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Abstract 
 

We examine how an innovation in payment technology impacts on consumer payment choice and 

cash demand. We study the staggered introduction of contactless debit cards between 2016-2018. 

The timing of access to the contactless technology is quasi-random across clients, depending only 

on the expiry date of the existing debit card. Our analysis is based on administrative data for over 

21’000 bank clients and follows a pre-analysis plan. Average treatment effects show that the 

receipt of a contactless card increases the use of debit cards especially for small-value payments. 

However, we find only a moderate average reduction in the cash share of payments and no 

reduction of average cash demand. Treatment effects on payment choice are strongest among 

consumers with an intermediate pre-treatment use of cash. Explorative analyses reveal that effects 

are largely driven by young consumers in urban locations.  

 
 

 
Keywords: Financial innovation, cash, money demand, payment choice, pre-analysis plan. 
JEL Codes: E41, G20, O33, D14 

 
* Corresponding author: Martin Brown: University of St. Gallen, Unterer Graben 21, CH-9000 St. Gallen, Email: 
martin.brown@unisg.ch. Affiliations: Hentschel and Mettler, University of St.Gallen, Stix: Oesterreichische 
Nationalbank. 

The findings, interpretations and conclusions presented in this article are entirely those of the authors and should not 
be attributed in any manner to the Oesterreichische Nationalbank or the Eurosystem. 

mailto:martin.brown@unisg.ch


Non-technical summary 

 

Cash still accounts for a significant share of payment transactions in most advanced 

economies. However, it is a widely held presumption that the recent innovations of contactless, 

mobile and instant payments will accelerate the move to a cashless society. This would pose 

challenges to central banks who have a mandate to guarantee a safe, efficient and broadly 

accessible payment system. To counterbalance ongoing payment innovations and an expected 

strong decline in cash demand – as has been observed e.g. in Sweden – many central banks are 

now contemplating the introduction of electronic cash substitutes, i.e. central bank digital 

currencies.  

But are recent digital payment innovations really accelerating the move to a cashless 

society? To answer that question, this paper studies the introduction of contactless debit cards 

by a Swiss retail bank. We provide a clean identification of the causal effect of contactless cards 

on cash use and demand – disentangling the direct impact of a recent payment innovation from 

the broader trend in cash use that is unrelated to this innovation.  

The analysis is based on strictly anonymized administrative data for over 21’000 randomly 

selected bank clients from one bank in Switzerland over the period 2015-2018. For each client 

we observe the number and value of annual point of sale payments by debit card as well as the 

number and value of cash withdrawals from ATMs and bank branches. The bank rolled out 

contactless debit cards to clients at year-end in a staggered manner depending on the expiry 

date of existing cards. Specifically, clients can be divided into three groups: Early Adopters 

received a new contactless-enabled debit card at the end of 2016, Late Adopters at the end of 

2017 and Non Adopters at the end of 2018. Because card expiry dates are random, the three 

groups are very similar with regard to socio-demographic characteristics such as gender, age or 

income and their payment habits and money demand. Thus, any change in behavior after 

receiving the new debit card can be attributed to the contactless function. This setting 

constitutes a "natural experiment" that allows us to isolate the causal effect of the new payment 

technology on customers' payment behavior. In addition, we aim to strengthen the credibility 

of results by following a pre-analysis plan. 

Our results show that the introduction of contactless debit cards causes a strong increase 

in the use of debit cards. After receiving a new card, on average 7 additional purchases were 

paid cashless (+8.6% relative to the sample mean of 79 transactions per year). The increased 

card use is most pronounced for small, PIN-exempt payments under CHF 20, which rise by 

21%. Contactless cards do further reduce the cash share of purchases, but only by 0.6 percentage 



points per year. The impact on the cash-share of payments is relatively weak as the level of 

debit card payments is initially low and most additional debit cards payments are of small value. 

Furthermore, we find no causal effect of contactless cards on cash demand as measured by the 

frequency and average size of cash withdrawals.  

Overall, our results document statistically significant effects of payment innovation on 

payment choice, but the economic magnitude of these effects are small. By comparison, our 

data reveal a strong trend decline in the use of cash of about 2 percentage points per year, which 

in descriptive analyses may be confused for a causal impact of recent payment innovations. 

This highlights the importance of disentangling causal effects of payment innovations from 

overarching trends in payment behavior. 

While the average treatment effect of contactless cards is small, our subsample analyses 

reveal substantial and informative heterogeneities across households: the impact of contactless 

cards is strongest among consumers with an intermediate cash share of payments. By contrast, 

the impact is negligible among “cash lovers”. Explorative analyses reveal that the impact of 

contactless cards on payment choice is largely driven by young consumers, but only those in 

urban locations. The latter finding suggests that recent payment innovations may accelerate the 

trend towards cashless transactions among technology affine consumers in locations with dense 

networks for cashless payments. Our results also document significant and persistent 

heterogeneities in payment choice across consumers which points towards the importance of 

habit and / or behavioral motives for payment choice and cash demand. 
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“The only thing useful banks have invented in 20 years is the ATM” — Paul Volcker, 2009 

 

1. Introduction 

Over the past decades, the introduction of ATMs, debit and credit cards or online-banking have 

revolutionized the way consumers pay for goods and services. Understanding how these 

significant innovations in retail payment technology affect money demand has been of first-order 

interest to monetary policy makers. First, changes in the structure of money demand impacts on 

the welfare costs of inflation (Attanasio et al. 2002, Alvarez and Lippi 2009). Second, the stability 

of money demand impacts on the optimal choice of a nominal anchor, i.e. the targeting of inflation 

as opposed to monetary aggregates (Mishkin 1999). 

While previous innovations in payment technology may have altered the structure of money 

demand, they did not question the existence of physical central bank issued money, i.e. cash. 

Today, cash still accounts for a significant share of payment transactions in most advanced 

economies (Bagnall et al. 2016). However, this may be about to change. Recent innovations of 

contactless, mobile and instant payments are widely believed to be “game changing” with a higher 

potential of making cash obsolete.2 A marked decline in cash demand – as has been observed e.g. 

in Sweden or Norway – poses two novel and important challenges to central banks3: First, most 

central banks are mandated to guarantee a safe and accessible payment system to consumers and 

firms. General accessibility to the payment system may be undermined if cash is no longer a 

universal means of payment. In addition, the overall stability of the payment system may be 

undermined in the event of a systemic shock to the electronic payment system. Second, in a 

cashless society, consumers no longer have access to an alternative safe and liquid asset in times 

of distress to the banking sector. For these reasons, many central banks are today contemplating 

 
2 The development of private digital currencies is also challenging the role of central bank issued money. A significant 
decline in money demand due to the use of private digital currencies have major consequences for the conduct of 
monetary policy, the provision of credit and liquidity to the private sector, financial stability (see e.g. Brunnermeier 
et al. 2019, Friedman 2000, Schilling and Uhlig 2019, Woodford 2000).  
3 The value share of cash transactions in Sweden declined from about 60% in the year 2000 to about 10% recently. 
Cash in circulation in percent of nominal GDP has steadily trended downwards from 3% in the year 2000 to less than 
2% in 2018 (Engert et al. 2019). Two-thirds of Swedish consumers say that they can manage without cash (Sveriges 
Riksbank 2017). In many other countries, e.g. Canada, the U.K., Denmark, cash use declined but cash demand 
remained stable or even increased.  

https://itsamoneything.com/money/finance-terms/banks/
https://itsamoneything.com/money/finance-terms/atm/
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the introduction of electronic cash substitutes, i.e. central bank digital currencies (Bindseil 2020, 

Brunnermeier and Niepelt 2020).  

Are recent digital payment innovations accelerating the move to a cashless society? We provide 

causal evidence on how an innovation in payment technology impacts on payment choice and cash 

demand. We study the staggered introduction of contactless debit cards in Switzerland. The timing 

of access to the contactless technology is quasi-random across clients, depending only on the 

expiry date of the existing debit card. Our analysis is based on administrative data for over 21’000 

bank clients. For these clients we observe account-level information including point of sale (PoS) 

payments by debit card as well as cash withdrawals from ATMs and bank branches, over the period 

2015-2018. We group the sampled clients by the timing of receipt of a contactless debit card: Early 

adopters are clients who received a contactless card at the end of 2016, Late adopters are clients 

who received the card at the end of 2017, and Non adopters are clients who did not receive a 

contactless card until end 2018. These three groups are similar with respect to pre-treatment 

socioeconomic characteristics as well as their pre-treatment payment and cash withdrawal 

behavior. Therefore, we can assign post-treatment differences in payment behavior and cash 

demand to the receipt of a contactless card.  

Our focus on the contactless payment technology is well warranted: First, such payments are fast 

and convenient, especially for small value payments which typically have been the exclusive 

domain of cash.4 Second, contactless payments have been growing strongly in almost all 

developed economies and empirical evidence indicates a concurrent decline in the use of cash 

(Doyle et al. 2017, Henry et al. 2018).5 Third, the study of contactless payments is conceptually 

interesting because this technology lowers consumers’ costs of card vis-à-vis cash payments while 

leaving cash withdrawal costs unchanged. Alvarez and Lippi (2017) suggest that cash may have 

been resilient to earlier financial innovations, like debit cards, because these innovations have 

often made both the card and the withdrawal technology more efficient such that relative costs of 

cash and cards may not have changed much. 

 
4 We will henceforth refer to Near-Field-Communication debit card payments as contactless payments or as NFC 
payments, neglecting that such payments are also possible by credit cards or mobile devices as these payments are of 
low quantitative significance in Switzerland. 
5 In Canada, the share of cash in terms of the number of transactions has decreased from 54% in 2009 to 33% in 2017 
(Henry et al. 2018). In Australia, the respective case share has decreased from 69% to 37% within 10 years (Doyle et 
al. 2017). In both economies, contactless card payments have strongly increased. 
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Our analysis follows a pre-analysis plan (PAP) which has been registered and time-stamped at 

https://osf.io/scvbq/ before data delivery. In this plan we have pre-specified the hypotheses, the 

data cleaning and sample selection, the definition of outcome and explanatory variables, the 

econometric specification and statistical inference (Olken 2015).6  

Our hypotheses are derived from Alvarez and Lippi (2017). Their model provides an ideal 

conceptual framework for our research as it integrates payment instrument choice (cash vs. cards) 

into an inventory model of cash-management. Within this framework, the introduction of 

contactless cards can be seen as a reduction in the relative costs of card versus cash payments. As 

a consequence, contactless cards should on average reduce (i) the cash share of payments, (ii) the 

frequency of cash withdrawals, and (iii) the average cash withdrawal amount.  

We test these hypotheses by estimating a difference-in-difference model with staggered adoption 

(Athey and Imbens 2018). Our estimates control for client-level and location*year-level fixed 

effects. They thus account for differences in unobserved transaction costs and payment preferences 

across consumers as well as time-varying differences in the local payment infrastructure. Our 

estimates of average treatment effects offer three main findings. First, the receipt of a contactless 

debit card causes a sizeable increase in the use of debit cards (+8.6%, relative to the sample mean 

of 79 debit card transactions per year). Second, the contactless payment technology reduces the 

cash share of payments. However, given that contactless cards mainly increase small value debit 

card transactions, the impact on overall payment volume is modest (0.6 percentage points (pp) 

relative to the average cash share of 68%). Our data reveal a downward trend of 2 pp per year in 

the cash share of payments that is unrelated to the contactless technology. Contactless cards thus 

add about 30% to this downward trend. This result signifies the importance of causal inference as 

the decline in the use of cash could be misinterpreted as being mainly caused by concurrent 

contactless cards. Third, we find no measurable effect of the contactless payment technology on 

cash demand, i.e. the frequency of cash withdrawals, or the average cash withdrawal amount.  

In a (pre-registered) test of heterogenous treatment effects we study the impact of contactless cards 

across consumers with varying pre-treatment payment behavior. Pre-treatment payment behavior 

varies strongly in our sample: One-quarter of the sample pays almost exclusively by cash, while 

 
6 The use of a PAP intends to eliminate biases arising from model selection as well as from the non-reporting of 
insignificant findings and should thus strengthen the credibility of results, in particular for proprietary data (Casey et 
al. 2012). While PAPs are common in randomized control trial studies, they are much less frequent in studies using 
observational data (Burlig 2018). We are unaware of other papers in the monetary economics and finance literature 
which are based on a PAP. 

https://osf.io/scvbq/
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another quarter pays more by card than by cash. This variation in initial behavior partly reflects 

differences in local payment infrastructure as well as individual cash preferences related to e.g. 

budget monitoring, anonymity concerns, or habit. Our results show that the impact of contactless 

debit cards is particularly strong among consumers with an intermediate initial cash-share of 

payments. 

In an exploratory analysis we study the impact of contactless cards on payment behavior by 

consumer age and rural vs. urban location. Our findings confirm previous evidence suggesting that 

younger consumers are more likely to adopt financial technology (see e.g. Yang and Ching 2013). 

However, we show that contactless cards only exert a strong causal effect on payment behavior 

among those younger consumers who reside in urban locations. This suggests that technology 

affinity per se does not drive the adoption of the contactless payment technology. Rather it is likely 

that local developments in the (contactless) payment infrastructure and / or salience of the new 

technology among young consumers are responsible for the observed effects on payment choice. 

Our paper contributes to the literature on the transaction demand for money (e.g. Baumol 1952,  

Tobin 1956), as well as to the literature on payment choice (e.g. Whitesell 1989). Recent 

theoretical approaches account for the interrelatedness of both the transaction demand for money 

and payment choice (e.g. Alvarez and Lippi 2017). In these models, withdrawal costs, the cost of 

foregone interest and differences in the costs of using cash or cards jointly determine payment 

choice and cash demand. The empirical literature on payment choice and cash demand has 

established significant and persistent heterogeneities in the use of payment instruments across 

households which cannot be accounted for by observed differences in transaction costs (Schuh and 

Stavins 2010, Arango et al. 2015, Wang and Wolman 2016, Brancatelli 2019, Stavins 2017). 

Further models thus emphasize behavioral determinants of payment choice and cash demand, e.g. 

the role of payment choice for budget control (von Kalckreuth et al. 2014, Ching and Hayashi 

2010).  

We contribute to this literature in three important ways: 

First, in line with the recent theory (Alvarez and Lippi 2017) we empirically test the implications 

of financial innovation in an inventory model which jointly analyzes payment choice and cash 

demand. By contrast the previous empirical literature mostly analyzes these aspects separately. 

Here, our analysis complements recent work by Briglevics and Schuh (2014). While those authors 

examine the dynamic (short-run) sequence of payments our analysis examines the reaction of 

payment choice and money demand to a change in payment technology. 
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Second, our research design allows us to provide causal estimates of the impact of payment 

innovation on payment choice and cash demand. Here, our study builds on previous analyses of 

payment innovations and money demand. Attanasio et al. (2002), Lippi and Secchi (2009) as well 

as Alvarez and Lippi (2009) examine how the diffusion of cash withdrawal points (ATMs) impacts 

on the cash demand of Italian households. More recently, Chen et al. (2017) and Trütsch (2016) 

use survey data to examine the impact of contactless cards and mobile payments on payment 

choice and cash demand in Canada and the U.S., respectively.7 Compared to these papers, our 

research design allows to better disentangle the causal effect of payment innovation from 

(unobserved) variation in payment behavior across households and concurrent time trends in 

overall payment behavior. 

Third, the administrative data at hand as well as our pre-analysis plan offer two methodological 

novelties to the empirical literature on money demand. The bank-account-level data allow us to 

measure both payment choice and cash demand using precise and reliable indicators at the 

consumer-level over a significant period of time.8 The existing empirical literature is based either 

on survey data (e.g. Borzekowski and Kiser 2008; Koulayev et al. 2016; Schuh and Stavins 2009), 

payment diary data (e.g. Bagnall et al. 2016; Wakamori and Welte 2017) or grocery store scanner 

data (Klee 2008, Wang and Wolman, 2016; Brancatelli 2019). None of these sources provide 

precise measures of the use of cash and cards for payments and on cash demand by the same 

consumers over a long period of time. Moreover, our pre-analysis plan lends credibility to the 

empirical results based on this data, as our reported analysis adheres to a pre-specified choice of 

outcome variables, econometric specifications, and subsample splits.  

 

 

 
7 Bounie and Camara (2019) provide evidence on the real effects of payment innovation by estimating the effects of 
contactless card acceptance on the profits of French merchants. 
8 Magnac (2017) uses account data to study the effects of ATM withdrawal fees. 
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2. Research Design, Institutional Background and Hypotheses 

2.1. Research Design 

We study the staggered introduction of contactless debit cards (Maestro PayPass) by one medium 

sized bank (“the Bank”) in Switzerland over the period 2016-2018.9 Debit cards at the Bank are 

valid for three calendar years, expire in December and are automatically replaced two months 

earlier by new cards. Starting in late 2016 (for calendar year 2017), the Bank replaced conventional 

debit cards with new debit cards featuring the contactless NFC function. Our research design 

exploits the fact that the timing of access to this new payment technology depends solely on the 

expiry date of the previous card, and thus is arguably exogenous from the perspective of an 

individual bank client.  

We observe payment behavior and cash withdrawal behavior from 2015 to 2018 for a random 

sample of clients who all hold a transaction account and a debit card with the Bank. Our treatment 

variable captures the timing of receipt of a contactless debit card. The structure of our data is that 

of panel data with staggered adoption as discussed in Athey and Imbens (2018). As illustrated by 

Figure 1, clients can be separated into three groups based on the expiry date of their existing debit 

card. Existing debit cards of Early adopters expire at the end of 2016 so that their new contactless 

card is valid from 2017. Late adopters have an expiry date of end 2017 so that their new contactless 

card is valid from 2018. The existing debit cards of Non adopters expire only at the end of 2018, 

the end of our observation period. We use data from 2015 to conduct balancing tests of outcome 

variables and covariates as well as to split the sample according to pre-treatment behavior.  

 

--- Insert Figure 1 here --- 
 

2.2. Institutional Background 

In Switzerland, as in many other European countries, the payment card system is dominated by 

debit cards which can be used to withdraw cash from ATMs of any bank as well as to make PoS 

 
9 Our agreement with the Bank includes its anonymity. The account-level data which we receive were strictly 
anonymized. 
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payments.10 When opening a transaction account, bank clients receive a debit card by default. In 

addition to a debit card, bank clients can further request a credit card subject to an annual fee.  

The 2017 survey on payment methods confirms that the overwhelming majority of PoS payments 

by Swiss consumers are conducted in cash or by debit card (SNB 2018). By contrast, credit cards11 

are mostly used for online purchases or for specific transactions (e.g. travel expenses, durables). 

According to this survey, 45% of the value and 70% of the volume of consumer transactions in 

2017 were paid in cash. This widespread use of cash is similar to that observed in Germany, Italy, 

Austria and other Euro area economies (see Bagnall et al. 2016, Esselink and Hernández 2017), 

and significantly above that in Australia, Canada or the UK, for example.12 It is important to note 

that the use of cash seems to be governed by a strong cash preference and not by an underdeveloped 

card infrastructure network. In 2018, Switzerland had 40 PoS terminals per 1,000 inhabitants, 

which compares with 39 in Australia, 38 in Canada and 41 in the United Kingdom.13 

The period we study marks the widespread introduction of contactless debit cards in Switzerland. 

The share of debit cards featuring the NFC technology was 10% at the end of 2015, 28% in 2016, 

51% in 2017 and 71% at the end of 2018.14 While the density of PoS terminals changed little over 

our sample period, the share of PoS terminals which accepted contactless cards increased from 

25% in 2015 to 62% in 2018.15 In our analysis we control for time-varying heterogeneities in local 

payment infrastructure by employing location*year fixed effects. 

2.3. Hypotheses 

We derive our empirical predictions from the theoretical model of Alvarez and Lippi (2017). This 

model integrates payment instrument choice into an inventory model of money demand. The 

model thus allows us to make predictions about how the introduction of contactless cards impacts 

 
10 Bank clients in our sample do not have to pay fees for ATM withdrawals, regardless of whether the withdrawal 
occurs at an ATM from a different bank. 
11 The vast majority of credit cards are “delayed debit cards”, i.e. card balances have to be paid off in full at the end 
of the billing period.  
12 The volume share of cash was 37% in Australia 2016 (Doyle et al., 2017) and 33% in Canada in 2017 (Henry et al. 
2018). 
13 BIS (CT14B: Number of terminals per inhabitant, https://stats.bis.org/statx/srs/table/CT14b).  
14 Section 2 in the PAP summarizes the dissemination of NFC debit and credit cards and presents evidence on the 
share of payment instruments. A significant share of credit cards already featured a contactless payment function prior 
to the beginning of our observation period. However, as mentioned above, credit cards are hardly used for PoS 
payments in Switzerland (SNB 2018). 
15 Comparable data on contactless terminals are not available for Australia, Canada or the UK. 

https://stats.bis.org/statx/srs/table/CT14b
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both on payment choice and cash demand. In the model, consumers can either make payments in 

cash or with cards. Cash is obtained by ATM withdrawals which can be free or costly, e.g. due to 

transaction fees or shoe-leather costs. Card payments always involve costs, which can either be 

transaction fees or the time-cost of transactions relative to cash.16 In equilibrium, consumers either 

(i) use cash only or (ii) they act as cash burners; i.e. they use cards only when they run out of 

cash.17 The model assumes a representative agent, and thus does not explore heterogeneities in 

payment behavior and cash demand across households. However, it is straightforward to assume 

that the relative cost of cash versus card payments varies across consumers depending on 

individual behavioral traits (budget monitoring) or the local payment infrastructure. 

Within the Alvarez and Lippi (2017) framework, the introduction of contactless cards can be 

interpreted as a reduction in the relative costs of card payments, with cash withdrawal costs 

remaining constant. This implies that for all consumers who initially use cash and cards (i) the 

cash share of payments should decline, (ii) the average withdrawal amount should decline, (iii) the 

frequency of (free) ATM withdrawals should remain unaffected,18 and (iv) the average demand 

for cash should therefore decline. The model further predicts that some cash-only consumers start 

using card payments after the introduction of contactless cards.19 These consumers should hence 

reduce their number of (costly) cash withdrawals such that their overall number of withdrawals 

should decline. 

Based on the above predictions we establish two main hypotheses for the average treatment effect 

of the introduction of contactless debit cards: 

 
16 Studies which measure the time to conduct transactions show that contactless card payments are 10 to 20 seconds 
below those of PIN-based card payments (Kosse et al. 2017, Polasik et al. 2010). Cash is slightly faster than contactless 
card payments. 
17 Consumers continue to use cash despite their ownership of cards because they have a certain number of “free” 
withdrawals whereas card transactions always involve “costs”. The model predicts that consumers only use cards 
when they run out of cash which they previously withdrew at no cost. This prediction is not entirely borne out by 
empirical evidence. One possible reason for consumers using cards despite the availability of cash is that they want to 
retain cash for future purchases (c.f. Briglevics and Schuh, 2014 or Huynh et al., 2014). 
18 In this model cash-burning consumers (who use both cash and cards) do not make costly ATM withdrawals as such 
withdrawals are strictly dominated by cashless payments which are always possible. In the data, we presume that 
costly ATM withdrawals may exist also for cash-burning consumers as cards are not always accepted which could 
trigger a costly withdrawal. A reduction in the costs of card payments would not affect the frequency of costly 
withdrawals if they arise from the non-acceptance of cards.  
19 The threshold costs of withdrawals (𝑏𝑏) decreases. Thus, some consumers should move from cash-only use to cash-
card use. 
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H1: Contactless debit cards and payment choice: The contactless payment technology reduces the 

use of cash as a means of payment. 

H2: Contactless debit cards and cash demand: The contactless payment technology reduces the 

demand for cash, i.e. the frequency and the average size of cash withdrawals.20 

 

For some consumers, the shift in relative costs may not be large enough and hence one might not 

observe a change in payment choice and cash demand. Such a prediction would be supported by 

behavioral models which suggest persistent heterogeneities in cash preference, e.g. due to the 

valuation of anonymity, budget monitoring or habit (e.g. Kahn et al. 2005, von Kalckreuth et al. 

2014). Thus, we expect significant heterogeneity in the effect of the introduction of contactless 

cards on payment choice and cash demand across consumers which is systematically related to 

consumers’ pre-treatment behavior: Consumers who previously only used cash are least likely to 

react to the payment innovation.  

In our test of heterogenous treatment effects we thus predict that the magnitude of the casual effect 

of contactless cards is systematically related to past payment behavior:  

H3: The role of past payment behavior: The impact of the contactless payment technology on cash 

usage and cash demand differs according to the pre-treatment use of cash. The impact should be 

stronger for consumers with a low pre-treatment use of cash than for consumers with a high pre-

treatment use of cash. 

 

The Alvarez and Lippi (2017) framework suggests that the demand for cash is affected by local 

payment infrastructure: localities with weak PoS terminal infrastructure and high density of 

withdrawal opportunities should feature more cash-only consumers.21 This suggests that a 

reduction in the relative costs of debit card payments will have heterogenous treatment effects on 

payment choice and cash demand depending on the locally available payment infrastructure. In 

our pre-analysis plan we established a hypothesis (H4) that the effect of contactless cards on 

payment choice and cash demand should be stronger in locations with more PoS terminals and 

 
20 We focus on the frequency of withdrawals and on the average withdrawal amount as we do not observe average 
cash balances. 
21 See also Hyunh et al. (2014) or Arango et al. (2015) who find that payment choice decisions and cash holding 
decisions are affected by the availability of payment terminals. 
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fewer ATMs. Due to the unavailability of data on the location of PoS terminals we cannot test this 

hypothesis. 22  

Our conjecture is that access to the contactless payment technology reduces cash demand as 

consumers increasingly use debit cards for small-value, contactless-eligible payments. 23 In order 

to shed light on the mechanism behind the effect of the contactless payment technology on 

payment choice and cash demand we will explore the following auxiliary hypotheses:  

H5: The contactless payment technology increases the number of small-value PoS payments (0-

20 CHF) relative to all card-based PoS payments.24 

H6: The contactless payment technology increases the number of medium sized cashless PoS 

payments which are eligible for the contactless technology (20-40 CHF) relative to medium sized 

cashless PoS payments which are not eligible for the contactless technology (40-60 CHF).  

 

3. Data and Methodology 

3.1. Sample 

Our data is based a random sample of retail clients (private individuals only) of the Bank with a 

transaction account and at least one debit card in 2015.25 We obtained data on 30,000 randomly 

drawn clients holding 30,330 accounts and 33,165 debit cards. We apply a series of restrictions to 

this raw sample (see Appendix A1). First, we restrict our main analysis to the overwhelming 

majority of clients with one account and one card only (90%=26,934 clients).26 Second, we 

 
22 We collect publicly available data on the number of ATMs, population size and settlement area (km2) for each 
municipality relevant to our sample. We hand collected information on ATM locations from an ATM locator webpage: 
https://www.mastercard.ch/de-ch/privatkunden/services-wissenswertes/services/bankomaten-suche.html as per 
March 2020. As discussed in detail below we define 22 locations of residence for our sample based on the local 
economic region (MS-region) and municipality size the consumer lives in. The data reveals that the density of the 
ATM-network varies from 0,29 to 1,02 per 1’000 inhabitants across our 22 locations. This compares well to the 
national average of 0.84 per 1’000 inhabitants (see section 2.2). Unfortunately, comparable public information on the 
location of PoS terminals is not available. 
23 In Switzerland contactless payments (without the typing of a PIN code) are possible for amounts up to 40 CHF. 
24 Payment diary survey data suggests that in Switzerland roughly 20% (40%) of all payments feature a value in the 
range of 0-5 CHF (5-20 CHF) and that more than 90% (80%) of these payments are conducted in cash (SNB 2018).  
25 The PAP details the sampling, e.g. the sample was drawn only among active accounts, i.e. accounts with at least 
1200 CHF of incoming payments in 2015 and accounts with at least 1200 CHF of cash withdrawals or debit and credit 
card payments in 2015.  
26 In the PAP, we planned to include accounts with multiple cards in our sample and we described how we will handle 
the case of accounts with multiple debit cards (and possibly, different expiry dates). In the sample, we found out that 

https://www.mastercard.ch/de-ch/privatkunden/services-wissenswertes/services/bankomaten-suche.html%20as%20per%20March%202020
https://www.mastercard.ch/de-ch/privatkunden/services-wissenswertes/services/bankomaten-suche.html%20as%20per%20March%202020
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exclude all debit cards which experience irregular changes in the expiry date during our 

observation period. Irregular changes in expiry dates may occur because a card is lost or stolen or 

if a client demands a change of his/her card, e.g. because he/she wishes (earlier) access to the 

contactless technology. This results in 24,021 clients of which 22,504 have complete information 

on covariates. Finally, we exclude clients whose incoming or outcoming account flows are less 

than 1,200 CHF or more than 500,000 CHF in any year. The final sample comprises 21,122 clients, 

of which 8,487 are Early adopters, 6,150 are Late adopters and 6,485 are Non adopters.27  

We aggregate the account-level data from a monthly to an annual frequency to account for 

seasonalities in payment behavior and cash demand, e.g. due to festivities or holidays. We thus 

obtain a balanced panel of client*year data with four observations per client i for periods t= 2015, 

2016, 2017, 2018 for a total of 84,488 client*year observations. As illustrated by Figure 1, our 

main analysis is based on a sample of 63’366 observations for the period 2016-2018. Table A2 

presents the definition of all variables used in our analysis. Tables 1 and 2 present pre-treatment 

summary statistics and balancing tests based on the 2015 data. 

 

3.2. Outcome Variables 

As specified in our pre-analysis plan, we study three primary outcome variables which are each 

measured at the client*year level.  

Our first outcome variable Cash ratio measures the share of annual payments (in CHF value) paid 

in cash. The value of total payments made in cash is hereby proxied by the total value of cash 

withdrawals. The total value of non-cash payments is proxied by the sum of PoS debit card 

payments and total credit card payments from the account.  

𝐶𝐶𝐶𝐶𝐶𝐶ℎ 𝑟𝑟𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟 (%) =
𝑉𝑉𝐶𝐶𝑉𝑉𝑉𝑉𝑉𝑉 𝑟𝑟𝑖𝑖 𝐶𝐶𝐶𝐶𝐶𝐶 𝑟𝑟𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶ℎ 𝑊𝑊𝑟𝑟𝑟𝑟ℎ𝑑𝑑𝑟𝑟𝐶𝐶𝑑𝑑𝐶𝐶𝑉𝑉𝐶𝐶

𝑉𝑉𝐶𝐶𝑉𝑉𝑉𝑉𝑉𝑉 𝑟𝑟𝑖𝑖 𝐶𝐶𝐶𝐶𝐶𝐶 𝑟𝑟𝑜𝑜 [𝐶𝐶𝐶𝐶𝐶𝐶ℎ 𝑑𝑑𝑟𝑟𝑟𝑟ℎ𝑑𝑑𝑟𝑟𝐶𝐶𝑑𝑑𝐶𝐶𝑉𝑉𝐶𝐶 + 𝐷𝐷𝑉𝑉𝑏𝑏𝑟𝑟𝑟𝑟 𝑃𝑃𝑟𝑟𝑃𝑃 𝑝𝑝𝐶𝐶𝑝𝑝𝑝𝑝𝑉𝑉𝑖𝑖𝑟𝑟𝐶𝐶 + 𝐶𝐶𝑟𝑟𝑉𝑉𝑑𝑑𝑟𝑟𝑟𝑟 𝑐𝑐𝐶𝐶𝑟𝑟𝑑𝑑 𝑝𝑝𝐶𝐶𝑝𝑝𝑝𝑝𝑉𝑉𝑖𝑖𝑟𝑟𝐶𝐶] 

 
26,923 out of 30,000 accounts (90%) have just one card (see Table A1). Therefore, we focus our analysis on accounts 
with one card and present robustness checks for accounts with multiple cards.  
27 The separation of clients into the three groups is not fully balanced as there was an irregular renewal of cards by the 
Bank in 2010 so that some cards were replaced even though they did not expire in that year. As a result, a 
disproportionate share of clients belongs to the early adopter group (i.e. they received a new card in 2010, in 2013 and 
in 2016). Importantly, this does not affect the exogeneity of the timing of access to contactless cards. However, it does 
explain why some covariates (e.g. age) do not fully balance across the groups of Early, Late, and Non adopters (see 
Table 2, Panel B).  
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We study two measures of cash demand which are central to inventory models. First, we measure 

the Cash withdrawal frequency which captures the total annual number of cash withdrawals from 

ATMs or from bank branches. Second, we measure the average Cash withdrawal amount (in CHF) 

as:  

𝐶𝐶𝐶𝐶𝐶𝐶ℎ 𝑑𝑑𝑟𝑟𝑟𝑟ℎ𝑑𝑑𝑟𝑟𝐶𝐶𝑑𝑑𝐶𝐶𝑉𝑉 𝐶𝐶𝑝𝑝𝑟𝑟𝑉𝑉𝑖𝑖𝑟𝑟 =
𝑉𝑉𝐶𝐶𝑉𝑉𝑉𝑉𝑉𝑉 𝑟𝑟𝑖𝑖 𝐶𝐶𝐶𝐶𝐶𝐶 𝑟𝑟𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶ℎ 𝑑𝑑𝑟𝑟𝑟𝑟ℎ𝑑𝑑𝑟𝑟𝐶𝐶𝑑𝑑𝐶𝐶𝑉𝑉𝐶𝐶 𝑜𝑜𝑟𝑟𝑟𝑟𝑝𝑝 𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶 𝑟𝑟𝑟𝑟 𝑏𝑏𝐶𝐶𝑖𝑖𝑘𝑘 𝑏𝑏𝑟𝑟𝐶𝐶𝑖𝑖𝑐𝑐ℎ𝑉𝑉𝐶𝐶
𝑁𝑁𝑉𝑉𝑝𝑝𝑏𝑏𝑉𝑉𝑟𝑟 𝑟𝑟𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶ℎ 𝑑𝑑𝑟𝑟𝑟𝑟ℎ𝑑𝑑𝑟𝑟𝐶𝐶𝑑𝑑𝐶𝐶𝑉𝑉𝐶𝐶 𝑜𝑜𝑟𝑟𝑟𝑟𝑝𝑝 𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶 𝑟𝑟𝑟𝑟 𝑏𝑏𝐶𝐶𝑖𝑖𝑘𝑘 𝑏𝑏𝑟𝑟𝐶𝐶𝑖𝑖𝑐𝑐ℎ𝑉𝑉𝐶𝐶

 

 

The variable 𝐶𝐶𝐶𝐶𝐶𝐶ℎ 𝑟𝑟𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟 proxies the value share of PoS payments which are made in cash. Cash 

ratio has the important advantage to be based on a precise measure of cash withdrawals from both 

ATMs and bank counters, which is difficult to obtain in survey data due to people’s limited recall. 

However, the variable is also subject to measurement error arising from several sources: First, 

consumers may use other payment methods for PoS payments that are not covered in the 

denominator of 𝐶𝐶𝐶𝐶𝐶𝐶ℎ 𝑟𝑟𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟 (e.g. mobile payments or gift cards). Evidence from payment survey 

data (SNB 2018) suggests, however, that this is rarely the case for PoS transactions. Second, credit 

card payments might include non-PoS transactions (e.g. online purchases). Again, payment diary 

data (SNB, 2018) suggest that this source of measurement error is small relative to the sum of 

cash, debit and credit transactions. Third, consumers may withdraw cash to conduct non-PoS 

payments (payment of recurring bills) or to hoard cash. According to SNB (2018) less than 20% 

of Swiss households report that they withdraw cash to pay bills or to store it. Although this might 

seem non-negligible, we note that the separation between cash withdrawn for transaction or for 

hoarding purposes is not straightforward conceptually and practically (i.e. for survey participants) 

as cash might be stored for ensuing purchases. Our annual aggregation of data alleviates this 

problem to a large degree.28 More importantly, our panel data allows us to control for idiosyncratic 

– time invariant – patterns in the use of credit cards or cash for non-PoS transactions. Finally, we 

provide robustness tests with several alternative definition of Cash ratio (excluding credit cards, 

including e-banking payments, focusing only in domestic transactions, see Appendix A4). 

The variables 𝐶𝐶𝐶𝐶𝐶𝐶ℎ 𝑑𝑑𝑟𝑟𝑟𝑟ℎ𝑑𝑑𝑟𝑟𝐶𝐶𝑑𝑑𝐶𝐶𝑉𝑉 𝑜𝑜𝑟𝑟𝑉𝑉𝑓𝑓𝑉𝑉𝑉𝑉𝑖𝑖𝑐𝑐𝑝𝑝 and 𝐶𝐶𝐶𝐶𝐶𝐶ℎ 𝑑𝑑𝑟𝑟𝑟𝑟ℎ𝑑𝑑𝑟𝑟𝐶𝐶𝑑𝑑𝐶𝐶𝑉𝑉 𝐶𝐶𝑝𝑝𝑟𝑟𝑉𝑉𝑖𝑖𝑟𝑟 both proxy for the 

transaction demand for cash. Both variables are also subject to measurement error if consumers 

make withdrawals to hoard cash. SNB (2018) report that the vast majority of surveyed households 

 
28 The fact that cash withdrawals might also contain hoarding can also be seen as an advantage as central banks are 
interested in the overall demand for cash (transaction balances, precautionary balances, hoarding, etc.). 
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withdraw cash to make PoS payments. And, our panel data allows us to control for idiosyncratic, 

time invariant, patterns in cash hoarding with client-level fixed-effects. 

Note that all three of our outcome variables might additionally be subject to measurement error as 

they may not capture all cash, debit card and credit card transactions of the households in question. 

In particular, this could arise if households use other current accounts (of the Bank or another 

bank) to conduct cash withdrawals and PoS payments we will not observe their entire payment 

behavior and cash demand. Survey data suggests that less than half of all Swiss households hold 

transaction accounts at multiple banks (Brown et al. 2020). Our account-level fixed effects also 

allow us to control for time-invariant variation in the use of accounts in our sample for transaction 

purposes.  

To examine the mechanism by which the contactless payment technology affects cash use and 

cash demand we study six auxiliary outcome variables. These measure the frequency of Debit PoS 

transactions in total as well as by transaction size (0-20 CHF: 20-40 CHF; 40-60 CHF; 60-100 

CHF; more than 100 CHF). While we do observe debit card transactions by size, we do not observe 

whether a debit card payment employed the contactless (NFC) technology. However, the use of 

the contactless feature can be inferred indirectly by separately analyzing debit card payments 

according to their eligibility for no PIN contactless payments (up to 40 CHF).  

 

--- Insert Table 1 about here --- 

 

Panel A of Table 1 presents descriptive statistics for all outcome variables based on pre-treatment 

(2015) observations. The table documents the importance of cash as a means of payment in our 

sample. The median Cash ratio is 78%, while the interquartile range spans 52%-96%. Thus, only 

one quarter of the consumers in our sample pay more with cards than they do with cash, while 

another quarter pay almost exclusively in cash.29 The median of Cash withdrawal frequency is 39 

while that of Cash withdrawal amount is 344 CHF, implying that the average consumer in our 

sample makes less than 1 cash withdrawal per week and withdraws an amount equal to roughly 

258 CHF per week. A closer look at the data reveals that median number of withdrawals from 

ATMs (36) by far outweighs that from bank branches withdrawals (1). By contrast the median size 

 
29 The ratio is higher than in SNB (2018), because the latter study includes payments via bank transfer in the 
denominator. If we include bank transfer payments that are conducted via e-banking, we obtain a cash share of 51% 
(see the robustness tests in Appendix A4). 
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of withdrawals from ATMs (270 CHF) is significantly lower than that from bank branches (1625 

CHF). The median number of Debit PoS transactions is 36 in 2015, while the interquartile range 

spans from 6 to 95. Thus, the average consumer in our sample uses the debit card only 3 times per 

month, while one quarter of our sample use the debit card at most every second month. The average 

consumer in our sample rarely uses the debit card for small-value transactions: The median number 

of debit transactions below 20 CHF is only 2 (!) per year in 2015. These descriptive statistics 

confirm the presence of pronounced heterogeneities in payment behavior that have also been noted 

in other studies (e.g. Attanasio et al 2002, Bagnall et al. 2016, Koulayev et al. 2016).  

 

3.3. Methodology 

The structure of our data is that of panel data with staggered adoption as discussed in Athey and 

Imbens (2018). Defining 𝑟𝑟 ∈ {2016, 2017, 2018} as our observation periods and 𝐶𝐶 ∈

{2017, 2018} as the possible adoption dates during this observation period we can identify three 

relevant groups of clients in our sample (see Figure 1): Early adopters are those clients who have 

a debit card which expired at end 2016 and thus adopt the contactless payment technology as per 

the beginning of 2017. For these clients we have adoption date 𝐶𝐶𝑖𝑖 = 2017. Late adopters are those 

clients who have a debit card which expired at end 2017 and thus adopt the contactless payment 

technology at the beginning of 2018. For these clients we have 𝐶𝐶𝑖𝑖 = 2018. Non adopters are those 

clients who have a debit card which expires at end 2018 and thus do not adopt the contactless 

payment technology during our observation period. In line with the notation of Athey and Imbens 

(2018) these clients have 𝐶𝐶𝑖𝑖 = ∞. 

We define 𝑌𝑌𝑖𝑖,𝑡𝑡(𝐶𝐶) as the potential outcome (cash use or cash demand) of client i in period t 

conditional on the adoption date a. We can define 𝜏𝜏𝑡𝑡;𝑎𝑎,𝑎𝑎′ = 𝐸𝐸�𝑌𝑌𝑖𝑖,𝑡𝑡(𝐶𝐶)� − 𝐸𝐸�𝑌𝑌𝑖𝑖,𝑡𝑡(𝐶𝐶′)� as the 

treatment effect of adopting the technology in period 𝐶𝐶 instead of period 𝐶𝐶′ on outcome in period 

t. In this framework, the treatment effect of adoption may depend on (i) which pair of adoption 

dates we are comparing (𝐶𝐶, 𝐶𝐶′) and (ii) the period for which we are measuring outcomes (𝑟𝑟).  

Given our empirical setting, there are three separate treatment effects of particular interest: 

• Early adoption vs. Non adoption on outcomes in 2017: 𝜏𝜏𝑡𝑡=2017;𝑎𝑎=2017,𝑎𝑎′=∞ 

• Early adoption vs. Non adoption on outcomes in 2018: 𝜏𝜏𝑡𝑡=2018;𝑎𝑎=2017,𝑎𝑎′=∞ 
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• Late adoption vs. Non adoption on outcomes in 2018: 𝜏𝜏𝑡𝑡=2018;𝑎𝑎=2018,𝑎𝑎′=∞ 

One may also be interested in the effect of early adoption vs. later adoption on outcomes in 2018: 

𝜏𝜏𝑡𝑡=2018;𝑎𝑎=2017,𝑎𝑎′=2018. This can be calculated from 𝜏𝜏𝑡𝑡=2018;𝑎𝑎=2017,𝑎𝑎′=∞ - 𝜏𝜏𝑡𝑡=2018;𝑎𝑎=2018,𝑎𝑎′=∞. 

