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What values 
should the AI 

system be 
designed to 

achieve?

How do we build 
it to achieve 

those values?

How do we 
validate and 

monitor that it 
continues to 

achieve those 
values?

How should we design AI systems?
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What values should we design for?

Fairness Explainability Robustness Privacy

Transparency Inclusiveness Accountability
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Define
(desired 

fairness or 
equity 
goals)

Measure
and 

Detect 
(bias)

Understand 
(root causes 

of bias)

Improve
(fairness of 
AI systems)

Mitigate
(the impact 

through 
adjusting 

interventions)

Monitor & 
Evaluate

The focus is not just on making the ML model fair but rather on 
making the overall system and outcomes fair
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Goals of this work

Empirically explore trade-offs between “accuracy” and 
“fairness” across a variety of policy problems

Compare Performance of Several Fairness-Enhancing Methods
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Policy Settings
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Fairness metrics are specific to policy context and values
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• Pre-Processing
– Remove sensitive attribute
– Sampling (several approaches)

• In-Processing
– Zafar’s constrained optimization

• Post-Processing
– Model selection
– Post-hoc adjustments
– Composite models (Dwork)

Methods Considered
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Evaluation Setup

Di
sp

ar
ity

Precision@k
0.0 1.0

1.0

Biased model,
Moderate accuracy

More Accurate

M
ore Fair

Improved fairness with
accuracy trade-off

Ideal model



Rayid Ghani  |  @rayidghani

• Pre-Processing
– Remove sensitive attribute
– Sampling (several approaches)

• In-Processing
– Zafar’s constrained optimization

• Post-Processing
– Model selection
– Post-hoc adjustments
– Composite models (Dwork)

Methods Considered
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Removing Protected Attribute
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• Pre-Processing
– Remove sensitive attribute
– Sampling (several approaches)

• In-Processing
– Zafar’s constrained optimization

• Post-Processing
– Model selection
– Post-hoc adjustments
– Composite models (Dwork)

Methods Considered
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Sampling
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• Pre-Processing
– Remove sensitive attribute
– Sampling (several approaches)

• In-Processing
– Zafar’s constrained optimization

• Post-Processing
– Model selection
– Post-hoc adjustments
– Composite models (Dwork)

Methods Considered
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Constrained Optimization (Zafar)
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• Pre-Processing
– Remove sensitive attribute
– Sampling (several approaches)

• In-Processing
– Zafar’s constrained optimization

• Post-Processing
– Model selection
– Post-hoc adjustments
– Composite models (Dwork)

Methods Considered
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Model Selection
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• Pre-Processing
– Remove sensitive attribute
– Sampling (several approaches)

• In-Processing
– Zafar’s constrained optimization

• Post-Processing
– Model selection
– Post-hoc adjustments
– Composite models (Dwork)

Methods Considered
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Post-Hoc Adjustments
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Post-Hoc Adjustments
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• Pre-Processing
– Remove sensitive attribute
– Sampling (several approaches)

• In-Processing
– Zafar’s constrained optimization

• Post-Processing
– Model selection
– Post-hoc adjustments
– Composite models (Dwork)

Methods Considered
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Composite Models
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Putting It All Together...
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Putting It All Together...
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• High variability in performance across methods and contexts

• Post-hoc adjustment was only method that consistently improved fairness of 
model predictions

• In these contexts, the adjustments were able to improve fairness without cost 
to accuracy

Summary



Rayid Ghani  |  @rayidghaniKit Rodolfa | krodolfa@cmu.edu

We may not have to sacrifice accuracy in 
order to get fairness 

but
we do have to deliberately and explicitly 
design our ML/AI systems for equity and 

fairness
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• Focusing here on contexts where recall disparities are appropriate fairness 
metric

• Current in-processing methods not well-suited for top k settings, may be 
scope for new work here

• Understand how results generalize to settings where sensitive attribute isn’t 
known exactly but can be estimated

Limitations / Future Work
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• Data Science Project Scoping Guide

• Open Source Data Science Tools
– Triage: ML Toolkit
– Aequitas: Bias Audit Tool 
– Code for all projects: www.github.com/dssg

• Hands-on Fairness and Bias Tutorial with interactive Jupyter Notebooks

• Data Science for Social Good Fellowship

Useful Resources

http://dsapp.uchicago.edu/resources/data-science-project-scoping-guide/
https://github.com/dssg/triage
https://github.com/dssg/aequitas
http://www.github.com/dssg
https://dssg.github.io/fairness_tutorial/
http://www.dssgfellowship.org/
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Rayid Ghani

rayid@cmu.edu
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Appendix
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World Data AI Pipeline Actions Disparity in 
Outcomes

Diagnosing the root causes of bias in AI/ML Systems

System Developers
Complexity or flaws
Design Choices 

Sample Bias
Measurement Bias
Label Bias

Bias and disparity (in outcomes) can come from any of these four components
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• There is always a tradeoff between fairness and accuracy

• I have to satisfy all measures of bias in order to be fair

• I have to eliminate all bias in order to use/deploy an ML system

• Not using race in my models makes by models not racist

• Using race in my models makes my models racist

• A fair ML model = Fair and equitable outcomes

• Bias comes from and can be fixed by “fixing” the data

• Bias reduction methods actually reduce bias

Some common practitioner perceptions
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Designing for 
Efficiency

72.7% Efficient

Equality

Additional Cost: 2%

Equity

Additional Cost: 2%

Policy Menu
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But we do have to deliberately design for fairness

Original

Remove Race

Sampling
Sampling

Regularization

Separate Models

Post-hoc adjustment

An Empirical Comparison of Bias Reduction Methods on Real-World Problems in High-Stakes Policy Settings. Lamba et al. KDD Explorations 2021
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www.dssgfellowship.org
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