Do we have to sacrifice accuracy in order to
be fair?

Rayid Ghani
(work with Kit Rodolfa and Hemank Lamba)

Carnegie Mellon University
ML Hemnzcollege

Rayid Ghani | @rayidghani Carnegie Mellon University



How should we design Al systems?
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What values should we design for?

Fairness Explainability Robustness Privacy

Transparency Inclusiveness Accountability
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The focus is not just on making the ML model fair but rather on
making the overall system and outcomes fair
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Goals of this work

- Empirically explore trade-offs between “accuracy” and
I “fairness” across a variety of policy problems

Compare Performance of Several Fairness-Enhancing Methods
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Policy Settings

Increasing Educational Outcomes in Schools (10+ school districts across the US
and with Department of Education, El Salvador

Bej Be

) bed
Bey Q)

Q) bey
Bej ey

Matching interventions to
students in need of extra support

A hine Learning to Identify at Risk of Adverse Academic Outcomes. Lakkaraju et al. KDD 2015

SAN JOSE

CAPITAL OF SILICON VALLEY

Reducing Health and Safety Issues in Rental Housing
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Reducing number of people going to Jail (Johnson County, KS)
Reducing Incarceration g ioritized Inter i et. Al. ACM COMPASS 2018

11 MILLION .
people move through 3,100 Jails CyCle Of I nca rceratlon

$22 BILLION

in cost
64% el ARREST JAL

suffer from mental illness

68% \_/

have a substance abuse disorder
worsening or failing

44% to improve

suffer from chronic health problems

7

Find a classroom to support  Aboutus  Help

Support a Classroom.

Build a future.

Teachers and students all over the U.S. need your
help to bring their classroom dreams to life. Get

crayons, books, telescopes, field trips, and more
for a classroom today.

See classroom projects

Our efficiency and transparency have earned us the
highest rating on Charity Navigator.
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Fairness metrics are specific to policy context and values
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Punitive
(could hurt individuals)

Are your interventions

punitive or assistive?

Assistive
(will help individuals)

Among which group are you

most concerned with ensuring
predictive equity?

People for whom
intervention is taken

Everyone w/o regard
for actual outcome

FDR Parity FPR Parity

Intervention
NOT warranted

Can you intervene with
most people with need

or only a small fraction?

Small Fraction

Most People

Among which group are you
most concerned with ensuring

predictive equity?

People NOT
receiving assistance

Everyone w/o regard
for actual need

People with
actual need

\ J

Recall Parity*

FOR Parity
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Bias Mitigation

Pre-Processing
Algorithms

]

A

In-Processing
Algorithms

[

Post-Processing
Algorithms

]

¢ Relabeling
Reweighing

e Learned fair
representations

e Regularization
e Constrained
optimization

+ Threshold
calibration

¢ Information

withholding
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Methods Considered

* Pre-Processing
— Remove sensitive attribute
— Sampling (several approaches)

* In-Processing
— Zafar’s constrained optimization

* Post-Processing
— Model selection
— Post-hoc adjustments
— Composite models (Dwork)
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Evaluation Setup
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Methods Considered

* Pre-Processing
— Remove sensitive attribute
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Removing Protected Attribute
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Methods Considered

* Pre-Processing

Sampling (several approaches)
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Sampling

.29 i 150
1.75 Mecle | ;‘;“ : | 4 Mude Mude
— Dlgins [ | Qg § —— Crlgins S—
Z 10| vrae LT o I3 — Under 2.25) T oo
~ crvar AT | Dvver v cver ' i T Crear
les Metdad b= 18 Wethod .—'4:4!'::+ 4 34 Mettao 2.004 Mellvod
an -# Drgina & Original |44 -#— Drigina T ~&— Drigina T 1
a . 161 4 1 -1 LS S O L7581
= 100 & 2 "z 7| - 2 ' . - -
] e 3 1.44 4 9 _—1 1.50¢ —— 3
B 0.75] -4 4 -+ 4 * 4 - # 5 r
o a5 1.2} & 5 A A | L35 & g -— ¥ i
o050{-—* & —_— ¥ & - S
- 1o - L.0o0 -
0.475 0.500 0525 0550 0.575 0.74 076 078 OB0 082 0.25 030 035 040 045 050 05 0450 0475 0500 0.525 0550 0.575
Pracizion at Top-K Precision at Top-K Pracision at Top-K Precision at Top-K
(a) Inmate Mental Health (b) Housing Safety (¢) Student Outcomes (d) Education Crowdfunding

Rayid Ghani | @rayidghani Carnegie Mellon University



Methods Considered

* In-Processing
Zafar’s constrained optimization

Rayid Ghani | @rayidghani Carnegie Mellon University



Constrained Optimization (Zafar)
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Methods Considered

* Post-Processing
— Model selection
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Model Selection
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Model Selection
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Model Selection
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Methods Considered

* Post-Processing

— Post-hoc adjustments
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Post-Hoc Adjustments
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Post-Hoc Adjustments
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Methods Considered

* Post-Processing

— Composite models (Dwork)
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Composite Models
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Putting It All Together...
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Putting It All Together...
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Summary

* High variability in performance across methods and contexts

* Post-hoc adjustment was only method that consistently improved fairness of
model predictions

* In these contexts, the adjustments were able to improve fairness without cost
to accuracy
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We may not have to sacrifice accuracy in
order to get fairness

but

we do have to deliberately and explicitly
design our ML/AI systems for equity and
fairness
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Limitations / Future Work

* Focusing here on contexts where recall disparities are appropriate fairness
metric

* Current in-processing methods not well-suited for top k settings, may be
scope for new work here

* Understand how results generalize to settings where sensitive attribute isn’t
known exactly but can be estimated

Rayid Ghani | @rayidghani Carnegie Mellon University



Useful Resources

Data Science Project Scoping Guide

Open Source Data Science Tools

— Triage: ML Toolkit

— Aequitas: Bias Audit Tool

— Code for all projects: www.github.com/dssg

Hands-on Fairness and Bias Tutorial with interactive Jupyter Notebooks

Data Science for Social Good Fellowship
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http://dsapp.uchicago.edu/resources/data-science-project-scoping-guide/
https://github.com/dssg/triage
https://github.com/dssg/aequitas
http://www.github.com/dssg
https://dssg.github.io/fairness_tutorial/
http://www.dssgfellowship.org/
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Diagnosing the root causes of bias in Al/ML Systems

Bias and disparity (in outcomes) can come from any of these four components

World . Al Pipeline . Actions
Sample Bias System Developers
Measurement Bias Complexity or flaws
Label Bias Design Choices
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Some common practitioner perceptions

* There is always a tradeoff between fairness and accuracy

* | have to satisfy all measures of bias in order to be fair

* | have to eliminate all bias in order to use/deploy an ML system

* Not using race in my models makes by models not racist

* Using race in my models makes my models racist

* A fair ML model = Fair and equitable outcomes

* Bias comes from and can be fixed by “fixing” the data

* Bias reduction methods actually reduce bias
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Policy Menu

Designing for Equality Equity
Efficiency
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But we do have to deliberately design for fairness
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