Following Athey and Imbens (2018) we will consider a difference-in-difference (DiD) estimand 𝜏𝜏 

estimated by the following regression:  

[1]  𝑌𝑌𝑖𝑖,𝑡𝑡 = 𝛽𝛽𝑖𝑖 + 𝛽𝛽𝑡𝑡 + 𝜏𝜏 ∙ 𝐴𝐴𝑖𝑖,𝑡𝑡 + 𝜀𝜀𝑖𝑖,𝑡𝑡 

where 𝑌𝑌𝑖𝑖,𝑡𝑡 ∈ �𝐶𝐶𝐶𝐶𝐶𝐶ℎ 𝑟𝑟𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖,𝑡𝑡,𝐶𝐶𝐶𝐶𝐶𝐶ℎ 𝑑𝑑𝑟𝑟𝑟𝑟ℎ𝑑𝑑𝑟𝑟𝐶𝐶𝑑𝑑𝐶𝐶𝑉𝑉 𝑜𝑜𝑟𝑟𝑉𝑉𝑓𝑓𝑉𝑉𝑉𝑉𝑖𝑖𝑐𝑐𝑝𝑝𝑖𝑖,𝑡𝑡,𝐶𝐶𝐶𝐶𝐶𝐶ℎ 𝑑𝑑𝑟𝑟𝑟𝑟ℎ𝑑𝑑𝑟𝑟𝐶𝐶𝑑𝑑𝐶𝐶𝑉𝑉 𝐶𝐶𝑝𝑝𝑟𝑟𝑉𝑉𝑖𝑖𝑟𝑟𝑖𝑖,𝑡𝑡� 

and 𝑟𝑟 ∈ {2016, 2017, 2018}. In this regression 𝛽𝛽𝑖𝑖 ,𝛽𝛽𝑡𝑡 are client and year fixed effects respectively. 

𝐴𝐴𝑖𝑖,𝑡𝑡 is set to 1 for all accounts i in period t which have already adopted the technology, i.e. 𝐶𝐶𝑖𝑖 ≤ 𝑟𝑟 

(and 0 otherwise). Athey and Imbens (2018) show that under the assumption of random assignment 

of adoption and no anticipation effects the DiD estimator �̂�𝜏 is a weighted average of the three 

causal treatment effects of interest listed above ( 𝜏𝜏𝑡𝑡=2017;𝑎𝑎=2017,𝑎𝑎′=∞ ; 𝜏𝜏𝑡𝑡=2018;𝑎𝑎=2017,𝑎𝑎′=∞ ; 

𝜏𝜏𝑡𝑡=2018;𝑎𝑎=2018,𝑎𝑎′=∞ ). 

Our observation of pre-adoption realizations (𝑟𝑟 < 𝐶𝐶𝑖𝑖 ) of the outcome variables allow us to verify 

the assumption of no anticipation. In particular we can compare the 𝑌𝑌𝑖𝑖,𝑡𝑡 ∈

�𝐶𝐶𝐶𝐶𝐶𝐶ℎ 𝑟𝑟𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖,𝑡𝑡,𝐶𝐶𝐶𝐶𝐶𝐶ℎ 𝑑𝑑𝑟𝑟𝑟𝑟ℎ𝑑𝑑𝑟𝑟𝐶𝐶𝑑𝑑𝐶𝐶𝑉𝑉 𝑜𝑜𝑟𝑟𝑉𝑉𝑓𝑓𝑉𝑉𝑉𝑉𝑖𝑖𝑐𝑐𝑝𝑝𝑖𝑖,𝑡𝑡,𝐶𝐶𝐶𝐶𝐶𝐶ℎ 𝑑𝑑𝑟𝑟𝑟𝑟ℎ𝑑𝑑𝑟𝑟𝐶𝐶𝑑𝑑𝐶𝐶𝑉𝑉 𝐶𝐶𝑝𝑝𝑟𝑟𝑉𝑉𝑖𝑖𝑟𝑟𝑖𝑖,𝑡𝑡� by adoption 

date 𝐶𝐶𝑖𝑖 ∈ {2017, 2018,∞} for the period 𝑟𝑟 ∈ {2015}. Panel B of Table 1 presents summary 

statistics for all outcome variables by treatment groups. The table displays similar pre-treatment 

payment behavior and cash demand across the three groups. 

Our administrative data provides us with a broad set of socioeconomic and account-level 

covariates measured as per December 2015 (see Appendix A2, Panel B for details). Table 2 (Panel 

B) presents balancing tests for all covariates which allow us to verify the assumption of 

randomized adoption. While t-tests indicate statistically significant differences for some covariates 

across the treatment groups, the magnitude of these differences is negligible for most variables. 

We thus argue that our data largely meet the assumptions of randomized adoption as well as no 

anticipation. 

 

--- Insert Table 2 about here --- 

 



 

16 

Our DiD estimator �̂�𝜏 provides us with a measure of the “average” effect of contactless debit cards 

on subsequent payment and cash holding behavior during our observation period. However, as 

discussed above this estimator is a weighted average of three separate treatment effects: 

𝜏𝜏𝑡𝑡=2017;𝑎𝑎=2017,𝑎𝑎′=∞ , 𝜏𝜏𝑡𝑡=2018;𝑎𝑎=2017,𝑎𝑎′=∞ and 𝜏𝜏𝑡𝑡=2018;𝑎𝑎=2018,𝑎𝑎′=∞ .30 

To better understand the dynamics of this treatment effect we will explore the heterogeneity of the 

three individual treatment effects by running the following regression:  

[2] 𝑌𝑌𝑖𝑖,𝑡𝑡 = 𝛽𝛽𝑖𝑖 + 𝛽𝛽𝑡𝑡 + 𝜏𝜏2017,2017 ∙ 𝐴𝐴2017,2017 + 𝜏𝜏2017,2018 ∙ 𝐴𝐴2017,2018 + 𝜏𝜏2018,2018 ∙ 𝐴𝐴2018,2018 + 𝜀𝜀𝑖𝑖,𝑡𝑡 

where 𝑌𝑌𝑖𝑖,𝑡𝑡 ∈ �𝐶𝐶𝐶𝐶𝐶𝐶ℎ 𝑟𝑟𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖,𝑡𝑡,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑑𝑑𝑟𝑟𝑟𝑟ℎ𝑑𝑑𝑟𝑟𝐶𝐶𝑑𝑑𝐶𝐶𝑉𝑉 𝑜𝑜𝑟𝑟𝑉𝑉𝑓𝑓𝑉𝑉𝑉𝑉𝑖𝑖𝑐𝑐𝑝𝑝𝑖𝑖,𝑡𝑡,𝐶𝐶𝐶𝐶𝐶𝐶ℎ 𝑑𝑑𝑟𝑟𝑟𝑟ℎ𝑑𝑑𝑟𝑟𝐶𝐶𝑑𝑑𝐶𝐶𝑉𝑉 𝐶𝐶𝑝𝑝𝑟𝑟𝑉𝑉𝑖𝑖𝑟𝑟𝑖𝑖,𝑡𝑡� 

and 𝑟𝑟 ∈ {2016, 2017, 2018}. In this regression 𝛽𝛽𝑖𝑖 ,𝛽𝛽𝑡𝑡 are again individual and time fixed effects 

respectively. 𝐴𝐴2017,2017 is set to 1 for all observations in period 𝑟𝑟 ∈ {2017} of clients who adopted 

the technology in 2017 (and 0 otherwise). 𝐴𝐴2017,2018 is set to 1 for all observations in period 𝑟𝑟 ∈

{2018} of clients who adopted the technology in 2017 (and 0 otherwise). 𝐴𝐴2018,2018 is set to 1 for 

all observations in period 𝑟𝑟 ∈ {2018} of clients who adopted the technology in 2018 (and 0 

otherwise). 

 

3.4. Inference  

Our null-hypotheses suggest no effect of the contactless payment technology on the outcome 

variables Cash ratio, Cash withdrawal frequency and Cash withdrawal amount. Our statistical 

inference is therefore based on two-sided tests of the DiD estimators �̂�𝜏 in regression equations [1] 

and [2]. The DiD estimation of the treatment variable 𝜏𝜏 is based on data at the client*year level 

which includes multiple pre-treatment and post-treatment observations per account. We therefore 

account for potential serial correlation in the outcome variable and its effect on the standard error 

of our estimate for the treatment variable �̂�𝜏 (see Bertrand et al. 2004). We do so by adjusting 

standard errors for clustering at the client-level. 

 
30 Athey and Imbens (2018) show that two key assumptions are required for these treatment effects to be homogenous 
�𝜏𝜏 = 𝜏𝜏𝑡𝑡; 𝑎𝑎,𝑎𝑎′∀𝑟𝑟, 𝐶𝐶, 𝐶𝐶′�. The first assumption is history invariance, i.e. the treatment effect for period t is independent of 
adoption period a, i.e. 𝑌𝑌𝑖𝑖,𝑡𝑡(1) = 𝑌𝑌𝑖𝑖,𝑡𝑡(𝐶𝐶) ∀ 𝛼𝛼 ≤ 𝑟𝑟. The second assumption is constant treatment effect over time, i.e. the 
treatment effect of adoption period 𝛼𝛼 is identical for all subsequent periods, i.e. 𝑌𝑌𝑖𝑖,𝑡𝑡(𝐶𝐶) − 𝑌𝑌𝑖𝑖,𝑡𝑡(∞) = 𝑌𝑌𝑖𝑖,𝑡𝑡′(𝐶𝐶) −
𝑌𝑌𝑖𝑖 ,𝑡𝑡′(∞) ∀ 𝑟𝑟, 𝑟𝑟′ ≥ 𝛼𝛼. In our setting neither of these assumptions are likely to hold as it is very likely that the treatment 
effect of contactless debit cards on payment behavior and cash demand is dynamic within subject. 
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We account for multiple hypothesis testing (three primary outcome variables) by adjusting our 

inference tests according to the Bonferroni method (see Olken, 2015). Thus, to reject either of our 

null-hypotheses at the 5% level we require the estimated coefficient of our treatment variables �̂�𝜏 

in equations [1] and [2] to be significant at a level of p<0.0167. 

 

 

4. Average Treatment Effects 

4.1. Debit Card PoS Transactions 

Panel A of Figure 2 depicts the average number of debit card, PoS transactions by treatment group 

over the period 2015 - 2018. The figure documents an increase in the number of debit card 

transactions for all groups during our period of interest. The increase for the group of Non adopters 

documents that even without access to the contactless payment technology there is a strong upward 

trend in the use of debit cards for PoS transactions. The average number of transactions per year 

increases for this group by 7.5% in 2016, 6.3% in 2017 and 8.4% in 2018. By comparison, 

however, the growth rate for debit card PoS transactions of Early adopters increases after they 

receive a contactless card (at the end of 2016) from 10.5% in 2016 to 14.2% in 2017 and 14.8% in 

2018. Similarly, the growth rate for debit card PoS transactions of Late adopters increases after 

they receive a contactless card (at the end of 2017) from 9.1% in 2016 and 8.2% in 2017 to 17.9% 

in 2018. Panel B of Figure 2 shows that these effects are even more pronounced for transactions 

with a value below 20 CHF (see Appendix A3 for larger transaction amounts). 

 

--- Insert Figure 2 about here --- 

 

Our visual inspection in Figure 2 suggests a strong causal effect of the contactless payment 

technology on the use of debit cards for PoS payments. This finding is confirmed by the regression 

estimates presented in Table 3. The column 1 results show that the use of debit cards increases by 

6.8 transactions on average per year after the receipt of a contactless card. 31 This average treatment 

 
31 Note that we apply standard critical values for parameter tests in Table 3, because the dependent variable does not 
belong to the group of primary outcome variables. 
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effect amounts to an 8.6% increase relative to the sample mean of 79 transactions. The bulk of this 

increase occurs for small transaction values: 4.9 transactions per year for amounts below 20 CHF 

(column 2) and 1.1 transactions per year for amounts between 20 and 40 CHF (column 3). In 

relation to the baseline sample mean, the increase declines from 21% for transactions up to 20 

CHF to 6.1% for transactions between 20 and 40 CHF.  

As we observe debit card transactions by amounts, we can test whether contactless cards trigger 

increases in (contactless) debit card payments also for amounts above 40 CHF still requiring the 

introduction of the PIN. Such effects would arise if consumers start to more frequently use their 

debit card through comfort-with technology effects or learning, for example. The results of Table 

3, columns (4-6) suggest that these spillover effects are present for payment amounts beyond 40 

CHF, although they are considerably weaker than for smaller payment amounts. For example, the 

relative increase in card use is just 1.8% for transactions larger than 100 CHF (relative to the 

sample mean).32 Overall, the Table 3 results confirm our auxiliary hypotheses: The receipt of a 

contactless debit card increases the number of small-value debit card transactions relative to all 

such transactions (Hypothesis 5). Also, the receipt of a contactless card increases the number of 

medium-sized debit card transactions which are eligible for the contactless technology relative to 

medium transactions for which a PIN has to be entered (Hypothesis 6) 

 

--- Insert Table 3 about here --- 

 

4.2. Payment choice and cash demand 

Access to the contactless payment technology increases the use of debit cards for PoS payments. 

But to what extent does this payment innovation decrease the cash share of payments and cash 

demand? Figure 3 illustrates the impact of the contactless payment technology on our primary 

outcome variables; the Cash ratio, the Cash withdrawal frequency, and the Cash withdrawal 

amount. The figure provides two key insights. First, we observe a significant trend decline in the 

cash ratio and the number of cash withdrawals from 2015 to 2018, while there is no change in the 

 
32 The quantitative impact on the number of payments should not be mistaken with the impact on cash use as a small 
increase of higher value payments may have a bigger effect on cash use than a larger increase of small value payments. 
In fact, a back-of-the-envelope calculation shows that the increase in debit card payments up to 40 CHF exerts a 
similar decrease in cash use as the increase in debit card payments of more than 40 CHF. 
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average size of cash withdrawals. Second, while there does appear to be a steeper decline of the 

Cash ratio for Early adopters and Late adopters than for Non adopters, the effect seems less 

substantial than observed in Figure 2 for debit card transactions.  

 

--- Insert Figure 3 about here --- 

 

Table 4 presents our estimates of the average treatment effect of the contactless payment 

technology on cash use and cash demand. The column 1 results indicate that contactless cards 

cause a decline in the Cash ratio by -0.6 pp per year. This amounts to an average annual treatment 

effect of -0.9% relative to the mean cash ratio of 68.1% in our sample for the period 2016-2018. 

This modest decrease fits well to the Table 3 results on debit card payments. Although the causal 

increase in debit card transactions is substantial, the overall number and value of such transactions 

is low. This implies that even a significant increase in the number of debit card transactions leads 

only to a small decline in the cash share of payments. The column (1) regression results also reveal 

a trend decrease in the cash ratio of -1.5 pp from 2016 to 2017 and -2 pp from 2017 to 2018. Thus, 

the causal effect of contactless cards per year is less than one-third of the annual trend. Columns 

(3) and (5) of Table 4 summarize the findings regarding cash demand. We find no significant effect 

of contactless cards on the Cash withdrawal frequency or Cash withdrawal amount.  

Our main estimates in columns (1, 3, 5) of Table 4 are based on the regression specification in 

equation [1] including client and year fixed effects. This specification accounts for any time-

invariant heterogeneity in the access to local payment infrastructure across households. As the 

timing of access to contactless cards is largely orthogonal to household characteristics, including 

the place of residence (see Table 2), it is very unlikely that our estimates are biased by unobserved 

heterogeneity in the development of local payment infrastructure. This is confirmed by our 

estimates in columns (2, 4, 6) of Table 4. There we additionally include location*year fixed effects 

to account for time-varying heterogeneity in local payment infrastructure.33 Our estimates of the 

causal effect of contactless cards on the Cash ratio, Cash withdrawal frequency, and Cash 

withdrawal amount are unaffected. 

 
33 For reasons of data-protection we do not observe the exact zip-code / municipality of clients. See section 5 for a 
detailed discussion of how we define location based on available information on region of residence and municipality 
size. 
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--- Insert Table 4 about here --- 

 

As discussed in section 3.3 on methodology, the average treatment effect estimates presented in 

Table 4 are a weighted average of three distinct treatment effects; the treatment effect on Early 

adopters in 2017, the treatment effect on Early adopters in 2018, and the treatment effect on Late 

adopters in 2018. In Table 5 we present separate estimates of these three treatment effects based 

on regression equation [2]. The results confirm our main findings from Table 4: While contactless 

cards impact on the Cash ratio we find no treatment effect at all on Cash withdrawal frequency or 

Cash withdrawal amount. Interestingly, Table 5 shows that the average treatment effect of 

contactless cards on the Cash ratio is largely driven by the impact on Early adopters and Late 

adopters in 2018. By contrast the impact on Early adopters in 2017 is small and statistically 

insignificant. It appears that the initial impact of contactless debit cards on Early adopters was 

muted - either due to lack of salience of the new payment technology or a lack in access to 

corresponding payment infrastructure. To sum up, the average treatment effects confirm 

Hypothesis 1 as a negative impact of contactless debit cards on Cash ratio indicates a reduced use 

of cash as a means of payment. By contrast, we do not find evidence for our second hypothesis, 

that the contactless payment technology reduces the demand for cash as Cash withdrawal 

frequency and Cash withdrawal amount remain unaffected. 

 

--- Insert Table 5 about here --- 

5. Heterogenous Treatment Effects  

Given that Table 4 and 5 document an average treatment effect for Cash ratio only, we focus our 

analysis of heterogenous treatment effects on this outcome variable. Theory suggests that cross-

sectional differences in payment behavior across households may result due to transaction costs 

(Alvarez and Lippi 2017) as well as persistent differences in cash preferences due to budget 

monitoring (von Kalckreuth et. al. 2014), habit (van der Cruijsen et al. 2017) or preferences 

towards anonymity (Kahn et al. 2005). As a consequence, we hypothesize that the impact of 

contactless payment technology on cash use and cash demand will be related to pre-treatment 
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payment behavior. In particular, Hypothesis 3 suggests a stronger effect of contactless cards 

among those consumers who already frequently use non-cash payment technologies.34  

 

We split our sample into four groups which correspond to four quartiles of the pre-treatment Cash 

ratio, as measured in 2015. Note from Table 1 (Panel B) that this pre-treatment level of cash use 

is all but identical across our three treatment groups (Early adopters, Late adopters, Non adopters). 

We expect that the treatment effect of contactless cards on the Cash ratio should be smaller for 

consumers with a higher pre-treatment cash use. As predicted, the groups of consumers with the 

highest pre-treatment cash use (columns 3 and 4 in Table 6) reveal the lowest (relative) treatment 

effect. In these groups contactless cards lead to a statistically insignificant reduction of the Cash 

ratio by 0.35 pp, compared to a pre-treatment level of more than 78%. Interestingly, the group of 

consumers who used cards most intensively before treatment (column 1) also reveal a low and 

insignificant treatment effect. In this group, contactless cards lead to a reduction of the Cash ratio 

by only 0.17 pp, compared to a pre-treatment level of 35%. This insignificant treatment effect may 

indicate either demand-side saturation effects or supply side constraints. 

Table 6 (column 2) documents a sizeable and significant treatment effect of contactless cards for 

the group with an intermediate pre-treatment cash ratio. In this group, contactless cards reduce the 

cash ratio by 1.3 pp per year compared to an average pre-treatment cash ratio of 60%. This finding 

suggests contactless cards may have the largest impact on card vs. cash payments among those 

clients who initially make regular, but few card payments. A closer look at the frequency of debit 

card payments for this group of clients supports this conjecture. In unreported regressions we 

replicate our Table 3 analysis only for this group of clients. In this group the average number of 

debit transactions increases from 94 in 2016 to 119 in 2018. The average treatment effect of 

contactless cards is estimated to be 9 transactions per year in this subsample. In line with the Table 

3 findings, this treatment effect is mainly driven by debit card payments for small value 

transactions (below 20 CHF), where contactless cards lead to an increase by 6.3 transactions per 

year.  

 

--- Insert Table 6 about here --- 

 
34 As noted in section 2.3. we cannot test Hypothesis 4 from our pre-analysis plan due to a lack of data on locations 
of PoS terminals.  
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In Table 7 we present an explorative (not pre-registered) subsample analysis. Here we examine 

whether the treatment effect of contactless debit cards on Cash ratio differs by location (urban vs. 

rural) and age of consumers. Survey evidence shows that the payment behavior of consumers 

within Switzerland varies cross-sectionally both by age and location (SNB 2018). There are many 

reasons why this may be the case: Local payment infrastructure (PoS terminals vs. ATMs) and 

thus relative transaction costs of cards vs. cash for the same type of purchases may differ between 

urban and rural areas. Individual consumption behavior (types of goods and services purchased, 

timing of purchases) may differ by age group, so that differences in payment infrastructure across 

types of purchases would lead to differences in observed payment behavior. Differences in 

behavioral traits (budget monitoring), habits as well as network effects may also affect payment 

behavior across locations and age groups. If payment behavior differs cross-sectionally by location 

and age-group it is also plausible that we could see a heterogenous impact of a change in payment 

technology on this behavior. Young and urban consumers may be more likely to adopt the 

contactless payment technology than older consumers in rural areas.  

Based on our administrative data we split our sample by three, similarly sized age groups: less 

than 35 years old, 35-55 years and above 55 years. We also split our sample, by whether the client 

resides in an urban or rural area. For reasons of data-protection we do not observe the zip-code of 

clients. We do, however, observe the local economic region (MS-region) as well as the size 

(number of inhabitants) of the municipality in which the client resides (0-5’000; 5’001-10’000; 

10’001-20’000; 20’001-50’000; more than 50’000). Crossing this information, we can distinguish 

22 locations based on a combination of the local economic region and the size of the municipality 

within that region that the client resides in. We collect publicly available data on population size 

and settlement area (km2) for each municipality relevant to our sample. Aggregating this 

information for each location we obtain a measure of population density per region.35 We 

categorize locations with a population density of more (less) than 3’000 inhabitants per km2 as 

urban (rural). 

Table 7 presents our subsample estimates for the impact of contactless cards on Cash ratio by age 

and location. The results are striking. First, we observe that the cash share of payments depends 

strongly on client age, but hardly on client location. In urban locations the mean Cash ratio varies 

 
35 The data reveals that the population density varies from just under 1’500 inhabitants per km2 to just over 4’500 
inhabitants per km2. The median population density is just under 3’000 inhabitants per km2. 
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from 58% for consumers below 35 years to 66% for 35-55 year olds and 78% for clients above 55 

years. The mean cash share of payments is almost identical by age group for clients in rural areas. 

Second, younger consumers exhibit a stronger trend decline in the cash share of payments than 

older consumers. And again the time trend per age-group is independent of urban vs. rural location. 

Consumers aged below 35 years display a decline in the Cash ratio by 3-4 pp per year in 2017 and 

2018 compared to 2016. The trend decline for 35-55 year olds is 1-2 pp per year while it is roughly 

half a percentage point per year for clients above 55 years. Third, the causal impact of contactless 

cards on the Cash ratio is large and statistically significant only for young consumers in urban 

areas (column 1). In this subsample, the receipt of a contactless card reduces the Cash ratio by 

1.25 pp per year. This effect is sizeable as it amounts to 2% of the subsample mean and more than 

one-third of the annual trend decline. By comparison, the estimate of the causal effect of 

contactless cards is smaller and statistically insignificant for young consumers in rural areas 

(column 4) as well as for older consumers (columns 2-3, 5-6). 

What could explain that a substantial causal effect of contactless cards on payment choice is 

limited to young urban consumers? Previous studies suggest that young consumers are more likely 

to adopt new (financial) technologies due to lower resistance and greater ability to learn new 

technologies and a longer time horizon (see e.g. Yang and Ching, 2013). However, if affinity to 

new technology were the driving force in our case, we should observe a similar effect for all young 

consumers. After all, young consumers in rural areas display not only an identical level for the 

Cash ratio but also an identical time-trend as young consumers in urban areas. For the same reason, 

it seems unlikely that general changes in local payment infrastructure (e.g. self-checkouts in 

grocery stores) are the driver of our results. One potential driver may, however, be changes in 

payment infrastructure which are specific to contactless cards, i.e. the faster dissemination of NFC 

enabled terminals in urban areas. A further potential driver is a heightened awareness of the new 

payment technology and potential network effects among young urban consumers.  

 

--- Insert Table 7 about here --- 

 

 



 

24 

6. Robustness tests 

In accordance with our pre-analysis plan, we conduct a series of robustness tests. First, we replicate 

our main analysis from Table 4 applying alternative definitions of our primary outcome variables. 

The definitions and summary statistics of these alternative outcome variables as well as the 

corresponding regression results are provided in Appendix A4. We first alter our definition of 

Cash ratio to (i) omit credit card payments, (ii) include e-banking payments and (iii) focus only 

on domestic card transactions. These adjustments have no effect on the causal effect of contactless 

cards on cash use, qualitatively (Panel A, columns 1-3). We further alter our measures of Cash 

withdrawal frequency and Cash withdrawal amount to focus on ATM withdrawals only (columns 

4-5) and on domestic transactions only (columns 6-7). Again, our baseline results of Table 4 are 

confirmed. 

Second, we replicate regression equation [1] measuring the outcome variables not by calendar 

year, but from the month of November to the following month of October. This robustness test 

accounts for the fact that replacement debit cards are sent to clients 2 months prior to the expiry 

of their old card and can be used immediately after receipt. Appendix A5 presents regression 

estimates which confirm our baseline results from Table 4.  

Third, we replicate our subsample analysis of Table 6 employing an alternative definition of pre-

treatment payment behavior. Specifically, we separate clients according to their pre-treatment 

number of debit card transactions below 20 CHF. Again, our results are confirmed (see Appendix 

A6). 

Next, we report on a placebo test to disentangle the effect of a new payment card per se from the 

effect of receiving a payment card with a contactless function. To this end we exploit the fact that 

our control group (Non adopters) receive a new payment card at the end of 2015 (valid from 

beginning 2016) but this card does not yet feature the contactless technology (see Figure 1). Our 

placebo test therefore compares the payment behavior of Non adopters to early and Late adopters 

over the period 2015:01 to 2016:12.  

[4]  𝑌𝑌𝑖𝑖,𝑡𝑡 = 𝛽𝛽𝑖𝑖 + 𝛽𝛽𝑡𝑡 + 𝜏𝜏𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∙ 𝑁𝑁𝑉𝑉𝑑𝑑 𝑐𝑐𝐶𝐶𝑟𝑟𝑑𝑑𝑖𝑖,2016 + 𝜀𝜀𝑖𝑖,𝑡𝑡 

where 

 𝑌𝑌𝑖𝑖,𝑡𝑡 �
𝐷𝐷𝑉𝑉𝑏𝑏𝑟𝑟𝑟𝑟 𝑐𝑐𝐶𝐶𝑟𝑟𝑑𝑑 𝑉𝑉𝐶𝐶𝑉𝑉𝑖𝑖,𝑡𝑡,𝐶𝐶𝐶𝐶𝐶𝐶ℎ 𝑟𝑟𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖,𝑡𝑡,𝐶𝐶𝐶𝐶𝐶𝐶ℎ 𝑑𝑑𝑟𝑟𝑟𝑟ℎ𝑑𝑑𝑟𝑟𝐶𝐶𝑑𝑑𝐶𝐶𝑉𝑉 𝑜𝑜𝑟𝑟𝑉𝑉𝑓𝑓𝑉𝑉𝑉𝑉𝑖𝑖𝑐𝑐𝑝𝑝𝑖𝑖,𝑡𝑡,

𝐶𝐶𝐶𝐶𝐶𝐶ℎ 𝑑𝑑𝑟𝑟𝑟𝑟ℎ𝑑𝑑𝑟𝑟𝐶𝐶𝑑𝑑𝐶𝐶𝑉𝑉 𝐶𝐶𝑝𝑝𝑟𝑟𝑉𝑉𝑖𝑖𝑟𝑟𝑖𝑖,𝑡𝑡
� and 𝑟𝑟 ∈ {2015, 2016}. 
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,

In this regression 𝛽𝛽𝑖𝑖 ,𝛽𝛽𝑡𝑡 are individual and time fixed effects respectively. 𝑁𝑁𝑉𝑉𝑑𝑑 𝑐𝑐𝐶𝐶𝑟𝑟𝑑𝑑𝑖𝑖,2016 is set 

to 1 for all individuals i of Non adopters in year 2016 (and 0 otherwise). Table A7 summarize the 

respective findings for the number of debit card transactions and the results suggest that Non 

adopters decrease rather than increase their use of debit cards after receipt of a new card. The 

respective results for our primary outcome variables are shown in Table A8. Reassuringly, the 

estimate of New card is insignificant in all specifications.  

Finally, we replicate our analysis with a sample of clients which hold multiple debit cards. In this 

sample, we define treatment at the card level and not at the account level because expiry dates of 

cards might differ. Therefore, we can only conduct the analysis for the number of debit card 

transactions but cannot compute Cash ratio or withdrawal variables, which would require 

aggregation at the account level. Moreover, the number of observations (cards) in this sample is 

just 1,412 which limits the statistical power of our analysis. The respective results in Appendix A9 

confirm, nevertheless, that small value card transactions strongly increase after the receipt of a 

contactless card. 

 

7. Discussion 

We study the causal effect of a payment technology innovation on payment choice and cash 

demand. We examine the staggered introduction of contactless debit cards in Switzerland over the 

period 2016-2018. We thus focus on an economy with a high level of financial development and 

a well-established payment infrastructure. Yet, like in many other European economies, Swiss 

consumers are strikingly cash intensive in their payment behavior. Studying how financial 

innovation affects payment behavior and money demand in cash intensive, advanced economies 

is important. The future use of cash as opposed to electronic private money, and hence the future 

design of the monetary system, will arguably be strongly influenced by these economies.36  

Our analysis is based on account-level, administrative data for over 21,000 retail bank clients. The 

date at which these clients receive a contactless debit card the first time depends only on the expiry 

 
36 As a case in point, the Euro area, Japan and Switzerland account for roughly 40% of world currency in circulation. 
The card-intensive economies Australia, Canada, the UK, Sweden and Norway account for about 4% (own 
calculations). Even if we abstract from currency which is circulating abroad, the quantitative difference is large. 
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date of their previous card. Our results show that the introduction of contactless debit cards causes 

a strong increase in the use of debit cards at PoS. The impact on the cash-share of payments is 

weaker as the level of debit card payments is initially low and most additional debit cards payments 

are of small value. We find no effect of contactless cards on cash demand as measured by the 

frequency and average size of cash withdrawals.  

Overall, our results document statistically significant effects of payment innovation on payment 

choice, but the economic magnitude of these effects are small. By comparison, our data reveal a 

strong decline in the use of cash which in descriptive analyses may be confused for a causal impact 

of recent payment innovations. This highlights the importance of disentangling causal effects of 

payment innovations from overarching trends in payment behavior 

While the average treatment effect of contactless cards is underwhelming, our subsample analyses 

reveal substantial and informative heterogeneities across households: the impact of contactless 

cards is strongest among consumers with an intermediate cash share of payments. By contrast, the 

impact is negligible among extensive margin “cash lovers”. Explorative analyses reveal that the 

impact of contactless cards on payment choice is largely driven by young consumers, but only 

those in urban locations. The latter finding suggests that recent payment innovations may 

accelerate the trend towards cashless transactions among technology affine consumers in locations 

with dense networks for cashless payments. By contrast, digital payment innovations may not 

trigger a widespread jump to a cashless society – at least in presently cash-intensive advanced 

economies.  

Our findings speak to – and qualify – recent inventory theories of money demand which jointly 

model payment choice and cash demand (Alvarez and Lippi, 2017). First, our data reveal that a 

financial innovation may impact differently on payment choice and cash demand. While payment 

choice reacts to payment innovations, the frequency and average amount of cash withdrawals does 

not. In cash-intensive economies, even a strong increase in cashless payments - especially for small 

value transactions – has a limited impact on aggregate cash demand. We suspect that this low 

sensitivity of cash demand is related to the exceptionally low interest rates. Second, our results 

reveal significant and persistent heterogeneities in payment choice across consumers which can 

hardly be explained by variation in local payment infrastructure and corresponding transaction 

costs. Thus, it appears that habit and / or behavioral motives may exert a stronger impact on 

payment choice and cash demand than is typically assumed in inventory models.  
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Figure 1. Research Design



Panel A- Total number of transactions

Panel B. Transactions below 20 CHF only 

Figure 2. Debit Card PoS Transactions
This figure displays the average number of Point of Sale (PoS) transactions conducted by debit card
per client and year by treatment group. Panel A displays the total number of PoS debit card
transactions. Panel B displays the number of transactions with a value of at most 20 CHF. Appendix
A2 presents definitions of all variables. Table 1 presents pre-treatment (2015) summary statistics.
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Figure 3. Payment choice and Cash demand
This figure displays the payment choice and cash demand per client and year by treatment group. Panel A
displays the cash ratio of payments in %. Panel B displays the number of cash withdrawals. Panel C displays
the average size of cash withdrawals in CHF. Appendix A2 presents definitions of all variables. Table 1
presents pre-treatment (2015) summary statistics.
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Panel C. Cash withdrawal amount 
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                                                        mean min p25 p50 p75 max n
Main Outcome Variables

Cash ratio (%) 71.6 0 52 78 96 100 21'122      
Cash withdrawal frequency 47.4 0 20 39 64 594 21'122      
Cash withdrawal amount 625 20 189 344 677 25'000      20'992      

Auxillary Outcome Variables
Debit PoS transactions 64.8 0 6 36 95 909 21'122      
Debit PoS transactions (0-20 CHF) 15.3 0 0 2 15 633 21'122      
Debit PoS transactions (20-40 CHF) 14.4 0 0 5 19 288 21'122      
Debit PoS transactions (40-60 CHF) 10.7 0 0 5 15 178 21'122      
Debit PoS transactions (60-100 CHF) 12.3 0 1 6 18 278 21'122      
Debit PoS transactions (>100 CHF) 12.1 0 1 6 16 195 21'122      

The table presents descriptive statistics for our main and auxiliary outcome variables as measured in 2015 (pre-treatment). Panel 
A displays detailed summary statistics for all variables. Panel B displays comparisons of sample means by treatment group. 
Variable definitions are presented in Appendix Table A2.

Panel A. Summary Statistics (Pre-treatment = 2015)

Table 1. Outcome Variables



* (**)  indicate significance levels of T-tests at the 5%-level (1%-level), respectively. 

                                                  Early adopters Late Adopters Non adopters
[1] [2] [3] [1 vs. 2] [1 vs. 3] [2 vs. 3]

Main Outcome Variables
Cash ratio (%) 71.6 71.1 72.2 *
Cash withdrawal frequency 47.0 49.2 46.1 ** **
Cash withdrawal amount 613 597 669 ** **

Auxillary Outcome Variables
Debit PoS transactions 63.2 68.2 63.5 ** **
Debit PoS transactions (0-20 CHF) 16.4 16.1 13.1 ** **
Debit PoS transactions (20-40 CHF) 13.9 15.1 14.4 **
Debit PoS transactions (40-60 CHF) 10.1 11.3 10.9 ** **
Debit PoS transactions (60-100 CHF) 11.5 13.0 12.7 ** **
Debit PoS transactions (>100 CHF) 11.3 12.8 12.5 ** **

Panel B. Sample Means by Treatment Group  (Pre-treatment = 2015)

T-tests



                                                        mean min p25 p50 p75 max n
Client-level Variables

Age 3.52 1 2 4 5 6 21'122      
Male 0.51 0 0 1 1 1 21'122      
Nationality Swiss 0.71 0 0 1 1 1 21'122      
Size municipality 2.63 1 2 2 3 5 21'122      
Income 2.62 1 1 2 4 6 21'122      
Wealth 2.02 1 1 2 3 6 21'122      
Retirement account 0.53 0 0 1 1 1 21'122      
Savings account 0.22 0 0 0 0 1 21'122      
Custody account 0.19 0 0 0 0 1 21'122      
Mortgage 0.07 0 0 0 0 1 21'122      
Ebanking 0.54 0 0 1 1 1 21'122      

Account-level Variables
Account opening year 1998 1972 1990 2000 2008 2014 21'122      
Direct debiting 0.55 0 0 1 1 1 21'122      
Standing order Ebanking 0.15 0 0 0 0 1 21'122      
Standing order paper 0.36 0 0 0 1 1 21'122      
Ebanking payments 19'335      0 0 0 30'227      435'745    21'122      
Transfers 3'938        0 0 0 400          420'000    21'122      
Incoming payments 58'663      1'200        28'413      53'169      76'518      471'408    21'122      
Outgoing payments 64'466      1'206        30'862      56'377      82'371      499'429    21'122      
Account balance 3.4 1 1 3 6 6 21'122      

Table 2. Covariate Variables
The table presents descriptive statistics for our client-level and account-level covariates as measured in 2015 (pre-
treatment). Panel A displays detailed summary statistics for all variables. Panel B displays comparisons of sample 
means by treatment group. Variable definitions are presented in Appendix Table A2.

Panel A. Summary Statistics (Pre-treatment = 2015)



                                                  Early adopters Late Adopters Non adopters
[1] [2] [3] [1 vs. 2] [1 vs. 3] [2 vs. 3]

Client-level Variables
Age 3.41 3.49 3.68 ** ** **
Male 0.51 0.53 0.50 **
Nationality Swiss 0.72 0.70 0.71 ** *
Size municipality 2.64 2.64 2.61
Income 2.53 2.71 2.64 ** ** *
Wealth 2.03 1.98 2.05 * **
Retirement account 0.54 0.53 0.52 *
Savings account 0.21 0.23 0.23 ** **
Custody account 0.19 0.18 0.21 ** **
Mortgage 0.07 0.07 0.08
Ebanking 0.54 0.55 0.52 ** **

Account-level Variables
Account opening year 1998 1999 1997 ** ** **
Direct debiting 0.54 0.56 0.55 **
Standing order Ebanking 0.15 0.17 0.15 ** **
Standing order paper 0.35 0.36 0.38 **
Ebanking payments 18'493               20'428               19'401               **
Transfers 3'632                 4'293                 4'000                 **
Incoming payments 56'351               60'366               60'073               ** **
Outgoing payments 61'858               66'614               65'842               ** **
Account balance 3.42 3.34 3.42 * *

Panel B. Sample Means by Treatment Group (Pre-treatment = 2015)

* (**)  indicate significance levels of T-tests at the 5%-level (1%-level), respectively. 

T-tests



(1) (2) (3) (4) (5) (6)

Outcome variable All below 20 CHF 20-40 CHF 40-60 CHF 60 - 100 CHF above 100 CHF
Contactless  6.786***  4.888***  1.092*** 0.322*** 0.242** 0.241**

(0.506) (0.316) (0.140) (0.087) (0.091) (0.087)
Year = 2017  4.365***  2.371*** 1.061*** 0.221*** 0.638*** 0.074

(0.323) (0.186) (0.096) (0.063) (0.065) (0.064)
Year = 2018  13.227*** 7.122*** 3.033*** 0.797*** 1.593*** 0.681***
                              (0.493) (0.288) (0.142) (0.090) (0.094) (0.090)
Client fixed effects Yes Yes Yes Yes Yes Yes
Clients 21'122 21'122 21'122 21'122 21'122 21'122
Client * Year observations 63'366 63'366 63'366 63'366 63'366 63'366
Mean of dependent variable 79.05 23.20 17.85 11.97 13.30 12.73
Method OLS OLS OLS OLS OLS OLS

The table shows the results of an OLS regression. The dependent variables measure the number of debit PoS transactions per client and year.  In column (1) 
the dependent variable covers all transactions, in columns (2-6) the dependent variable covers transactions of specific values only (0-20 CHF, 20-40 CHF, 
40-60 CHF, 60-100 CHF, 100+ CHF). Each regression includes 3 annual observations (2016, 2017, 2018) for 21'122 clients. The explanatory variable 
Contacless  is 1 for early adopters in years 2017 and 2018 and for late adopters in year 2018.  All regressions include client fixed effects. Robust standard 
errors are reported in parentheses. *, **,*** denote significance at the 0.05, 0.01, and 0.001-level.

Table 3. Debit PoS transactions

Debit card PoS transactions by transaction value



(1) (2) (3) (4) (5) (6)
Outcome variable

Contactless  -0.581***  -0.574*** -0.362 -0.346 -1.138 -0.944
(0.144) (0.144) (0.169) (0.169) (7.602) (7.685)

Year = 2017 -1.496*** -1.929*** 8.943
(0.104) (0.122) (5.611)

Year = 2018 -3.518*** -3.729*** 4.262
                              (0.143) (0.168) (7.081)
Client fixed effects Yes Yes Yes Yes Yes Yes
Year*Location fixed effects No Yes No Yes No Yes
Clients 21'112 21'112 21'122 21'122 21'047 21'047
Client * Year observations 63'169 63'169 63'366 63'366 62'544 62'544
Mean of dependent variable 68.10 68.10 44.27 44.27 614.62 614.62
Method OLS OLS OLS OLS OLS OLS

Table 4. Payment choice and cash demand: Average treatment effect
The table shows the results of an OLS regression. The dependent variables measure payment choice and cash demand per client and year.  In columns (1-2) 
the dependent variable is Cash ratio , in columns (3-4) Cash withdrawals frequency , in columns (5-6) Cash withdrawal amount . Appendix A2 presents 
definitions of each variable. Each regression includes 3 annual observations (2016, 2017, 2018) per client. The explanatory variable Contactless  is 1 for 
early adopters in years 2017 and 2018 and for late adopters in year 2018.  All regressions include client fixed effects.  Columns (1,3,5) include year fixed 
effects. Columns (2,4,6) include year*location fixed effects. We distinguish 22 locations based on a combination of the local economic region (MS-region) 
and the size of the municipality within that region that the client resides in. Robust standard errors are reported in parentheses. *, **,*** denote significance 
at the 0.017, 0.01, and 0.001-level.

Cash ratio (%)    Cash withdrawal frequency       Cash withdrawal amount



(1) (2) (3) (4) (5) (6)
Outcome variable

Early adopter, 2017 -0.46 -0.451 -0.239 -0.221 -9.911 -10.44
(0.214) -0.215 (0.241) (0.241) (12.553) -12.645

Early adopter, 2018  -1.128***  -1.124*** -0.58 -0.552 -8.63 -9.204
-0.257 (0.257)  (0.306) (0.306) (12.073) -12.198

Late adopter, 2017 0.006 0.001 -0.098 -0.079 -27.064 -28.113
(0.225) (0.225) (0.265) (0.265) (12.111)  -12.116

Late adopter, 2018  -0.709** -0.710** -0.614 -0.58 -19.981 -20.045
                              (0.271) (0.271) (0.339) (0.339) (12.545)  -12.536
Client fixed effects Yes Yes Yes Yes Yes Yes
Year fixed effects Yes No Yes No Yes No
Year*Location fixed effects No Yes No Yes No Yes
Clients 21'112 21'112 21'122 21'122 21'047 21'047
Client * Year observations 63'169 63'169 63'366 63'366 62'544 62'544
Mean of dependent variable 68.10 68.10 44.27 44.27 614.62 614.62
Method OLS OLS OLS OLS OLS OLS

Table 5. Payment choice and cash demand: Dynamic treatment effect

The table shows the results of an OLS regression. The dependent variables measure payment choice and cash demand per client and year. In columns (1-2) 
the dependent variable is Cash ratio , in columns (3-4) Cash withdrawal frequency , in columns (5-6) Cash withdrawal amount . Appendix A2 presents 
definitions of each variable. Each regression includes 3 annual observations (2016, 2017, 2018) per client. The explanatory variables are Early adopter in 
2017, Early adopter in 2018 and Late adopter in 2018. In addition we report the estimate for Late adopter in 2017 as an anticipation / placebo effect. All 
regressions include client fixed effects.  Columns (1,3,5) include year fixed effects, columns (2,4,6) include year*location fixed effects. We distinguish 22 
locations based on a combination of the local economic region (MS-region) and the size of the municipality within that region that the client resides in. 
Robust standard errors are reported in parentheses. *, **, *** denote significance at the 0.017, 0.01, and 0.001-level.

