 to 4
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Picking the 
separate thresholds 
optimally

• Hardt et al. (2016)
• Consider all pairs of 

thresholds that 
equalize TPR

• Out of those pick 
thresholds that 
maximize profit 
(TP - 4×FP)
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Strong fairness 
constraint
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constraint is easy 
to relax

• Picking points 
between the eq. opp. 
threshold and single 
threshold relaxes the 
fairness constraint 
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constraint
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constraint is easy 
to relax

• Picking points 
between the eq. opp. 
threshold and single 
threshold relaxes the 
fairness constraint 
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Weak fairness 
constraint



Default prediction models
Model change and inequality

Single and group-specific thresholds
Profit—fairness trade-offs + model change
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Fairness—profit 
tradeoff
• Regulator cares about 

equalizing TPR
• Lender cares about 

profit: TP - 𝜆𝜆FP
• We set 𝜆𝜆 to 4
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ΔTPR = TPR(non-LMI) – TPR(LMI)

Fairness constraints:
Strong: 0 ΔTPR in-sample
Medium: 2/3 between Strong and Blind
Weak: 1/3 between Strong and Blind
Blind: Same threshold for non-LMI and LMI 

Profit (TP - 4×FP), normalized to 1000
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Fairness—profit 
tradeoff
• If better models are 

coupled with fairness 
constraints, profits 
rise and fairness 
improves
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…but hopefully this talk at least made you think about 
the unintended consequences of protected attribute 
blindness



2020’s might be the new 1970’s 

1970’s
ECOA constrained the use of 
technological advances to limit 
discrimination
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Senator Joseph Biden,
markup session of the Senate Banking Committee, 
discussion of ECOA amendments, 09/29/1975



2020’s might be the new 1970’s 

1970’s
ECOA constrained the use of 
technological advances to limit 
discrimination

2020’s
A new wave of technological advances, 
renewed interest in disparities In 
lending

55

Senator Joseph Biden,
markup session of the Senate Banking Committee, 
discussion of ECOA amendments, 09/29/1975

“When consumers and regulators do not know how decisions are 
made by the algorithms, consumers are unable to participate in a 
fair and competitive market free from bias.”

Director Rohit Chopra
joint DOJ, CFPB, and OCC Press Conference, 10/22/2021

New aspect: more attention to disparities 
in outcomes
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Conclusion

• Better models lead to better default prediction, but gaps in 
predictive power remain

• Separate thresholds are a way to reduce disparities in TPR at 
some cost to profits

• The costs can be mitigated by linking fairness constraints to 
model change

• Under the right conditions, explicit use of sensitive attributes can 
reduce disparities in outcomes
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Thank you!
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