Cash ratio (%)    Cash withdrawal frequency      Cash withdrawals amount



(1) (2) (3) (4)
Outcome variable

Cash ratio (%) in 2015 (subsample): [0-52%] (52%-78%] (78%-96%] (96%-100%]
Contactless -0.172 -1.292*** -0.347 -0.343

(0.333) (0.326)  (0.276) (0.191)
Year = 2017 -0.620* -1.973*** -2.296*** -1.144***

(0.244) (0.240) (0.202) (0.129)
Year = 2018 -2.226*** -4.775*** -5.061*** -2.102***
                              (0.329) (0.325) (0.289) (0.183) 
Client fixed effects Yes Yes Yes Yes
Year*Location fixed effects No No No No
Clients 5'278 5'278 5'280 5'276
Client * Year observations 15'801 15'805 15'820 15'743
Mean of dependent variable 35.56 59.60 81.07 96.24
Method OLS OLS OLS OLS

Table 6. Payment choice: By pre-treatment payment behavior
The table shows the results of an OLS regression for subsamples of clients based on their pre-treatment payment behavior. 
We split clients by quartile of Cash ratio  (%) in 2015.  The dependent variable is Cash ratio  (%) in all columns. Appendix 
A2 presents definitions of each variable. Each regression includes 3 annual observations (2016, 2017, 2018) per client. The 
explanatory variable Contactless  is 1 for early adopters in years 2017 and 2018 and for late adopters in year 2018.  All 
regressions include client fixed effects.  Robust standard errors are reported in parentheses. *, **, *** denote significance at 
the 0.017, 0.01 and 0.001-level.

Cash ratio (%)



(1) (2) -3 (4) -5 (6)
Outcome variable

Location
Client age (years) below 35 35-55 above 55 below 35 35-55 above 55

Contactless -1.246** -0.717 0.092 -0.390 -0.333 0.365**
(0.411) (0.303) (0.348) (0.396) (0.307) (0.364)

Year = 2017 -3.085*** -0.858*** -0.643* -3.244*** -1.308*** -0.549***
(0.301) (0.217) (0.259) (0.300) (0.217) (0.265)

Year = 2018 -7.139*** -2.720*** -1.198*** -7.137*** -2.961*** -1.164***
                              (0.428) (0.294) (0.346) (0.411) (0.305) (0.347)
Client fixed effects Yes Yes Yes Yes Yes Yes
Year*Location fixed effects No No No No No No
Clients 3'041 4'033 3'262 3'323 4'417 3'036
Client * Year observations 9'105 12'085 9'738 9'958 13'214 9'069
Mean of dependent variable 58.44 66.22 77.73 61.86 66.97 78.45
Method OLS OLS OLS OLS OLS OLS

Table 7. Payment choice: By client location and age-group
This table shows the results of an OLS regression for subsamples of clients based on the population-density of their residential location and the clients age.  
We distinguish urban locations (columns 1-3) from rural locations, whereby locations of residence are categorized as urban (rural) if they have above 
(below) 3'000 inhabitants per km2 settlement area. The dependent variable is Cash ratio  in all columns. Appendix A2 presents definitions of each variable. 
Each regression includes 3 annual observations (2016, 2017, 2018) per client. The explanatory variable Contactless  is 1 for early adopters in years 2017 
and 2018 and for late adopters in year 2018.  All regressions include client fixed effects.  Robust standard errors are reported in parentheses. *, **, *** 
denote significance at the 0.017, 0.01, and 0.001-level.

Cash ratio (%)
Urban Rural



Raw data sample
Clients: 30'000            
Accounts: 30'330            
Debit cards: 33'165            

Main sample (1 account, 1 card) Robustness sample (1 account, multiple cards)**

Single account /single card: 26'934            Single account / multiple cards: 2'735                (5470 accounts)
with regular expiry date 24'021            with regular expiry date 2'582                (5164 accounts)
with account opened before 2015: 23'957            with account opened before 2015 2'576                (5152 accounts)
non-missing covariates: 22'504            non-missing covariates: 1'485                (2970 accounts)
No outlier turnover*: 21'122            No outlier turnover*: 1'396                (2792 accounts)

Multiple expiry dates 706                  (1412 accounts)
Final sample, # clients: 21'122            Final sample, # clients: 706                  (1412 accounts)

* Outlier turnovers are defined as incoming /outgoing account flows below 1200 CHF or exceeding 500'000 CHF in any year.
** Our robustness sample includes only clients with 1 account and 2 debit cards. We drop 6 clients with 1 account and 3 debit cards.

Apppendix A1. Sample composition



Variable Definition Unit Range
Cash ratio Cash withdrawals (ATM & Branch in CHF) / [Cash withdrawals  (ATM & Branch in 

CHF) + Debit PoS transactions (in CHF) + Credit Card transactions (in CHF)], annual
% [0,100]

Cash withdrawal frequency Number of cash withdrawals (ATM & Branch), annual number >=0
Cash withdrawal amount Cash withdrawals (ATM & Branch) in CHF  / Cash withdrawals frequency CHF >0

Variable Definition Unit Range
Debit PoS transactions Number of PoS transactions by debit card, annual
Debit PoS transactions (0-20 CHF) Number of PoS transactions with volume of (0,20] CHF by debit card, annual number >=0
Debit PoS transactions (20-40 CHF) Number of PoS transactions with volume of (20,40] CHF by debit card, annual number >=0
Debit PoS transactions (40-60 CHF) Number of PoS transactions with volume of (40,60] CHF by debit card, annual number >=0
Debit PoS transactions (60-100 CHF) Number of PoS transactions with volume of (60,100] CHF by debit card, annual number >=0
Debit PoS transactions (>100 CHF) Number of PoS transactions with volume of >100  CHF by debit card, annual number >=0

Appendix A2. Definition of Variables

Auxillary outcome variables

Main outcome variables
Panel A. Outcome variables



Variable Definition Unit
Age Age of client in years: 1=25 or younger; 2=26-35; 3=36-45; 4=46-55; 5=56-65; 6= 66 

and older
[1;..;6]

Male Gender of client: 1=male; 0=female. [0;1]
Nationality Swiss Nationality of client 1=Swiss; 0=other nationality [0;1]
Size municipality Population of municipality in which client resides. 1= (0,5'000] ; 2=(5'000-10'000]; 

3=(10'000-20'000]; 4=(20'000-50'000]; 5= more than 50'000
 [1;..;5]

Income Monthly income of client in CHF as estimated by the Bank in December 2015. 1 = 
[0,3'000]; 2= (1'000, 2'500]; 3= (2'500, 5'000]; 4= (5'000, 7'500]; 5= (7'500. 10'000]; 6= 
>10'000

 [1;..;6]

Wealth Total financial assets under management of the client with the Bank in December 2015 
in CHF. 1 = [0,10'000]; 2= (10'000, 50'000]; 3= (50'000, 100'000]; 4= (100'000, 
250'000]; 5= (250'000, 1'000'000]; 6=more than 1'000'000.

 [1;..;6]

Retirement account Dummy variable = 1 if client has a voluntary retirement savings account with the Bank, 
0=otherwise

%

Savings account Dummy variable = 1 if client has an ordinary savings account with the Bank, 
0=otherwise

number

Custody account Dummy variable = 1 if client has a custody account for securities with the Bank, 
0=otherwise

Mortgage Dummy variable = 1 if client has a mortgage with the Bank, 0=otherwise
E-banking Dummy variable = 1 if client has an Ebanking contract with the Bank, 0=otherwise

Variable Definition Unit
Account opening year Year in which account was opened Year
Direct debiting Dummy variable = 1 if client uses direct debiting with this account, 0=otherwise [0;1]
Standing order Ebanking Dummy variable = 1 if client uses Ebanking standing orders with this account, 

0=otherwise
[0;1]

Standing order paper Dummy variable = 1 if client uses ordinary standing orders with this account, 
0=otherwise

[0;1]

Ebanking payments Volume of outgoing Ebanking transactions in CHF, 2015 CHF
Transfers Volume of outgoing account transfers in CHF, 2015 CHF
Incoming payments Total volume of incoming payments in CHF, 2015 CHF
Outgoing payments Total volume of outgoing payments in CHF, 2015 CHF
Account balance Account balance in CHF as per end December 2015. 1 = [0,1'000]; 2= (1'000, 2'500]; 

3= (2'500, 5'000]; 4= (5'000, 7'500]; 5= (7'500. 10'000]; 6=more than 10'000
 [1;..;6]

Panel B. Covariates

Client-level variables

Account-level variables (measured in 2015)



The figure displays the average number of Point of Sale (PoS) transactions conducted by debit card per client and year by treatment group.
Panel A displays the number of transactions with a value of (20-40] CHF. Panel B displays the number of transactions with a value of (40-60]
CHF. Panel C displays the number of transactions with a value of (60-100] CHF. Panel A displays the number of transactions with a value of
>100 CHF.

Appendix A3 Debit Card PoS Transactions
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(1) (2) (3) (4) (5) (6) (7)

Outcome variable
Cash ratio without 

credit (%)
Cash ratio with 
Ebanking (%)

Cash ratio - 
domestic (%)

   Cash withdrawal 
frequency - ATM 

     Cash withdrawals 
amount - ATM

   Cash withdrawal 
number - domestic

     Cash withdrawal 
amount -  domestic

Contactless -0.514*** -0.427** -0.550*** -0.420* -0.188 -0.367 -1.908
(0.143) (0.143) (0.154) (0.168) (1.906) (0.155) (8.043)

Year = 2017 -1.192*** -2.251*** -1.322*** -1.736*** 3.927** -1.871*** 7.537
(0.104) (0.103) (0.112) (0.121) (1.369) (0.112) (6.149)

Year = 2018 -2.944*** -4.778*** -3.234*** -3.354*** 8.072*** -3.532*** 3.281
                              (0.142) (0.148) (0.153) (0.167) (1.970) (0.156) (7.466)
Client fixed effects Yes Yes Yes Yes Yes Yes Yes
Region*Year fixed effects No No No No No No No
Clients 21'096 21'118 21'079 21'122 20'341 21'122 21'000
Client * Year observations 63'036 63'289 62'911 63'366 59'810 63'366 62'172
Mean of dependent variable 71.60 50.70 70.30 41.17 360.96 38.80 638.00
Method OLS OLS OLS OLS OLS OLS OLS

Appendix A4. Payment choice and cash demand: Alternative outcome variables

Panel A shows the results of  OLS regressions, where the dependent variables are alternative indicators of payment choice and cash demand per client. Panel B presents definitions of 
each variable. Panel C presents (pre-treatment) summary statistics for each variable. Each regression includes 3 annual observations (2016, 2017, 2018) per client. The explanatory 
variable Contactless  is 1 for early adopters in years 2017 and 2018 and for late adopters in year 2018.  All regressions include client fixed effects.  Robust standard errors are 
reported in parentheses. *, **, *** denote significance at the 0.017, 0.01 and 0.001-level.

Panel A. Average treatment effect estimates



Variable Definition Unit Range
Cash ratio without credit Cash withdrawals (ATM & Branch, value) / [Cash withdrawals  (ATM & Branch, value) 

+ Debit PoS transactions (value) + Credit Card transactions (value)], annual
% [0,100]

Cash ratio with ebanking Cash withdrawals (ATM & Branch, value) / [Cash withdrawals  (ATM & Branch, value) 
+ Debit PoS transactions (value) + Credit Card transactions (value)+ Ebanking 
transactions (value)], annual

% [0,100]

Cash ratio - domestic Cash ratio without credit , calculated based on transactions in CHF in Switzerland only % [0,100]

Cash withdrawal frequency - ATM Number of ATM withdrawals, annual number >=0
Cash withdrawal amount - ATM ATM withdrawals (value) / Cash withdrawals - number CHF >0
Cash withdrawal frequency - domestic Cash withdrawals CHF - number , calculated based on transactions in CHF in 

Switzerland only
number >=0

Cash withdrawal amount - domestic Cash withdrawals  -  average size , calculated based on transactions in CHF in 
Switzerland only

CHF >0

Panel B. Alternative outcome variables - Definitions



                                                        mean min p25 p50 p75 max n
Cash ratio without credit 74.5 0 57 81 97 100 21'094      
Cash ratio with Ebanking 55.5 0 20 56 93 100 21'122      
Cash ratio  - domestic 73.3 0 55 81 97 100 21'076      
Cash withdrawal frequency  - ATM 44.0 0 17 36 62 592 21'122      
Cash withdrawal amount - ATM 358.5 20 163 270 438 5'000        20'031      
Cash withdrawal frequency - domestic 42.0 0 17 34 57 594 21'122      
Cash withdrawal amount - domestic 645.5 20 181 339 700 25'000      20'907      

Panel C. Summary Statistics (Pre-treatment = 2015)



(1) (3) (5)

Outcome variable Cash ratio (%)
   Cash withdrawal 

frequency
     Cash withdrawal amount 

(CHF)  
Contactless -0.471*** -0.279 -13.932

(0.142) (0.170) (13.151)
Year = 2017 -1.533*** -1.815*** 29.663

(0.105) (0.124) (17.312)
Year = 2018 -3.370*** -3.705*** 24.213
                              (0.143) (0.171) (15.391)
Client fixed effects Yes Yes Yes
Region*Year fixed effects No No No
Clients 20'928 20'934 20'861
Client * Year observations 62'634 62'802 62'058
Mean of dependent variable 68.70 44.90 621.60
Method OLS OLS OLS

Appendix A5. Payment choice and cash demand: Alternative treatment period definition
The table shows the results of robustness tests with an alternative definition of treatment periods. In our main analysis 
we define treatment periods by calendar year (January - December). In this robustness test we define treatment periods 
from November to the following year October. This accounts for the fact that new debit cards are typically issued at end 
of October of the previous year. The dependent variables measure payment choice and cash demand per client and year.  
Appendix A2 presents definitions of each variable. Each regression includes 3 annual observations (2016, 2017, 2018) 
per client. The explanatory variable Contactless  is 1 for early adopters in years 2017 and 2018 and for late adopters in 
year 2018.  All regressions include client and year fixed effects. Robust standard errors are reported in parentheses. *, 
** denote significance at the 0.017, and 0.001-level.



(1) (2) (3) (4)
Outcome variable

PoS debit transactions (below 20 CHF) 
in 2015 (subsample): [0] (1-2] (3-15] (16-633]

Contactless -0.398 -0.286 -0.374 -0.931**
(0.226) (0.410) (0.294) (0.292)

Year = 2017 -0.885*** -1.717*** -1.505*** -2.395***
(0.166) (0.300) (0.206) (0.215)

Year = 2018 -1.851*** -3.954*** -4.109*** -5.368***
                              (0.220) (0.409) (0.290) (0.301)
Client fixed effects Yes Yes Yes Yes
Region*Year fixed effects No No No No
Clients 5278 3022 5287 5068
Client * Year observations 7'735 9'048 15'849 15'193
Mean of dependent variable 1.5 5.1 16.3 74.4
Method OLS OLS OLS OLS

Table A6. Payment choice: By pre-treatment payment behavior
The table shows the results of an OLS regression for subsamples of clients based on their pre-treatment payment behavior. 
We split clients by quartile of PoS debit transactions (below 20 CHF) in 2015.  The dependent variable is Cash ratio  (%) in 
all columns. Appendix A2 presents definitions of each variable. Each regression includes 3 annual observations (2016, 
2017, 2018) per client. The explanatory variable Contactless  is 1 for early adopters in years 2017 and 2018 and for late 
adopters in year 2018.  All regressions include client fixed effects.  Robust standard errors are reported in parentheses. *, 
**, *** denote significance at the 0.017, 0.01 and 0.001-level.

Cash ratio (%)



(1) (2) (3) (4) (5) (6)

Outcome variable All below 20 CHF 20-40CHF 40-60 CHF 60 - 100 CHF above 100 CHF
New card -1.740*** -0.608* -0.524*** -0.235* -0.245* -0.129

(0.508) (0.271) (0.157) (0.110) (0.112) (0.113)
Year = 2016 6.478*** 3.138*** 1.829*** 0.913*** 0.248*** 0.351***
                              (0.307) (0.173) (0.091) (0.060) (0.063) (0.062)
Client fixed effects Yes Yes Yes Yes Yes Yes
Clients 21'122 21'122 21'122 21'122 21'122 21'122
Card * Year observations 42'244 42'244 42'244 42'244 42'244 42'244
Mean of dependent variable 67.70 16.80 15.30 11.10 12.40 12.20
Method OLS OLS OLS OLS OLS OLS

Appendix A7. Debit PoS transactions - Placebo Test
The table shows the results of a placebo test with observations from year 2015 and 2016 only. The dependent variables measure the number of debit PoS 
transactions per client and year. Appendix A2 presents definitions of each variable. The explanatory variable New card is 1 for all cards which expire at end 
2015 and thus receive a new card (albeit one without a contactless function) for 2016. All regressions include client and year fixed effects. Robust standard 
errors are reported in parentheses. *, **,*** denote significance at the 0.05, 0.01, and 0.001-level.

Debit card transactions by transaction value



(1) (3) (5)

Outcome variable Cash ratio (%)
   Cash withdrawals 

frequency (#)  
     Cash withdrawal amount 

(CHF)  
New card 0.06 -0.282 -16.65

(0.188) (0.226) (9.809)
Year = 2016 -1.673*** -1.024*** -3.877

(0.105) (0.134) (5.079)
Client fixed effects Yes Yes Yes
Region*Year fixed effects No No No
Clients 21'122 21'122 21'052
Client * Year observations 42'193 42'244 41'896
Mean of dependent variable 70.80 46.80 618.10
Method OLS OLS OLS

Appendix A8. Payment choice and cash demand: Placebo test

The table shows the results of a placebo test with observations from year 2015 and 2016 only. The dependent variables 
measure payment choice and cash demand per client and year. Appendix A2 presents definitions of each variable.The 
explanatory variable New card  is 1 for all cards which expire at end 2015 and thus are replaced with a new card (albeit 
one without a contactless function) for 2016.  All regressions include client and year fixed effects. Robust standard 
errors are reported in parentheses. *, ** denote significance at the 0.017, and 0.001-level.



(1) (2) (3) (4) (5) (6)

Outcome variable All below 20 CHF 20-40CHF 40-60 CHF 60 - 100 CHF above 100 CHF
Contactless 2.291 1.376* -0.112 0.028 0.412 0.588

(1.516) (0.696) (0.457) (0.339) (0.383) (0.361)
Year = 2017 1.355 1.591*** 0.850* -0.319 -0.271 -0.497

(1.066) (0.417) (0.337) (0.258) (0.279) (0.264)
Year = 2018 5.820*** 4.469*** 2.187*** -0.388 0.065 -0.513
                              (1.624) (0.705) (0.495) (0.367) (0.399) (0.385)
Client fixed effects Yes Yes Yes Yes Yes Yes
Clients 706 706 706 706 706 706
Cards 1'412 1'412 1'412 1'412 1'412 1'412
Card * Year observations 4236 4236 4236 4236 4236 4236
Mean of dependent variable 81.50 13.90 18.20 13.90 17.00 18.40
Method OLS OLS OLS OLS OLS OLS

Appendix A9. Debit PoS transactions - Multiple card holders
This table shows the results of OLS regressions for the sample of clients with one account and two debit cards in 2015. The dependent variables measure the 
number of debit PoS transactions per card and year.  In column (1) the dependent variable covers all transactions, in columns (2-6) the dependent variable 
covers transactions of specific values only (0-20 CHF, 20-40 CHF, 40-60 CHF, 60-100 CHF, 100+ CHF). Each regression includes 3 annual observations 
(2016, 2017, 2018) per card. The explanatory variable Contactless  is defined at the card level. It is 1 for cards replaced in years 2017 and 2018.  All 
regressions include card fixed effects. Robust standard errors are reported in parentheses. *, **,*** denote significance at the 0.05, 0.01, and 0.001-level 
respectively

Debit card transactions by transaction value
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1 Introduction

A popular advertising campaign for a U.S. bank asks, �What's in your wallet?� For years

the answer was �cash and checks,� plus maybe one credit card for high-income consumers.

Today, U.S. consumer wallets are thick and diverse following a quarter-century trans-

formation of payments from paper to cards and electronic means of payment.1 Most

consumers have �ve or six types of payment instruments; the average wallet holds nearly

a dozen (two per type). Now, three-fourths of consumers have at least one credit card

and the average consumer has 3-1/2. The average (median) wallet still has $70 ($30) of

cash despite ardent e�orts to eliminate it. For reasons not fully understood, consumers

have adopted new instruments without discarding older ones.2 And there is no represen-

tative wallet�more than 100 unique portfolios of instruments exist. Only one in seven

consumers holds the most popular combination of cash, check, debit card, credit card,

and two types of electronic bank payments.

One possible reason for thicker wallets is heterogeneous utility from payment ser-

vices and no instrument emerging as �one size �ts all.� U.S. consumers make about

three-quarters of their payments (volume, not value) with cash, debit cards, and credit

cards, mainly for retail and other low-value payments; consumers often turn to electronic

instruments for bills and other higher-value payments (see Greene and Schuh 2017). Some

consumers rely heavily on one type of payment card (debit, credit, or prepaid) for their

card payments, a practice called �single-homing� by Rysman (2007) and Shy (2013). But

scant few consumers single-home for all payments, and even less report never using cash

(see Briglevics, Schuh, and Zhang 2016). Klee (2008) found that instrument choices are

correlated with the dollar values of payments�cash for low values and debit or credit

cards for higher values. Non-acceptance of payment instruments occurs, but it is too

rare to explain the U.S. diversity choices. However, using new data from the Diary of

Consumer Payment Choice (DCPC), we �nd the probability of cash use is roughly con-

1This transformation is being measured by the Federal Reserve Payment Study and the Survey and
Diary of Consumer Payment Choice from the Federal Reserve Bank of Atlanta. Unless noted otherwise,
statistics cited in this paper are from Greene, Schuh, and Stavins (2016) and Greene and Schuh (2016).

2The exception is checks, which most consumers still have but are using less often. See Gerdes and
Walton (2002), Benton et al. (2007), Schuh and Stavins (2010), and Gerdes et al. (2019).
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stant around 50 percent for most payments (i.e., less than $100) when consumers have

su�cient cash in their wallets at the point of sale. Hence, the negative correlation be-

tween the probability of choosing cash and payment values depends on consumers' cash

management policies. Thus, analyzing payment choices independently of cash holdings

may lead to incorrect inferences about consumers' preferences for payment services.

Theoretical models generally have not kept pace with the remarkable scope of trans-

formation in money and payments because two strands of literature have not been fully

connected. One strand is the demand for money, where prototypical models of cash in-

ventory management are Alvarez and Lippi (2009, 2017).3 This research includes a few

means of payment�cash, debit cards, and credit cards�but the adoption, characteristics,

and suitability for expenditure of payment instruments are not central to the problem.

Instead, these models impose a priori temporal orderings on the use of assets and lia-

bilities, which are not consistent with transactions-level data. The other strand is the

demand for payment instruments, where a protoypical model is Koulayev et al. (2016).4

This research examines a wide range of payment instruments, modeling their adoption

and use based on a rich array of instrument characteristics and payment conditions, in-

cluding dollar value, that yield utility and in�uence endogenous choices at the point of

sale. However, these models tend to be static, ignore cash inventory management, and

abstract from consumption-saving and portfolio allocation decisions that are central to

monetary models.

To better understand simultaneous demand for money and payments, we propose a

dynamic optimizing model of consumers making daily cash management and payment

choices that blends the theoretical approaches in the two literatures. As in monetary

models, consumers manage cash inventories to fund current and future payments.5 As

in payments models, agents endogenously choose an instrument for each transaction to

3Other research examining money demand with an option for credit payments includes Telyukova
(2013), Briglevics and Schuh (2013), Fulford and Schuh (2017), and Alvarez and Argente (2019).

4Other research examining payment choice includes Schuh and Stavins (2010), Wakamori and Welte
(2017) and Hunyh, Nicholls, and Shcherbakov (2019).

5Limited data availability prevents the inclusion of similar management tasks for other liquid assets
and liabilities, such as checking accounts and credit card accounts. The potential bene�ts of doing so
are illustrated in Samphantharak, Schuh, and Townsend (2018).
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maximize utility from payment services. This way the model can replicate empirically ob-

served orderings and substitution patterns among instruments across transaction values,

and provide a framework for evaluating the relative importance of cash management costs

and utility from payment services for consumer welfare.

The model is estimated with transactions-level longitudinal micro data that tracks

each consumer payment and cash management decision. The data are from the DCPC,

the U.S. version of daily diary surveys developed by central banks and other researchers

to record consumer cash management and payment activity in industrial countries docu-

mented in Bagnall et al. (2016). In addition to capturing the richness of cash management

and payment choices, diary surveys have less error than recall-based survey data used in

previous research, and diaries provide relatively accurate estimates of aggregate consumer

expenditures (see Schuh (2018)). Although the theoretical model does not yield closed-

form solutions, its structural parameters can be estimated using the method described in

Bajari, Benkard, and Levin (2007).

The estimated model reveals important insights that extend the cash demand and

payment choice literatures. Two key conclusions emerge. First, the estimated model pro-

vides statistically and economically signi�cant evidence that consumers jointly determine

cash demand and payment choice, so models that focus on just one of these decisions

are incomplete. Second, the estimated model reveals that utility gains from payment

choices are about an order of magnitude larger than losses from cash management costs.

In retrospect, the latter �nding should not be surprising. The average U.S. consumer

only makes �ve cash withdrawals per month but 59 payments, so opportunities to reap

utility from optimal payment choices exceed the incidence of costs in managing cash.

Cash management in the estimated model is qualitatively similar to existing models

with �xed or exogenous cash payments but now exhibits �uctuations in the share of

cash payments due substitution among instruments. This feature leads to changes in the

utility derived from payment services that are of comparable magnitude to changes in cash

withdrawal or holding costs. Thus, the monetary literature's focus on cash managment

costs misses an important source of consumer welfare derived from the functioning of the
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payment system.

Likewise, payments in the estimated model are qualitatively similar to existing mod-

els without cash management but instrument choice probabilities now depend on cash

holdings and the random costs of withdrawals. The probability of cash use declines much

faster with payment value when cash holdings are smaller because consumers try to post-

pone withdrawals until a favorable opportunity is available. Conversely, consumers with

very large amounts of cash in their wallets are much more likely to use cash. We estimate

the optimal cash holdings to be around $50, so consumers with larger cash stocks will

want to spend cash. Alvarez and Lippi (2017) describe this phenomenon as �cash burns�

in a model where cash is assumed to be used �rst; our model exhibits this behavior when

consumers are not constrained to order their use of assets and liabilities and consumers

make optimal dynamic choices.

Finally, the structural model enables us to run counterfactual simulations of restric-

tions on payment choices at the point of sale. Most notably, decreases in utility stemming

from eliminating (or not accepting) a single payment instrument are notably larger than

changes in utility associated with changes in cash management costs. As a practical mat-

ter, cash still contributes signi�cantly to consumer welfare despite criticisms and calls

for its removal by Rogo� (2016) and others. However, eliminating both debit and credit

cards would reduce utility by almost an order of magnitude more than any single in-

strument, re�ecting the large value of technological innovations embodied in electronic

card networks. These �ndings likely have implications for the operation of monetary and

payment systems, and the public policies governing them.

2 Literature Review

This section provides a brief but overview of two literatures, monetary and payments,

that are inherently related but remain largely disconnected. This paper is part of an

emerging research program that is attempting to more fully integrate them.
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2.1 Demand for Money and credit

Modeling money demand as the optimal solution of an inventory management problem

has a long tradition in monetary economics starting with Allais (1947) and popularized by

Baumol (1952) and Tobin (1956). The core objective of this problem, the minimization

of opportunity and transactions costs, remains central to the current literature. Changes

in transactions costs are most often speci�ed as improvements in withdrawal technologies

such as ATMs (for examples, see Lippi and Secchi 2009; Alvarez and Lippi 2009; Amromin

and Chakravorti 2009). Opportunity costs arise from interest-di�erentials between liquid

assets serving as a medium of exchange without bearing interest, like currency, and

interest-bearing assets that cannot be used for payment.

The opportunity cost distinction has been evolving as the number of assets serving as

a medium of exchange and the number bearing interest both have increased over time.

Whitesell (1989) extended the Baumol-Tobin model to allow payments from currency and

debitable (checkable) demand deposits that do not pay interest but have a fee di�eren-

tial. The elimination of Regulation Q in the early 1980s permitted interest payments on

demand deposits, but still only about half of consumers have an interest-bearing checking

account. Mulligan and Sala-i-Martin (2000) show that failure to adopt interest-bearing

transaction accounts a�ects the interest-elasticity of money demand. Subsequent �nan-

cial innovations increased the variety of interest-bearing liquid assets available to settle

payments. For example, Ball (2012) and Lucas and Nicolini (2015) argue that money

market deposit accounts (MMDA), which now are used as a medium of exchange, can be

added to transactions balances to mitigate the historical destabilization of M1 velocity.6

Other theoretical approaches to modeling the demand for money go beyond the frame-

work proposed in this paper. One approach is the shopping-time model in which money

balances produce utility by saving time or energy in the shopping process (see McCal-

lum and Goodfriend 1987),which is similar to a money-in-utility function speci�cation.

A related, but deeper, approach is search-theoretic models in the New Monetarist Eco-

nomics (NME) tradition, which motivate demand for cash balances because they facilitate

6Also, Hester (1972) accurately predicted that money velocity would be a�ected by the introduction
of electronic funds transfers (Automated Clearing House network).
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exchange (see Lagos, Rocheteau, and Wright 2017).

Demand for transactions balances to fund consumer expenditures also includes short-

term (revolving) credit. Sastry (1970), Bar-Ilan (1990), and Alvarez and Lippi (2017) o�er

models that allow consumers to pay with credit after they run out of cash. Microecono-

metric studies similar to this paper estimate more stable money demand by controlling

for adoption of credit cards (Reynard 2004; Briglevics and Schuh 2013). Alternatively,

studies like Townsend (1989), Telyukova and Wright (2008) and Telyukova (2013) o�er

NME style models in which consumers hold cash balances because they are unable to

buy certain goods using credit. From this line of research, Chiu and Molico (2010) is

closest to our work; their calibrated general equilibrium model features cash withdrawal

decisions resulting from a stochastic dynamic optimization problem.

Models of demand for money and credit often assume a temporal ordering of use

based on a priori beliefs about the relative costs and bene�ts�lowest net cost funds

are used �rst�rather than allowing transaction-speci�c variation in net bene�ts. Strict

temporal orderings of settlement funds are inconsistent with empirical evidence found in

daily payment diaries where the choice of money or credit varies by transaction.7 NME

models that allow non-acceptance of money or credit by sellers can generate alternating

use of funds in environments where exchange opportunities and outcomes are random.

But payment choices become more systematic when acceptance is universal or agents have

foreknowledge of acceptance and preferences for household �nancial decisions, especially

cash management.

Recent research has begun to address the need for transaction-speci�c endogenous

demand for money and credit that may vary across types of consumers. For example,

(Nosal and Rocheteau 2011, chapter 8) presents a tractable model in which consumers

endogenously choose between credit and cash and can reset their cash holdings at a �xed

cost. Fulford and Schuh (2017) build a model with endogenous payment choices that

embodies the relative net bene�ts of money and credit and links them to consumption

expenditures and debt accumulation. Following the model of Duca and Whitesell (1995),

7Table 1 in Huynh, Schmidt-Dengler, and Stix (2014) details the predictions of some models that are
not borne out in Canadian and Austrian data.
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Briglevics and Schuh (2013) �nd microeconomic evidence that demand for currency is less

interest sensitive for credit card revolvers with high-interest debt than for convenience

users who pay no interest on their credit card use.

In general, the monetary literature has abstracted from details about the choice of

instrument used to authorize payment. Tobin (2008) de�ned payment instruments as

�derivative media� linked to monetary assets (currency, demand deposits, etc.) and to

liabilities (such as credit card limits). For currency, the instrument and asset are the

same, but multiple instruments can be used to access demand deposits (checks, debit

cards, prepaid cards, and online banking payments). Prescott and Weinberg (2003) show

that non-pecuniary characteristics of payment instruments, such as communication and

commitment, also can be important determinants of their use. This decision has become

more complex as payment instruments once limited to demand deposits now can be used

to make payments directly from more favorable liquid assets, like MMDAs, or from liquid

liabilities, like a home equity line of credit (HELOC). And, of course, not all credit cards

are alike in terms of their fees, rewards and rates paid to revolve balances�prompting

a bank to ask which card is in our wallets. Thus, studying payment choices jointly with

demand for money and credit may expand our ability to understand and explain the

payments transformation and �nancial innovations in assets and liabilities.8

2.2 Demand for Payments

A key segment of the payments literature is modeling consumer demand for instruments

to authorize retail payments.9 An early innovation is Stavins (2001), which investigated

slow adoption of electronic payments methods by heterogeneous consumers using the

8The advent of new technologies such as e-money and mobile payments also may have similar impli-
cations. Recent technology has even altered the concept of �money� itself, with Bitcoin and M-PESA
(Jack, Suri, and Townsend 2010) serving jointly as an electronic payment network and private money in
the form of "virtual currency." For extended de�nitions and discussions of �e-money,� see ECB (2012,
2015) and Committee on Payments and Market Infrastructure and Markets Committee (2018).

9Research on supply of payment services�provision of payment networks and the acceptance of
payment instruments by merchants�also is important in general equilibrium. Humphrey, Kim, and
Vale (2001) argue that adoption of electronic methods lowers the social costs of payment systems. See
Hunyh, Nicholls, and Shcherbakov (2019) for an estimated model of merchant acceptance. We exclude
this part of the literature because it goes beyond the scope of our partial equilibrium consumer model,
and because acceptance is not measured well in the DCPC.
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limited data on payments in the Survey of Consumer Finances. Subsequent research

by Borzekowski, Kiser, and Ahmed (2008) and Schuh and Stavins (2010), as well as

references therein, also modeled the use of payment instruments (number of payments)

as a function of technology and instrument-speci�c characteristics like cost, convenience,

security, and record-keeping using better-suited recall-based survey data. This research

relies on two-step discrete-continuous models of adoption and use of individual payment

instruments. Koulayev et al. (2016) extended this approach by simultaneously modeling

adoption of a bundle of instruments (the wallet), and including random utility from the

use of payment instruments in various payment contexts. This model focuses primarily

on costs and bene�ts of instruments used to make heterogeneous payments by a cross-

section of consumers, but abstracts from consumer demand for money and credit needed

to settle payments.

An alternative approach is to model consumer demand for payments at the point of

sale (POS) over time. Starting with Klee (2008), and followed by Cohen and Rysman

(2013) and Wang and Wolman (2016), researchers used scanner data from retail stores

to document instrument choices at checkout to estimate multinomial logit models. These

studies found notable correlation between the dollar values of individual transactions and

the choice of payment instruments, with cash being far more likely to be used for payments

of small dollar values.10 This result added a new perspective unavailable from survey

data, which generally do not contain individual payments or dollar values. However,

except for Cohen and Rysman (2013), scanner data do not provide information about

the demographics of each consumer, their options at the time of payment (cash in their

wallet or instrument adoption), or the longitudinal behavior of individual consumers. In

particular, scanner data do not reveal single-homing behavior by individual consumers

(see Rysman 2007; Shy 2013), which (Briglevics, Schuh, and Zhang 2016) show is obscured

by the aggregate correlation between payment values and instrument choices across all

consumers.

10Arango, Hogg, and Lee (2015), Eschelbach and Schmidt (2013), Briglevics and Schuh (2014), and
Huynh, Schmidt-Dengler, and Stix (2014) also provide evidence that cash holdings are correlated with
payment instrument choices.
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Shortcomings of recall-based surveys and scanner data motivated development of daily

consumer payment diaries used in the cross-country study by Bagnall et al. (2016). In real

time, payment diaries track the dollar value of each transaction, the payment instrument

used, and information about the consumer and merchant involved in each payment.11

Recent research uses payment diary data to estimate POS choice probability models for

various countries and non-retail transactions.12 Wakamori and Welte (2017) extended

this research using the Canadian data to estimate a random coe�cients model where

not all respondents switch from cash to a debit or credit card at the same transaction

value. They found the dominance of cash for low-value transactions is primarily driven

by consumer preferences for cash. A limitation of econometric models applied to diary

data thus far is they are not derived from a dynamic optimizing framework for consumers'

joint payment and cash management choices that provides cash-�ow accounting of money

holdings (stock) and payments, withdrawals, and deposits (�ows).

2.3 Joint demand for money, credit, and payments

The unique role of payment instruments o�ers the potential to better connect demand for

money and credit, on one had, with the demand for speci�c consumer expenditures. An

early example is Prescott (1987), which enhances cash-in-advance constraints by jointly

modeling the choice of payment instruments (currency and interest-bearing bank drafts).

Fulford and Schuh (2017) jointly models credit card spending, revolving debt, and pay-

ments settled with money over the life-cycle. Alvarez and Argente (2019) models the

cash-credit card tradeo� for consumers paying for Uber rides. And Stokey (2019) devel-

ops an extensive general equilibrium model that includes banks and a monetary authority

to assess the macroeconomic impact of payment choices. In each case, however, the mod-

els only determine the aggregate shares of expenditures and funding paid for with each

11Cohen and Rysman (2013) resolved the scanner data anonymity problem by surveying participating
consumers and asking them to re-scan their products. This strategy produces data similar to a payment
diary but requires ex post recall of real-time POS conditions.

12See Fung, Huynh, and Sabetti (2012) and Arango, Hogg, and Lee (2015) for Canada; van der Cruijsen,
Hernandez, and Jonker (2015) for The Netherlands; Bounie and Bouhdaoui (2012) for France; von
Kalckreuth, Schmidt, and Stix (2009) and Eschelbach and Schmidt (2013) for Germany, and Briglevics
and Schuh (2014) for the United States.
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instrument type during a period of time, not the choice of payment instrument and

settlement funds for individual payment opportunities.

The model proposed in this paper models each sequential payment choice for indi-

vidual consumer expenditures while tracking consumer cash management and the cor-

responding cash-�ow for currency. To our knowledge, this is the �rst attempt to use

longitudinal panel data with individual transactions from payment diaries to estimate a

dynamic optimizing model that jointly explains consumer payment instrument use and

cash management linked by the accounting cash-�ow identity at the transaction level.

Samphantharak, Schuh, and Townsend (2018) illustrate the empirical potential of this

approach using the 2012 DCPC data to demonstrate how household �nancial statements

can track exact cash-�ows connecting the payment instrument used to authorize a speci�c

consumer expenditure directly to the monetary asset or credit liability (balance sheet)

used to settle the exchange.

3 Data

This section provides a brief overview of the primary data sources for this paper, the

2012 Diary of Consumer Payment Choice (DCPC) and corresponding 2012 Survey of

Consumer Payment Choice. More details can be found in Schuh (2018) and Appendix B.

The SCPC and DCPC are complementary surveys that measure detailed payment

choices and cash management of U.S. consumers. SCPC respondents complete an on-

line survey and recall from memory their adoption of �nancial acccounts and payment

instruments, cash management, and (not used in this paper) frequency of use of payment

instruments. DCPC respondents record their payment transactions and cash manage-

ment for three consecutive days. We use SCPC consumer data on adoption of accounts

and payment instruments plus DCPC transactions data on: 1) payment values, instru-

ment used, location, and type; 2) cash holdings, deposits, and withdrawals by location;

and 3) time of day.

DCPC data are a balanced longitudinal panel of a representative sample of about
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2,500 U.S. consumers during October 1-31, 2012. Respondents were selected from the

RAND American Life Panel to match the population of U.S. adults (ages 18 years and

older). After completing their SCPC, respondents were assigned to complete their DCPC

on randomly selected days throughout the month so panel entry and exit is deterministic

and �xed. This diary design produces representative samples for each day of the month

as well as for the entire month.

The DCPC panel data mimic the transaction records of monthly statements for check-

ing and credit card accounts. Thus, they are essentially the same as transactions data

from �nancial institutions provided by the kinds of personal �nancial management (PFM)

services and applications used by Baker (2018), Pagel and Olafsson (2018), and Gelman

et al. (2018). Data from �nancial institutions may have less measurement and reporting

error than consumer diary data, but the DCPC data are superior in other respects. For

example, the DCPC tracks what consumers do with cash withdrawn from banks, not

just how much they withdrew. The DCPC also collects additional relevant information

at the time of transaction, such as cash held in wallet. And, importantly, the DCPC

data are based on sampling and implementation methods that are designed to produce

representative samples of U.S. consumers whereas PFM data are not.

We restrict the sample for model estimation to in-person POS transactions, includ-

ing person-to-person (P2P) payments, by consumers who had both a debit card (hence

checking account) and credit card. The restricted sample represents the bulk of cash

use because online payments don't accept cash and few bill payments are made with

cash. Wallet restrictions are made to sidestep the theoretical complication of modeling

adoption; in practice, respondents are unlikely to adopt or discard payment cards during

the three diary days. The restricted sample accounts for 62 percent of POS transactions

and 57 percent of respondents, who are not quite representative of the U.S. population.

However, payment card adopters rely on cash relatively less than other consumers, so our

results likely serve as a lower bound on the usefulness of cash.
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4 Empirical Evidence

This section provides evidence on consumer payment choices and cash management to

motivate the model and enhance understanding of the estimation results.13

4.1 Payment Adoption and Use

The �rst two panels of Table 1 report statistics on consumer adoption and use of payment

instruments for the DCPC (�full sample�) and sub-sample used in estimation (�estimation

sample�). In the full sample, all respondents adopted cash, 78 percent had a debit card,

69 percent had a credit card, 57 percent had both payment cards, and only 10 percent had

neither card.14 In the estimation sample, respondents have all three payment instruments

by construction. Despite thicker consumer wallets, cash is still king at the point of sale.

In the full sample, cash accounted for half (51 percent) of POS payments by volume

(number of transactions). Even in the estimation sample, where respondents have both

payment cards, cash accounted for a higher share (44 percent) than either debit cards

(31 percent) or credit cards (24 percent). Thus, the estimation subsample understates

the full use and value of cash.

Ching and Hayashi (2010) showed that consumer use of payment cards can be in�u-

enced by monetary incentives, such as cash back or airline mileage, that entice consumers

to use payment cards more often. �Convenience users� who pay o� their credit card

charges in full each month receive the full bene�t of rewards, but �revolvers� who carry

high-interest unpaid balances on their cards have an o�setting cost. Table 2 shows con-

sumer payment choices broken down by credit card use (convenience or revolving) and

type (with rewards or not) in the estimation sample. Not surprisingly, consumers with a

rewards card are more likely to pay with a credit card�convenience users are nearly twice

as likely (40.0 versus 23.1 percent), and revolvers more than three times (19.6 versus 5.8).

13Reported sample moments are unweighted because the structural model is estimated without weights.
The DCPC data are collected using strati�ed random sampling, so weighted sample means are required
to estimate population moments for all U.S. consumers, which can be found in Schuh and Stavins (2014)
and Greene, Schuh, and Stavins (2018).

14The weighted population estimates are quite similar: 100 percent for cash, 79 for debit card, and
72 percent credit card. Cash �adoption� actually is measured in the SCPC and DCPC questionnaires
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DCPC Sample
Variable Full Estimation

Adoption rates (share of respondents)
Cash 1.00 1.00
Debit card .78 1.00
Credit card .69 1.00
Debit and credit card .57 1.00
Neither debit nor credit card .10 0.00

Payment use (share of transactions)
Cash .51 .44
Debit .28 .31
Credit .21 .24

Transactions at POS with cash, debit, credit (#)
Total 10,822 6,707
When CIA binds 2,803 2,044
When m < $2 1,206 850

Values at POS with cash, debit, credit ($)
Median 12.60 13.41
Average 27.99 29.66
Standard deviation 66.66 73.89

NOTE: The number of respondents is 2,468 in the full DCPC sample

and 1,272 in the estimation sample.

Table 1: Payment instruments and transactions, 2012

Number of Percentage of transactions (%)
Credit card type transactions Cash Debit Credit Preceded by

withdrawals
Convenience users
Rewards 1,661 42.6 17.5 40.0 7.5
No rewards 2,582 42.6 34.3 23.1 9.3

Revolvers
Rewards 1,860 46.0 34.4 19.6 8.3
No rewards 604 47.9 46.4 5.8 9.1

All types 6,707 44.0 31.2 24.8 8.5

Table 2: Payment choices by credit card type, 2012
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However, adoption of a rewards card has little e�ect on cash activity because higher

credit card use is largely o�set by lower debit card use. Table 2 shows that revolvers

use cash 3-5 percentage points more often than convenience users, but cash shares are

essentially the same for consumers with and without rewards. Although rewards card

holders are less likely to withdraw cash before a transaction, the di�erences are less than

2 percentage points.15 These results are fortuitous because the DCPC data do not track

whether speci�c card payments were made with a rewards card or not. Therefore, the

model and estimation can focus on cash management without specifying separate decision

rules for di�erent types of debit and credit card adopters and users.

4.2 Transactions

The remaining two panels of Table 1 report statistics on the volume and values of

transactions for which consumers made payments. Nearly 11,000 POS transactions are

recorded in the diary. The estimation sample includes 57 percent of all DCPC respon-

dents who account for a slightly disproportionate amount of payments at 62 percent

(∼ 6, 707/10, 822). For close to one-third of transactions (∼ 2, 044/6, 707), cash is not an

option because the consumer does not have enough in their wallet to fund the payment

and hence the cash-in-advance (CIA) constraint is binding. For almost one in eight

transactions (∼ 850/6, 707), consumers have essentially no cash in their wallet (< $2).

Table 1 also reveals that most POS transactions are relatively low-value. The median

consumer payment was $13, so half of all recorded POS transaction values do not require

consumers to hold large amounts of cash. Some merchants impose minimum values

(typically $10) for credit card transactions, which also helps cash to compare favorably.

Even the average transaction value was only slightly more than double the median (about

$30) despite large variation (standard deviations). However, the left panel of Figure 1

shows that the full distribution of POS transaction values is skewed to the right by much

larger amounts, even after excluding bill payments.

rather than assumed. It is de�ned as having or using cash at some point during the year.
15Using SCPC data, Briglevics and Schuh (2013) found no e�ect of credit card rewards or debt on

average cash holdings but showed that cash demand of revolvers is less interest sensitive than cash
demand of convenience users.
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Figure 1: Distribution of POS transaction values (left) and payment probabilities (right)

As noted in Section 2, transaction values are good predictors of the payment instruments

consumers choose. Following the literature, we estimated a multinomial logit model of

payment choice and plot the unconditional probabilities of each instrument as a function

of transaction value in the right panel of Figure 1. Like the scanner data, DCPC data

re�ect a negative correlation between cash use and transaction values. Payment cards are

used more often for larger values, with debit cards slightly higher than credit.16 These

payment choice probabilities are central to estimation of the structural model, which adds

controls for consumer-level cash management.

To preview later results showing the sensitivity of cash use to cash holdings, the

right panel of Figure 1 also includes the estimated probability of cash use for the subset

of transactions that were unconstrained by the amount of cash in their wallets (dotted

black line).17 When consumers had enough cash to pay for their next transaction in full

16The modest dominance of debit di�ers from prior estimates using retail-store scanner data that
showed credit more common than debit. The reason is that scanner data combines signature debit and
credit card payments, which run on the same networks, and could not be identi�ed separately due to
technical limitations. Instead, the DCPC measures signature and PIN debit card payments separately,
so debit and credit use are identi�ed accurately.

17The multinomial logit of payment choice simply adds an indicator variable for a binding CIA con-
straint to the variables in the utility functions (a constant, an indicator variable for transaction values
under $10, and a linear term in the transaction value).
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with cash, the probability of using cash was remarkably stable at just under 50 percent

for transaction values up to $100. Thus, the overall negative correlation between cash use

and transaction values, observed in the data and noted in the literature, appears to be

explained by cash holding behavior. Indirectly, however, the occurrence of payment values

that exceed the amount of cash held in wallet re�ects consumers' endogenous decision to

forego a cash withdrawals that would have removed their cash-in-advance constraint. Our

main contribution is to build and estimate a model that can assess whether reluctance

to withdraw cash primarily re�ects the costs of cash management or consumers' inherent

preferences for using cash to pay for transactions, especially those with low value.

4.3 Cash Management

Table 3 reports statistics on cash holdings and withdrawals. In addition to providing

context for model estimation, these statistics suggest how well cash demand models in

prior research could explain the DCPC data.

4.3.1 Cash holdings

Most consumers hold low amounts of cash, but some hold relatively large amounts (�rst

two panels of Table 3). The median consumer in the estimation sample only has $20

stored at home (�rst panel) compared with $36 in the median consumer's wallet before

a transaction (second panel). However, average cash held at home is $202, whereas the

average held in a wallet is only $76. Thus, while most consumers would require a cash

withdrawal to pay for a large-value transaction, some have a large stash of cash they

can tap to replenish their cash-in-wallet holdings.18 The average cash in a wallet can

fund 2-1/2 average-sized transactions (∼ 75.57/29.66) and 6 median-sized transactions

(∼ 75.57/12.60), but median cash in wallet can fund less than 2 median transactions

(∼ 20/13).

18As explained in Appendix B, these cash-at-home stocks are used to handle cases where the cash-�ow
identity does not hold. We construct an arti�cial withdrawal category (not reported in the diary) called
�beginning-of-day adjustment" that accounts for about one-�fth of all withdrawals.
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DCPC Sample
Variable Full Estimation

Cash held at home* ($)
Median 20.00 20.00
Average 234.23 202.02
Standard deviation 583.15 466.62

Cash in wallet
Before POS transaction ($)
Median 40.00 36.00
Average 80.98 75.57
Standard deviation 145.40 130.58

Before card transactions (ratio)***
Median debit card .61 .61
Median credit card 1.37 1.10
Average debit card 3.68 3.62
Average credit card 6.02 4.77

Before withdrawal ($)
Median 10.00 11.00
Average 41.32 43.09
Standard deviation 107.63 114.10

Cash withdrawals**
Number (#) 1,024 573
Median amount ($) 40.00 40.00
Average amount ($) 81.30 77.27

NOTES: *Excludes observations above $5,000. **Excludes observations

above $1,100. Outliers are excluded because they signi�cantly in�uence

estimated moments. ***Value of cash in wallet relative to value of

the current card transaction.

Table 3: Cash holdings and withdrawals, 2012
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4.3.2 Payments and cash holdings

Although most consumers have non-trivial amounts of cash in their wallets, many pay

with a debit or credit card instead of using their available cash. The third panel of Table 3

quanti�es this fact by reporting the ratios of cash in wallet to the value of the next card

payment; ratios of 1.0 or greater indicate transactions where the CIA constraint was not

binding and vice versa for ratios below 1.0. For most credit card payments, the CIA

constraint was not binding (median ratio > 1.0), but for most debit card payments it

was (ratio of .61). The average ratios of cash to debit and cash to credit payment values

are much higher (3.62 and 4.77, respectively), which indicates that even consumers with

very large amounts of cash in their wallets still make card payments for some reason.

The relationship between cash-in-wallet and POS transaction values (including card

payments) appears in their joint distribution depicted in Figure 2. Both axes are in

logs and the transaction value axis is inverted; the heat map denotes the number of

transactions. The diagonal between the northwest corner (low transaction values and cash

holdings) and southeast corner (high transaction values and cash holdings) demarcates

the feasible region for cash payments. Above the diagonal, consumers held su�cient cash

to pay for the transaction; below the diagonal, consumers faced a CIA constraint and

paid with a card. The key fact in Figure 2 is that most transactions occurred when the

CIA constraint was not binding. A non-trivial mass of transactions also exists where

consumers had very low cash balances (orange-yellow region along the left vertical axis)

and thus had to use a payment card.

Narrowing the focus to cash payments only, Figure 3 displays the shares of cash

payments for combinations of transaction values and cash on hand. The �at portion of

the �oor is the infeasible region where the CIA constraint binds. Two important facts are

evident. First, cash shares generally decline as transaction values increase for essentially

all levels of cash on hand but bottom out at around 0.4, even for large transactions by

consumers with enough cash in their wallet (see also right side of Figure 1). Second, the

cash share for each transaction value increases slightly with the level of cash on hand.

This �nding is consistent with consumers worrying about running out of cash and trying
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Figure 2: Joint distribution of POS transaction values and cash holdings

to conserve their holdings.

Overall, this subsection provides evidence against the hypothesis that consumers

follow a lexicographic ordering of payment instrument choices across their sequential

transactions. Consumers make card payments under a variety of cash holding condi-

tions, and vice versa, so models that assume ordering of assets and liabilities (hence

payment instrument choices) miss a salient feature of the data. To �t the data, models

of cash demand must introduce structure to motivate di�erent payment choices for each

transaction and amount of cash holding. The model in the next section does this by

introducing instrument-speci�c random utility that varies across payment opportunities

and transaction values.

4.3.3 Withdrawals

The last two panels of Table 3 report cash withdrawals and their relation to cash holdings.

Unlike transactions, consumer withdrawals are relatively rare. The estimation sample

contains only 573 withdrawals for October 2012, an average of less than one per month

(.45) per consumer. In the estimation sample, the median cash withdrawal was $40 and

the average withdrawal amount was almost twice as much ($77). Figure 4 shows that the

full distribution of withdrawal amounts is not smooth. The global mode is $20 and local

modes occur at $40, $60, $100, and $200�all multiples of the two largest denominations.
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Figure 3: Shares of POS cash transactions

More than one in �ve withdrawals is less than $20.

An important feature of these withdrawal data is the heterogeneity of locations shown,

in Table 4. ATMs are most common, but obtaining cash from family and friends or from

the beginning-of-day adjustment are tied for the second most frequent. These three

locations account for nearly two-thirds of all withdrawals, while the remaining third

represent a diverse range locations. The average withdrawal amount varies by more than

$100 across locations, which may re�ect heterogeneity in the cost of withdrawals at each

location. Little evidence is available on the cost of withdrawals by location, but some

(bank teller, check cashing store) may be higher cost than others (ATM or cash back).

Because there are not enough observations to identify withdrawal costs for each location,

our model incorporates this feature with an unobserved random cost.

The penultimate panel of Table 3 shows that most consumers held some cash when

making a withdrawal (median of $11), while some had considerably more (average of $43

compared to average transaction of $30). This �nding contrasts with the basic Baumol-

Tobin framework in which withdrawals only occur when cash holdings reach $0, but it is

consistent with the models in Lippi and Secchi (2009) and Alvarez and Lippi (2009) that
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Figure 4: Distribution of withdrawal amounts, 2012

Withdrawal amount ($)
Location Number Average Median 90th percentile
Bank teller 64 156 80 400
ATM 147 103 60 200
Cash back (retail store) 48 31 20 50
Cash refund (retail store) 7 30 21 75
Employer 25 104 70 200
Check cashing store 3 88 68 149
Family or friend 112 44 20 100
Other location 55 53 25 112
Beginning-of-day adjustment 112 60 26 167
Total 573 77 40 200

Table 4: Withdrawals by location, 2012

account for non-zero cash holdings at withdrawal by assuming random free withdrawals.

However, the ratio of cash held before withdrawal ($41-43) to average cash in wallet ($76-

81) is 0.5-0.6, notably higher in the 2012 DCPC than in Alvarez and Lippi (2009) for Italy

(0.4) and the United States (0.3) in the 1980s. Lower interest rates and technological

changes through 2012 may explain at least part of these di�erences.

Figure 5 depicts the relationship between withdrawals and transactions by the amount

of cash holdings. Symbols (+ and o) indicate the shares of POS transactions (left scale)

preceded by a withdrawal when the CIA constraint was binding (+) or slack (o). Stacked

bars represent the number of transactions (right scale) used to calculate these shares
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Figure 5: Share of withdrawals by amount of cash holdings

when the CIA constraint was binding or slack. Not surprisingly, consumers are more

likely to make a withdrawal when the CIA constraint is binding. For example, when

cash holdings are $10 or less, cash-constrained consumers make a withdrawal for every

six transactions whereas unconstrained consumers make one for every 16. When cash

holdings reach $40, the e�ect of the CIA constraint on withdrawals disappears. Very

few consumers with more than $50 face a binding CIA constraint, so the estimates of

pre-transaction withdrawals are erratic in these small samples.

The evidence in this subsection, combined with the evidence in Figure 3 showing cash

is used primarily for small transactions, suggests that short-term cash needs are an im-

portant driver of withdrawals. On the other hand, payment card holders can keep making

purchases long after they run out of cash. These �ndings illustrate the simultaneity of

cash management and payment choice, underscoring the importance of jointly modeling

of these consumer decisions.

5 Model

This section describes our model of cash management and payment instrument choice,

which blends and builds on Alvarez and Lippi (2009, 2017) and Koulayev et al. (2016).
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Consumers �nance a stream of transactions that have a stochastic value (p). Before each

payment, consumers may withdraw cash; if so, they pay a stochastic withdrawal cost

(b) and �xed holding (opportunity) cost of cash between transactions (R). Then, at the

point of sale, consumers choose cash, debit card, or credit card to make each payment

based on transaction-speci�c random utility derived from the payment services provided

by the payment instrument chosen.

As noted in Section 2, existing models tend to impose a temporal ordering of cash use

based on a priori assumptions about its cost relative to other means of payment. However,

the evidence in Section 4 shows that consumers do not follow lexicographic ordering of

payment instrument use, suggesting that the utility of payment services varies across

transactions and time. Instead of imposing a priori restrictions on instrument value and

timing, we parameterize the utility functions and estimate them.

Using a random utility framework to model payment instrument choice means that,

unlike traditional inventory management models of cash demand, the withdrawal and

holding costs become parameters of a utility function and are not measured in units of

money or interest rates. While this feature is important when interpreting the econo-

metric estimates later, it nevertheless �ts into the literature that usually interprets these

costs broadly. For example, withdrawal costs are usually thought of as including shoe-

leather costs of �nding an ATM; holding costs capture the inconvenience associated with

keeping a certain amount of cash in one's wallet, not just foregone interest.19

Currency payments are subject to a CIA constraint. If cash balances are insu�cient to

settle a transaction, consumers cannot take advantage of high utility opportunities associ-

ated with cash transactions.20. As a result, their expected utility from future transactions

falls as they run out of cash. This change in expected utility is balanced against the costs

19Given that consumers in the estimation sample make 2.3 (2.0) transactions per day on average
(median), the opportunity cost or risk of theft should be small and we interpret holding costs primarily
as the �inconvenience" of carrying cash. A generous 2 percent annual rate for checking accounts interest
translates into a 0.00002 (∼ 1.02

1
2.3∗365 − 1) percent interest rate over the average holding period.

20In reality, debit and credit card payments are subject to funding constraints as well (checking account
balances have a zero minimum and credit card borrowing has an upper limit). Ideally, the model would
incorporate these constraints too, but the DCPC does not provide data on them. However, the CIA
constraint on currency is likely to bind most frequently at the point of sale because some consumers have
overdraft protection on debit cards and some consumers can exceed their credit card limits.
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of acquiring and holding cash associated with cash inventory management. Since the

costs and bene�ts of holding cash accrue over multiple transactions, consumers take

into account current and future costs and utility when making withdrawal and payment

decisions. Importantly, in our blended model consumers can adjust their in�ows and

out�ows of cash holdings continually, and thus have an extra margin on which to change

cash holdings compared to other models of cash demand in the literature.

5.1 The dynamic problem

The formal consumer's problem involves �nding the optimal withdrawal and payment

choices of a consumer who settles an in�nite sequence of transactions with stochastic

transaction values, p. Each transaction involves two sequential decisions: (1) a decision

whether to withdraw cash before that transaction, followed by (2) a choice of payment

instrument for that transaction.

Consider �rst the problem of choosing a payment instrument for a consumer who

already made her withdrawal decision and holds m dollars of cash in her wallet. She can

choose credit, debit, or cash (provided she has enough) to pay for the current transaction.

Following Koulayev et al. (2016), the model contains a random utility framework where

each payment method yields an indirect utility �ow, ui(p) + ε(i), associated with each

instrument i = {c, d, h}. The stochastic part of utility, ε(i), is revealed to the consumer

just before she chooses the payment instrument and captures the random value of each

transaction that depends on payment choice but is unobservable to the econometrician.21

The deterministic part of utility, ui(p), depends only on the current transaction value, p,

which is assumed to be known by the consumer. However, the consumer does not know

future realizations of p or ε(i), only the distributions from which they will be drawn.

At each point-of-sale, the consumer solves the Bellman equation

V (m; p) = max
i∈{c,d,h}

ui(p) + ε(i) + βE [W (m′; p′, b′)] (1)

21Examples of the random value may include non-acceptance of cash or card payments; discounts or
surcharges associated with a payment instrument; unsafe environments where risk of theft is high for
cash or where consumers prefer not to share their card information; and store clerks that are slow at
dealing with cash.
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where V (m; p) denotes the value of having m dollars of cash before making the cur-

rent p-dollar transaction, and E [W (m′; p′, b′)] denotes the expected continuation value

of reaching the withdrawal decision before the next withdrawal decision with m′ dollars

of cash. E[.] is the mathematical expectation operator taken over the realizations of all

stochastic variables related to the next transaction. The ε(i)'s are assumed to be inde-

pendently and identically distributed Type I extreme value. The law of motion for m is

given by m′ = m − p · I(i = h), where I is an indicator function taking the value of 1

if cash is chosen (i = h) and 0 otherwise. β is used to discount the utility from future

transactions.

Prior to each transaction, the consumer decides whether to withdraw cash by solving

another Bellman equation,

W (m; p, b) = max
m∗≥m

−b · I(m∗ 6= m)−R ·m∗ + E [V (m∗; p)] , (2)

whereW (m; p, b) denotes the value of havingm dollars of cash before making a withdrawal

decision knowing that the next transaction to be �nanced is p dollars. The withdrawal

cost, b, is drawn from a uniform distribution on the interval [bL, bU ] before each withdrawal

decision, while the holding cost of each dollar of cash between transactions is �xed at R.

The consumer will increase cash holdings fromm tom∗ by making a withdrawal (m∗−m)

if the expected value of having more cash at the next payment choice, E [V (m∗; p)],

exceeds the transaction and opportunity costs of withdrawal. In this case the indicator

function I(m∗ 6= m) will equal 1, otherwise it is 0. A unique feature of this model is that

the endogenous withdrawal decision and amount are time-varying because they depend

on the consumer's upcoming transaction value p and on the expected utility of using cash

for that transaction.

Assuming consumers know the exact value of their next transaction when making

withdrawal decisions is convenient and tractable but admittedly strong. It would be

preferable to introduce uncertainty about transaction values, but there is no feasible way

to infer the magnitude and variation of this uncertainty from the available data. Most of

the time, consumers probably know where they plan to shop, what they will buy, and how
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much they will spend before making a transaction. In reality, consumers may plan spend-

ing for multiple future transactions. In any case, the expected transaction value probably

is not the unconditional mean of p in reality. The conditional expected transaction value

is important because Figure 5 shows that the actual transaction value explains variation

in the likelihood of observing a withdrawal for low cash balances reasonably well.

Our speci�cation of withdrawal costs extends the models of Alvarez and Lippi (2009,

2017) where consumers are randomly o�ered an opportunity to make free withdrawals,

which would appear as a Bernoulli distributed b. Table 4 showed numerous methods to

obtain cash, which consumers use to varying degrees. Specifying a continuous distribu-

tion for withdrawal costs, b, captures this variation in the data simply. The withdrawal

cost only has �rst-order e�ects on whether consumers make a withdrawal, not how much

they withdraw. Withdrawal amounts would vary even more if holding costs, R, also had

a stochastic component, which would improve the �t of our estimated model. Unfortu-

nately, the estimation method cannot handle errors in both b and R.22

5.2 Timing

Following is a summary of the timing structure of the model.

1. Before each transaction, a consumer with m dollars of cash in her wallet has the

option to withdraw cash:

(i) Random transaction value, p, and random withdrawal cost, b, are realized and

observed by the consumer

(ii) Consumer decides how much cash (if any) to withdraw

• If withdrawing, consumer adjusts her holdings to m∗ and incurs �xed

withdrawal cost b and cash holding costs R ·m∗

• If not withdrawing, she incurs cash holding costs R ·m
22With an additional shock to R, the one-to-one mapping between the probability of making a with-

drawal (observed in the data) and the percentiles of b (the unobserved structural shock) is broken.
However, this mapping is crucial, as it allows us to link the observed behavior to the unobserved states
of the model when forward-simulating the value functions. See Section 6 and (Ackerberg et al. 2007, ,
page 103) for more details.
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2. After withdrawal decision, the consumer proceeds to the transaction:

(i) Random components of utility for the current transaction, ε(i), are realized

(ii) Payment instrument is chosen, i = {c, d, h}

(iii) Cash on hand decreases by p, if consumer pays with cash

3. Return to step #1.

6 Estimation

To estimate the model, the deterministic part of the utility function for each payment

instrument, ui(p), is parameterized as

ui(p) = γi0 + γip≤10I(p ≤ 10) + γipp i ∈ {c, d, h},

which includes a constant, γ0, an indicator variable for low-value transactions, I(p ≤ 10),

and a linear term in p. The dummy variable for transactions less than $10 controls for

the e�ects of potential supply-side constraints where vendors do not accept cards due to

fees or other costs.23 If the cash in advance constraint binds, uh(p) = −∞. The evidence

in Section 4 suggests that γhp < 0 and γhp≤10 > 0. These utility functions introduce

channels for the transaction value to in�uence payment choice beyond the e�ects of cash

management costs (b and R).

In addition to computational ease, this parsimonious speci�cation of utility is war-

ranted for several reasons. First, Cohen and Rysman (2013) provide evidence from a large

U.S. scanner data set that the e�ect of transaction values on payment instrument choice

are not correlated with demographic variables or even individual �xed-e�ects. Second,

although most prior studies use demographic variables as regressors, demographics tend

to matter more for adoption of payment instruments than for use conditional on adop-

tion, and our estimation is conditional on adoption of payment cards. Finally, we did not

control for card rewards because Section 4.1 showed they had little e�ect on cash use.

23We chose $10 as the cuto� based on U.S. anecdotal evidence and the discrete drop in the probability
of cash use at that transaction value seen in Figures 1 and 3.
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The model is estimated using the methods described in Bajari, Benkard, and Levin

(2007), or BBL, which is an extension of the Hotz and Miller (1993) conditional choice

probability (CCP) estimator used in the empirical IO literature to estimate dynamic

structural models with discrete and continuous variables. This approach di�ers from the

methodology used in prior studies of cash management or payment instrument choice. In

the monetary literature, dynamic models typically are constructed to yield closed-form

solutions for withdrawal policies that can be matched to data using GMM estimators.

In the payments literature, static models typically are constructed for discrete choices

where the likelihood functions have a closed-form that can be estimated or simulated as

in Koulayev et al. (2016).

Like CCP estimators, the BBL procedure has two steps. The �rst-step involves es-

timating reduced-form models for state transitions, which are used to characterize the

expected value function E[W (m; p, b)]. As shown in BBL, the linearity of the utility func-

tions (in structural parameters) and the error speci�cations imply that E[W (m; p, b)] will

be a product of the vector of structural parameters and some basis functions that are

derived from the observed choices and state variables. The basis functions can be re-

covered with forward simulations. In our model, this means: 1) a Pareto-distribution

is estimated for transaction amounts; 2) a nonparametric estimate describes payment

instrument choice; and 3) the observed nonparametric distribution is used to describe

withdrawals. In accordance with Figure 5, separate withdrawal functions are used for

when the CIA constraint is binding and non-binding. These reduced-form policy func-

tions are used to construct estimates of the basis functions of E[W (m; p, b)] at a number of

grid points in the state space. At each grid-point, we drew 10,000 paths of the stochastic

variables with 7,200 transactions for each.24

In the second stage of estimation, the structural parameters, θ = {bL , bU , R, γh0 , γhp≤10,

γhp , γ
d
0 , γ

d
p≤10, γ

d
p , γ

c
0, γ

c
p≤10, γ

c
p

}
, are recovered using a simulated method of moments

estimation as in Pakes, Ostrovsky, and Berry (2007), or POB. β is assumed to be �xed

at .995. Cash management costs are restricted to be positive (b, bL, bU , R > 0) because

24After about 7,200 transactions, the discount factor falls below machine precision so the present value
of additional transactions is zero.
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they enter equation (2) with negative signs. Using the basis functions from the �rst-stage

simulations and a vector of structural parameters θ̂, the model's prediction is computed

for each observation in the sample. As noted in POB, the maximum-likelihood (ML)

estimator is not asymptotically e�cient because the second stage uses the simulated

value function (a function of the basis functions from the �rst-stage simulations) and

not the true value function. Moreover, the ML estimate of the structural parameters

can be very sensitive to this error if only a few withdrawals are observed in parts of the

state space, resulting in poor small-sample performance. Figure 5 shows this is a realistic

concern in the DCPC data.

In the estimation routine, six moments are simulated and matched to their data

counterparts: the probabilities of withdrawal for low-value (m ≤ $25) and high-value

(m > $25) cash holdings; the probabilities of cash use for low-value (p ≤ 10) and high-

value (p > $10) transactions; the average amount of cash purchases; and the average

amount of cash withdrawn. Separating withdrawal probabilities for low and high values

of cash holdings and transactions is important, as Figure 5 shows these could be quite

di�erent. Careful inspection of equation (1) reveals that when the CIA is binding the

continuation value of the two remaining options (debit and credit) is the same since

m′ = m regardless of which payment card is chosen. Therefore, a simple multinomial

logit estimation will identify γd0 , γ
d
p≤10 and γ

d
p . Because the model only identi�es utility

di�erences and not the absolute level, we normalize utility from choosing a credit card

to zero (γc0 = γcp≤10 = γcp = 0). The six moment conditions are used to estimate the six

remaining structural parameters {bL, bU , R, γh0 , γhp≤10, γhp}.

7 Results

The estimated coe�cients are supportive of the theoretical model, as shown in Table 5.

All estimates are statistically signi�cant at the 5-percent level or better except the lower

bound on cash withdrawal costs (bL), which is not signi�cantly di�erent from zero. The

cash holding and opportunity cost parameters (bL, bU , and R) are restricted to plausible
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bL bU R γh0 γhp≤10 γhp γd0 γdp≤10 γdp
0.0003 7.99 0.0049 2.20 0.79 -0.12 .57 .51 -.0037
(0.08) (1.57) (0.001) (0.43) (0.37) (0.03) (0.13) (0.22) (0.0016)

Table 5: Structural parameter estimates (standard errors)

ranges, but the remaining unrestricted parameters have expected signs and plausible

magnitudes. Relative utility declines with the transaction price for cash (γhp ) and debit

card (γdp) payments, although the latter is close to zero. Even after controlling for the

costs of managing cash, consumers prefer cards for larger transaction values. Cash and

debit card payments less than $10 o�er additional relative utility, suggesting that credit

cards have lower acceptance or convenience for small-value payments.

The estimates are parameters of a utility function that do not have natural units and

thus can be hard to interpret beyond signs. For examples, bU , bL and R do not represent

a dollar value or rate of interest, respectively, although R represents units of utility per

dollar by virtue of multiplying cash holdings (m). Thus, the parameter estimates merit

additional interpretation.

7.1 Parameter interpretation

A key result is the distribution of cash withdrawal costs [bL, bU ]. Despite the relatively

wide estimated range, in our simulations consumers never withdraw cash if withdrawal

costs are greater than 4. That is, withdrawals only happen in the most favorable lower

half of the estimated distribution; the average withdrawal cost estimate,
¯̂
b = −0.75,

reveals that consumers time most of their withdrawals strategically. One way to evaluate

the economic magnitude of this relative utility estimate is to compare it with another

estimated parameter of the inventory problem, such as the holding cost (R̂). In that case,

the �xed cost of withdrawals is roughly equal to the utility loss, or �inconvenience," of

carrying $153
(

=
¯̂
b/R̂

)
between two transactions.

Another way to gauge the size of the withdrawal cost is to compare it with the bene�t

of a cash withdrawal that gives a consumer the option to pay with cash, which is par-

ticularly valuable for small-value transactions. We measure this bene�t as the di�erence
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between expected instantaneous utility �ow for a consumer who makes a transaction of

size p with and without su�cient cash in her wallet. Formally, we calculate

∆E[u(p)] = log

 ∑
i={c,d,h}

exp(ui(p))

− log

 ∑
i={c,d}

exp(ui(p))

 ,
where the log-sum formula computes the expected utility derived from the payment

choice. This formula abstracts from continuation values and thus reduces the problem to

a multinomial choice model. Comparing this bene�t to the �xed cost of withdrawals, it

takes about two median-sized transactions to recoup the �xed cost of a withdrawal:

¯̂
b

∆E[u(p = 13.41)]
= 1.82

About 43 percent of POS payments were $10 or less (see Figure 1), which explains the

popularity of cash even though consumers receive relatively low payment-service utility

from large-value cash transactions.

7.2 Cash holdings and use

Using the estimated model and data on cash holdings, Figure 6 illustrates the e�ects of

CIA constraints on the probability of cash use by consumers. The four colored line types

in Figure 6 plot the estimated probabilities of cash use for amounts of cash held in wallet

ranging from $25-250. When the CIA binds at the wallet amount, cash probabilities reach

zero for larger transactions. Even with a roughly average amount of cash ($75), consumers

are reluctant to use cash for larger transactions; less than 20 percent of purchases of $30

or more are made with cash. The tradeo� changes rapidly with cash holdings; consumers

with $25 make only about one-third of their very small-value transactions with cash and

less than 5 percent of $20 transactions. In contrast, for large cash holdings (e.g., $250),

the probability of cash use is nearly 80 percent and stable up to $80.

The results in Figure 6 relate to other recent research. Eschelbach and Schmidt (2013)

found that cash in wallets after transactions is strongly negatively correlated with the
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Figure 6: Probability of cash use by transaction value and cash holding

probability of cash use. However, cash holding and withdrawals are jointly determined

(see Figure 5), so it is inappropriate to include cash holdings as an explanatory variable

in a multinomial logit model without controlling for the endogeneity. Alvarez and Lippi

(2017) assume credit card payments are more costly than cash payments on the margin

so consumers spend cash as long as they have enough of it�a behavior they call �cash

burns." Figure 6 shows this behavior arises even in a model where the relative value

of cash payments �uctuates across transactions and consumers can substitute payment

cards for cash at each transaction. Thus, consumers with $75 of cash and above are more

likely (greater than 50 percent) to use cash for transactions under $20 than consumers

without a binding CIA constraint (see right panel of Figure 1, black dotted line).

The cash-burn result also is illustrated with the estimated model in Figure 7. To

minimize withdrawal costs, consumers defer withdrawals and run down cash inventories

until a favorable withdrawal opportunity arises, represented by low value of random cost

b ∈ [bL, bU ]. The intuition underlying this behavior appears in the continuation value,

E [W (m′; p′)], plotted in the left panel of Figure 7 for each amount of cash held after

a point of sale was made (and before the next holding cost shock and transaction value

are realized). The continuation value is hump-shaped with a maximum just below $50.
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Figure 7: Expected continuation values before holding cost shocks and transaction values
are drawn (left); shadow value of an additional dollar in cash (right)

Consumers gladly make cash payments that decrease their holdings to around $50 but

tend to avoid cash purchases that reduce their holdings below $50.

The shadow value of cash, shown in the right panel of Figure 7, is the marginal

utility an extra unit of cash provides by relaxing the CIA constraint for current or future

transactions. We compute the shadow value as the di�erence between the expected

continuation values (before p and b are known) of holding m+ 1 and m dollars of cash,

λ(m) = E[W (m+ 1; p, b)]− E[W (m; p, b)],

where the expectation is taken over the realizations of p and b. The plotted shadow value

(right panel) is the derivative of the continuation value (left panel) measured relative to

the average cost of withdrawals (
¯̂
b = .75) for di�erent values of m. The shadow value rises

rapidly as cash falls below $50, reaching about 40 percent of the average withdrawal cost

when cash is depleted. But when cash rises above $50 the shadow value turns negative

and declines steadily because consumers are made worse o� with more cash. Although

having more cash relaxes the likelihood of a binding CIA constraint, consumers with more
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than $50 in their wallet are not particularly worried about the constraint because most

transactions are low value.

7.3 Consumer welfare

The welfare cost of in�ation is a central concern in the monetary literature. Bailey

(1956) measured the welfare cost of in�ation in a static model with zero-interest money

as the area under the interest-elastic money demand curve. More recently, Alvarez and

Lippi (2009) computed welfare cost estimates in a dynamic stochastic model with a CIA

constraint and inventory management, and Alvarez, Lippi, and Robatto (2019) showed

the Baily approach still is appropriate in a wide range of modern inventory theoretic

models. However, few studies of money demand consider the e�ects of payment choice

on welfare, so this subsection explores these e�ects in detail.

7.3.1 Holding costs with instrument choice

Another key result is the magnitude of the estimated cost of holding cash (R̂ = .0049),

which includes the interest elasticity of cash demand among other factors. As holding

costs increase, consumers should hold lower cash balances and make more withdrawals,

thereby incurring more costs that are pure deadweight loss. However, in a model with non-

cash means of payment consumers have an additional margin of response to changes in

holding costs�substituting card payments for cash�that may have welfare implications.

To gauge the importance of substitution among payment instruments, we simulated the

estimated model for di�erent values of the cash holding cost. Because R is a utility

parameter, not the interest rate on an alternative asset, we do not know how much R

would change if in�ation rose one percentage point. Thus, we varied R by about half the

estimated value and calculated implied elasticities.

The simulation results in Table 6 reveal the sensitivity of cash management to changes

in the holding cost of cash.25 A 50-percent decrease in the holding cost (.0049 to .0025)

would raise cash holdings before a transaction about 44 percent ($25.49 to $36.59). This

25The reported �gures are averages from simulating the choices of 2,000 consumers, who each start
with zero cash, for 7,200 periods.
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result implies a holding-cost elasticity of demand for cash of −.85, larger in absolute value

than the prediction of −0.5 in the basic Baumol-Tobin model. Analogous elasticities for

cash holdings before withdrawals and for withdrawal amounts are roughly similar. Table 6

also reveals a non-trivial asymmetry. A roughly 50-percent increase in holdings costs

(.0049 to .0075) causes cash holdings before a transaction to decline about 24 percent

($25.49 to $19.47), an elasticity of −.44. The probability of making a withdrawal only

falls about one-half of 1 percentage point.

Cash holdings before Withdrawal Cash use Cash Payment

R transaction withdrawal amount probability share costs utility

.0025 36.59 15.57 43.94 .049 .35 26.5 465.5

.0030 33.36 14.01 40.48 .051 .34 28.7 464.1

.0035 30.76 13.21 37.25 .053 .33 30.4 462.7

.0040 28.31 11.28 36.22 .052 .33 31.8 461.1

.0045 26.50 11.03 33.23 .055 .32 33.2 459.9

.0049 25.49 10.68 31.90 .056 .32 34.6 459.0

.0055 23.58 9.69 29.71 .058 .31 35.9 457.4

.0060 22.71 9.43 28.77 .058 .31 37.2 456.5

.0065 21.33 8.65 27.68 .058 .30 37.6 454.5

.0070 20.04 8.23 26.14 .059 .30 38.2 453.0

.0075 19.47 7.79 25.77 .059 .30 39.5 452.4

Table 6: Cash management with di�erent cash holding costs

The estimated model exhibits a novel sensitivity of payment choices to holding costs

that di�ers from inventory theoretic models that assume no change in the cash share

of payments. The decrease in holding costs induces a modest increase in the share of

transactions made with cash from .32 to .35, or about 9 percent, an elasticity of −.2.

Given the results in Figure 6, the magnitude of changes in cash holdings and cash share

recorded in Table 6 would lead to non-trivial changes in the probabilities of choosing cash.

These results reveal that cash holdings are more responsive to R than what standard

inventory-theoretic models would predict. Table 6 shows that unless one can directly

control for cash spending, estimates of the interest elasticity of cash demand will confound

two e�ects: 1) a change in cash spending, and 2) a change in cash holdings to �nance

a constant stream of cash spending. Because there is little reason to believe that cash

spending remains constant over time when alternative payment methods emerge, there

is no reason to believe that the estimated interest elasticity of cash demand should stay
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constant over time either.

A reduction in holding costs ambiguously improves consumer welfare, de�ned as

payment utility net of cash management costs, for two reasons. Total cash manage-

ment costs decline (8.1 units of utility), naturally, in part due to a slight decline in the

probability of withdrawal. At the same time, payment utility rises by almost the same

amount in absolute terms as the reduction in costs (6.5 units of utility) as consumers take

advantage of more cash payments. Cash costs fall much more in percentage terms (23.4

percent) than utility rises (1.4 percent), but the absolute changes in utility are similar

and the change in net utility is small. In any case, these additional changes in consumer

welfare due to changes in payment choices has been missing from previous research on

the demand for money.

7.3.2 Withdrawal costs and technological change

As noted in Section 2, the literature widely acknowledges that considerable improvements

in technology such as ATM networks and cash back withdrawals from retail stores have

reduced the costs of cash management signi�cantly. To measure the e�ects of technolog-

ical change in our model, we ran counter-factual simulations with variation in the lower

bound of the cash withdrawal cost from the estimated value (b̂L = .0003) to the midpoint

of the estimated range (bL = 4) and compared the models' predicted changes in cash

management.

Reducing the lower bound of withdrawal costs a�ects withdrawals notably more than

cash holdings or use, as shown in Table 7. The probability of a withdrawal more than

doubles (.023 to .056) and the withdrawal amount nearly falls by half ($61 to $32).

But cash holdings before a transaction decline less than 20 percent and the cash share

only rises 4 percentage points (.28 to .32). As with holding costs, a reduction in cash

withdrawal costs make consumers unequivocally better o�. These changes primarily

impact cash management costs, which fall by one-third (53.2 to 34.6), whereas payment

utility rises by just over 1 percent. Collectively, these economically signi�cant changes

provide a quantitative guide to the potential e�ects of recent technological changes.
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Cash holdings before Withdrawal Cash use Cash Payment

bL transaction withdrawal amount probability share costs utility

.0003 25.49 10.68 31.90 .056 .32 34.6 459.0

1 26.49 6.49 43.56 .038 .31 41.3 457.2

2 27.73 5.12 50.66 .031 .30 46.3 456.0

4 29.04 3.56 60.71 .023 .28 53.2 453.1

Table 7: Cash management with di�erent withdrawal costs
Distribution of simulated withdrawal costs
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Figure 8: Distribution of simulated withdrawal costs

The estimated costs of withdrawal suggest that the scope for additional cost-saving

technology in cash withdrawals going forward may be modest. The full distribution of

simulated costs reveals that most are close to zero, as shown in Figure 8, with the me-

dian b̂ = .58 <
¯̂
b = .75. Some withdrawals are made at high cost, and these might

bene�t from further technological changes. But the distribution of withdrawal costs de-

cays rapidly from the lower bound because consumers already strategically make most of

their withdrawals at the plentiful number of relatively favorable (low-cost) opportunities

available to them.

7.3.3 Value of payment instruments

The emergence of electronic means of payment, including credit and debit cards, has

coincided with growing anti-cash sentiment. A leading opponent is Rogo� (2016), who

describes cash as a �curse� because it aids crime and tax evasion, and constrains monetary
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policy by inhibiting negative interest rates. Evidence on the consumer welfare of cash

relative to other payment instruments is limited and varied, however. Alvarez and Lippi

(2017) estimated that eliminating cash altogether and forcing consumers to pay with

credit would cost a mere $2 per year, but Alvarez and Argente (2019) �nd that Uber

customers who prefer cash (disproportionately lower income) su�er an average loss of

50 percent of the ride value when they have to use payment cards. Fulford and Schuh

(2017) estimated the value of credit card payments is 0.3 percent of annual consumption

for convenience users (no high-interest debt). Koulayev et al. (2016) estimated that

consumer welfare declines 1-3 percent in response either to a per-transaction fee of 3.6

cents for debit cards or to surcharging credit card payments that o�set the merchant

discount fee. And consumers lose utility when they prefer cash but it is not accepted for

payment, of course.26

To measure consumer welfare associated with payment instruments, we simulated the

estimated model under di�erent counter-factual scenarios with exclusion of instruments

(equivalently, non-acceptance). Table 8 reports simulation results for cash management

decisions and consumer utility in each scenario. For reference, the �rst row repeats the

estimation results of the full model with all instruments. See Appendix A for details of

modi�cations made to the model for the counterfactual simulations.

Eliminating any single payment instrument would entail much larger welfare declines

than previous simulations. Elimination of debit cards is the most welfare-reducing, as

payment utility would be 22 percent lower and cash management costs would more than

triple. Eliminating cash would entail an even larger reduction in payment utility (27

percent), but cash management and related costs would disappear so consumer welfare

would be slightly higher than without debit cards. Eliminating credit cards is the least

welfare-reducing counterfactual, as payment utility falls less than eliminating cash or debit

cards, but cash costs increase less than eliminating debit cards. In every case, welfare

declines by about an order of magnitude more than in the counterfactual simulations of

26None of these studies provides a comprehensive general equilibrium analysis of social welfare, which
requires incorporating a market for revolving credit, details of bank and non-bank payment services, and
the fee structure of the two-sided credit card markets.
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Cash holdings before Withdrawal Cash use Cash Payment
Model transaction withdrawal amount probability share costs utility
Full 25.49 10.68 31.9 .056 .32 16.6 459.0
No cash 0 0 0 0 0 0 336.1
No debit 36.52 15.42 45.3 .072 .47 52.0 357.8
No credit 29.60 12.66 36.8 .063 .37 40.8 401.3
No cards 123.95 55.42 162.1 .177 1.00 219.4 -76.7

Table 8: Cash management with counterfactual payment instruments

changes in cash costs. Note that eliminating just one of the payment cards would not alter

dramatically the cash landscape, however. Withdrawal probabilities and cash holdings

would be modestly higher, and the cash share would be 5 to 15 percentage points higher;

these e�ects are slightly greater for debit cards.

Eliminating both payment cards would make consumers markedly worse o� and entail

much larger increases in cash activity. Payment utility would decline 117 percent and

the cost of cash managment would rise more than 1,300 percent. The probability of cash

withdrawals would more than triple to nearly one in �ve payments being preceded by

a withdrawal instead of one in 26. Cash holdings before a transaction would increase

roughly �ve-fold to $124. For perspective on the last outcome, note that Briglevics and

Schuh (2013) reports consumers holding $110 (in�ation-adjusted to 2010 dollars) in the

mid-1980s.27 At that time, debit cards had not fully di�used yet and credit cards were

not used as widely for smaller value payments, so the counterfactual simulation provides

a reasonable comparison with actual cash holdings between the two periods.

8 Conclusions

This paper demonstrates that daily transactions-level data on cash demand and payment

use from diary surveys can be used successfully to estimate a dynamic optimizing model

blending modern elements of cash inventory managment and payment choice. The es-

timated model shows cash demand and payment use are jointly determined, in�uencing

each other in economically meaningful ways. Two important insights for consumer wel-

27See their Table 1 based on the Survey of Currency and Transactions Account Usage conducted by
the Federal Reserve Board in 1984 and 1986.
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fare are: 1) the level of utility from optimal payment choices is much larger than utility

lost from cash management costs; and 2) changes in economic conditions a�ecting cash

management or payment opportunities produce roughly similar magnitudes of change in

utility from payment choices and cash costs. Together, the results motivate the need for

future research that builds on the blended model.

Relaxing the model's theoretical restrictions on consumers' payment planning is an

important direction. Endogenizing the number and value of payments (expenditures),

planning more than one payment into the future, allowing for bill payments, and intro-

ducing shopping time and trips with multiple payments all could lead to broader and

deeper insights. Exploring heterogeneity in cash withdrawal opportunities and manage-

ment of new payment technologies would enhance understanding as well. Introducing

merchant acceptance of payments (as in Hunyh, Nicholls, and Shcherbakov 2019, for ex-

ample) is essential for capturing demand and supply e�ects in general equilibrium. More

generally, integration of the process of search, exchange, and settlement of transactions

that is central to New Monetarist models (as in Chiu and Molico 2010, for example) is a

natural direction to extend our framework.

Although impressive and valuable, the new payments diary data merit further de-

velopment that would enable vital enhancements to the theoretical model. Over time,

simply having more data will eventually make it feasible to incorporate variation in the

precise costs of withdrawals across locations. But extensions and improvements to the

data also are needed. Perhaps most importantly, the balances of non-cash assets and

liabilities�especially money in checking or other payment accounts plus credit limits

and revolving debt from credit card accounts�are essential for completely characteriz-

ing CIA�more generally, liquidity in advance (LIA)�constraints that a�ect the linkage

between portfolio management and settlement of payment for consumer expenditures en-

visioned by Samphantharak, Schuh, and Townsend (2018). More details about the nature

of asset and liability accounts, such as the costs and bene�ts of speci�c credit cards, and

tracking of the exact payment card or instrument used (instead of a simple category like

�credit card�) would allow useful enhancements of the theoretical speci�cation of payment
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utility. Accurately measuring merchant acceptance for each payment opportunity also is

essential to relaxing the assumption that sellers accept every payment instrument.

The estimated model's characterization of consumer welfare e�ects from completely

restricting payment instrument use (or acceptance) provides a step toward the evalua-

tion of social welfare and optimal public policies related to currency and other payment

systems. However, it is not yet su�cient for comprehensive assessments of the many

important policy issues of the day. For example, the future of physical currency in an

electronic world that has spawned the re-emergence of private currencies like Bitcoin

remains uncertain. And neither regulation of payment card interchange fees, such as

Federal Reserve Regulation II, nor provision of payment services with faster or real-time

settlement, such as the Federal Reserve's FedNowSM Service, have been evaluated with

an economically adequate speci�cation of consumer demand for money and payments.28
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Appendix A Counterfactual Models

For clarity, we brie�y spell out the models used in the counterfactual simulations. The

simplest cases are the models with cash and one type of payment card. These models

retain the structure of the benchmark model (described by equations (1) and (2)), but

the payment instrument choice equation (1) only includes either debit or credit cards.

Formally, either i ∈ {h, c} or i ∈ {h, d}.

A.1 No cash

In these simulations consumers choose between credit and debit cards at the point of sale.

The model collapses to a sequence of logit models, with a value function of

V (p) = max
i∈{d,h}

ui(p) + ε(i) + βE [V (p′)] . (3)

Since the only endogenous state variable in the benchmark model was cash holdings,

decisions made in the current choice situation have no e�ect on subsequent transactions.
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A.2 No cards

The counterfactual model is an extension of the Baumol�Tobin model with stochastic

transaction values and withdrawal costs. Consumers choose withdrawal policies to solve

W (m; p, b) = max−b · I(m∗ 6= m)−R ·m∗ + βE [W (m∗ − p; p′, b′)]

m∗ ≥ m, m∗ ≥ p.

After observing the value of their next transaction, p, and the withdrawal cost, b, consumers

decide whether to adjust their cash holdings. Then they make a cash payment (only

choice) and move on to another withdrawal decision before their next transaction. With-

out payment cards, consumers must always have enough cash to pay for the current

transaction, p.

The counter-factual model uses the same withdrawal and holding costs as in Table 5,

but no utility from card payments. Timing in the counter-factual model also is the same.

Thus, consumers know with certainty the amount of their next transaction and are not

forced to hold precautionary balances to accommodate the low-probability occurrence of

very large-value transactions as in Alvarez and Lippi (2013), which are much less likely

for retail payments.

Appendix B Data Appendix

This appendix provides additional details about the Survey (SCPC) and Diary (DCPC)

of Consumer Payment Choice and their data. Originally, the SCPC and DCPC were pro-

duced by the Federal Reserve Bank of Boston but these data programs are now managed

by the Federal Reserve Bank of Atlanta. Data, questionnaires, and associated data re-

ports for each year and survey can be obtained from the Atlanta Fed's consumer payment

website.29 For speci�c details about the 2012 SCPC and DCPC, see Schuh and Stavins

(2014), Angrisani, Foster, and Hitczenko (2014), Hitczenko (2015), and Greene, Schuh,

and Stavins (2018).

29https://www.frbatlanta.org/banking-and-payments/consumer-payments/.
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B.1 Survey Instruments

The SCPC is a 30-minute online questionnaire based on respondent recall that is admin-

istered annually each fall beginning in 2008. In most cases, respondents completed the

2012 SCPC at least one day before the DCPC, although the lag may be up to several

weeks. SCPC respondents received $20 incentive compensation for completing the survey.

The SCPC is taken �rst and responses are used to tailor the design of the DCPC for each

respondent's adoption patterns.

The DCPC is a 20-minute mixed-mode diary survey that was administered for the

�rst time in October 2012. For three consecutive days, respondents were asked to record

all payment and cash management transactions in a physical memory aid. Each night,

respondents also completed an online survey to report their cash holdings (including

denominations) and the transactions recorded in their memory aid, and to answer follow-

up questions about the transactions. If they completed the SCPC, DCPC respondents

also received additional incentive compensation of $60 for completing all three diary days.

The survey instruments primarily are designed to track payment and cash manage-

ment activity for nine common instruments: cash, checks (personal, certi�ed, or cashier's),

money orders, traveler's checks, debit cards (also ATM cards), credit cards, prepaid

cards, online banking bill payment and bank account number payment.30 The SCPC

also measures consumer adoption of bank accounts that are associated with the payment

instruments: checking, saving, credit card, and prepaid card (some of which may be

managed by non-banks).

Performance of the survey instruments was relatively good in all dimensions. Item

response rates for most survey questions were well above 90 percent. Both survey

instruments included real-time error checking methods, and respondents had access to

RAND sta� for technical and conceptual assistance. The vast majority of respondents

rated their interest in both surveys as 4 or 5 on a �ve-point Likert scale (5 being most

interesting).

30Newer payment instruments such as text/SMS (Venmo and Zelle) and cryptocurrencies (bitcoin) are
not included. Applications like PayPal or ApplePay are not payment instruments per se but use them
to process payments in ways that compete with traditional banking services.
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B.2 Sampling Methodology

Respondents in the 2012 SCPC and DCPC were selected from the RAND Corpora-

tion's American Life Panel (ALP).31 Currently, the ALP �is a nationally representative,

probability-based panel of more than 6,000 participants who are regularly interviewed

over the internet.� In 2012, however, the ALP was in the process of transitioning from

a convenience sample to nationally representative over multiple years. Consequently, the

2012 SCPC and DCPC subsamples of the ALP were randomly re-selected using standard

methods to match the U.S. population characterized by the Current Population Survey.

The matched 2012 SCPC-DCPC sample included 2,468 respondents who completed all

three days of the DCPC. The participation rate of respondents selected for the survey and

diary participation was nearly 100 percent. Hitczenko (2015) and Angrisani, Foster, and

Hitczenko (2014) provide details of the joint sampling methodology for the 2012 survey

instruments.

The primary reporting unit in the ALP is a consumer rather than household. Sam-

pling consumers is easier and less expensive than surveying all members of a household.

Consumer-based sampling also is likely to produce better estimates of individual payment

choices, especially for currency where the head of household may not track all activity.

Sampling consumers could lead to mismeasurement of other aspects of payments, like

joint bank accounts and shared household bills like utilities. However, proper random

selection of consumers should yield a sample that is representative of U.S. households

and produces unbiased aggregate U.S. estimates.32 A separate quarterly survey provides

a wide array of time series demographic characteristics for each ALP consumer that can

be merged with the SCPC and DCPC.

31See https://www.rand.org/research/data/alp.html.
32In 2012, the convenience sample nature of the ALP produced around 100 households with two co-

habitating adults. This household subsample does not exhibit any large di�erences from the single-adult
sample.
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B.3 Survey Design

The SCPC and DCPC were jointly implemented with a common sample of respondents.

Starting in September, the SCPC was implemented �rst and completed prior to the

DCPC. In most cases, respondents completed their SCPC at least one day prior to their

DCPC. In some cases, the delay may have been a month or so, which could have had

minor e�ects on the synchronization of responses between survey instruments related to

adoption of accounts or payment instruments.

Respondents who completed their SCPC were randomly assigned to start their con-

sectutive three-day diaries from September 29 through October 31, with the last diaries

being completed on November 2. Each wave of more than 200 DCPC respondents also

was randomly selected to be representative of U.S. consumers and staggered across the

month so that each day had (in expectation) an equal share of respondents who were

completing days one, two, and three of the diary. This procedure is designed to smooth

any possible e�ects of diary fatigue that might lead to incomplete diaries or reduced re-

sponse quality during a diary period and requires �burn in� (September 29-30) and �cool

down� (November 1-2) periods from which the data are not used.

The resulting DCPC data form a balanced longitudinal panel for October 1-31 with

�xed entry and exit predetermined by the sampling design and diary methodology. To-

gether, the sampling methodology and survey design make the DCPC sample represen-

tative of U.S. consumers for each day of the month and for the entire month. However,

the data for individual consumers only extend three days and may not be representative

of the individual consumer's monthly payment and cash management behavior. Thus,

individual consumer data cannot be projected to the full month.

B.4 Data Measurement

The primary input for this paper is the DCPC transactions-level data on payments and

cash management. For payments, the DCPC measures the following seven items: 1)

exact time of day (hour, minute, and a.m. or p.m.); 2) the payment value (dollars and

cents); 3) the payment instrument; 4) the location (in-person or not); 5) the device used
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(computer, mobile phone, etc. or none); 6) payment type (retail, person-to-person, or

bill); and 7) the merchant type (payee). The SCPC measures payment use as the number

of payments per month made (volume), which is measured implicitly in the DCPC as

the recorded number of payments per day. However, we do not use the SCPC payment

volume data because they rely on respondent recall, hence more susceptible to potential

measurement error, and do not include dollar values.33

For cash management, the DCPC measures cash holdings (stock) and other cash-

related activities (�ows). Every night, respondents record the total dollar values of cur-

rency held in their �pocket, purse, or wallet� by denomination (the number and value of

$1 bills, $5 bills, etc.) but excluding coins. Every day, respondents record the number

and dollar values of cash withdrawals by location, cash deposits, and other aspects of

cash-related transactions such as conversion of coins to notes.

The 2012 DCPC did not collect stock and �ow data on other assets or liabilities,

such as bank checking and credit card accounts. The 2012 DCPC collected data on re-

loadings of prepaid cards, which are quite similar to cash, but did not collect the balances

and withdrawals of speci�c prepaid cards. Subsequent DCPC's have collected data on

balances in primary checking accounts only. However, these data are insu�cient to track

the cash �ow of demand deposits if there are multiple accounts, joint account holders, or

other complexities in household management of checking account stocks and �ows.

B.5 Data Cleaning

For every consumer and every day, the DCPC data should measure exactly the following

cash-�ow identity:

cash tonight = cash last night + withdrawals � (deposits + cash payments).

In practice, however, there is potential error in this measurement. To minimize the

potential measurement error, the online diary survey uses this exact accounting cash-�ow

33Despite relying on recall, the SCPC data on payment use are surprisingly close to the DCPC estimates
except for cash, where the DCPC estimates are signi�cantly higher perhaps due to better tracking.
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identity and other techniques for real-time error checking and data correction to ensure

that the daily cash-�ow identity holds. More than 70 percent of daily consumer-level

cash-�ow identies held within a rounding error ($1 per transaction allowing for coins).

When individual consumer-day cash-�ow identities did not hold, we cleaned the mi-

cro data following methods used in other consumer or household surveys that collect

dynamic cash data, such as the Townsend-Thai Monthly Survey (see Samphantharak

and Townsend 2009). When cash-�ow errors were negative, suggesting that respondents

spent more cash (or made more deposits) during the day than they recorded, we increased

their end-of-day cash holdings su�ciently to eliminate negative cash-�ow entries. One

explanation for these negative errors is that respondents used cash stored in their home

or elsewhere, which was not collected in the 2012 DCPC but is estimated in the SCPC

to be much larger than cash in wallet. Measurement errors also may have occurred in

reporting of the cash stocks or withdrawals but positive cash-�ow errors are smaller and

less common. In any case, we trusted respondent reporting of cash management and

adjusted end-of-day cash holdings whenever the cash-�ow identity was violated.

In the few cases where cash was used to pay bills (which were excluded from the

sample), we adjusted the respondent's cash holdings by subtracting the amount of the

bill so our measure of cash holdings re�ects only cash balances held for making POS

transactions. This procedure is not entirely innocuous. For example, consumers who

make a large bill payment with cash may make a withdrawal beforehand, in which case

they might withdraw cash to cover POS expenses as well. However, our estimation

sample has only �ve instances where a cash bill payment is preceded by a withdrawal

that is larger than the amount of the bill payment, so this restriction is unlikely to

in�uence our results. In any case, bill payments often involve di�erent means of payment

(online banking, bank account number payment) that are unavailable at the point of

sale and likely entail di�erent decision making than POS payments such as planning and

budgeting at monthly or annual frequencies. Sexton (2015) also argues that bill payments

involve aspects of behavioral economics.
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1 Introduction

One of the tools used by governments in response to recessions is direct cash payments to house-

holds. These payments are generally meant to alleviate the effects of a recession and stimulate

the economy through a multiplier effect, i.e., by increasing households’ consumption which then

translates to more production and employment. The effectiveness of these payments relies on

households’ marginal propensities to consume, or MPCs, out of these stimulus payments.

In this paper, we estimate households’ marginal propensity to consume in response to the 2020

CARES Act stimulus payments using data from a non-profit FinTech. We also look at how these

MPCs vary with household characteristics, such as income, income declines, and cash on hand.

Finally, we describe how household MPCs vary across categories of consumption and how these

categorical responses differ from those seen in previous recessions. Understanding these MPCs

is key to targeting policies to households where effects will be largest, as well as testing between

different models of household consumption behavior.

MPCs are particularly important to both policy and economic theory as they determine fiscal

multipliers in a wide class of models. More specifically, heterogeneity in MPCs impacts which

households are most responsive to stimulus payments. In turn, targeting can have large impacts

on the effectiveness of stimulus payments on consumption and the aggregate economy. This paper

shows that liquidity is a key determinant of MPC heterogeneity during the 2020 contraction, with

highly liquid households showing no response to stimulus payments. Even among households with

higher levels of income, low levels of liquidity are associated with high MPCs.

We explore responses to stimulus payments and individual heterogeneity in MPCs by using

high frequency transaction data from SaverLife, a non-profit that helps families to develop long-

term savings habits and meet financial goals. Individuals can link their accounts to the service, and

we have access to de-identified bank account transactions and balances data from August 2016 to

May 2020 for these users. The fact that we observe inflows and outflows from individual accounts

as well as balances in this dataset allows us to explore heterogeneity in levels of income, changes

in income, and liquidity.

We use this detailed data to look at CARES Act stimulus payments distributed in April and

May 2020. The first stimulus payments were made in mid April via direct deposit from the IRS,
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and we can observe the user-specific stimulus amounts as well as spending daily before and after

stimulus payments are made. We see sharp and immediate responses to the stimulus payments, and

continued elevated spending even ten days after payments were received. Within ten days, users

spend 29 cents of every dollar received in stimulus payments. The largest increases in spending

are on food, non-durables, and payments like rent, mortgages, and student loans. In contrast to the

2008 stimulus payments (?), there is relatively little increase in spending on durables.

We exploit the fact that we observe paychecks and account balances to explore heterogeneity

across important financial characteristics. Greater income and less liquidity are associated with

larger MPCs while recent drops in income seem to have only small effects. Individuals with less

than $500 in their accounts spend over one third of their stimulus payments within ten days – 36

cents out of every dollar – while we observe no response for individuals with more than $3,000 in

their accounts.

These heterogeneity results are important in terms of targeting stimulus policies towards groups

most impacted by them. The theory behind stimulus payments rests on multipliers, which are

determined by MPCs in most models. The results of this study suggest that targeting stimulus

payments to households with low levels of liquidity in a type of recession where large sectors of

the economy are shut down will have the largest effects on MPCs, and hence on fiscal multipliers.

We then show in a macroeconomic model with multiple sectors that untargeted fiscal stimu-

lus payments in environments like the 2020 COVID-19 epidemic may be less effective than the

payments in response to the 2001 and 2008 economic downturns. Reflecting the current situation,

we map out a three sector model in which one sector employing lower wage agents is shut down

while a second low-wage essential sector remains operational alongside a higher-wage sector that

can largely work from home.

Due to the shut down of one low wage sector, those poorer and higher MPC agents are largely

excluded from benefiting from additional spending induced by stimulus payments, thereby reduc-

ing the fiscal multiplier effect. We also see that agents in the lower wage sectors tend to accumulate

more debt by borrowing from the higher wage sector. Agents end up using the stimulus payments

to repay debt to high wage individuals who have the lowest MPCs out of income. In short, work-

ers will spend their stimulus payment on mortgages and loan repayments as well as non-durable

essentials which implies that the cash flows immediately to agents with lower MPCs. This tends
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to make fiscal stimulus less effective overall.

There is extensive literature on households’ responses to tax rebates and previous stimulus

payments. The existing studies exploit the differences in timing of the arrival of the payment to

infer causal effects. Our results are generally comparable. However, the three main differences are:

1) during the 2020 stimulus, households spend much of their stimulus checks in a shorter period

of time, 2) they spend more on food and non-durables than on durable consumption like furniture,

electronics, or cars, and 3) they repay credit cards, rent, mortgages, and other overdue bills.

Using spending data from the Consumer Expenditure Survey, ? and ? look at the tax rebates

granted in 2001 and the economic stimulus payments in 2008. For the 2001 rebates, ? find that

households spend 20-40% on non-durable goods during the quarter in which they received the

rebate - the effect also carried over to the next quarter. ? focus on the stimulus payment in 2008

and find large and positive effects on spending in the same range. The authors document positive

effects on spending in both non-durable and durable goods. ? use high-frequency scanner data and

find large positive effects on spending. In Section ??, we discuss some of the differences between

our estimates and the previous literature that analyze previous stimulus programs.

Besides looking at aggregate effects, studies have also found heterogeneous effects across

agents. ? work with credit card accounts and found that customers initially saved the tax re-

bates in 2001, but then increased spending later on. In their setting, customers with low liquidity

were most responsive. ? use a quantile framework to look at the 2001 tax rebates and the 2008

economic stimulus payments on the distribution of changes in consumption.

? focus on the 2001 tax rebates and use a structural model to document that responsiveness

to rebates is driven by liquid wealth. Households with sizable quantities of illiquid assets but low

liquidity are an important driver of the magnitude of the response. To our knowledge, our study is

the first to look at stimulus payments using high-frequency transaction data, as such data did not

exist in 2008.1 The use of transaction data allows us to explore very-short term responses across

categories, minimize measurement error, and explore individual daily heterogeneity in income

declines and available cash on hand.

In this paper, we focus on a very different type of contraction relative to those faced dur-

ing previous stimulus programs: one stemming from an infectious disease outbreak that caused
1A number of papers use transaction-level data to look at spending responses to other income, such as ?, ?, ?, ?, ?,

and ?. ? explore some higher frequency weekly responses using Nielsen Homescan data.
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widespread business and government shutdowns. In comparison to the 2001 and 2008 economic

downturns, the downturn due to COVID-19 was inflicted on households at a much faster pace,

causing large job losses much more quickly. In addition, the pandemic has the potential to have

large initial effects on income and liquidity, but potentially comparatively less on future income

and wealth.

While previous studies have pointed out that stimulus payments have positive but heteroge-

neous effects on spending, analyzing the 2020 stimulus program will help us learn more about

effects on spending in different economic circumstances. In particular, this crisis was so fast mov-

ing that households had little ability to increase precautionary savings. Additionally, many sectors

of the economy were shut down due to state and local orders, which can impact the effectiveness of

fiscal stimulus, as discussed above. Some policymakers argued that shutdowns make conventional

fiscal stimulus obsolete.2

Our results are also important for the ongoing discussion of Representative Agent Neo-Keynesian

(RANK) and Heterogeneous Agent Neo-Keynesian (HANK) models. RANK and HANK models

often offer starkly different predictions, and the observed MPC heterogeneity highlights the im-

portance of the HANK framework. In a recent attempt to study pandemics in a HANK framework,

? show that for income declines up to 70%, consumption declines by 10%, and GDP per capita by

6% in a lockdown scenario coupled with economic policy responses. In another recent working

paper, ? calibrate a HANK model to study the impact of the quarantine shock on the US economy

in the case of a successful suppression of the pandemic. In their model, the stimulus payment

help stabilize consumption and results in an output decline of less than 3.5%. Additionally, ?

study multipliers in a HANK framework, whose size can depend on market completeness and the

targeting of the stimulus.

This paper also joins a fast-growing literature on the effects of the COVID-19 pandemic on the

economy, and policy responses. Several papers develop macroeconomic frameworks of epidemics,

e.g. ?, ?, ?, and ?. ? use stock prices and dividend futures to back out growth expectations. ? study

short-term employment effects and ? analyze risk expectations. ? study the targeting and impact

of the Paycheck Protection Program (PPP) on employment. ? and ? show that political affilia-

2For example, Joshua Rauh the former chair of the President’s Council of Economic advisers noted that: “A
contraction cannot be addressed via conventional fiscal stimulus since no increase in consumer demand will cause
restaurants closed on government orders to re-open.”
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tions impact the social distancing response to the pandemic, and ? study disparities in COVID-19

infections and responses.

Our related paper, ?, studies household consumption during this onset of the pandemic in the

United States using the same data source. ?, ?, ?, ? perform similar analyses as the one in this paper

using transaction-level data from the Spain, Denmark, France, and China. ? uses transaction-level

data from the US provided by merchants rather than individual-level data and find similar results

to ?. We join this emerging and rapidly-growing literature by providing early evidence on how

households responded to the crisis and on the details of the impacts of federal stimulus policy.

The results suggesting that MPCs are much higher for low liquidity households are important in

designing future rounds of stimulus, if the effects of the epidemic persist over the next months.

The remainder of this paper is organized as follows. Section ?? provides background infor-

mation regarding the 2020 stimulus and our empirical strategy. Section ?? describes the main

transaction data used in the paper. Section ?? presents the main results and Section ?? discusses

heterogeneity by income, income drops, and liquidity. Section ?? compares around findings to

similar stimulus programs, discusses results for mortgage, credit card and other payments and

presents a simple model to explain how fiscal multiplier effects may differ from prior stimulus

programs. Section ?? concludes and suggests directions for future research.

2 Institutional Background and Empirical Strategy

2.1 2020 Household Stimulus

COVID-19, a novel coronavirus, was first identified in Wuhan, China and subsequently spread

worldwide in early 2020. By some estimates, the new virus had a mortality rate which is ten

times higher than the seasonal flu and has at least twice the rate of infection. The first case in the

United States was identified in late January in Washington state and spread within the country in

February. By mid-March, the virus was spreading rapidly, with significant clusters in New York,

San Francisco, and Seattle. Federal, state, and local governments responded to the COVID-19

pandemic in a number of ways: by issuing travel restrictions, shelter-in-place orders, and closures

of many non-essential businesses.

The federal government soon passed legislation aimed at ameliorating economic damage stem-
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ming from the spreading virus and shelter-in-place policies. The CARES Act was passed on March

25, 2020 as a response to the economic damage of the new virus. The Act deployed nearly $2 tril-

lion across a range of programs for households and businesses. This study focuses on the portion

of the Act that directed cash transfers to the vast majority of American households. These one-time

payments consist of $1,200 per adult and an additional $500 per child under the age of 17. For

an overview of amounts by household, see Appendix Table ??. These amounts are substantially

larger than the 2001 and 2008 stimulus programs. In 2020, a married couple with two children

would be sent $3,400, a significant amount, particularly for liquidity-constrained households.

Most American households qualified for these payments. All independent adults who have a

social security number, filed their tax returns, and earn below certain income thresholds qualified

for the direct payments. Payments begin phasing out at $75,000 per individual, $112,500 for heads

of households (single parents with children), and $150,000 for married couples. No payments were

made to individuals earning more than $99,000 or married couples earning more than $198,000.3

Payments are made by direct deposit whenever available, or by paper check when direct deposit

information was unavailable. Funds are disbursed by the IRS, and the first payments by direct

deposit were made on April 9th. The IRS expected that direct deposits would largely be completed

by April 15th. In practice, the timing varied across banks and financial institutions, with some

making payments available earlier than others, and direct deposits being spread out across more

than one week. Amounts and accounts for direct deposits were determined using 2019 tax returns,

or 2018 tax returns if the former were unavailable.

For individuals without direct deposit information, paper checks were scheduled to be mailed

starting on April 24th. Approximately 70-80% of taxpayers use direct deposit to receive their tax

refunds, though given changes in banking information or addresses, many individuals were unable

to receive their payments through direct deposit even when they had received prior tax refunds

via direct deposit. In the case of paper checks, the order of payments across households is not

random. The IRS directed to send individuals with the lowest adjusted gross income checks first in

late April, and additional paper checks will be sent throughout May. Appendix ?? provides further

details regarding the timing of payments and the stimulus.

3Due to data limitations, in identifying stimulus payments, we are unable to identify these partial payments from
these higher-income households. However, these individuals are a very small fraction of total households, both overall
and particularly among our sample which is skewed towards lower income households.
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2.2 Empirical Strategy

Our empirical strategy exploits our high-frequency data and the timing of stimulus payments to

capture spending responses. We first show estimates of βi from the following specification:

cit = αi + αt +
23∑

t=−7

βi1[t = i]it + εit (1)

cit denotes spending by individual i aggregated to the daily level t. αi are individual fixed

effects, while αt are date fixed effects. Individual fixed effects αi absorb time invariant user-

specific factors, such as some individuals having greater average income or wealth. The date fixed

effects αt absorb time-varying shocks that affect all users, such as the overall state of the economy

and economic sentiment. 1[t = i] is an indicator of a time period i days after receipt of the stimulus

payment.

In some specifications, we interact individual fixed effects with day of the week or day of

the month fixed effects to capture consistent time-varying spending patterns over the week and

month. For example, some individuals may spend more on weekends, or on their paydays. We

run regressions at an individual-day level to examine more precisely the high frequency changes

in behavior brought about by the receipts of the stimulus payments. Standard errors are clustered

at the individual level. The coefficient βi captures the excess spending on a given day before and

after stimulus payments are made. In our graphs, the solid lines show point estimates of βi, while

the dashed lines show 95% confidence intervals.

We identify daily MPCs using the following specification:

cit = αi + αt +
23∑

t=−7

γiPi × 1[t = i]it + εit (2)

where Pi are stimulus payments for individual i at time t. To identify cumulative MPCs since

the first payment, we scale indicators of a time period being after a stimulus payment by the amount

of the payment over the number of days since the payment. That is, our estimate of a cumulative

MPC ζ comes from the following specification:

cit = αi + αt + ζ

(
Postit × Pi

Dit

)
+ εit (3)
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where Pi is the stimulus payment an individual i is paid, andDit is the total number of days over

which we estimate the MPC and Postit is an indicator of the time period t being after individual i

receives a stimulus payment. The coefficient ζ thus captures the aggregate effect of of the stimulus

in the time period in question, by scaling the average effect per day by the number of days since

receipt. The resulting coefficients can be interpreted as the fraction of stimulus money spent during

that period: a coefficient of 0.05 corresponds to the user spending 5% of their stimulus check

during their observed post-stimulus period.4

3 Data

3.1 Transaction Data

In this paper, we utilize de-identified transaction-level data from SaverLife, a non-profit helping

working families develop long-term savings habits and meet financial goals. As with a number

of other personal financial apps, SaverLife allows users to link their main bank accounts to their

service. Users can link their checking, savings, as well as their credit card accounts. SaverLife

offers users the ability to aggregate financial data and observe trends and statistics about their own

spending.

Figure ?? shows two screenshots of the online interface in the app. The first is a screenshot

of the linked main account while the second is a screenshot of the savings and financial advice

resources that the website provides. This data is described in more detail in ?.

Overall, we have been granted access to de-identified bank account transactions and balances

data from August 2016 to May 2020. We observe 44,660 users in total who live across the United

States. In addition, for a large number of users, we are able to link financial transactions to self-

reported demographic and spatial information such as age, education, ZIP code, family size, and

the number of children they have.

We also observe a category that classifies each transaction. Spending transactions are cate-

4As an example to illustrate this, imagine that a $1 transfer leads to $1 dollar of additional spending in the day
immediately after receipt. Thus if we estimated the effect over one day, we would scale by 1 and ζ = 1. If we estimate
the effect over 10 days, the average effect each day is 0.1, which would be the coefficient on a regression of Postit×Pi

and we scale by 10 so again ζ = 1. If we estimate the effect over 100 days, the average effect per day is 0.01, again
we would scale by 100 and so on.
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gorized into a large number of categories and subcategories. For the purposes of this paper, we

mostly analyze and report spending responses into the following aggregated categories: food,

household goods and personal care, durables like auto-related spending, furniture, and electronics,

non-durables and services, and payments including check spending, loans, mortgages, and rent.

Across all specifications, we exclude transactions that represent transfers between accounts like

transfers to savings or investment accounts.

Looking only at the sample of users who have updated their accounts reliably up until May

2020, we have complete data for 6,033 users to analyze in this paper. We require these users to

have several transactions per month in 2020 and have transacted at least $1,000 in total during

these three months of the year. Requiring regular prior account usage is frequently used as a

completeness-of-record check when using bank-account data (?).

In Table ?? we report descriptive statistics for users’ spending in a number of selected cate-

gories as well as their incomes at the monthly level. We note that income is relatively low for many

SaverLife users, with an average level of post-tax income being approximately $25,000 per year.

In addition, we show the distribution of balances across users’ accounts during the week before

most stimulus checks arrived. Consistent with the low levels of income, we see that most users

maintain a fairly low balance in their linked financial account, with the median balance being only

$141.02.

We identify stimulus payments using payment amounts stipulated by the CARES Act, identi-

fying all payments at the specific amounts (eg. $1,200, $1,700, $2,400) paid after April 9th in the

categories ’Refund’, ‘Deposit’, ‘Government Income’, and ‘Credit.’ Figure ?? shows the identified

number of payments of this type, relaxing the time restrictions in 2019 and 2020. While there are a

small number of payments in these categories at the exact stimulus amounts prior to the beginning

of payments, there is a clear massive increase in frequency after April 9th. This suggests that there

are relatively few false positives, and that the observed payments are due to the stimulus program

and not other payments of the same amount.

As of May 16th, approximately 53% of users have received a stimulus payment into their linked

account. The remainder of the sample may be still waiting for a stimulus check or may be ineligible

for one. Some banks and credit unions had issues processing stimulus deposits and these deposits

were still pending for a number of Americans. In addition, users may not have had direct deposit
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information on file with the IRS and would then need to wait for a check to be mailed. Finally,

users may be ineligible for stimulus checks due to their status as a dependent, because they did not

file their taxes in previous years, or because they made more than the eligible income thresholds

for receipt. Of those who receive payments, two-thirds received them by April 15, with 40% of

all payments occurring on April 15. 92% of those who received payments in our sample did so in

April.

While most American households were due to receive a stimulus check, the amount varied

according to the number of tax filers and numbers of children. Table ?? gives an accounting

of amounts due to a range of household types. While we cannot observe the exact household

composition for each user, we are able to observe a self-reported measure of household size. Our

measure matches up reasonably well with the received stimulus payments.

Appendix ?? provides further details regarding payments in our sample. Payments line up

closely with self-reported household size. Because of our strategy for picking out stimulus checks,

being within the ‘phase-out’ region of income would mean that we would falsely classify an in-

dividual as having not received a stimulus check, since his or her check would be for a non-even

number. This would likely attenuate our empirical estimates slightly. We conduct a placebo exer-

cise in the appendix, and look at spending around April for households that do not receive a check.

We do not see any sharp breaks in spending beyond day of the week effects, suggesting that the

impact of mis-categorization is small.

4 Effects of Stimulus Payments

Looking at the raw levels of spending for users receiving stimulus payments, Figure ?? shows

mean daily spending before and after the receipt of a stimulus payment without any other controls

or comparison group. In this figure, we only show spending data for users who receive a stimulus

check in our sample period. Prior to receiving a check, the typical individual in the sample is

spending under $100 a day. There is a sharp and immediate increase in spending following the

receipt of a stimulus deposit. Mean daily spending rises on the day of receipt to approximately

$150 and continues to increase, to over $200, for the two days after the receipt of the stimulus

payment.
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Observed spending declines substantially in the third and fourth days, though most of this is

driven by the fact that a plurality of ‘treated’ users in our sample received the stimulus check on

Wednesday, April 15th and spending tends to decline on weekends. After the weekend period,

observed spending rises to $250 before beginning to decline.5

While Figure ?? provides some evidence that spending was affected by the stimulus payments,

we want to directly compare users receiving stimulus payments to those that did not receive one on

that day. Figure ?? shows estimates of βi from the equation: cit = αi+αt+
∑23

t=−7 βi1[t = i]it+εit.

‘Time to Payment’ is equal to zero for a user on the day of receiving the stimulus check. Here,

we see that users who receive stimulus checks tend to not behave differently than those that do not

in the days before they receive the checks. Upon receiving the stimulus check, users dramatically

increase spending relative to users who do not receive the checks.

Similar to what we saw looking at the raw spending data, users show large increases in spending

in the first days following the stimulus check receipt and keep spending significantly more than

those who have not received checks for the entirety of the post-check period that we observe. The

relative difference in spending declines during weekends, mostly driven by the fact that observed

levels of spending tend to be depressed during these days for reasons described above.

In Figure ??, we break down users’ spending responses by categories of spending. We map

our categories to roughly correspond to those reported in ? from the CEX: food, household goods

and personal care, durables like auto-related spending, furniture, and electronics, non-durables and

services, and payments including check spending, loans, mortgages, and rent.

Across all categories, we find statistically significant increases in spending following the re-

ceipt of a stimulus check. These responses are widely distributed across categories, with cumula-

tive spending on food, household, non-durables, and payments each increasing by approximately

$50-$75 in the three days following receipt of a check. Durables spending sees a significant in-

crease, but it is much smaller in economic terms with only a $20 relative increase in spending

during the first three days.

Table ?? presents similar information, presenting coefficients from the regression cit = αi +

5Observed spending tends to decline dramatically on weekends throughout our sample. This is likely driven by two
factors. The first is that actual transactions and spending declines during these days. The second is that transactions
that occurred during the weekend may process only on the Monday that follows. We are unable to distinguish between
these cases using our data.
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αt +
∑23

t=−7 βi1[t = i]it × Pi + εit. That is, we examine the excess spending among users who

received stimulus payments on each day following the receipt of their stimulus checks, scaled by

the size of their payment. A value of 0.03 can be interpreted as the user spending, on day t, 3% of

their stimulus check (eg. $36 out of a $1,200 stimulus check) more than a user who did not receive

a check.

Columns 1-3 test how total user spending responds with three different sets of fixed effects.

Column 1 presents results using individual and day of the month fixed effects. Column 2 also

includes individual-by-day-of-month fixed effects, and Column 3 includes individual, calendar

date, and individual-by-day-of-week fixed effects. We find similar effects across all specifications,

with spending among those who received a stimulus check tending to increase substantially in the

first week after stimulus receipt.

Spending on days during this period is economically and statistically significantly higher for

those receiving stimulus checks and there are no days with significant reversals – days with stim-

ulus check recipients having lower spending than those who did not. Overall, for each dollar of

stimulus received, households spent approximately $0.25-0.3 more in the month following the

stimulus.

The remainder of the columns in Table ?? decompose the effect that we see in overall spending

according to the category of spending. We find significant increases in spending in all of these

categories, with the largest increases coming from non-durables and payments. We find muted ef-

fects of the stimulus payments on durables spending. In previous recessions, noted by ?, spending

on durables (mainly auto-related spending), was a large component of the household response to

stimulus checks. At least in the short-term, we find significantly different results, with durables

spending contributing negligibly to the overall household response. We discuss some of these

differences relative to past stimulus programs in Section ??

5 Income, Liquidity, and Drops in Income

The 2020 CARES Act stimulus payments were sent to taxpayers with minimal regard for current

income, wealth, and employment status. While there was an income threshold above which no

stimulus would be received, this threshold was fairly high relative to average individual income
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and most Americans were eligible for payments. During debates about the size and scope of the

stimulus, a common question was whether Americans with higher incomes, unaffected jobs, and

higher levels of wealth needed additional financial support. With data on both the income and bank

balances of SaverLife users, we are able to test whether the consumption and spending responses

differed markedly between users who belonged to these different groups.

In Figures ??-??, we show the cumulative estimated MPCs from regressions of spending on

an indicator of a time period being after a stimulus payment is received. Each figure contains the

results of multiple regressions, with users broken down into subsamples according to a number

of financial characteristics that we can observe. That is, the graphs represent the sum of daily

coefficients seen in a regression as in Table ??, by group. In these figures, we divide the samples

of users by their level of income, the drop in income we observed over the course of 2020, and

their levels of liquidity prior to the receipt of stimulus payments.

Figure ?? splits users by their average income in January and February 2020 (prior to the major

impacts of the pandemic). We see clear evidence that users with lower levels of income tended to

respond much more strongly to the receipt of a stimulus payment than those with higher levels of

income. Users who had earned under $1,000 per month saw an MPC more than twice as large as

users who earned $5,000 a month or more.

We also split our sample of users according to their accounts’ balances at the beginning of

April, before any stimulus payments were made. We separate users into four groups: those with

balances under $500, between $500 and $1,000, between $1,000 and $3,000, and over $3,000.

Figure ?? displays results from these four regressions. We see dramatic differences across groups

of users. Users with the highest balances in their bank accounts tend not to respond to the receipt

of stimulus payments, while those who had under $500 respond the most. The low balance group

has an MPC out of the stimulus payment of about 0.36 across the following weeks.

In Figure ??, we examine whether a similar pattern can be seen among users who have had

declines in income following the COVID outbreak. For each user, we measure the change in

income received in March 2020 relative to how much was received, on average, in January and

February 2020. We split users into those who had a decline in monthly income and those who saw

no decline in income (or had an increase). In contrast with heterogeneity across levels of income

and levels of liquidity, we find only a weak difference between these two groups. This may be

14



driven by the fact that the federal government had also made generous unemployment insurance

available to nearly all workers, mitigating the potential loss of income from job loss for many lower

income households.

Table ??, Table ??, and Table ?? display some of these results in regression form. In general,

we find that users with lower incomes, larger drops in income, and lower pre-stimulus balances

tend to respond more strongly than other users. Again, across all subsamples of our users based

on financial characteristics, we see that low liquidity tends to be the strongest predictor of a high

MPC and high liquidity tends to be the strongest predictor of low MPCs.

Of particular note, in Table ??, is the fact that we find that MPCs among low-liquidity indi-

viduals tend to be high even for those with relatively high levels of income. High income and low

balance individuals have MPCs that are significantly different than high income and high balance

individuals, but are indistinguishable from the MPCs among low balance individuals, in general.

That is, when splitting the sample by both levels of income and liquidity, a household’s liquidity

tends to drive the observed MPC from stimulus payments to a much larger extent than a house-

hold’s income.

6 The 2020 Stimulus and Previous Economic Stimulus Pro-

grams

6.1 Comparison to Previous Economic Stimulus Programs

? and ? examine the response of households to economic stimulus programs during the previous

two recessions (2001 and 2008). These programs were similar in nature to the stimulus program

in 2020 but were smaller in magnitude. In 2001, individuals generally received $300 rebates,

with married couples generally eligible for $600. In 2008, couples could receive $1,200 and $300

for each dependent child. In the 2020 stimulus program, couples could receive $2,400 and each

dependent child would be eligible for $500.

In these previous stimulus programs, households also tended to respond strongly to the receipt

of their checks. For instance, in 2008, ? estimated that households spent approximately 12-30%

of their stimulus payments on non-durables and services and a total of 50-90% of their checks
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on total additional spending (including durables) in the six months following receipt. In 2001,

approximately 20-40% of stimulus checks were spent on non-durables and services in the six

months following receipt.

In one paper examining the high-frequency responses (?), the authors are able to use Nielsen

Homescan data to examine weekly spending responses to the 2008 stimulus payments. They find

that a household’s spending on covered goods increased by approximately ten percent in the week

that it received a payment, with an MPC of approximately 0.5 by the month after stimulus check

receipt. Spending remained elevated for approximately three months following stimulus payment

receipt, although more than 70% of the excess spending is in the month that the check is received.

While they were not always able to examine the timing of all types of spending in more detail

due to data limitations in previous recessions, we demonstrate that households respond extremely

quickly to receiving stimulus checks. Rather than taking weeks or months to spend appreciable

portions of their stimulus checks, we show that households react extremely rapidly, with household

spending increasing by approximately one third of the stimulus check within the first 10 days.

Given that previous stimulus programs saw sustained increases in spending lasting six months or

more, we would expect that the long-run impact of the 2020 stimulus program would be much

larger than the already sizable short-run effect that we have seen so far.

Another notable difference from the stimulus program during the 2008 recession is the variation

in magnitudes and spending responses across categories. We find smaller estimates of MPCs,

which is driven by low durable spending. In non-durable categories, we find similar estimates

relative to previous work. Previous research has found strong responses of durables spending to

large tax rebates and stimulus programs, especially on automobiles (about 90% of the estimated

impact on durables spending in the 2008 stimulus program was driven by auto spending). In

contrast, despite a sizable response in non-durables and service spending, we see little immediate

impact on durables. Even if we attribute the entirety of our observed response in the ‘Payments’

category to spending on durables, the magnitude is much smaller than the combined response in

food and non-durables categories. Moreover, the payments category also includes rent and bill

payments which compose a portion of the ‘Payments’ category increase.

This difference becomes even starker if we consider the fact that some prior literature has

shown that larger payments often result in spending responses that skew more towards durables.
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Given the size of the 2020 stimulus checks, we might have expected large impacts on categories

like automobile spending, electronics, appliances, and home furnishings. Instead it seems that

individuals are catching up with rent and bill payments as well as engaging in spending on food,

personal care, and non-durables.

In part, this discrepancy with past recessions may be driven by the fact that automobile use and

spending is highly depressed, with many cities and states being under shelter-in-place orders and

car use being restricted. Similarly, as these orders hinder home purchases, professional installment,

and moves, spending on home furnishings and other related durables may be lower as well (the

stimulative effects of home purchases on home durables are demonstrated in ?).

While increases in durables spending were limited in the 2020 stimulus setting, we find sub-

stantial increases in spending on food. This again stands in contrast to some of the effects seen in

earlier stimulus programs. Again, it may reflect the unique economic setting in which the 2020

economic stimulus took place. While many outlets for consumer spending were closed by govern-

ment order, restaurants remained open; we find that household spending on food delivery was one

category in particular that increased following the receipt of a stimulus check.

Finally, across both 2001 and 2008, ? note that lower income households tend to respond more,

and that households with either larger declines in net worth or households with lower levels of

assets also tend to respond more strongly to stimulus checks. These results are largely consistent

with the patterns we observe in 2020. We find that households with low levels of income and

lower levels of wealth tend to respond much more strongly. In addition, our measure of available

liquidity from actual account balances arguably suffers from much less measurement error than

the measures used in previous research on stimulus checks, giving additional confidence in our

estimates.

6.2 Payments

In Figure ?? and Table ??, we report the impact of the stimulus check on financial payments.

In particular, we examine the impact on total financial payments as well as payments on several

subsets of financial payments such as credit card payments as well as rent and mortgage payments.

Rent payments are not always able to be accurately identified due to the number of users who

utilize checks or online transfer tools like Chase QuickPay, Zelle, or Venmo to pay their rent. Such
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payments will still be accurately captured by the ‘Total Financial Payments’ category.

We find that financial payments surge substantially upon receipt of the 2020 stimulus pay-

ments. Marginal spending on total financial payments totals about one third of total MPC out of

the stimulus payments. In the following subsection, we argue that our empirical findings imply

that the fiscal stimulus payments may be less effective in stimulating aggregate consumption in the

2020 environment relative to previous downturns.

6.3 Modeling the Effectiveness of Fiscal Stimulus Payments

We now present a simple model that outlines two reasons, consistent with our empirical findings,

that the fiscal stimulus in 2020 may be less effective in actually stimulating the economy than

the 2001 or 2008 payments. The basic reason for this lack of effectiveness is that sectors of the

economy employing workers with the lowest levels of liquidity are shut down, leading to lower

fiscal multipliers.

Suppose that we have three types of sectors and workers employed by those sectors. First, we

have a sector that we call groceries and necessities. Here, we refer to large firms that sell groceries

and basic household supplies that are both essential and non-durable (moderate depreciation). For

instance, large supermarkets or stores such as Target, Walmart, and CVS. At the same time, the

grocery and necessity sector is moderately labor intensive. This sector is not shut down in response

to an epidemic.

In turn, we have a second sector, called restaurants and hospitality, that produces non-durable

consumption which depreciates immediately and is more labor intensive than the first sector. Being

less essential to households, the second sector is shut down in response to the crisis.

Finally, we have a third sector of the economy. This sector is broader, and encompasses

durables production as well as many white-collar services like banking and tech. This sector

can avoid being locked down through employing safety measures in production or by working re-

motely. This sector pays higher wages than in sectors 1 and 2. Consequently, the corporations in

sectors 1 and 2 are owned by the workers in sector 3. We assume that workers in sector 1 and 2

borrow (for example, rent, mortgages, or financial lending) from workers in sector 3.

The effectiveness of fiscal stimulus rests on the idea that stimulus checks induce extra spending

by recipients. For example, workers in sector 3 spend in sector 2 and generate income for workers
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in that sector that is then spent again. Thus, if the MPC out of a stimulus payment is 0.8, then out

of a $100 payment, $80 is consumed, generating $80 of income for another worker. That worker

then again consumes $64 which generates income for another worker, and so on. In the classic

Keynesican framework the equation for the fiscal multiplier is given by 1/(1−MPC). The more

cash arrives with agents that have high MPCs, the higher the fiscal multiplier.

In our framework, there are two reasons why fiscal stimulus is less effective in this environment

relative to the 2001 and 2008 recessions. First, in a lockdown induced by an epidemic, neither

group of workers can spend in sector 2. At the same time, workers in sector 2 are the poorest

and have the highest MPCs. Second, workers in sectors 1 and 2 (that are poorer) use the stimulus

payment to pay down debt held by sector 3 workers. Therefore, the excess spending from the

stimulus flows to workers that have a lower MPC.

More formally, we have a three-period model inspired by ? and consider an economy with

three sectors. All sector s agents’ preferences are represented by the utility function:

3∑
t=0

βtU(cst) (4)

where cst is consumption and U(c) = c1−σ/(1 − σ) is a standard power utility function. Each

agent is endowed with n̄st > 0 units of labor which are supplied inelastically but they can only

work in their own sector. Competitive firms in each sector s produce the final good from labor

using the linear technology:

Y s
t = n̄st . (5)

Each agent maximizes utility subject to:

cst + ast ≤ wst n̄
s
t + (1 + rt−1)ast−1. (6)

As the initial condition, we assume that agents in sectors 1 and 2 borrow from agents in sector

3, such that a1
1 < 0, a2

1 < 0, and a1
1 + a2

1 = −a3
1. Given the economy is frictionless, agents choose

their consumption to satisfy their Euler equation:

U ′(cst) = β(1 + rt)U
′(cst+1). (7)
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Because preferences are homothetic, we can think of all agents in each sector as just be-

ing represented by one agent. In turn, each agent can consume consumption goods from any

sector, denoted by csst . The consumption composite, cst , over the three sectors’ consumption

goods equals fc(cs1t , c
s2
t , c

s3
t ) and relative goods prices meeting the composite constraint ptcst =

p1
t c
s1
t + p2

t c
s2
t + p3

t c
s3
t adjust to ensure full employment in each sector. Additionally, we assume

that ∂fc
cs1t
|cs1t →0 = ∞ whereas ∂fc

cs2t
|cs2t →0 and ∂fc

cs2t
|cs2t →0 approach finite numbers, which implies that

consumption purchased in sector 1 is necessary, whereas it is not necessary when it comes from

sectors 2 and 3. Finally, the goods market clearing condition has to hold in each period:

c1s
t + c2s

t + c3s
t = n̄st . (8)

Suppose the central bank implements a fixed rate 1 + r0 = 1/β and the economy starts from a

state in which each agent consumes his or her labor income in composite consumption cs1 = ws1n̄
s
1

and does not accumulate or decumlate their debt or savings. In turn, in period 2, an unexpected

shock hits that restricts agents working in sector 2 in periods 2 and 3, i.e., w2
2 = w2

3 = 0, and

the government promises a stimulus payment S in period 3. Then agents in sector 2 allocate

consumption in periods 2 and all the following periods according to their Euler equation and budget

constraints.

U ′(c2
2) = U ′(c2

3), c2
2 + a2

2 ≤ 1/βa2
1, and c2

3 = S + 1/βa2
2. (9)

In turn, we obtain:

c2
2 = c2

3 =
S + 1/β2a2

1

1 + 1/β
and a2

2 = 1/βa2
1 −

S + 1/β2a2
1

1 + 1/β
. (10)

Agents in sector 1 allocate consumption in periods 2 and 3 according to their Euler equation and

budget constraints in the same manner and we obtain:

c1
2 = c2

3 =
S + w1

3n̄
1
3 + 1/β(w1

2n̄
1
2 + 1/βa1

1)

1 + 1/β
and (11)

a1
2 = w1

2n̄
1
2 + 1/βa1

1 −
S + w1

3n̄
1
3 + 1/β(w1

2n̄
1
2 + 1/βa1

1)

1 + 1/β
. (12)
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Consumption for agents in sector 3 follows the above straightforwardly.

Proposition 1. The MPC out of income (or fiscal stimulus payments) is larger for agents in sector

2 than for agents in sectors 1 or 3.

Proof. Compare MPCs, i.e., how much out of income (or fiscal stimulus payments) are consumed:

∂c2
2

∂S
=
∂c2

3

∂S
=
∂(

S+1/β2a21
(1+1/β)

)

∂S
=

1

1 + 1/β
>

∂c1
2

∂(S + w1
2n̄

1
2 + w1

3n̄
1
3)

as
∂(

S+w1
2n̄

1
2+w1

3n̄
1
3+(1/β−1)w1

2n̄
1
2+1/β2a11

1+1/β
)

∂(S + w1
2n̄

1
2 + w1

3n̄
1
3)

=
1

1 + 1/β
+

∂( (1/β−1)
1+1/β

w1
2n̄

1
2)

∂(S + w1
2n̄

1
2 + w1

3n̄
1
3)︸ ︷︷ ︸

<0

and
(1/β − 1)

1 + 1/β
< 0.

This argument extends straightforwardly to the comparison of agents in sectors 2 and 3.

Proposition 2. The marginal propensity to repay debt out of income (or fiscal stimulus payments)

is larger for agents in sector 2 than for agents in sector 1.

Proof. Compare the propensity to repay mortgages, i.e., how much out of income (or fiscal stim-

ulus payments) are used to repay debt:

∂(−a2
2)

∂S
=
∂(−1/βa2

1 +
S+1/β2a21
(1+1/β)

)

∂S
=

1

1 + 1/β
>

∂(−a2
2)

∂(S + w1
2n̄

1
2 + w1

3n̄
1
3)

as
∂(−w1

2n̄
1
2 − 1/βa1

1 +
S+w1

2n̄
1
2+w1

3n̄
1
3+(1/β−1)w1

2n̄
1
2

1+1/β
)

∂(S + w1
2n̄

1
2 + w1

3n̄
1
3)

=
1

1 + 1/β
+
∂(−w1

2n̄
1
2 + (1/β−1)

1+1/β
w1

2n̄
1
2)

∂(S + w1
2n̄

1
2 + w1

3n̄
1
3)︸ ︷︷ ︸

<0

.

If we now compare this economy’s to one in which sector 2 would not shut down, there are three

differences that each diminish the amount of consumption induced by the stimulus payment S.

First, agents in all sectors cannot consume in sector 2, thereby foregoing increases in employment

and income in that sector. Secondly, sector 2 agents are the poorest agents with the highest MPC

out of their income, so declines in their income disproportionately decrease the fiscal multiplier.

Finally, agents in sector 2 choose to accumulate more debt in period 2 planning to repay it with
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their stimulus payment. In turn, the stimulus payment goes to agents in sector 3 that have lower

MPCs out of the stimulus payment.

In summary, in this economy, workers in sectors 1 and 2 will spend their stimulus payment

on mortgages and loan repayments as well as non-durable necessary consumption (sector 1). As

shown above, this means that the fiscal stimulus payments flows to households with less high

MPCs and directly decreases the fiscal multiplier, i.e., 1/(1−MPC), making fiscal stimulus less

effective.

7 Conclusion

This paper studies the impact of the 2020 CARES Act stimulus payments on household spending

using detailed high-frequency transaction data from SaverLife, a non-profit helping working fam-

ilies develop long-term savings habits and meet financial goals. We utilize this dataset to explore

heterogeneity of MPCs in response to the stimulus payments, an important parameter both in de-

termining multipliers and in testing between representative and heterogeneous agent models. We

hope that our results inform the ongoing debate about appropriate policy measures and next steps

in the face of the COVID-19 pandemic.

We find large consumption responses to fiscal stimulus payments and significant heterogeneity

across individuals. Income levels and liquidity play important roles in determining MPCs, with

liquidity being the strongest predictor of MPC heterogeneity. We find substantial responses for

households with low levels of liquidity and no response to stimulus payments for households with

high levels of account balances or cash on hand. The results will potentially be important for

policy-makers in terms of designing future rounds of stimulus if the 2020 crisis persists. Our

results suggest that the effects of stimulus are much larger when targeted to households with low

levels of liquidity.

More work should be done to study how targeting can be designed to have large impacts on

consumption without generating significant behavioral effects. Just as unemployment benefits may

increase unemployment durations (?), policies targeting stimulus payments towards households

with low levels of liquidity could discourage liquid savings.
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Figure 1: Example of Platform

Notes: The figures show screenshots of the SaverLife website. The upper part of the screenshot shows the app’s
landing page and the lower part illustrates the offered financial advice pages. Source: SaverLife.
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Figure 2: Daily Number of Government Payments at Stimulus Amounts

Notes: The top panel shows the number of payments users receive that match the amounts of the 2020 government
stimulus payment by day in 2019 and 2020. Potential payments are classified by the specified amounts of the stimulus
checks and need to appear as being tax refunds, credit or direct deposits. The bottom panel restricts the time period to
February through April in 2020. Source: SaverLife.
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Figure 3: Mean Spending Around Receiving the Stimulus Payments - Raw Spending

Notes: This figure shows mean spending around the receipt of stimulus payments. The sample includes only users who receive a stimulus payment during our sample period.
The vertical axis measures spending in dollars, and the horizontal axis shows time in days from receiving the stimulus check which is defined as zero (0). Shaded days
represent weekends for the majority of stimulus-recipients who receive their payment on Wednesday April 15th. Source: SaverLife.
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Figure 4: Spending Around Stimulus Payments - Regression Estimates

Notes: This figure shows estimates of βi from cit = αi + αt +
∑23

t=−7 βi1[t = i]it + εit. The sample includes all users in our sample period (both those who do and do not
receive stimulus payments). The solid line shows point estimates of βi, while the dashed lines show 95% confidence interval. Time to payment is equal to zero on the day
of receiving the stimulus check. Source: SaverLife.
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Figure 5: Spending Around Stimulus Payments by Categories

Notes: This figure shows estimates of βi from cit = αi + αt +
∑23

t=−7 βi1[t = i]it + εit, broken down by spending
categories. The solid line shows point estimates of βi, while the dashed lines show the 95% confidence interval. Time
to payment is equal to zero on the day of receiving the stimulus check. Source: SaverLife.
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Figure 6: MPC by Income Groups

Notes: This figure shows cumulative MPCs estimated from coefficients from regressions of spending on an indicator
of a time period being after a stimulus payment, scaled by the amount of the payment over the number of days since
the payment. That is, of ζ from cit = αi + αt + ζ Postit×Pi

Daysit
+ εit, broken down by monthly income groups. Year

and week by individual fixed effects are included. Standard errors are clustered at the user level. The bar shows point
estimates, while the thin lines show the 95% confidence interval. Source: SaverLife.
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Figure 7: MPC by Liquidity

Notes: This figure shows cumulative MPCs estimated from coefficients from regressions of spending on an indicator
of a time period being after a stimulus payment, scaled by the amount of the payment over the number of days since
the payment. That is, of ζ from cit = αi + αt + ζ Postit×Pi

Daysit
+ εit, broken down by account balances. Year and week

by individual fixed effects are included. Standard errors are clustered at the user level. The bar shows point estimates,
while the thin lines show 95% confidence interval. Source: SaverLife.
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Figure 8: MPC by Drop in Income

Notes: This figure shows cumulative MPCs estimated from coefficients from regressions of spending on an indicator
of a time period being after a stimulus payment, scaled by the amount of the payment over the number of days since
the payment. That is, of ζ from cit = αi + αt + ζ Postit×Pi

Daysit
+ εit, broken down by the drop in income between

January/February 2020 and March 2020. Year and week by individual fixed effects are included. Standard errors are
clustered at the user level. The bar shows point estimates, while the thin lines show 95% confidence interval. Source:
SaverLife.
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Figure 9: Payment Spending Around Stimulus

Notes: This figure shows estimates of βi from cit = αi + αt +
∑23

t=−7 βi1[t = i]it + εit, broken down by payment
categories. The solid line shows point estimates of βi, while the dashed lines show the 95% confidence interval. Time
to payment is equal to zero on the day of receiving the stimulus check. Source: SaverLife.
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Table 1: Summary Statistics

Notes: Summary statistics for spending and income represent user-month observations. Statistics regarding user
characteristics are given at an individual level. Stimulus Income (Cond) refers to the distribution of stimulus income
conditional on receiving a stimulus payment.

Variable # Obs. Mean 10th 25th Median 75th 90th

User-Month
Income 22,826 1,913.87 100 600.96 1,562.76 2,982.05 4,662.17
Balance 22,826 650.42 3.91 38.48 148.30 825.73 2,451.86
Durables 22,826 48.41 0 0 0 30 159.90
Food 22,826 242.07 0 21.185 151.315 371.25 651.02
Household 22,826 225.11 0 30 151.22 350.82 598.39
Non-Durables 22,826 320.37 0 50.32 213.53 478.39 850.16
Payments 22,826 402.93 0 0 132.61 659.48 1,278.29
Transfers 22,826 515.74 0 31.98 256.39 801.44 1,521.58

User
Stimulus Income 6,033 840.85 0 0 0 1,200 2,400
Stimulus Income (Cond) 2,665 1,903.52 1,200 1,200 1,700 2,200 3,200
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Table 2: Stimulus Payments and Spending

The table shows regressions of overall spending and categories of spending on the one-day lag of the stimulus payment. We run separate regressions for overall spending, food,
non-durables, household items, durables and payments. For total spending, we run three specifications with varying fixed effects. We use individual by day of the month fixed-effects,
individual and calendar date and individual times day of month fixed-effects, or individual and day of the month and individual times day of week fixed-effects. Standard errors are
clustered at the user level. *p < .1, ** p < .05, *** p < .01. Source: SaverLife.

(1) (2) (3) (4) (5) (6) (7) (8)
Total Total Total Food Durables Household Durables Payments

Stimulus Payment 0.0310∗∗∗ 0.0345∗∗∗ 0.0396∗∗∗ 0.00731∗∗∗ 0.00527∗ 0.00259∗∗ 0.00216∗∗ 0.0195∗∗∗

(0.00552) (0.00391) (0.00469) (0.00126) (0.00284) (0.00105) (0.000966) (0.00528)

Stimulus Paymentt+1 0.0599∗∗∗ 0.0590∗∗∗ 0.0589∗∗∗ 0.0125∗∗∗ 0.0188∗∗∗ 0.0128∗∗∗ 0.00713∗∗∗ 0.0219∗∗∗

(0.00604) (0.00563) (0.00768) (0.00225) (0.00298) (0.00263) (0.00143) (0.00408)

Stimulus Paymentt+2 0.0603∗∗∗ 0.0578∗∗∗ 0.0626∗∗∗ 0.00993∗∗∗ 0.0218∗∗ 0.0141∗ 0.00705∗∗∗ 0.0168∗∗∗

(0.0163) (0.0161) (0.0137) (0.00309) (0.00822) (0.00779) (0.00174) (0.00456)

Stimulus Paymentt+3 0.00835 0.0205 0.00484 0.00185 0.00520 0.00262 0.000123 0.00203
(0.0166) (0.0140) (0.0179) (0.00646) (0.00714) (0.00612) (0.000743) (0.00756)

Stimulus Paymentt+4 0.00808 0.0185 0.00875 0.00226 0.00577 0.000525 0.00180 0.000347
(0.0172) (0.0131) (0.0144) (0.00658) (0.00836) (0.00365) (0.00285) (0.00573)

Stimulus Paymentt+5 0.0609∗∗∗ 0.0440∗∗∗ 0.0644∗∗∗ 0.0192∗∗ 0.0203∗∗∗ 0.0125∗∗ 0.00463∗∗ 0.0112∗∗∗

(0.0114) (0.00807) (0.0101) (0.00904) (0.00432) (0.00486) (0.00186) (0.00309)

Stimulus Paymentt+6 0.0216∗∗∗ 0.0162∗∗∗ 0.0196∗∗∗ 0.00390∗∗ 0.00591∗∗ 0.00526∗∗∗ 0.00241∗∗∗ 0.00502∗∗∗

(0.00440) (0.00488) (0.00496) (0.00158) (0.00244) (0.00124) (0.000571) (0.00139)

Stimulus Paymentt+7 0.0140∗∗∗ 0.0172∗∗∗ 0.0213∗∗∗ 0.00372∗∗ 0.00444∗∗∗ 0.00281∗∗∗ 0.00150∗∗ 0.00243
(0.00346) (0.00398) (0.00388) (0.00144) (0.00143) (0.000926) (0.000586) (0.00194)

Stimulus Paymentt+8 0.0130∗∗∗ 0.0118∗∗∗ 0.0138∗∗ 0.00370∗∗∗ 0.00396∗∗∗ 0.00255∗∗∗ 0.00119∗∗∗ 0.00103
(0.00326) (0.00359) (0.00540) (0.000920) (0.00130) (0.000861) (0.000402) (0.00140)

Stimulus Paymentt+9 0.00603∗∗ 0.00327 0.00155 0.00160 0.00131 0.00171∗∗ 0.000963∗∗ -0.00112
(0.00282) (0.00250) (0.00508) (0.000970) (0.00140) (0.000798) (0.000392) (0.00157)

Date FE X X X X X X X X
User FE X X X X X X X X
User*Day of Month FE X
User*Day of Week FE X
Observations 560,711 560,711 560,711 560,711 560,711 560,711 560,711 560,711
R2 0.178 0.291 0.409 0.080 0.062 0.077 0.024 0.051
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Table 3: Stimulus Payments, Spending and Income

This figure shows cumulative MPCs estimated from coefficients from regressions of spending on an indicator of a time period being
after a stimulus payment, scaled by the amount of the payment over the number of days since the payment. That is, of ζ and ξ from
cit = αi + αt + ζ Postit×Pi

Daysit
+ ξ Postit×Pi

Daysit
× Ii + φPostit × Ii + εit. Average monthly income is approximately $2,000, yielding a

logged income value of 7.6. Columns (4) and (5) drop the interaction, and split the sample by January and February monthly income
above and below $2,000. The inclusion of fixed effects is denoted beneath each specification. Standard errors are clustered at the user
level. *p < .1, ** p < .05, *** p < .01. Source: SaverLife.

(1) (2) (3) (4) (5)
Total Total Total Low Inc High Inc

Post-Stimulus*Stimulus 0.703∗∗∗ 0.732∗∗∗ 0.684∗∗∗ 0.337∗∗∗ 0.180∗∗

(0.129) (0.0993) (0.132) (0.0534) (0.0803)

Post-Stimulus*Stimulus*ln(Inc) -0.0629∗∗∗ -0.0656∗∗∗ -0.0593∗∗

(0.0213) (0.0152) (0.0228)
Date FE X X X X X
Individual FE X X X X X
Individual X Day of Month FE X
Individual X Day of Week FE X X X
Observations 560,711 560,711 560,711 350,177 210,534
R2 0.172 0.287 0.404 0.130 0.196
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Table 4: Stimulus Payments, Spending and Liquidity

This figure shows cumulative MPCs estimated from coefficients from regressions of spending on an indicator of a time period being after a stimulus payment, scaled by the
amount of the payment over the number of days since the payment. That is, of ζ and ξ from cit = αi + αt + ζ Postit×Pi

Daysit
+ ξ Postit×Pi

Daysit
× Li + φPostit × Li + εit. The

second row of columns (1) through (3) interacts with the individual’s bank account balance prior to the arrival of the stimulus payment, in thousands of dollars. Columns
(4) and (5) drop the interaction, and split the sample by having more or less than $500 in a bank account. Columns (6) and (7) does the same split as in columns (4) and (5),
restricting to individuals who make more than $4,000 a month. The inclusion of fixed effects is denoted beneath each specification. Standard errors are clustered at the user
level. *p < .1, ** p < .05, *** p < .01. Source: SaverLife.

(1) (2) (3) (4) (5) (6) (7)
Total Total Total Low Bal High Bal High Inc/Low Bal High Inc/High Bal

Post-Stimulus*Stimulus 0.293∗∗∗ 0.300∗∗∗ 0.297∗∗∗ 0.327∗∗∗ 0.130∗∗∗ 0.353∗∗∗ 0.0944∗∗∗

(0.0391) (0.0332) (0.0424) (0.0474) (0.0381) (0.0749) (0.0305)

Post-Stimulus*Stimulus*Balance -0.0665∗∗∗ -0.0690∗∗∗ -0.0562∗∗

(0.0236) (0.0199) (0.0240)
Date FE X X X X X X X
Individual FE X X X X X X X
Individual X Day of Month FE X
Individual X Day of Week FE X X X X X
Observations 560,711 560,711 560,711 374,975 185,736 32,833 55,063

R2 0.172 0.287 0.404 0.150 0.212 0.214 0.243
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Table 5: Stimulus Payments, Spending and Income Declines

This figure shows cumulative MPCs estimated from coefficients from regressions of spending on an indicator of a time period being after a stimulus payment, scaled by
the amount of the payment over the number of days since the payment. That is, of ζ and ξ from cit = αi + αt + ζ Postit×Pi

Daysit
+ ξ Postit×Pi

Daysit
× Di + φPostit × Di + εit.

The second row of columns (1) through (3) interacts with the fraction of January and February income that an individual earned in March (ie. a lower value means a larger
decline in income). Columns (4) and (5) drop the interaction, and split the sample by whether a household had an income drop in March relative to January and February.
The inclusion of fixed effects is denoted beneath each specification. Standard errors are clustered at the user level. *p < .1, ** p < .05, *** p < .01. Source: SaverLife.

(1) (2) (3) (4) (5)
Total Total Total Income Decline No Decline

Post-Stimulus*Stimulus 0.231∗∗∗ 0.238∗∗∗ 0.233∗∗∗ 0.265∗∗∗ 0.209∗∗∗

(0.0620) (0.0468) (0.0583) (0.0689) (0.0603)

Post-Stimulus*Stimulus*Inc Drop -0.0341∗∗ -0.0374∗∗ -0.0265
(0.0164) (0.0164) (0.0165)

Date FE X X X X X
Individual FE X X X X X
Individual X Day of Month FE X
Individual X Day of Week FE X X X
Observations 560,711 560,711 560,711 301,137 259,574
R2 0.172 0.287 0.404 0.179 0.169
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Table 6: Payments

This figure shows cumulative MPCs estimated from coefficients from regressions of spending on an indicator of a time period being after a stimulus payment, scaled by the
amount of the payment over the number of days since the payment. That is, of ζ from cit = αi + αt + ζ Postit×Pi

Daysit
+ εit. Each column shows a different payment category.

The inclusion of fixed effects is denoted beneath each specification. Standard errors are clustered at the user level. *p < .1, ** p < .05, *** p < .01. Source: SaverLife.

(1) (2) (3) (4) (5)
Total Spending Total Financial Payments Non-CC Payments CC Payment Rent and Mortgage

Post-Stimulus*Stimulus 0.243∗∗∗ 0.0812∗∗∗ 0.0670∗∗∗ 0.0143 0.0122∗∗

(0.0423) (0.0261) (0.0173) (0.0123) (0.00585)
Date FE X X X X X
Individual FE X X X X X
Observations 560,711 560,711 560,711 560,711 560,711
R2 0.287 0.141 0.123 0.127 0.113

40



A Details on the CARES Act

The COVID-19 pandemic and the following policy responses had a large impact on the US econ-

omy. To combat the adverse consequences, Congress passed the Coronavirus Aid, Relief and Eco-

nomic Security Act (CARES Act) which was passed on March 25, 2020 and signed into law on

March 27, 2020. The CARES Act is the third act in a sequence of responses to the outbreak of the

coronavirus by Congress. The first act was focused on spurring coronavirus vaccine research and

development (Coronavirus Preparedness and Response Supplemental Appropriations Act, March

6, 2020) with a volume of $8.2 billion. The second act was a package of approximately $104

billion in paid sick leave and unemployment benefits for workers and families (the Families First

Coronavirus Response Act, March 18, 2020).

The CARES Act was a $2.2 trillion economic stimulus package and is by far the largest part

in this sequence of responses to the pandemic up to that point. The act splits up into $500 billion

support for companies in distress, $350 billion in loans for small businesses, and over $300 billion

in stimulus payments for most American workers. The rebate provides a direct payment, which

is treated as a refundable tax credit against 2020 personal income taxes. Thus, the rebates would

not be counted as taxable income for recipients, as the rebate is a credit against tax liability and is

refundable for taxpayers with no tax liability to offset. Figure ?? shows an example of a letter sent

out announcing stimulus payments.

All individuals were eligible for the stimulus if they had a valid social security number and if

they were not depending on someone else. Individuals must have filed tax returns in 2018 or 2019.

Individuals who did not need to file tax returns because their income was below $12,200 ($24,400

for married couples) were eligible but needed to register through a website at the Internal Revenue

Service. Recipients of social security benefits did not need to register but were also eligible.

Single individuals received up to $1,200, while those who filed jointly received $2,400. Those

with children under 17 received an add-on of $500 per child. The tax rebate phased out for higher

levels of income. The payment was declined by 5 percent of the amount of adjusted gross income.

The phase-out started at $75,000 for singles or at $150,000 for married couples. For households

heads with dependents (e.g. one person with a child) the phase-out began at an income of $112,500.

For details see Figure ??.
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Due to the phase-out provisions, singles (couples) above $99,000 ($198,000) did not qualify

for a rebate. In Figure ??, we plot the average size of the identified stimulus by users who report

living in a household of a given size. In general, we see a clear upward trend in stimulus check

size received as households get larger, again reinforcing the likelihood that we are truly picking up

stimulus check receipt by users.

The House Ways & Means Committee, using information from the IRS, estimates that 171

million people were eligible for receiving rebate payments under the CARES Act. The 171 mil-

lion people split up into 145-150 million taxpayers who file returns and are were eligible for the

stimulus, 20-30 million Social Security beneficiaries and SSI recipients who do not file returns, 15

million non-filers below the filing threshold, 6 million veterans, and 500-600,000 from the Railroad

Retirement Board.

In comparison to previous stimulus payments in 2001 or 2008, the IRS did not communicate an

exact schedule for sending out the stimulus payments. An approximate schedule for the payments

can still made based on the information available (see table ?? and figure ??). Taxpayers received

the first payments, using direct deposit information from the tax filings from 2018 or 2019, during

the week of April 13. The House Ways & Means Committee estimates that during this first week,

over 80 million Americans received payments in their bank accounts. During the following weeks

the IRS continued weekly rounds of direct deposits to those who provided direct deposit infor-

mation through the website of the IRS. All taxpayers who had not registered their bank account

information by May 13 received their stimulus payment as paper checks. The issuing and mailing

of paper checks started in the week of April 20. The checks were sent out at a rate of 5 million

checks per week.

During the end of April and beginning of May, Social Security retirement, survivor and dis-

ability insurance (SSDI) beneficiaries who did not file tax returns in 2018 or 2019 received their

payments via direct transfer (nearly 100% of Social Security beneficiaries). Adult Supplemental

Security Income (SSI) recipients received their payments by early May, in the same way, they

received their normal benefits (see AARP).

Banks like e.g. the Bank of America and Wells Fargo allowed customers to deposit their checks

using mobile solutions to make the stimulus available during the physical lockdown period and to

reduce delays. Wells Fargo also allowed non-customers to cash checks with no fees charged. As

42

( https://waysandmeans.house.gov/sites/democrats.waysandmeans.house.gov/files/documents/2020.04.16%20Rebate%20Payment%20Timeline%20FINAL.pdf)
(https://waysandmeans.house.gov/sites/democrats.waysandmeans.house.gov/files/documents/2020.04.16%20Rebate%20Payment%20Timeline%20FINAL.pdf)
(https://www.aarp.org/money/taxes/info-2020/irs-timeline-to-send-stimulus-funds.html)


of May 8, 2020 CNN reported that more than 130 million eligible households had already received

their stimulus payment. This lines up closely with the fraction receiving payments in our sample.

In addition to the economic stimulus package, the CARES Act made two additional provisions

that are relevant. People who filed for unemployment or were partly unemployed due to the coron-

avirus received an additional $600 per week on top of their state benefits, until July 31. Whether a

person is entitled to the extra money depends on whether an individual qualifies for state or other

federal unemployment benefits. The extra $600 also applies to self-employed, part-time workers

and gig-workers. Individuals receive their extra unemployment benefits with their state or federal

benefits.

The CARES Act suspends minimum distributions from Individual Retirement Accounts (IRAs),

401(k)s, 403(b)s, 457(b)s, and inherited retirement accounts for 2020. It also waives the 10% tax

penalty for early distributions of up to $100,000 retroactively by January 1, 2020 if an individual,

their spouse, or dependent others is hit by negative consequences of the COVID-19 pandemic.

Figure ?? presents a placebo exercise. We show spending for individuals in April who did not

observe receiving a stimulus check. There is no sharp uptick in spending beyond day of the week

effects, consistent with there not being significant measurement error in our sample.
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https://edition.cnn.com/2020/05/11/politics/irs-stimulus-payment-direct-deposit-deadline/index.html?utm_term=link&utm_source=fbCNN&utm_content=2020-05-11T23%3A01%3A25&utm_medium=social&fbclid=IwAR108tL_7l_YaEIA-p6De2FK87KzhBYVsw4Svovg-mSNVn5Ktl8GrfyEkE4


Table A.1: Household Composition and Stimulus Payments Under the CARES Act

Notes: This table shows statutory payment amounts for household stimulus payments under the CARES Act (for
households not subject to an income-based means test).

Household Composition Expected Stimulus Payment
Single $1,200
Single with one child $1,700
Single with two children $2,200
Single with three children $2,700
Single with four children $3,200
Couple $2,400
Couple with one child $2,900
Couple with two children $3,400
Couple with three children $3,900
Couple with four children $4,400
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Table A.2: The Timing of the CARES Act Stimulus Payments of 2020

Notes: The table is based on information from The House Ways & Means Committee. The table displays payments
disbursed by end of week dates (Fridays). Payments received counts the number of individuals.

Payments
by electronic funds transfer

Payments
by check

Payments
received

Taxpayer group Date
funds
trans-
ferred
by

Taxpayer group (if
no bank account
information avail-
able)

Date
checks
received by

Direct
deposit and
check
(cumul.)

Direct deposit informa-
tion on file

Apr 17 80 mil.

Registered direct de-
posit information with
IRS until Apr 17

Apr 24 < 10k
gross income

Apr 24

Registered direct de-
posit information with
IRS until Apr 24

May 1 10k - 20k
gross income

May 1

Registered direct de-
posit information with
IRS until May 1

May 8 20k - 30k
gross income

May 8 130 mil.

Registered direct de-
posit information with
IRS until May 13

May 15 30k - 40k
gross income

May 15

Website for registering direct de-
posit information closed on May
13

40k - 50k
gross income

May 22 152 mil.

50k - 60k
gross income

May 29

60k - 70k
gross income

Jun 05

Further increments
of 10k (= 5 mil.
checks)

Weekly un-
til August
28

171 mil.
(expected)

45



Figure A.1: Example of Notification Letter for Direct Deposit Transfer

Notes: This figure shows an example of a notification letter for stimulus payments.
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Figure A.2: CARES Act Economic Relief

Notes: This figure shows the expected stimulus payment for different household compositions and income levels.
Source: Coronavirus Aid, Relief and Economic Security Act.
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Figure A.3: Stimulus Amount Received by Household Size

Notes: This figure shows the average stimulus amount for users receiving stimulus checks, by self-reported household
size. Source: SaverLife.
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Figure A.4: Timeline of stimulus payouts

Notes: The figure presents a timeline of stimulus payments to different households. Source: House Ways & Means Committee.
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Figure A.5: Mean Spending in April for Individuals Not Receiving Payment- Raw Spending

Notes: This figure shows mean daily spending in April for individuals who did not receive payments in that month. Sample includes only users who do not receive a stimulus
payment during our sample period. The vertical axis measures spending in dollars, and the horizontal axis shows the date. Shaded days represent weekends for the majority
of stimulus-recipients who receive their payment on Wednesday April 15th. The graph is based on data from SaverLife.
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Transactions 
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Princeton University; Peter Ganong: Assistant Professor at the University of Chicago Harris 
School of Public Policy; Pascal Noel: Neubauer Family Assistant Professor of Finance at the 

University of Chicago Booth School of Business 
 
Introduction 
 
COVID-19 has rapidly transformed our nation. Following the declaration of a national 
emergency on March 13, 2020, the U.S. caseload exceeded 100,000 on March 29, and by April 
6, 90 percent of the U.S. population was subject to “stay-at-home” orders. Within a matter of 
weeks, vacations and special events were cancelled, and routine trips to the store, workplace, and 
restaurants became hindered by both the virus and the policies designed to prevent its spread.   
 
These almost universal disruptions to normal activity have already had unprecedented 
consequences for the economy. The pandemic has shut down large sectors of the economy 
deemed “non-essential,” leaving millions of workers jobless. Social distancing restrictions have 
all but prohibited the consumption of certain goods and services. The government has responded 
with a massive recovery act to bolster income by funding stimulus checks, Unemployment 
Insurance (UI) supplements, and the Payroll Protection Program.   
 
In this report, we provide preliminary high-frequency evidence of the reaction of consumer 
spending to these events. We ask two main questions. First, how much has individual spending 
fallen, and how does this drop vary across households?1 Second, can heterogeneity across 
households provide suggestive evidence about the spending decline caused by the nearly 
ubiquitous pandemic and policies intended to contain it versus the initial round of income losses 
during that period? With consumer spending accounting for roughly 70 percent of GDP, 
understanding the magnitude and causes of changes in consumption is critical to identifying 
policy interventions that could aid in accelerating an economic recovery.  This will be 
increasingly important as the pandemic and policy impacts interact with increasing job loss and 
additional policies to ameliorate the job loss, such as stimulus payments and UI. 
 
To answer these questions, we use a dataset based on the universe of transactions made on Chase 
credit cards through April 11, 2020. We focus on a sample of 8 million families across all fifty 
states who have been active users of their credit cards since January 2018.2 For a subset of our 
analyses we pair these credit card data with checking account data through February 2020, which 
allow us to segment our population by income levels and industry of employment before the 
COVID shock.3  
 

https://institute.jpmorganchase.com/institute/research/household-income-spending/initial-household-spending-response-to-covid-19
https://institute.jpmorganchase.com/institute/research/household-income-spending/initial-household-spending-response-to-covid-19
https://institute.jpmorganchase.com/institute/about/leadership/diana-farrell
https://institute.jpmorganchase.com/institute/about/leadership/fiona-greig
https://nbachas.weebly.com/
https://voices.uchicago.edu/ganong/
https://voices.uchicago.edu/noel/
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The key strengths of these data are a large sample size and the ability to track the spending 
patterns of specific households across time. We are thus able to provide detailed estimates of the 
spending drop and to analyze heterogeneity in this drop across household characteristics and 
across categories of spending. We decompose the spending drop into non-essential and essential 
spending, speaking to the pandemic-induced closure of many non-essential businesses. We also 
look at changes in spending across the pre-COVID income distribution. Finally, we stratify the 
sample by individuals’ industry of employment to test whether those employed in sectors with 
higher expected rates of job loss cut spending by a larger amount.   

Despite these strengths, our findings come with several important caveats that stem from the fact 
that, at the time of writing, we only observe the subset of spending that occurs on a household’s 
Chase credit cards through April 11. We do not observe spending using debit cards, cash, 
electronic payments, and non-Chase credit cards. Our estimates could be biased to the extent that 
there is substitution between these alternative channels and Chase credit cards coincident with 
our analysis period. We may be particularly concerned about this type of substitution at a time of 
acute economic disruption when households might turn to credit cards to smooth their 
consumption. In addition, the pandemic might accelerate the growth in card transactions to as 
people avoid the risks associated with exchanging physical cash and because of the growth in 
online spend. This might cause us to understate the drop in spending.  

Second, while our data include households across a wide cross-section of income levels and 
geographies, Chase credit card holders tend to be more affluent than the average U.S. household. 
As we show below, if higher-income families cut their spending to a greater extent, the sample 
frame could cause us to overstate the drop in spending. Thus, the net effect of these biases on our 
spend estimates is ambiguous.  

Third, at the time of this release our preliminary data only cover the initial phase of the 
pandemic. Spending changes, and how these vary with household characteristics, may evolve 
over time particularly as income disruptions become more widespread.  

In the future, we will be able to partially address these three limitations by looking at a longer 
time-period of data and examining checking account transactions to provide an integrated view 
of income and spending.  

We have four main findings. First, we find that average weekly household credit card spending 
fell by 40 percent year-over-year by the end of March 2020, coinciding with a dramatic increase 
in COVID-19 cases, social distancing policies, and job losses. The magnitude of the spending 
drop is enormous; it is eight times larger than the spending drop typically observed among UI 
recipients in the first month after job loss. Second, spending cuts on non-essential goods and 
services account for nearly all of the total spending decline. Spending on essentials initially 
spiked 20 percent before falling back, while spending on non-essentials declined by 50 percent. 
Third, spending dropped substantially for households across the entire income distribution, with 
slightly larger drops for higher-income households driven by cuts in non-essential goods and 
services. Fourth, spending dropped dramatically for workers in all industries of employment. 
Similar drops occurred in industries with high and low rates of job loss as of April 2020.  
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In summary, we provide evidence suggesting that, as of the second week of April, the 40 percent 
drop in consumer spending appears to be driven to a greater extent by the pandemic and social 
distancing policies implemented across the country to prevent its spread and to a lesser extent by 
the initial round of income losses. However, as the pandemic unfolds, the balance of factors 
contributing to spending behavior could change dramatically. We will continue to track and 
disentangle these dynamics over time using administrative banking data.  
 
Finding 1: Average household credit card spending had fallen by 40 percent year-over-year 
by the end of March 2020. 
 
Figure 1 plots the year-over-year percentage change in weekly credit card spending in 2020 and 
in 2019, and Figure 2 shows levels of average weekly credit card spending in 2020 and in 2019.   

Changes in spending follow a distinctive pattern — spend is stable through the beginning of 
March, then declines precipitously by 40 percent relative to 2019 from the second through fourth 
week of March. It then appears to stabilize at this lower level in the first two weeks of April.  
The size of the spending drop is largely consistent with other estimates from similar 
administrative data sources during the same time frame.  

https://tracker.opportunityinsights.org/
https://tracker.opportunityinsights.org/
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Figure 1: Average weekly household credit card spending had fallen by 40 percent year-over-
year by the end of March 2020. 
 

 
Figure 2: Average weekly credit card spending per household was more than $300 lower in 
April 2020 compared to April 2019.  
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The timing of the spending drop mirrors the spread of the virus and staggered national 
implementation of government social distancing orders. A national emergency was declared on 
March 13, 2020.  Over the following three weeks, the number of states with stay-at-home orders 
increased from zero to forty-five, and then also remained stable (see Figure 3). The prevalence of 
COVID-19 also increased dramatically with over 300,000 cases and 5,000 COVID-related 
deaths in the U.S. by the month’s end.  
 
At the same time, the drop in spending also closely tracks the pattern of initial job losses. UI 
claims began spiking in the third week of March, with more than 20 million UI claims filed by 
April 11. This raises the question as to how much of the 40 percent drop in credit card spending 
is due to the pandemic itself, the social distancing policies, or income losses.  
 
Importantly, while we know from UI claims that jobs have been lost, it is unlikely that the 
income supports extended by the government in response to COVID-19 would have been 
received by the end of our time series—the second week of April. The median time between job 
loss and the first UI benefit receipt is roughly five weeks, which would mean that many of the 
first 3 million people to file for UI during the third week of March—the initial surge in UI 
claims—may not have started receiving their UI benefits until late April. In addition, families did 
not start receiving stimulus checks until the third week of April. Thus, to the extent that income 
losses are playing a role, they would likely not yet have been offset by policy interventions to 
mitigate those losses.  
 
Nonetheless, it is still useful to calibrate the size of the spending drop relative to what we have 
observed among those who lose a job involuntarily during normal times. We have previously 
used these data to measure the spending drop around job loss among UI recipients, and observed 
an initial credit card spending drop of roughly 5 percent (Ganong and Noel 2019). In other 
words, the spending drop in March 2020 is roughly eight times larger than the average 
household credit card spending drop in the first month of unemployment for UI recipients in 
normal times. This puts into perspective how dramatic the spending drop is and suggests that the 
pandemic and policies aimed at preventing its spread are contributing substantially to the drop in 
spending. We explore this possibility further in Findings 3 and 4.  

https://pubs.aeaweb.org/doi/pdfplus/10.1257/aer.20170537
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Figure 3: UI claims, social distancing policies, and COVID-19 cases all increased dramatically 
during late March and early April.   

 
 
Finding 2: Spending on essentials initially spiked 20 percent before falling to below pre-
pandemic levels, while spending on non-essentials declined by 50 percent and accounted for 
nearly all of the total spending decline.  
 

While Finding 1 shows a sharp drop in aggregate spending, there is reason to think that specific 
spending categories would be differentially impacted. Many non-essential businesses, like bars 
and salons, were closed by state and local governments. Similarly, stay-at-home orders limited 
the ability of individuals to travel. Beyond the mechanical effect of social distancing regulations, 
individuals may also have independently curtailed spend in certain categories to avoid risk of 
infection or as a response to income loss. 
 
We begin by disaggregating total spending into essential and non-essential categories, as 
commonly defined in state “stay-at-home” orders. Figures 4 and 5 show a dramatic difference in 
the path of essential and non-essential spending. Essential spending spiked in early March, up 
almost 20 percent by the second week. It then fell back down, stabilizing at a decline of around 
20 percent by early April. In contrast, spending on non-essential categories fell sharply 
throughout March before stabilizing down 51 percent in early April.4  
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Figure 4: Spending in non-essential categories dropped by roughly 50 percent year-over-year 
compared to 20 percent for essential categories.  

  
Note: We use state social distancing orders that restricted non-essential goods and services to categorize spend. 
“Essential” categories include fuel, transit, cash, drug stores, discount stores, auto repair, groceries, telecom, 
utilities, insurance, and healthcare. “Non-essential” includes department stores, other retail, restaurants, 
entertainment, retail durables, home improvement, professional and personal services, and miscellaneous. Although 
flights, hotels, and rental cars are sometimes categorized as “essential” and not technically closed, we include them 
in the “non-essential” group because they are affected by stay-at-home restrictions on non-essential travel.  
 
Figure 5: Average weekly household spending on non-essential categories dropped by roughly 
$200  
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Given the fact that households were ordered to stay at home except to make essential trips in 
most states, one might ask why households were still spending roughly $250 a week on non-
essential categories in April. First, there is variation in the degree of closures across geographies 
and in what is deemed non-essential in each place. Second, our spending categories do not map 
perfectly to each specific non-essential category. Third, households may be able to switch some 
non-essential services from in-person to remote — for example from movie theatre entertainment 
to online streaming or from in-restaurant dining to take-out.  
 
Figure 4 shows the percentage change in spending within each category, but how much did each 
category then contribute to the aggregate drop in spend? This requires understanding what share 
of aggregate spending went towards essential and non-essential categories at baseline.5  These 
shares are shown, before and during the pandemic, in Table 1. Multiplying the baseline shares by 
their relative percentage drops, we find that non-essential spending accounts for 84 percent of the 
aggregate decline, and essential spending accounts for 16 percent. 
 
 
Table 1: The drop in non-essential spending accounted for 84 percent of the aggregate drop in 
spend.  



9 
 

 
 Essential Non-Essential 

 Share of 
spending 

Year-over-year 
percent change Share of spending Year-over-year 

percent change 
April 2019 33%  67%  
April 2020 45% -20% 55% -51% 

Contribution to 
Aggregate Drop in 

Spend* 
16% 

 
84% 

 

* Percent contribution to aggregate drop in spend is calculate as: (% Drop in Category A)*(Baseline Share of 
Category A)/(% Drop in Aggregate). 

To further illustrate the divergence in spending patterns across essential and non-essential 
categories, we show the year-over-year change in spending at grocery stores, drug stores, and 
restaurants. Figure 6 shows that spending spiked dramatically on groceries and remained 
elevated relative to baseline. Spending on drugstores also increased initially, before declining 
slightly by the end of March and early April. In contrast, spending on restaurants fell by about 70 
percent.   
 
Figure 6: Year-over-year percent change in spending at grocery stores and drug stores surged 
initially, while spending at restaurants dropped by 70 percent.  
 

 

 
 
Finding 3: Spending dropped substantially for households across the entire income 
distribution, with slightly larger drops for higher-income households 
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We next explore whether spending reductions (both in aggregate and by category) varied across 
the pre-pandemic income distribution. We stratify our sample into income quartiles based on 
total labor inflows in 2019. For context, those in the bottom quartile make less than $39,000 in 
take-home labor income per year, while those in the top quartile earn more than $92,000.6   
 
Figure 7 plots the year-over-year change in spending for each quartile, both in percentage and 
dollar terms. The top income quartile reduces spend by about 46 percent, or $400, by the second 
week of April, while the bottom quartile reduces spend by 38 percent, or $150. The difference in 
the spending drop between income quartiles is starker in dollar terms than percentages, since 
high-income households have a higher baseline level of spending.7  
 
The sharp decline in spending across the entire income distribution may be surprising. Recent 
research suggests that lower-income households work in jobs that are harder to perform at home, 
require higher physical proximity, and therefore may be more impacted by distancing restrictions 
(Mongey, Pilossoph, and Weinberg 2020). Perhaps as a result, recent evidence from 
administrative ADP data shows that job losses were four times higher for workers in the bottom 
income quintile than in the top income quintile, with a staggering 35 percent employment decline 
for the lowest-income workers (Cajner et al 2020). In response to greater income losses, we 
might have expected lower-income workers to have cut their spending by more. If anything, we 
find the reverse—higher-income households cut their spending by slightly more.  
 

https://bfi.uchicago.edu/wp-content/uploads/BFI_WP_202051.pdf
https://bfi.uchicago.edu/wp-content/uploads/BFI_WP_202058-1.pdf
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Figure 7: Year-over-year reductions in aggregate spending are slightly larger for households in 
the upper portion of the income distribution. 

 
   

 
Note: Income quartiles are defined as follows: Quartile 1: less than $39,200; Quartile 2: $39,200 - $58,900; Quartile 
3: $58,900- $91,800; Quartile 4: greater than $91,800. 
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Note: Income quartiles are defined as follows: Quartile 1: less than $39,200; Quartile 2: $39,200 - $58,900; Quartile 
3: $58,900- $91,800; Quartile 4: greater than $91,800. 

 
 

One potential reason that high-income households cut total spending slightly more than low-
income households could be that non-essential categories represent a larger share of spending for 
high-income households — 70 percent of spending in April 2019 for households in the top 
income quartile compared to 61 percent for those in the bottom income quartile. Additionally, 
higher-income families exhibited a slightly larger drop in non-essential spending, while we see 
little divergence across the income distribution in essential spending (Figure 8). Thus, the 
reduction in non-essential spending accounted for a slightly larger share of the total spending 
decline for high- versus low-income households (88 percent compared to 81 percent, Figure 9).  
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Figure 8: Year-over-year changes in essential spending were consistent across the income 
spectrum, while higher-income households cut non-essential spending slightly more than lower- 
income households.  
 

 
Note: Income quartiles are defined as follows: Quartile 1: less than $39,200; Quartile 2: $39,200 - $58,900; Quartile 
3: $58,900- $91,800; Quartile 4: greater than $91,800. 
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Note: Income quartiles are defined as follows: Quartile 1: less than $39,200; Quartile 2: $39,200 - $58,900; Quartile 
3: $58,900- $91,800; Quartile 4: greater than $91,800. 
 
Figure 9: The drop in non-essential spending accounted for a slightly larger share of the drop in 
total spending among higher-income households 

 
Note: Income quartiles are defined as follows: Quartile 1: less than $39,200; Quartile 2: $39,200 - $58,900; Quartile 
3: $58,900- $91,800; Quartile 4: greater than $91,800. 
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Finding 4: Spending dropped dramatically for workers in all industries of employment. 

Findings 1 and 2 show that drops in spend are especially pronounced in non-essential categories, 
and mirror the timing of emergency declarations, the implementation of social distancing 
policies, and the prevalence of the disease.  Finding 3 shows that the spending drops were 
dramatic across the income distribution, even though income losses may have been more 
concentrated among lower wage earners unable to perform their duties from home. This suggests 
that the pandemic largely contributed to the reduction in spending.   
 
Here we further examine whether income losses could also be playing a central role: as 
individuals working in affected sectors lose their jobs or see hours reduced, they may 
additionally cut down on spending. Indeed, Figure 3 shows that UI claims started spiking in the 
same week that commerce would have been restricted by state stay-at-home orders.   
 
We speak to this hypothesis by splitting the sample by industry of employment and comparing 
spending across industries that may have been differentially impacted by earnings losses. We 
examine a subset of our credit card sample who also have a Chase checking account and infer 
their industry of employment based on the payer associated with their payroll income received in 
February 2020. However, we observe the payer associated with their payroll income for only 24 
percent of households, and most of these payers tend to be large employers.  
 
Figure 10 plots spending changes by industry of employment for each industry where we have 
significant sample size. We aggregate to industries at the two-digit NAICS code. The one 
exception is retail, which we break out into grocery stores, drug stores, and discount stores—
generally considered essential businesses and kept open under social distancing policies—and 
clothing and department stores, which were generally deemed non-essential businesses and 
where layoffs have been greater (Cajner et al 2020). 
 
We find that spending declined dramatically across all industries of employment. Workers in 
professional services, manufacturing, healthcare, education, and finance all cut spending 
similarly. For the most part, differences in spending declines between industries are not 
statistically significant. This may be surprising given initial evidence of large differences across 
industries in hours reductions (Bartik et al. 2020) and employment (Cajner et al 2020). Even 
government workers, who have experienced some of the lowest employment losses since the 
beginning of the pandemic, cut spending by about 35 percent. This is only a few percentage 
points lower than the 40 percent spending cut for all other workers.  
 
Perhaps the most direct test of the income channel is to compare retail workers employed by 
different types of retail stores. Workers employed in grocery, drugstore, and discount stores cut 
spending by 35 percent, only a few percentage points less than the 41 percent cut in spending 
observed among workers employed by clothing and department stores, who might have 
experienced larger drops in earnings. Similarly, when we disaggregate the spending behavior 
into essential and non-essential spending, we see comparable spending drops across households 
with individuals who work in government and retail sectors (Figure 11).   
 
 

https://bfi.uchicago.edu/wp-content/uploads/BFI_WP_202058-1.pdf
https://www.chicagobooth.edu/research/rustandy/blog/2020/week-3-and-4-labor-market-impacts-from-covid19?sc_lang=en
https://bfi.uchicago.edu/wp-content/uploads/BFI_WP_202058-1.pdf
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Figure 10: Spending dropped dramatically for workers in all industries of employment. 

 
Note: Industry of employment defined as of February 2020. 
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Figure 11. Similar drops in spending on essentials and non-essentials occurred in industries with 
high and low rates of job loss. 

Essential spending by industry of employment 

 
Non-essential spending by industry of employment 
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Assuming income losses do vary systematically across sectors, one potential interpretation is that 
the income channel accounts for only a small share of the initial spending decline through mid-
April. This may not be surprising given the magnitude of the spending decline. As mentioned 
previously, we document that average household spending fell almost 40 percent, while the 
typical unemployed worker receiving UI only cuts credit card spending around 5 percent in 
normal times (Ganong and Noel 2019).   
 
However, there are at least four reasons for caution in concluding that the income channel is 
playing a small role even in this early phase of the pandemic.  First, industry of employment may 
be a poor proxy for job loss in our sample. To the extent that we can ascertain industry of 
employment primarily for employees of large firms, we may not be capturing the income losses 
for employees of small businesses. Second, job losses may not yet have translated into income 
losses within our time frame. The peak of the UI claims occurred the penultimate week of our 
sample. Households who have lost jobs may still be receiving their last paychecks. We may 
expect to see larger income-related spending declines over time due to both past and future job 
losses.8  
 
Third, current conditions of the pandemic make comparing the magnitude of the spending 
response in April 2020 to that of UI recipients during normal times highly uncertain. In normal 
times only one in four unemployed households receives UI, and spending declines may be 
greater for those who do not receive such benefits. Presently, due to the CARES act, UI benefits 
are much more generous in level and duration, available to many more workers, and may 
coincide with stimulus checks. Thus, current income supports might buffer against income-
related spending declines to a greater extent. On the other hand, the economic situation is highly 
uncertain, and the labor market is rapidly weakening, which could cause the unemployed to cut 
spending to a greater extent.  

Finally, we analyze spending solely on the universe of Chase credit cards, which may not fully 
capture the spending response to income loss due to both sample selection and measurement 
error. Since Chase credit card holders tend to be more affluent than the average U.S. household, 
we may be missing those households who might cut spending the most due to income declines. 
In addition, impacted individuals may turn to credit cards to finance their spending and to avoid 
the risk of infection posed by other means of transacting.9 In the future we can test the 
limitations of the credit card sample by studying checking account transactions and spending on 
debit cards. 
 

Conclusion 

In summary, we provide two pieces of evidence suggesting that, as of the second week of April, 
the 40 percent drop in consumer spending appears to be driven to a greater extent by the 
pandemic and social distancing policies implemented across the country to prevent its spread and 
to a lesser extent by the initial round of income losses. First, the 40 percent drop in spending was 
observed across the income distribution and regardless of industry of employment. Second, the 
drop in spending was most dramatic at merchants which provide non-essential goods and 
services.  
 

https://pubs.aeaweb.org/doi/pdfplus/10.1257/aer.20170537
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However, we analyze only the initial, short-run reaction of spending to the pandemic. The 
balance of factors contributing to spending behavior could change dramatically as the pandemic 
unfolds. If the virus and economic disruptions remain widespread even after social distancing 
restrictions are lifted, or if income supports, such as UI and stimulus payments, provide only 
temporary relief, consumer spending may not return to baseline levels. In future work we will 
continue to track the path of consumer spending and evaluate the extent and impact of income 
disruptions by extending and complementing our current view of credit card spending with 
checking account transactions.  

1 For the purposes of this report we have aggregated account activity to the primary account holder of the Chase 
credit card account, which could have one or more authorized users. For shorthand, we refer to this unit as a 
household, recognizing that members of households do not always link financial accounts. 
2 We included only customers who had a Chase credit card and at least three transactions in every month from 
January 2018 through March 2019. We do not apply this sample screen to April since we do not observe a full 
month of spending, though we report credit card spending through April 11. Ninety-seven percent of the sample 
has at least one credit card swipe the April 2020 period we observe, and our results are unchanged if we 
alternatively drop all households with no card swipes in this period.  
3 Specifically, in Finding 3, we take the subset of our 8 million Chase credit card customers who also have a Chase 
checking account and at least 5 ACH checking account transactions in every month between January of 2018 and 
December of 2019 and at least $12,000 in labor income inflows in 2018 and 2019, respectively. We use this sample 
of roughly 1 million account holders to segment our population by take-home income in 2019. In Finding 4 we take 
a different subset of credit card customers who also have a Chase checking account and who received labor 
income via direct deposit in February of 2020. For roughly 24 percent of these 1.3 million customers we observe 
the payer associated with their payroll income, which we then categorized by industry. These payers tend to be 
large employers with a median of 870 employees per employer observed in the Chase data. We additionally focus 
on the 97 percent of households in this sample with only one identified industry. 
4 Other data sources reported in the NYTimes, Baker et al. (2020), and Opportunity Insights show similar 
divergence in trends in essential versus non-essential spending categories.    
5 For example, the table shows that 33 percent of the average pre-COVID consumption basket was composed of 
non-essential items.  A back-of-the-envelope decomposition suggests that if non-essential spending was 
completely disallowed during the pandemic, while essential spending stayed constant, we would see a 33 percent 
drop in overall spend.  The drop in aggregate spending would be 100 percent attributable to a non-essential 
spending decline. 
6 Specifically the income quartile cutoffs are as follows: Quartile 1: less than $39,200; Quartile 2: $39,200 - 
$58,900; Quartile 3: $58,900- $91,800; Quartile 4: greater than $91,800. 
7 Nonetheless, the drop in spending is on the same order of magnitude across the income spectrum, a finding 
consistent with Baker et al. (2020), who show using a sample of relatively low-income users from a non-profit 
Fintech company that there is little difference in the spending pattern between households with incomes above 
and below $40,000. 
8 We are unable to address these concerns now because our income data are only available through February 
2020. However, we will be able to directly measure income losses by industry in future work once we observe 
income during the pandemic.  
9 Although Ganong and Noel (2019) found that total nondurable spending fell similarly to total credit card spending 
at the onset of unemployment, households may behave differently during this crisis.   

                                                           

https://www.nytimes.com/interactive/2020/04/11/business/economy/coronavirus-us-economy-spending.html
htps://bfi.uchicago.edu/wp-content/uploads/BFI_WP_202030.pdf
https://tracker.opportunityinsights.org/
https://bfi.uchicago.edu/wp-content/uploads/BFI_WP_202030.pdf
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Abstract

Machine learning algorithms have come to dominate some industries.
After decades of resistance from examiners and auditors, machine learning
is now moving from the research desk to the application stack for credit
scoring and a range of other applications in credit risk. This migration
is not without novel risks and challenges. Much of the research is now
shifting from how best to make the models to how best to use the models
in a regulatory-compliant business context.

This article seeks to survey the impressively broad range of machine
learning methods and application areas for credit risk. In the process of
that survey, we create a taxonomy to think about how different machine
learning components are matched to create specific algorithms. The rea-
sons for where machine learning succeeds over simple linear methods is
explored through a specific lending example. Throughout, we highlight
open questions, ideas for improvements, and a framework for thinking
about how to choose the best machine learning method for a specific
problem.

Keywords: Machine learning, artificial intelligence, credit risk, credit
scoring, stress testing

1 Introduction

The greatest difficulty in writing a survey of machine learning (ML) in credit risk
is the extraordinary volume of published work. Just in the area of comparative
analyses of machine learning applied to credit scoring, dozens of articles can be
found. The goal of this survey cannot be to index all work on machine learning
in credit risk. Even listing all of the worthy articles is beyond the attainable
scope.

Rather, this survey seeks to identify the major methods being used and de-
veloped in credit risk and to document the breadth of application areas. Most
importantly, this article seeks to provide some intuitive insights on why certain
methods work in specific areas,. When does machine learning work better than
linear methods only because it was a quicker path to an answer versus discov-
ering something about the problem that was undiscoverable with traditional
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methods? Further, as a result of this research, we hope to identify some areas
of investigation that could be fruitful but have not yet been fully explored.

In attempting to provide a balanced view of the state of machine learn-
ing, some passages herein may take a tone that machine learning is ”much
ado about nothing”. In other discussions, we are clearly singing the virtues of
deep learning with discussions of ensemble methods for robustness, deep learn-
ing to analyze alternate data, and techniques for modeling the smallest data
sets. Machine learning can be seen to be clearly successful in some cases and
disturbingly overblown in others, bringing new innovations in important areas
and painfully rediscovering old methods in some cases, and overall has made
significant strides toward mainstream application while still having significant
challenges to overcome.

The article begins with a definition of machine learning intended in part
to limit the scope of this survey to a manageable breadth. The next section
offers a modeling taxonomy based upon defining data structure, architectures,
estimators, optimizers, and ensembles. From this perspective, much machine
learning research is a human-based search of the meta-design space of what
happens when you mix and match among those categories. Then, Section 4
provides a discussion of the many application areas within credit risk and some
of the model approaches found within each. Section 5 reviews a specific ex-
ample of testing many machine learning algorithms to illustrate the differences
relative to traditional methods. Section 6 follows with a discussion of signifi-
cant challenges in creating machine learning models and using them in business
contexts. The conclusion pulls these thoughts together to highlight areas where
future comparative studies could provide significant value to practitioners.

2 What is Machine Learning?

We tend to think of statistical models and linear methods as something other
than machine learning, and yet simple linear regression can take on unbounded
complexity through factor variables, spline approximations, interaction terms,
and input massive numbers of descriptive variables through dimension reduc-
tion methods such as singular value decomposition. The heart of many machine
learning algorithms is a search or optimization method that was pioneered
decades or centuries ago in other contexts. Bagging, boosting, and random
forests harken back to earlier work on ensemble methods [66, 213].

Harrell [126] proposes a distinction between statistical modeling and machine
learning:

• Uncertainty: Statistical models explicitly take uncertainty into account
by specifying a probabilistic model for the data.

• Structural: Statistical models typically start by assuming additivity of
predictor effects when specifying the model.

• Empirical: Machine learning is more empirical including allowance for
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high-order interactions that are not pre-specified, whereas statistical mod-
els have identified parameters of special interest.

The above items carry other implications. For example, search-based meth-
ods such as Monte Carlo simulation, genetic algorithms, and various forms of
gradient descent usually do not provide confidence intervals for the parame-
ters, and correspondingly are usually considered as machine learning. Ensemble
methods where multiple models are combined are generally considered to be
machine learning, even when the constituent models are statistical. One might
also say that traditional statistical methods rely on analyst selection of input
features and interaction terms whereas machine learning methods emphasize al-
gorithmic selection of features, discovery of interaction terms, and even creation
of features from raw data.

Drawing the line between machine learning and traditional modeling is chal-
lenging for the best scientific linguist. Practically speaking, machine learning
seems like it should include models that emphasize nonlinearity, interactions,
and data-driven structures and exclude simple additive linear methods with
moderate numbers of inputs. The distinction may be more in the specific appli-
cation than the method used. For example, an artificial neural network could
be dumbed down to a nearly-linear adder, and common logistic regression can
incorporate almost all the learnings from a sophisticated machine learning al-
gorithm through artful use of binning, interaction terms, and segmentation.

Some methods might be viewed as intermediates, like transitional species in
evolution. (The author recognizes that “transitional species” is a misnomer in
evolutionary taxonomy, but the perspective is not inappropriate here.) Forward
stepwise regression or backward stepwise regression automate feature selection
while being statistically grounded. Principal Components Analysis (PCA) is an
inherently linear, statistical method of dimensionality reduction via eigenvalue
estimation, whereas other dimensionality reduction methods lean much more
to machine learning. One of the greatest strengths of neural networks is as a
nonlinear dimensionality reduction algorithm.

Within this attempted dichotomy, many machine learning techniques are
rapidly taking on statistical rigor. This maturing process is what we see in
any field where rapid advances are followed by a team of scientists filling in
theoretical and technical details.

Many of the most public successes of machine learning are coupled with
big data, massive data sets that allow equally massive parameterizations of the
problem so that the optimal transformations of the inputs and dimensionality
reduction are learned from the data rather than via human effort. However,
machine learning should not be viewed as synonymous with big data. Some
machine learning methods appear well suited to very thin data sets where even
linear regression struggles. Eventually, as we truly move into human-style AI,
the ability to learn from a single event in the context of a ‘physical’ model of
the world would show the power of machine learning with the smallest of data.

In credit risk, we are often stuck with small data. This was observed in
the credit scoring survey by Lessmann, et. al. [175] where only five of the
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48 papers surveyed had 10,000 accounts or more to test, quite small samples
compared to the big data headlines, but this is often the reality of credit risk
modeling. For many actual portfolios, number of accounts * loss rate = very
few training events. Even in subprime consumer lending where loss rates are
higher, only the largest lenders have had the data sets needed to apply the most
data-hungry techniques like deep learning, or so it seems. However, machine
learning is succeeding in credit risk modeling even on smaller data sets, ap-
parently by emphasizing robustness and simpler interactions as opposed to the
extreme nonlinearities in big data contexts such as image processing [162], voice
recognition [120], and natural language processing [69].

Machine learning is generating successes in credit risk, although less dramat-
ically in well-worn domains like prime mortgages. The biggest wins appear to be
in niche products, alternate channels, serving the underbanked [5], and alternate
data sources. A well-trained machine learning algorithm may be preprocessing
deposit histories [2], corporate financial statements, twitter posts [199], social
media [97, 24, 10] or mobile phone use [38, 232] to create input factors that
eventually feed into deceptively simple methods like logistic regression models.

Also, in looking at applications of machine learning to credit risk, we must
look beyond predicting probability of default (PD). One of the great early suc-
cess stories of ML was in fraud detection [110]. Anti-fraud [297], anti-money
laundering [254, 273, 20, 217, 178], and target marketing applications [180, 22]
make heavy use of machine learning, but are outside the boundaries we will
draw here around credit risk applications. Still we must consider applications
to predicting exposure at default, recovery modeling, collections queuing, and
asset valuation, to name a few.

The following sections aim to provide an introduction to the literature on
machine learning methods, applications in credit risk, what makes machine
learning work, and what are the challenges with employing machine learning in
credit risk.

3 Machine Learning Methods

Providing an exhaustive list of machine learning methods would not be possible,
particularly when we look beyond credit scoring to the broader applications of
machine learning across credit risk modeling. One of the greatest challenges of
creating any list of models is the difficulty in defining a model. The name given
to a model typically represents a combination of data structure, architecture,
estimator, selection or ensemble process, and more. Authors may swap out one
estimator for another or add ensembles on top and describe it as a new model.
This abundant hybridization leads to exponential growth in the literature and
model names. Finding the right combination is, of course, very valuable, but
the human search through this model component space with publications as
measurement points is more than can be cataloged here.

In this section we will identify key sets of available components behind the
models and then categorize some of the most studied models according to the
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components used. Of course, each of these lists can never be complete. They
are intended only to be representative.

3.1 Data Structures

Choosing a data structure is the first step in either statistical modeling or ma-
chine learning. That model must be chosen to align with the data being mod-
eled. A range of target variables are possible in credit risk and those variables
can be observed with different frequencies and aggregation, depending upon the
business application.

Table 1 lists some of the outputs one might wish to model in the domain of
credit risk. Items like PPNR [183] and Prepayment [240] might not seem like
credit risk tasks, but when they are modeled divorced from credit risk modeling,
the result can be conflicting predictions leading to nonsensical financial projec-
tions. Taking a consistent, coordinated perspective of all account outcomes and
performance as in competing risk architectures and models [168, 92] is the best
hope of predicting pricing and profitability.

Even deposit modeling can leverage very similar methods and works best
when a total customer view is taken. Deposit balances are a potentially valuable
input to credit risk models, but are not always categorized as credit risk targets.
Anti-fraud, anti-money laundering, and target marketing were considered as
separate from credit risk, because they are not part of the analysis of an active
customer relationship, although even here the boundaries are weak.

Target Variables
Loss Balance
PD, EAD, LGD [and PA (Probability of Attrition)]
Prepayment
Pre-provision net revenue (PPNR)
Asset Values
Deposit Balance*
Time Deposit Renewal Rate*

Table 1: List of target variables that can be modeled in credit risk applications.
The items marked with * are likely candidates for using the same methods as
the other items, but not strictly considered credit risk issues.

For any target to be modeled, a decision must be made on the aggregation
level and performance to be predicted. Table 2 lists the most common answers.
Each type of data usually has a corresponding literature. Econometric models
[85, 277] focus on time series data, either for a portfolio or segments therein;
Age-Period-Cohort models [113, 195, 106] are applied to vintage performance
time series; survival models [256, 152] and panel data models [283, 140] are
applied to account performance time series; and the large literature on credit
scoring [257, 14] focuses mostly on account outcomes, using a single binary
performance indicator for each account.
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Data Types
Segment Time Series
Vintage Performance Time Series
Account Performance Time Series
Account Outcomes

Table 2: List of data types that can be modeled in credit risk applications.

By starting the discussion with target variables, what follows is immediately
focused on supervised learning. The assumption is that unsupervised learning
techniques might be used to create input factors. Many forms of dimensionality
reduction and factor creation can be conducted using unsupervised methods.
PCA and most segmentation methods can be considered unsupervised learning.
However, a credit risk model will ultimately always finish with a supervised
learning technique.

3.2 Architectures

Once the problem is stated as a target variable to be predicted and its data
structure as in Tables 1 and 2, an architecture must be chosen for the problem,
Table 3. This is the point where the distinction between traditional methods
and machine learning can appear.

Additive effects refers to regression approaches [153, 131]. Additive fixed
effects includes the use of fixed effects (dummy variables), again in a regression
approach, panel model, etc.

State transition models, [206, 26] (also known as grade, rating, or score mi-
gration models depending upon whether they are applied to delinquency states,
risk grades, agency ratings, or credit scores) are all variations on Markov chains
[207]. Roll rate models [89] capture the net forward transition of a state tran-
sition model and are used throughout credit risk modeling. Generally, this
architecture involves identifying a set of key intermediate states and modeling
the transitions between those states and to the target state. Usually the target
is a terminal state like charge-off or pay-off.

Going beyond the above architectures leads more into the realm of machine
learning, although there are again few fixed boundaries. Convolutional networks
[162], feed-forward networks [253, 15], and recurrent neural networks [182] are
all kinds of artificial neural networks and are just a few of the many structures
being tested.

Whenever the nonlinearity of a problem exceeds the flexibility of the under-
lying model, segmenting the analysis is a common solution. The more nonlinear
the base model, the less segmentation is required. Traditional logistic regression
models may actually be a collection of many separate regression models applied
to different segments, whereas a neural network or decision tree may use a single
model.

Some models are themselves segmentation engines. Methods such as support



7

vector machines (SVM) [266] use hyperplanes or other structures to segment the
parameter space. Decision trees [226] can also be viewed as a high-dimensional
segmentation technique and are employed in a variety of machine learning ap-
proaches. Nearest neighbor methods [71, 130] are difficult to classify in this
architectural taxonomy, but seem closer to these than the rest.

Architecture
Additive Effects
Additive Fixed Effects
Convolutional Network
Clustering
Feed-forward Network
Fuzzy Rules and Rough Sets
Nearest Neighbors
Recurrent Neural Network
Segmentation
State Transitions
Trees

Table 3: List of internal architectures used in modeling.

Fuzzy rules are used to capture uncertainty directly in the forecasting process
[202] and are often combined with other methods [220]. Rough sets [219] can be
seen as having a similar objective of considering the vagueness and imprecision
of available information, but using a different theoretical framework.

Recurrent neural networks (RNN) are used primarily to model time series
data. By making the forecast from one period and input to the network for the
next period, they are effectively a nonlinear version of vector ARMA models
((Multivariate Box-Jenkins) [197, 177]. Long short term memory (LSTM) net-
works apply a specific architecture to the recurrent neural network framework
in order to scale and refine the use of memory in the forecasting.

Overall, many architectures can be used in time series forecasting. The
same lagged inputs used in linear distributed lag models [11, 291] can be used
as inputs to machine learning methods. To reduce the dimensionality of the
problem and aid visualization, optimal state space reconstruction can be used,
also known as the method of delays [216, 234, 52, 165].

Convolutional neural networks (CNN) being applied to consumer transaction
data [167] seems far from the leading applications in image processing, but
many more applications of CNNs are likely, particularly with recent advances
incorporating rotational [78, 65] and other symmetry transformation to increase
the generalization power of CNNs.

Not shown is the list of possible inputs, because this would be too extensive.
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3.3 Estimators and Optimizers

The primary purpose of this modeling taxonomy is to illustrate that, for exam-
ple, a genetic algorithm is not a model. Practitioners, both experienced and
novice, often use sloppy terminology confusing data structures, architectures,
and optimizers. Here we illustrate that many different estimators and opti-
mizers can be applied in an almost mix-and-match fashion across the range of
architectures. By clearly identifying the components of a model, researchers can
find opportunities for creating useful hybrids.

The literature also attempts to carefully distinguish between estimators and
optimizers. In simple terms, estimators all rely on a statistical principle to esti-
mate values for the model’s parameters, usually with corresponding confidence
intervals and statistical tests in the traditional statistical framework. Optimizers
generally follow an approach of specifying a fitness criteria to be optimized. As
parameter values are changed, the fitness landscape can be mapped. Each opti-
mizer follows a specific search strategy across that fitness landscape. Of course,
here again it can be difficult to draw bright lines between these categories as
estimators and optimizers can take on properties of each other.

Table 4 lists some of the many methods used to estimate parameters or even
meta-parameters (architectures) of a model. Items such as back propagation are
specific to a certain architecture, e.g. back prop as a way to revise the weights of
a feed-forward neural network. Most, however, can be applied creatively across
many architectures for a variety of problems.

Estimators
Least Squares
Maximum Likelihood [218]
Partial Likelihood [72]
Bayes Estimator [35]
Method of Moments [196, 121, 98]

Table 4: List of statistical estimators used in modeling.

Maximum likelihood estimation is the dominant statistical estimator, which
is, for example, behind the logistic regression estimation that is ubiquitous in
scoring and many other contexts. Least squares estimation predated maximum
likelihood but can be derived from it. Partial likelihood estimation was a clever
efficiency developed for estimating proportional hazards models without esti-
mating the hazard function parameters needed in the full likelihood function.

Aside from some deep philosophical issues, Bayesian methods are particu-
larly favored when a prior is available to guide the solution. Markov chain Monte
Carlo (MCMC) starts with a Bayesian prior distribution for the parameters and
uses a Markov chain to step toward the posterior distribution given the data,
somewhat like a correlated random walk.

In data-poor settings, Bayesian methods provide a powerful mechanism for
combining expert knowledge from the analyst with available observations to
obtain a more robust answer. Computing a batting average in baseball is an
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easy way to illustrate this. Someone who has never swung could be assumed to
have a 50/50 chance of hitting the ball, a .500 average. After their first swing,
a miss would take his batting average to .333 and a hit would take it to .667.
With a maximum likelihood estimation, the best fit to the data would be .000
for a miss and 1.000 for a hit, which seems less helpful until more observations
are acquired. This is Laplace’s Rule of Succession. Not coincidentally, Laplace
also formulated Bayes’ Theorem.

With method of moments, the moments of the distribution are expressed in
terms of the model parameters. These parameters are then solved by setting
the population moments equal to the sample moments.

Linear programming and quadratic programming are methods for incorpo-
rating constraints. Many other constrained optimization methods exist, such
as Lagrange multipliers which provide a mechanism for adjusting the fitness
function to incorporate penalty terms.

Optimizers
Gradient Descent
Simulated annealing [159] Back Propagation [128]
Reinforcement Learning
Genetic Algorithms [115]
Evolutionary Computation [151]
Genetic Programming [161]
Markov Chain Monte Carlo [108]
Kalman Filter [111]
Linear Programming [265]
Quadratic Programming [36]

Table 5: List of optimizers used in modeling.

Gradient descent can be accomplished via several specific algorithms, but it
generally refers to computing the local gradient of the fitness landscape at a test
point and stepping in the direction with the steepest slope, hopefully toward
the desired minimum. Back propagation is gradient descent in the context of
a neural network where the gradient is computed for each node’s parameters.
Reinforcement learning is the more general concept of adjusting parameters,
usually in a neural network context, based upon new experiences. Kalman
filters are an optimal update procedure for linear, normally distributed models,
which could be thought of as a subset of reinforcement learning.

Genetic algorithms, evolutionary computation, and genetic programming are
all modeled on evolutionary principles. In an optimization setting, mutation
operations with survivor selection are equivalent to stochastic gradient descent.
Including cross-over between candidates works if symmetries exist in the fitness
landscape such that sets of parameters form a useful sub-solution within the
model.

Also not shown are the many estimation methods developed to handle cor-
related input factors such as Lasso [258] and ridge regression [133].



10

Of course, many of these concepts can be combined. Stochastic back propa-
gation and stochastic gradient descent [41] are widely used. Simulated anneal-
ing can be thought of as combining the stochastic gradient descent concept with
the multiple candidate solutions approach of evolutionary methods. Bayesian
methods can be combined with many other optimization approaches, such as
Bayesian back propagation [56] or MCMC as described above.

3.4 Heterogenous Ensembles

Ensemble modeling is actually a general technique that can combine forecasts
from different model types. “Triangulation” has been a common technique over
several decades for portfolio managers to create loss forecasts by comparing
the outputs of several different models, each with different confidence intervals
and known strengths and weaknesses. Voting is largely a formalization of what
managers have been doing intuitively, with several interesting variations [263,
166].

Ensemble modeling [73, 66, 213, 79, 222] has been in use well before the burst
of activity in machine learning, but has quickly proven itself to be a valuable
addition to most any machine learning technique, particularly in credit risk
[271]. Most research into ensemble modeling can be split between homogenous
methods, where multiple models of the same type are combined to create better
overall forecasts and heterogenous methods where any types of models can be
combined. We also consider a third category of hybrid ensembles where two
complimentary model types are integrated via mechanisms more specific to the
methods than in the generic heterogenous ensemble approaches.

For an ensemble to be more effective than the individual contributors, Hansen
& Salamon [123] showed that the individual models must be more accurate than
random and the models must not be perfectly correlated. In other words, we
cannot create useful forecasts from a collection of random models, and the best
ensembles have constituents that have complimentary strengths.

Ensemble modeling seems particularly well suited to credit risk, because of
the typically limited data sets available. Although the underlying dynamics
can be quite complex and explainable with a rich variety of observed and un-
observed factors, the actual data available may support models of only limited
complexity. Even though many factors can be important, issues of multicolin-
earity [205] can limit the modeler’s ability to include more than a few factors and
is often a deeper problem than is generally recognized [118, 49]. Dimensionality
reduction methods such as singular value decomposition, principle components
analysis, [150] and projection pursuit [103, 102, 146] are methods to address
multicolinearity, but they do not address the sensitivity to outliers and over-
fitting questions as well as the full nonlinearity treatment available in machine
learning.

The basic principle behind ensemble modeling is that different models can
capture different aspects of the data. This can provide robustness to outliers
and anomalies [281] as well as which factors are included in the modeling. Both
theoretical [123, 163, 141] and empirical studies have shown that this diversity



11

when obtained for individually accurate predictors has significant out-of-sample
advantages.

Heterogenous Ensemble Methods
Binary Categorical Continuous
Plurality Voting Plurality Voting Average
Sum rule Majority voting Median
Product rule Sum rule Confidence weighted
Stacking Product rule Stacking

Amendment vote
Runoff vote
Condorcet count
Pandemonium
Borda count
Single transferable vote
Stacking

Table 6: List of methods used to combine forecasts in heterogenous ensemble
modeling.

Table 6 lists some of the methods used for combining forecasts in ensemble
modeling of potentially heterogenous models. Many of these methods were
developed from the perspective of choosing from several possible categories [263].
In a broader credit risk context, we can have situations with binary outcomes,
e.g. default or not; multiple (categorical) outcomes, e.g. transition to different
states; or continuous outcomes, e.g. forecasting a default rate.

Combining forecasts for binary events can be performed with several meth-
ods. Voting methods are the most common, where each constituent model gets
one vote. Plurality voting is the simplest of these, where the outcome with the
most votes is chosen. If the constituent models produce probabilities or some
kind of fractional forecast, then each constituent model can divide its vote pro-
portionally between the two outcomes, which are then summed. Classification
methods can be modified to produce probabilities to facilitate their use more
broadly [221, 164]. In the product rule, these fractional votes are multiplied,
which means extremely confident models can dominate an outcome.

When predicting multiple possible outcomes (categorical outputs), the above
methods can be generalized easily. If addition, majority voting is different from
plurality voting, where one outcome must have a majority of the votes. In no
outcomes have a majority, the least favored outcome is removed and a majority
is sought among the remaining outcomes. A run-off vote is a simple extension
of the majority voting process until a single outcome remains.

Amendment voting starts with a majority vote between the first two candi-
date outcomes. The most favored is tested against the next candidate until one
outcome remains. However, this procedure can be biased depending upon the
sequence of comparisons.

The Condorcet count performs pairwise comparisons of all outcomes. The
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favored outcome from each comparison receives one point and the outcome
with the most points is chosen. Although complex, this has many favorable
properties.

In Selfridges Pandemonium [241] method each model would choose one out-
come, but that vote is stated with a confidence. Those weighted votes are
summed to choose a winner, meaning that model confidence intervals become
important.

If the constituent models cannot assign a probability to all possible outcomes,
as needed for sum rule and product rule, but the models can rank the outcomes,
then ranked voting can be used. The outcome can be chosen by mean rank [40],
median rank, or a trimmed mean or median rank.

Single transferable vote also works from ranks, although not every model
must rank every outcome. If one outcome has a majority of the top ranks, it is
chosen. If not, the least preferred outcome is eliminated and the top ranks are
re-aggregated. The procedure continues until one outcome receives a majority.

Beyond voting, one could imagine creating a model of models. In a linear
regression context, this does not introduce any new information beyond the
initial estimate. However, with stacking [282] the initial models are trained on
a subset of the total data. Then a secondary, often linear regression, model is
trained on the hold-out sample, considering model accuracies and correlations.
Machine learning methods can also be used to create models of models [259].

One advantage of ensembles is the ability to create confidence measures for
classification models, although direct, single-model approaches are also available
[224].

For continuous-valued predictions, averages, medians, trimmed values, and
stacking all apply. Continuous forecasts are often or in best practice should
be accompanied by confidence intervals. Therefore, weighted averages or some
method that incorporates those confidences would be preferable.

3.5 Homogeneous Ensembles

Any method for combining heterogenous model predictions can of course be
applied to homogenous models, where multiple models of the same type are
built to be combined. However, some methods have been specifically designed
to work with homogenous ensembles.

3.5.1 Bagging

Bootstrap aggregation (bagging) [53, 173, 179] is a simple process of subsampling
the available training data with replacement. Considering the typically limited
size of the training samples in credit risk, the subsets can be 75% of the available
data and upward. Bagging can be used with any model type and the resulting
forecasts combined as described for heterogenous models, although the sum rule
is used most often [160].

For random subspace modeling [132], a random sample of the available input
factors is drawn for each model. This could also be done sequentially determin-



13

istic fashion, where the strongest explanatory variable from the first model is
excluded from the next model in order to find structure among other variables,
and so forth. The first application was for creating decision trees, leading to the
literature on random forecasts, but the technique is generic to any model type.

Rotation forests [230] follow the random forests idea, but all of the data is
used each time. Instead, a rotation of the axes in the data space for a subset of
input factors is performed prior to building each model. This has the effect of
testing many different projections for predictive ability.

Similar to the bagging concept is to use all of the training data each time, but
different initial conditions for the parameter estimates. For model types such
as neural networks [66] or decision trees [9] that employ some form of learning
or gradient descent, this can also create a robust ensemble.

3.5.2 Boosting

Conceptually, one could say that boosting is a process of building subsequent
models on the residuals of previous models, though for model types that have
no explicit measure of residuals [236, 235]. AdaBoost [99] reweights the training
data with each iteration to emphasize the points that were not predicted as well
in the previous iterations. Gradient boosting [100] computes the gradient of a
fitness function in order to provide weights to each model trained. Stochastic
gradient boosting [101] combines bagging with gradient boosting, building an
ensemble of ensembles where different gradient boosted ensembles are built for
each data sample. These methods can also be applied to any model type.
The popular XGBoost package (eXtreme Gradient Boosting) [63] is a highly
optimized version of gradient boosting.

Many studies have been performed to compare ensemble methods [204, 271],
but the winning approach probably depends upon the specific problem and data
set. For example, gradient boosting has been reported to be more susceptible
to outliers.

3.6 Hybrid Ensembles

A very large area of research involves creating hybrid models, where specific
model types are chosen that are intended to be integrated in non-trivial ways,
usually via an algorithm specifically tailored to the models chosen and to the
application area. This is different from heterogenous ensembles where the fore-
casts are combined via one of the voting schemes in Table 6. Instead, hybrid
ensembles create an architecture that leverages the specific traits of the models.
The criterion for success is not about choosing which models are most orthogo-
nal and accurate [123]. Rather, it involves combining models that may (1) use
different data sources, (2) predict over different forecast horizons, or (3) identify
different problem structures. So the models are inherently complimentary, often
making measures like orthogonality or comparative accuracy undefined.

A classic example in credit risk is the use of roll rate models [89] for portfolio
forecasting for the first six months combined with vintage models [45] for the
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longer horizon forecasts. In this case, the analyst would usually switch from
one model to the other at a certain forecast point or use a weighting between
the models that is a function of forecast horizon. Some version of this approach
has been in use for decades, because roll rates are known to be accurate for the
short term and vintage models for the long term.

The list of hybrid ensembles (or hybrid models) in the literature is far too
great, but these provide a few examples: decision trees and neural networks
[171], support vector machines and neural networks [70, 6], naive Bayes and
support vector machines [201], a classifier ensemble with genetic algorithms
[294], and genetic algorithm and artificial neural networks [214]. Some authors
provide surveys of collections of hybrid ensembles generally [17] or for spe-
cific application areas such as bankruptcy prediction [269]. Hybrids combining
age-period-cohort (APC) models [195, 113, 136, 106] with origination scores,
behavior scores, neural nets, or gradient boosted trees were created specifically
to better solve the short economic cycle data described above [46, 50, 51]

4 Applications in Credit Risk

Machine learning methods received early attention from researchers, but adop-
tion into operational contexts has been understandably cautious for reasons to
be discussed in Section 6. The earliest experiments were primarily in fraud de-
tection, credit scoring [188, 77, 129, 279, 288], corporate bankruptcy and default
forecasting [209]. As machine learning methods have matured along the lines
described above, parallel efforts occurred in the application of those techniques
to areas of credit risk, resulting in a wide range of new applications.

4.1 Credit Scoring

Credit scores were created to predict the relative risk of default among borrowers
[68, 176]. Their success as compared to human judgment was so great that they
became part of the standard credit bureau offering and an essential part of
the lending ecosystem. These bureau scores have been developed and refined
over decades and are essentially the result of an optimization process where the
disparate and complex consumer performance history has been linearized into
factors what fit well into a logistic-regression model. This would seem to be
the same kind of work done automatically by machine learning, but historically
done through human intuition and experimentation.

Anecdotally, developers of modern bureau scores are said to use machine
learning methods to search for additional interaction terms and nonlinearities.
Those lessons are taken back to the original logistic regression-based model to
create small improvements, but the advances available from machine learning
appear to be small compared to the decades of human optimization already per-
formed. However, Hand & Henley [129] showed that even small enhancements
to credit score performance can have significant returns.
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In principle any institution can purchase data from the bureaus similar to
what goes into creating the bureau scores and do a head-to-head test of in-
house machine learning model to bureau score. In any such test, the in-house
model has a great advantage in that the target is known. When developing a
bureau score, the model is attempting to predict default without knowing what
product the consumer will be offered, or if default will come in the absence of
new loans and based purely on existing loans. An in-house model is typically
built to predict the outcome of offering a new loan of a specific type and perhaps
even incorporating the terms of that loan. Fair comparisons are difficult, but
perhaps unimportant. A developer creating an in-house model can jump straight
to sophisticated modern methods, either taking the bureau score as an input or
starting fresh, in each case bypassing the decades of labor put into the original
bureau scores.

Machine learning in credit scoring is not new. Comparative surveys can be
found as far back as 1994 [228]. New comparative analyses continue to appear as
new methods are developed and more data becomes available. One of the most
complete surveys was conducted by Lessmann, et. al. (2015) [175] in which
they noted the irony that most published work on machine learning in credit
scoring leveraged only very small data sets for comparing “big data” machine
learning methods. Lessmann, et. al. sought to resolve that shortcoming by
testing multiple methods on multiple, larger data sets. These surveys are useful
both in bringing the readers up to date on the latest methods and in suggesting
which methods could be best, but no single method wins in all studies [21].
The obvious conclusion is that not all data sets have similar structures, and
the analyst can still expect to test several approaches to find which is most
effective on a specific data set. Similarly, researchers need to be careful to avoid
publishing conclusions that one method is better than another based only upon
one data set over one time period.

4.1.1 Neural Networks

Neural networks are one of the most extensively tested methods for credit scoring
and one of the first machine learning methods employed [149, 77, 268, 279, 190].
They can function like a nonlinear version of dimension reduction algorithms
such as principal components analysis or as factor discovery methods in deep
learning contexts. They offer additive and comparative interaction terms be-
tween variables. On the most basic level, neural networks provide a nonlinear
response function between input and output. With enough training data, these
attributes can be a powerful combination.

The first challenge with applying neural networks is in choosing an archi-
tecture. In theory, with enough data, a fully connected, feed-forward neural
network should be able to learn its own architecture, but reality is more chal-
lenging. Some of the biggest success stories in using deep learning neural net-
works required vast amounts of training to determine the meta-parameters for
the networks: number of inputs, number of hidden layers, number of nodes in
each layers, activation functions for the nodes, etc.
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Therefore, much of the work around neural networks is in how to choose or
learn an optimal architecture. Genetic algorithms have been used to select the
optimal set of inputs [288, 23]. Classic genetic algorithms performed cross-over
and mutation on a binary encoding of the parameter space [116]. That binary
encoding is rarely optimal for applications in credit risk [43]. A more general
evolutionary approach [151] could operate on the full architecture of the neural
network in order to share optimal subnets across candidate networks within a
population.

Feed-forward networks are the most commonly used, largely because they
are the easiest to train and comprehend. However, recurrent neural networks
have been used to create memory within the network rather than have the
analyst provide lagged inputs of dynamic variables in behavior scoring contexts
[142]. When applied to massive amounts of input data, such as transactional
information, convolutional neural networks have been applied [167].

Even with an optimal architecture, limiting overfitting [255, 172, 249] is a
significant problem. Much work has been done in this area with some surprising
findings that the number of parameters in deep learning networks may not be
as much of a problem as we think [30]. One explanation may be that the initial
random assignment of many small parameters might actually create robustness
to input noise rather than the multicolinearity nightmare we would otherwise
expect.

Even worse can be transient structures that are actually present in the data,
but only for a short period of time. When we know that a certain structure
will not persist in the future, such as an old account management policy of an
expiring government program, how does one get the neural network to forget?
One answer could be the ‘given knowledge’ approach suggested by Breeden
and Leonova (2019) [51] where we could train a subnet on just the transient
structure, embed this as a fixed component of a network trained to solve the
larger problem on the full data set, and then remove the subnet when creating
forecasts out of sample.

Neural networks are data hungry and time intensive to train, but can be
successfully used. Many authors have studied these effects, comparing different
neural network designs and comparing them to other methods [21, 190, 233,
170, 284, 3, 93]. When the available data is wide in the number of inputs but
short in the number of observations, ensembles of small networks can also be
effective [280].

4.1.2 Support Vector Machines

Support vector machines (SVMs) excel at creating segmentations of the input
vector space for classification. The ability to segment the observation space
with arbitrary hyperplanes provides an effective classification technique for an
arbitrary number of end states and without assumptions about the distribu-
tions of the input factors or target categories. They are less well suited to
continuous prediction problems, although techniques mentioned earlier can be
applied to product continuous outputs. SVMs have been applied to credit scor-
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ing by multiple authors and found to be an effective approach in many cases
[264, 285, 21, 237].

One of the biggest advantages in SVMs is the ability to use kernels to cre-
ate optimally separating hyperplanes (OSHs). The ”kernel trick” refers to the
chosen maps the data to a higher-dimensional space, which can in some cases
dramatically simplify the process of finding OSHs. The placement of the hyper-
planes is a nonlinear problem requiring an optimizer.

As with neural networks, the challenge is optimizing the architecture. With
SVMs, the input features and the kernel parameters must be optimized. The
choice of whether to use a linear, polynomial, radial basis function, or other
kernel is a matter of experimentation given a specific data set. No universal
best answer exists, but the best advice is to start simple (linear) and move
toward complex as required.

These choices across meta-parameters are interdependent. To optimize these
meta-parameters, GAs have again been applied [104] and other hybrid ap-
proaches [143]. The lesson from studies into neural networks and SVMs is that
optimizing the meta-parameters is essential to success.

4.1.3 Decision Trees

Decision trees are a simple concept that can be used to create sophisticated
models. The concept is a recursive partitioning of the input space until enough
confidence is achieved to make a prediction. They have been used for decades
in credit risk [188, 75, 105] where the earliest decision trees were heuristically
created. Modern algorithms can use a variety of partitioning criteria: misclas-
sification error, Gini index, information gain, gain ratio, ANOVA, and others.
The final forecast can be the state with the greatest representation in the final
leaf, a probability based upon representation, or a small model as in regres-
sion trees [54, 91]. The meta-parameters are how to optimize the partitioning,
the input factors, and when to stop partitioning. As usual, these need to be
optimized.

A single tree can have the same overfitting concerns as previous methods, but
the explosion in the use of decision trees has come with the introduction of en-
sembles. Bagged decision trees [293], boosted decision trees [27], random forests
[164, 189, 109], rotation forests [204, 193], and stochastic gradient boosted trees
[261, 60] are some of the most popular. Most authors agree that this list repre-
sents a steady improvement in methodology, currently with stochastic gradient
boosted trees as the usual winner. Although ensemble methods are most popu-
lar in scoring when applied to decision trees, these methods are found combined
with all credit scoring techniques [7].

One advantage of decision trees is the mapping between trees and rules.
Trees can be compared to known rules and rules can be learned from trees [64].

In general, trees have an advantage in handling sparse data or data with
outliers. Binning is a simple method to limit outlier sensitivity that is lacking
in continuous methods like neural networks. In situations where the data is
abundant, of good quality, and with clear nonlinearities, neural networks are
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often the reported winners.

4.1.4 Nearest-neighbors and Case-based Reasoning

One category of models could be defined as those that learn from past examples.
Case-Based Reasoning (CBR) [57] searches through past lending experiences to
find a comparable loan. In commercial lending where examples are few and
nearly unique, this can be an effective approach. Where most data is available,
as with consumer lending, a kNN (k-nearest neighbors) [129, 191] approach is
conceptually equivalent.

The challenge with both CBR and kNN lies with identifying comparables.
This is not unlike the challenge for home appraisals. If the closest comparable
home is at a distance, in a different kind of neighborhood, is it really com-
parable? This concept applies to both methods here. Any data set will be
non-uniformly distributed along the explanatory factors. When optimizing the
metric for identifying comparable loans or choosing ”k” in kNN, the definition
of a near neighbor that works well in one region of the space may be a poor
choice in another.

Using geography as an example, finding 20 neighbors in an urban setting
might provide a roughly homogenous set, whereas finding the same 20 neighbors
in a sparse geography could span counties or even states. Of course, using
CBR or kNN geographically could create a redlining risk, but the same concept
applies, if more abstractly, to any set of explanatory factors. Therefore, the
success of these methods appears to be tied to the uniformity of the distribution
of the data set.

Where CBR and kNN may excel are in extremely sparse data situations.
When tens of events or less are available, especially when the events are very
heterogeneous in their properties, matching to prior experience without attempt-
ing to interpolate or extrapolate as in estimation-based approaches may be more
effective.

4.1.5 Kernel Methods, Fuzzy Methods, and Rough Sets

Kernel methods, fuzzy methods, and rough sets are best viewed as a method to
augment other modeling approaches. Decision trees, support vector machines,
or any method that performs classification by drawing hard boundaries among
the input factors will inevitably have uncertainty in the location of those bound-
aries. In general, one would assume that the greatest forecast errors should
occur near the boundaries. Incorporating estimation kernels [287, 59] into these
methods or treating the boundaries as fuzzy [134] can capture this uncertainty
and potentially improve accuracy by reporting appropriate probabilities. Esti-
mation kernels or fuzzy logic have been incorporated into many credit scoring
methods [275, 289, 295, 119]. This may be particularly valuable in sparse data
settings where the boundaries can only be approximations.

Rough sets have also seen application to credit scoring [198]. With an objec-
tive similar to kernel and fuzzy methods, rough sets have been combined with
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other base modeling techniques to incorporate the imprecision of the available
information. Along these lines, rough sets have been combined with decision
trees [296] and with SVMs [62].

4.1.6 Genetic Programming

Genetic programming (GP) employs trees to perform computation. The leaves
are input values or numerical constants. The branching nodes contain numer-
ical operators or functions. In this way, nested algebraic operations can be
performed to create predictions for credit scoring [212, 144, 4].

The genetic aspect refers to how the tree structure, constants, and input fac-
tors are chosen. As with genetic algorithms, concepts of mutation and crossover
are employed. Mutation is a simple change in a constant, swapping an input
factor, or swapping an operator or function. Crossover is the more interesting
process of swapping subtrees between two trees. In genetic algorithms applied
to binary representations, crossover rarely produces viable offspring because the
fitness landscape lacks useful symmetries. In GP applications to credit scoring,
such symmetries exist if subtrees can capture conceptual subsets of the prob-
lem, such as swapping the proper transformation of an input factor between
candidate trees..

For credit scoring, the fitness function will be one or several measures of
forecast accuracy in predicting the target variable. The optimization naturally
occurs on an ensemble of candidate trees. The best tree at the end of the
optimization process can be used as the model, but following the ensemble
concept, one could also apply a voting algorithm across all qualifying trees.
However, one challenge with genetically learned ensembles is that they tend
to cluster around a single peak in the fitness landscape. A similarity penalty
could be added to the fitness function to encourage diversity in the population,
both to reduce the risk of being stuck in a local optimum and to increase the
usefulness of the ensemble.

GP appears to be useful as a highly nonlinear method. To justify the slow
search speed of genetic methods, one needs a problem that is equally complex.
Simple credit scoring problems may not qualify, but the use of alternate data
sources might make GP more interesting.

4.1.7 Alternate data sources

Some machine learning methods for credit scoring are specifically focused on
how to incorporate new data sources into the scores. Cash flow analysis using
data scraped from demand deposit accounts is a successful area of business
application, particularly during the COVID-19 pandemic during which so much
traditional scoring data is in doubt. Although the data source is new to scoring,
the methods for analysis are more traditional. One seeks to determine the
frequency and reliability of income by different sources. During the COVID-19
pandemic, someone with periodic, steady income could be a good credit risk
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regardless of credit score, industry of employment, or many other underwriting
criteria.

Mobile phone data is potentially an important data source in emerging mar-
kets and specifically for underbanked consumers. Research on credit risk for
Chinese consumers using mobile phone calling records and billing information
has been found to be effective for credit risk assessment [274]. Research in under-
developed markets using smartphone metadata such as types of apps installed,
text message history, etc. [274]. Both studies used well known credit scoring
and machine learning methods, just with emphasis on sourcing and regularizing
new data types.

Some novel data sources can require corresponding innovations in analysis.
Social network data has proven to be quite interesting [278, 97], but incorporat-
ing data from networks into a credit score can be a challenge. Low-dimensional
embeddings of network graphs [122] are the standard approach to creating a
usable input factor for modeling. However, recent research [242] suggests that
low dimensional embeddings lose much of the information in the network. The
best approach for incorporating social network data will continue to be a topic
of research for some time, as will the ethics and legality of incorporating such
data within the underwriting process.

4.2 Corporate Defaults

Discussions of credit scoring usually carry an implication of consumer loans and
large volumes of training data. Modeling corporate defaults and bankruptcies is
a similar problem, but with fewer events in the training data and less standard-
ized inputs. A panelist at a conference on machine learning in finance explained
humbly that they used machine learning just to read the corporate financial
statements. The scoring models were trivial. In fact, standardizing diverse and
heterogenous inputs may be one of the best uses of machine learning in lending
applications.

Even so, some large data sets on corporate defaults do exist, and a variety
of papers have been published to apply ML to the problem [262, 247, 13] .
Bankruptcy and default are not exactly the same thing, but bankruptcy filings
are public so many works have focused there [200, 248, 198, 209, 67, 19, 267].
Across both applications, the methods tested cover the full range of machine
learning techniques.

4.3 Other Scoring Applications

Published work often lags what is being done in-house at lenders around the
world. For example, the author knows that prepayment and attrition models
have been created using machine learning, with the short study in Section 5 as
one such previously unpublished example. At this point, one can assume that
machine learning is being tested everywhere models can be employed in lending.
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4.3.1 Loss Given Default

The natural companion to credit risk forecasting is modeling loss severity, loss
given default (LGD). LGD, or conversely, recovery modeling, has always been
a challenging problem because of the inherent tri-modal distribution [239, 28].
Some percentage of borrowers will show no net loss in event of default because
of the collateral value. Another significant percentage can be expected to have
100% LGD because of failure to recover the collateral (such as a totaled vehicle),
and a distribution can exist between the two extremes. LGD has been modeled
as a multi-stage problem where the first step is to predict 0, 1, or Intermediate
and the second stage attempts to predict the specific value for the intermediates.

In addition to economic sensitivity [33], LGD can also depend on the age
of the loan and the time since default. One approach is to use survival or age-
period-cohort methods to predict monthly recoveries from the date of default
with vintage defined by month of default.

Naturally, given the importance of LGD (the 2009 US mortgage crisis was as
much an LGD crisis as a PD crisis because of the collapse in property values),
work has also been done to apply machine learning to LGD [252, 246] or recovery
rates [32]. Given the complexity of the problem, research into which approach
is best for different asset classes could continue for some time.

4.3.2 Automated Valuation Models

The valuation of property in collateralized loans is part of the underwriting
process providing a preview of what LGD could be in the event of default,
much the way en primeur wine ratings are an early estimate of what the quality
of a finished wine will be [8]. Automated valuation models (AVMs) replace
the human property appraiser with a data driven model to speed the approval
process and lower the origination costs. Machine learning methods are also
being applied to AVMs [260, 31] where regression-based approaches have been
previously deployed [86, 107].

4.4 Portfolio Forecasting and Stress testing

Time series applications of machine learning provide an interesting contrast
to machine learning applications in credit scoring. The challenges and best
methods are almost completely opposite. In credit scoring, large data sets are
obtained by observing many accounts, transactions, or behaviors over a short
period of time. Success comes largely through identifying nonlinearities and
interactions. For time series modeling, the available data sets are very short
relative to macroeconomic cycles [51] and credit cycles [48]. Some studies have
reached questionable conclusions, because what looks like a linear response over
a short time period may in fact be a cyclical response to a completely different
factor when observed over a longer period.

The longest data sets in lending usually extend only as far back as the mid-
1990s. For the US, that translates to only two clear recessions (2001 and 2009),
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although some subcycles can also be observed [47]. At the time of this writing,
the COVID-19 Global Recession is just beginning. This event may add more
clarity about tail risk in our models and the kind of government responses we
can expect in the event of extreme events.

When faced with short (in time) and wide (in variables) data sets, different
approaches will be preferable to what was seen in credit scoring. In fact, most
lenders struggle to obtain data back to 2006, which would qualify as one full
economic cycle in the US. Modeling portfolio responses through a single eco-
nomic cycle is akin to having four data points in a credit score: one good, one
bad, one mediocre trending worse, and one mediocre trending better. The usual
validation of testing on the last 12 months of data is no more than a continuity
test, not a true out of sample test.

Regardless of the technique employed, creating time series forecasts and
stress test models is about creating robustness much more than worrying about
subtle interaction effects or subtle nonlinearities. As such, an ensemble of small
regression models is more likely to succeed in the next recession than a deep
learning neural network. Although decision trees are very successful in scoring,
any binned method is less suitable to forecasting rates if it truncates the tail
of the distribution. Continuous models only extrapolate to the tails of the
distribution by making assumptions, but those can be explicitly expressed.

Therefore, forecasting and stress testing are applications where machine
learning must be combined with intuition. Business and analyst experience
serve as a human-powered smoothing and regularization technique for models
that do not truly have enough examples to train upon. Some commentators
have suggested that state-level or MSA-level modeling can solve the problem
of not having enough economic cycles for training, but US states are highly
correlated. Some lead-lag effects are present, but no state missed the 2009 re-
cession. Oil shocks can create recessions in energy states like Alaska, North
Dakota, West Virginia, and West Texas, but we are far from having 50 separate
macroeconomic responses to model with 50 states.

This discussion should not be taken to imply that nonlinearities are unim-
portant. In fact, transformations of macroeconomic inputs must be carefully
chosen. Percentage change in gross domestic product (GDP) is not a good fit
to a linear regression model, because increases and decreases are not symmet-
ric. Taking the logarithm of the ratio of the values would produce a roughly
normally distributed distribution that is symmetric in changes, and thus better
suited to use in a linear regression model. In short, either variables need to be
transformed to scale linearly with the target, or the model needs to be flexible
enough to learn the nonlinearities. However, in a limited data environment,
there may not be enough information to learn the nonlinearities from the data,
so human assistance through choosing the transforms is one path to success.

Using interest rates in loan default models provides an effective example.
Over the last decade, analysts have commonly taken the natural log of interest
rates or the log of the ratio of interest rates in order to control for the fact
that a change from 4% to 3% is much more important than a change from 15%
to 14%. Unfortunately, we have entered a realm where interest rates can go
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negative and logarithm-based transformations are not suitable. Therefore, we
need to find transformations that are more linear through zero but less sensitive
for large values. Transformations such as y = tanh(x) and sigmoid functions in
general, as well as y = sign(x)

√
|x| are reasonable candidates.

Conveniently, this observation about suitable transformations fits well with
neural networks, leading to the thought that ensembles of short, wide neural net-
works could be an effective approach for portfolio forecasting and stress testing.
Short because sufficient data is only available to support one to a few hidden
layers. Wide because many macroeconomic factors can be taken as inputs and
the neural network provides a nonlinear equivalent to dimensionality reduction
like PCA. Ensemble because many such models trained on randomly selected
data subsets when combined provide robustness relative to the limited economic
cycles available.

Genetic methods like GP can and probably have been used to swap trans-
formed macroeconomic factors between models, much as has been demonstrated
in credit scoring [288]. However, the data sets in time series models are small
enough that exhaustive search among input factors is often possible. For-
ward stepwise regression and backward stepwise regression are also common
approaches.

Although the author has observed that ensembles of small time series mod-
els can be quite effective, they pose model risk management challenges under
current practices, which is discussed in Section 6.

The target variables for time series modeling can be delinquency rates, de-
fault rates, charge-off rates, prepayment rates, and recovery rates. All of this
can be combined to create time series forecasts of expected losses, payments,
and revenue ultimately leading to cash flow modeling needed for estimating yield
or loss reserves under CCAR, CECL or IFRS 9. No technical obstacle exists to
creating the outputs with machine learning enhancements such as ensembles of
nonlinear models, but in the author’s experience, auditors are not yet ready to
use them to produce numbers in financial statements.

4.4.1 Recurrent Neural Networks

Recurrent neural networks and LSTM were designed specifically to learn lag
structures from data in time series problems, so one would expect that they be
tested for loan loss stress testing. Although quite successful in speech recogni-
tion, challenges exist in application to credit risk time series modeling.

As mentioned in the previous section, the primary issue is with the number
of events in the data. In a training data set for speech recognition, every vowel
is another cycle in the data, unlike the extreme data sparsity in stress testing.
However, they may yet find a niche.

We already know that each recession has unique aspects. Models of loan
defaults need to focus on the direct drivers of borrower cash flows. However,
when we build models across multiple recessions, in cases where we have data
on multiple recessions, the lags and cross-correlations between economic factors
change. In 2008, a collapse in house prices preceded a decline in GDP and a
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subsequent drop in unemployment. In the 2020 COVID-19 recession, declines
in GDP and unemployment rate are the leading effects and house price and
commercial real estate declines follow. A simpler model will simply average
across these structures, producing an unfocused model structure.

One alternative could be to use some form of regime switching [225] that de-
tects the nature of the recession and switches between models corresponding to
different types of crisis [26, 186]. Although plausible, the data is limited. The
question not yet answered is whether some form of recurrent neural network
could perform the equivalent of regime switching in a smoother, more continu-
ous way and thereby adapt better to differing macroeconomic structures. This
would only be conceivable with the longest data sets, possibly between 1995 and
2021, for example, to capture three or four recessions with at least three clearly
different types of economic crises. That time is not so far in the future and it
will be interesting to see what can be done to improve the state of the art in
stress testing.

4.4.2 Survival and Vintage Models

Survival and vintage models occupy a middle ground between scoring methods
and top-down time series models. Vintage models, such as Age-Period-Cohort
(APC) models, operate simultaneously on multiple time series segmented by vin-
tage (origination date) cohort so that dynamics versus age of the loan, credit risk
by vintage, and environmental impacts may be quantified and used in forecast-
ing [113, 286, 106]. Survival models operate on individual account performance
data, but with the important addition of when an event occurred, rather than
simply if something occurred, as with traditional credit scores [95]. Both meth-
ods can produce the periodic forecasts required for forecasting, stress testing,
cash flow modeling, and pricing.

Both survival and vintage models include a function of risk by age of the
account known as the hazard function or lifecycle function, respectively. The
estimation of this function is inherently nonlinear, so the now-standard methods
developed decades ago should fairly be considered machine learning methods.
Nonparameteric estimation [82, 157], parametric and spline estimation [231]
as in APC, and Bayesian methods [238] are all standard approaches. Neural
networks or even decisions trees will probably be tested for estimating haz-
ard functions, although the necessity is not clear given available nonparametric
methods.

Account-level Cox proportional hazards models [256, 250, 80] and other sur-
vival scoring techniques [50] importantly include a scoring aspect that can be
performed with a version of regression or more generally with machine learn-
ing techniques as well [87, 37]. Wang, Li, and Reddy (2019) [272] provide a
thorough survey of machine learning survival methods to date.

The environmental or econometric modeling aspect of survival and vintage
models can be addressed via the time series methods discussed in the previous
section. Therefore, although survival and vintage models were machine learning
methods from the start, they are being aggressively hybridized with the latest
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techniques [51]. One of the great advantages of these methods is the proven
separability of nonlinear effects in age of the account, vintage, and environment
by calendar date [135]. That separability creates a semi-structured approach
where each of those pieces can be estimated by the methods and data set most
suitable to the problem while the underlying mathematical structure guarantees
a consistent framework for combining the pieces.

Naturally, ensemble methods for survival and vintage models have also ap-
peared. Random survival forecasts and other ensembles [147, 139, 138] have
been reported to be quite successful for credit risk modeling.

4.5 Portfolio Optimization

Modern portfolio theory [192, 84] is based upon stable linear expected returns
and covariances for a set of possible instruments. Experience has shown that
expected returns and covariances are rarely stable or linear, so this area is also
being explored for enhancement with machine learning. In a lending context,
optimization is constrained to the limits of how much certain asset types can
be grown and whether or how much holdings can be reduced.

Optimization under modern portfolio theory can be viewed as optimizing the
Sharpe ratio [245], defined as the ratio of expected return to expected volatility.
Even without machine learning, many enhancements have been offered to this
view, such as the Sortino ratio [88] which looks only at the volatility arising
from negative returns.

In the context of optimizing a lending portfolio or any investment portfolio
that includes loans, one needs to consider unique aspects of loan losses. As
seen more dramatically for retail portfolio, increases in losses can occur because
of lifecycle (loss timing) effects or intended changes in credit quality. Similar
to the way the Sortino ratio computes volatlity without penalizing for positive
increases, loan loss volatility and correlations should not include structure that
is a feature of the product or intended management. Simulation-based methods
exist for recreating historic loss time series to remove such expected variances
[44].

Once we understand the true covariance structure with loan products, port-
folio optimization methods based upon machine learning should apply equally
well here as with general investment portfolios where they were originally devel-
oped. Early work focused on capturing nonlinearities in the covariance struc-
ture, tail risk, and boundaries. Copulas have seen significant application in
this area [42, 154], but neural networks [58], genetic methods [243, 169], fuzzy
optimization [184] and others have also been used. Ban (2018) [25] provides a
review of available methods.

5 What Makes ML Work

In a 2018, Casey Foltz at Oregon Community Credit Union (OCCU) used 23
different machine learning algorithms readily available in R to compare checking
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account attrition models. More than just a comparison of AUC values, the
project’s goal was also to understand the reasons for the winners and losers.
Experiments were conducted on how to modify the inputs and model meta-
parameters in order to explore what made one method work better than another
and how to improve the weaker performers.

The explanatory factors included a number of measures of fees incurred,
transaction errors by the financial institution, complaints and denied credit
applications. As would become important later, most of these variables were
not normally or even lognormally distributed. The outcome variable was binary,
attrite or not attrite during the two year observation period.
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Figure 1: A comparison of AUC values for models of checking account attrition
probability.

The explanatory factors and target variable were fed unmodified into each
of the available algorithms with default parameters. Figure 1 shows the initial
comparison between the methods. In reviewing these results, the first step was
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to review the meta-parameters of each method. For example, the neural network
was implemented with nnet in R, which only allows for a single hidden layer.
Packages like tensorflow allow for significantly more flexibility, but that would
involve quite a bit more exploration. However, even unoptimized, the neural
net was the third best approach.

Other methods could also benefit from optimization. For example, the lin-
ear discriminant analysis performs best with normally distributed variables.
Applying logarithmic transformations to the variables with roughly lognormal
distributions added 5% to the AUC value.

Stochastic gradient boosted trees was the winning method in this study
of checking account attrition. However, the deeper question was why. How
far could we push the logistic regression model toward the stochastic gradient
boosted tree’s performance?

To investigate this question, three simple things were done. Lognormally
distributed variables were transformed with a logarithmic function. All other
variables were binned so that graphs of test factor versus probability of attrition
were created. For a large number of variables, those graphs showed the data
to exhibit two regimes with linear relationships to attrition on either side of
a break point. Therefore, those variables were split with an interaction term
allowing for two different linear responses. Finally, the odd variables were just
manually binned. With the couple dozen available input variables, this exercise
took about an hour of manual work. The result is also shown in Figure 1.
Confidence intervals for the AUC values were computed according to DeLong,
et. al. [76].

The logistic regression model moved from the bottom third of the methods to
the upper third. Decision trees and neural networks still performed better than
the refined logistic regression, implying that more could be done to linearize the
input factors and identify needed interaction terms. Capturing nonlinearities
has previously been shown to be important for credit risk modeling [185], so
this result is not surprising.

The improvements come from the boosted methods, employing multiple
models rather than a single model. Figure 2 shows the ROC curves for the
original logistic regression model, the refined logistic regression model, and the
stochastic gradient boosted trees.

This is just one of numerous examples in the literature, but it illustrates the
progression of predictability gained through adapting to nonlinear responses,
interaction terms, and ensemble models.

6 Challenges of Employing Machine Learning

For all its promise, machine learning presents some unique challenges to applica-
tion in credit risk. Unlike applications in speech recognition or image processing,
accuracy alone is not sufficient in lending. FCRA guidelines require that lenders
not discriminate against protected classes and that consumers are offered ex-
planations for denial of credit. Such concerns have dramatically slowed the
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adoption of machine learning, and with good reason. These and other valid
concerns in model risk management must be addressed before the models can
be widely adopted.

Note that Sections 6.4 Unintended Bias, 6.5 Adverse Action Notices, 6.6 Pre-
dicting without Understanding, and 6.7 Adapting to Sudden Behavioral Shifts
are all facets of explainability. Collectively, model explainability is the most
critical challenge to widespread adoption of machine learning in credit risk. Fi-
nancial institutions and regulatory bodies [39] cannot rely on models that they
do not understand, for all of the reasons listed in these sections.

6.1 Large data needs

The promise of machine learning comes largely from the ability to incorporate
nonlinearities in the input variables and interdependence between variables.
That promise is fulfilled only in the presence of very large data sets both for
identifying the structure and for testing to make sure the structure is not spu-
rious. While those data sets are appearing in some contexts, some machine
learning models are being built without the requisite data.

Conversely, the many studies that compare machine learning methods in
hopes of identifying which is best often fail to note that the answer is strongly
tied to how much data is available. In sparse data environments, k-nearest
neighbor models may beat neural networks. With large, complex data sets,
deep learning neural networks are likely to win. With intermediate data sets
that produce many spurious to transient correlations, boosted trees might come
out ahead. The simple answer is that we are unlikely ever to crown a single
winning method, because the data sets and output requirements vary so widely,
even in specific contexts like credit risk modeling.

Interestingly, ensembles of models can be used to identify where more data
is needed [163]. This has been raised as an aid in the reject inference prob-
lem. Testing the model in regions where unlabeled data (rejection applications)
predominates can highlight where the model is most in need of additional data.

6.2 Imbalanced data sets

Another problem that is more prevalent in credit risk than generic machine
learning applications is the extreme imbalance between outcomes [148, 29]. For
example, in a commercial loan portfolio, defaults might occur for only 0.1% of
accounts. This imbalance means that many machine learning algorithms will be
happy to classify the non-defaults while largely ignoring the defaults, resulting
in ever poorer performance where it is needed most [270, 158].

Two main approaches have been explored to address the data imbalance
problem. Brown and Mues (2012) [55] tested a range of machine learning meth-
ods across data sets with varying levels of imbalance in defaults to identify
those methods best suited to modeling data sets with different default rates.
One notable result was that traditional methods like logistic regression and lin-
ear discriminant analysis are robust to the degree of imbalance in the data, so
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this is largely a machine learning question.
Others have pursued various strategies of modifying the training data to

create more balance [145, 194]: over-sample the smaller class, under-sample the
larger class, apply weights to the training data, or generate synthetic data to
augment the lesser class, as with SMOTE [61].

Overall, the results appear to show that adding to the under-represented
class is most effective, with SMOTE being a commonly used approach. SMOTE
is basically a random sampling along hyperplanes connecting pairs of points in
the smaller class, a linear interpolation. Since this is using a simple model to
generate data to feed into a more sophisticated model, it is no surprise that
other methods have been proposed.

With any data manipulation approach, the analyst must remember that
the underlying probabilities are being modified. The resulting model may be
used for scoring, but will require work in order to reintroduce predictions of
probabilities. The simplistic approach of introducing a scalar to adjust for the
over-sampling is risky, as the sampling will not be perfectly uniform across the
feature space, so the probabilities likely will not be accurately recreated locally.

6.3 Overfitting the overfitting tests

Many machine learning methods use performance on an out-of-sample data set
to determine when to stop training the model. This approach to preventing
overfitting is generally effective, but it carries a caveat. As a rule, the more
often a data point is tested the less it can be considered out-of-sample. This was
recognized several decades ago. In the case of hypothesis testing, the significance
of the result should be adjusted based upon the number of tests conducted, as
in the HolmBonferroni method [137].

When repeatedly testing scoring metrics or goodness-of-fit measures on an
out-of-sample data set rather than hypothesis testing as above, the author is
not aware of an equivalent adjustment, but the same principles apply. Simply
stated, a good result with fewer out-of-sample tests is better than a slightly
better result after many more tests. This needs to be considered when creating
machine learning models and when reviewing work done.

These principles apply to both scoring models tested across hold out samples
and time series models tested on an out-of-time sample. Rerunning an out-of-
time test repeatedly can result in ”look-ahead bias” where the meta-parameter
decisions are based upon the analyst’s judgement of accuracy on data that was
supposed to be out-of-sample. This problem is particularly acute when modeling
a short time series relative to the cycle being studied.

6.4 Unintended bias

Machine learning has been in production for fraud detection longer than any
other application in lending. Conversations with those involved at the begin-
ning suggest that the earliest efforts did not have zip code as an input, but were
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essentially zip code detection tools. Using or inferring zip codes in loan under-
writing or pricing is called redlining and is prohibited [1]. In fraud detection, no
such prohibition exists, and one wonders why they didn’t just give it zip code
to start with.

This story is useful only in the notion that given many other inputs, a
sophisticated machine learning algorithm recreated the data that it needed most.
That is the greatest danger for using machine learning in credit risk. With linear
methods, we generally feel safe in saying that no information on protected class
status was given to the model, so the results are unbiased. The same cannot be
said of machine learning [90, 223], especially when given alternate inputs. Big
Data and sophisticated modeling approaches create significant unobserved risks
of inequality and unfair treatment [211].

Consider the case of Amazon’s AI-based attempt to find the best job ap-
plicants [74]. It was apparently shut down because it was identifying female
applicants based upon association with women’s groups, and Amazon didn’t
hire many female engineers, so following the pattern meant that women were
rejected. That tale could easily be replayed in credit risk, where a machine
learning algorithm infers protected class status using social media data, credit
card transactions, branch transactions, etc. One such example showed that the
digital footprint of an online borrower was as predictive as FICO score, yet all of
those digital footprint data elements probably correlate to protected class sta-
tus [34]. Excluding protected data is insufficient to assert that the final model’s
forecasts do not correlate to protected status. Simple linear correlation is the
standard for discrimination.

A significant amount of research is being conducted on how to identify and
mitigate disparate impacts from machine learning. Current methods can largely
be grouped into two approaches. One group is modifying the input data to
prevent models from finding biases [155, 298, 292, 90, 124]. The second group
modifies the learning algorithm to add constraints that would enforce fairness
conditions. [229, 94, 114, 156, 290].

The challenge with both approaches is the need to tag the data with infor-
mation about protected class status. If we knew the demographic data for each
account in the training data, one could trivially run correlations to prove that
no bias exists after applying one of the above methods or others. Unfortunately,
a linear mindset underlies the regulations. US lenders are not allowed to save
data about race, gender, and such for anything except mortgages, so they lack
the data necessary to prove that the models are performing fairly. Something
will need to change here.

The risk of unintended bias is one of the greatest obstacles to widespread
adoption of machine learning models. The solutions will be legal as much as
statistical [174].

6.5 Adverse Action Notices

The Equal Credit Opportunity Act (ECOA) [12], as implemented by Regula-
tion B, and the Fair Credit Reporting Act (FCRA), require lenders to provide
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Adverse Action Notices when a consumer is denied credit. These notices are
specifically intended to be both understandable by the consumer and actionable
in the sense that the consumer can make improvements in their financial posi-
tion in order to qualify in the future. Machine learning has many applications
in credit risk, but when it is the primary underwriting tool, it must have good
answers for consumers.

Unlike the previous discussion about global interpretability, providing rea-
sons for specific decisions is an inherently local problem. Several methods exist
for this, but it remains an important area of research, referred to as the quest
for explainable AI (XAI) [81, 203, 181, 112].

The first widely adopted method was Local Interpretable Model-agnostic
Explanations (LIME) [227]. LIME samples the space around the decision point
to generate a small data set. These points are weighted by distance from the
original point, and a small local linear model is built. In fact, the original idea
was that any model could work, but the standard implementation is linear. So,
it’s making a local linear model of a potentially highly nonlinear model overall
and using the smaller model to explain the decision just as one would with a
linear model.

Shapley values [244] use game theory to allocate significance across input
factors. The focus here is local rate of change of the forecast relative to a specific
input The approach leverages the original model rather than a locally created
simplified model as in LIME. This concept has been enhanced for application to
XAI by several authors [251, 187], including integrating elements of LIME [18].

Unfortunately, LIME can be unstable, and both Shapley values and LIME
can suffer when a forecast point is at an inflection point in the input variables.
In such cases, important dependencies will be missed. Significant research into
XAI is currently happening in image processing. Recent work there has de-
veloped an approach of explaining an answer relative to a reference image [81].
Work in credit risk has shown that the same reference approach can be effective.
Moreover, using a distribution of reference points can provide both explainabil-
ity and robustness [125].

Certainly more methods will follow. For linear methods, explainability is
inherent. Hopefully in the near future, XAI will be an integral part of all
machine learning methods.

6.6 Predicting without Understanding

Henley and Hand’s work is often cited [129] showing that even small gain in
a credit score adds business value. This is taken as proof that prediction is
important above all, presumably including explanation. However, those in busi-
ness know that understanding gained from the modeling process can be used
in intangible ways during the underwriting process to add value. One of the
greatest risks with machine learning is that analysts can create effective models
without learning about the problem they are modeling. For both the analyst
and the business, learning matters.
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One of our deepest insights from the checking attrition project in Section 5
was the realization that readily available machine learning packages allow ana-
lysts to create highly predictive models without understanding what is driving
those models. Even when used with default settings, many of these algorithms
performed quite well, but is it a good thing to be able to create such mod-
els without seizing the opportunity to learn more about the business? In our
attempt to understand the relative performance, we actually did learn more
about the underlying dynamic between customer and lender, but this was not
necessary for the model’s success. The importance of explanatory methods for
machine learning is not just about educating customers and regulators, but also
so that analysts learn about the business.

Some of the understanding gained from a detailed explanation of the model
can be more about the data itself. Several machine learning methods are robust
to outliers, but if those outliers are data errors, this robustness can lead to a
false extrapolation. Robust machine learning models put a greater burden on
the analyst to validate the data to assure the model does not just learn an entry
error.

Part of the solution also comes back to the disparate impact analysis. We
need to recognize that explainable AI is valuable and necessary not just for
consumers but also for analysts. Model risk managers need to start asking for
a deeper inspection of what makes a machine learning model work, what are
the key structures being leveraged, and what can we do with this knowledge to
improve the input data and model development process.

Some have gone so far as to say that a bad model that can be understood
is better than a good model that cannot be. Let’s be clear. That is also a bad
answer. The correct answer is to work harder to explain the good models.

6.7 Adapting to Sudden Behavioral Shifts

This article is being written during the depths of the COVID-19 recession. As
soon as shelter-in-place orders were issued in the US, we knew that the models
would have a problem. All of the algorithms discussed here are data-driven
pattern recognition engines. When past patterns are not predictive of future
behavior, the models will fail.

Asking for forbearance on a mortgage was no longer a risk indicator, just
sensible cash flow management. Job loss and filing for unemployment might
be a joint strategy of employer and employee to maximize government benefits
until the business reopens. “Strategic delinquency” will probably appear in the
research literature in a year or two, exploring the behavioral dynamics leading
consumers to go delinquent even when they have money just in order to hoard
cash. Sudden increases in deposits, drops in spending, and increases in forbear-
ance reinforce this perspective. Early monitoring of machine learning models in
the crisis suggest that exactly these kinds of failures are occurring [127].

In a model driven world, we cannot just wait months or years for new data
to arrive to allow us to retrain the models. Model triage becomes an immediate
top priority. Human judgment is required to create intuitive models of how
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behavior is shifting and what adjustments or overlays should be deployed to
compensate. In such crises, linear methods or models with separable pieces
have the advantage, because then their human masters can understand more
easily where model weaknesses might lie, the presumed sensitivities that are no
longer true, and what adjustments might compensate for the new situation.

A complex machine learning model could essentially be picking up on the
same structures as a linear model, yet lack of interpretability will be a major
obstacle to use. The best way to make the machine learning methods robust
through such behavior shifts is to make them explainable globally [203] so that
the managers can understand enough to compensate.

That is precisely the objective with global interpretability methods in ma-
chine learning. Permutation tests [210, 96] randomize either the outcome labels
or the input values to measure the significance of the model and specific inputs.
Partial dependence plots [100] create a graph of the average forecast versus val-
ues for a given input , where the test value is substituted into each input data
element. This idea spawned several others including accumulated local effects
(ALE) [16], where the change in the model forecast for small changes about a
test value is averaged across all corresponding values of the other inputs. In-
dividual Conditional Expectation is essentially a disaggregation of the partial
dependence plots, showing the forecasts for each input at the test values rather
than simply aggregating to an average value. That disaggregated visualization
can provide additional insights into what drives the model [117]. These are a
few of the methods available for visualizing the dynamics of machine learning
models.

This section could have been called “Run global interpretability tests”. How-
ever, in the rush to finish a model and start the next task, analysts usually leave
them for “later”. In a crisis, the tools that get used are the ones that are al-
ready in place and are understandable. Therefore, measures to provide insight
into a model must be part of model development and validation. Such insights
are obvious with linear models. Machine learning must adopt such measures as
standard practice before models are deployed.

6.8 p-Value arbitrage

In comparing machine learning with traditional methods, the worst reason to
choose a winner would be if they were being judged by different standards. For
the most part, machine learning models are considered acceptable if they test
well out-of-sample, provide a reasonable disparate impact analysis, and do not
appear to be biased. For logistic regression, the list is a bit longer.

The most notable difference is the use of p-values to screen for insignificant
factors in logistic regression models. Standard practice among model validators
and auditors is to make sure that all coefficients in the model are statistically
significant according to the p-value, given a reasonably chosen threshold. The p-
value is essentially measuring the distance from zero considering the estimation
uncertainty. For binned variables where each bin has a corresponding coefficient,
the appropriate interpretation is that ”some” of the bins should have statistically
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significant coefficients. For example, if month-of-year were an input with one
coefficient for each month, you would not delete June from the model if its
coefficient were zero so long as other months were significantly non-zero. Given
that, let’s focus on coefficients for continuous variables.

Consider Figure 3. The figure compares coefficients estimated for three
different input variables. The first coefficient fails the p-value test, because
with it’s 95% confidence interval touching zero, it would not meet the 5% p-value
threshold, i.e. its coefficient is not provably non-zero. The second coefficient
also fails the p-value test for the same reason. However, assuming the inputs
are standardized, the first variable is potentially much more important than
the second, just equally uncertain. The third coefficient passes and would be
allowed into the model, even though it is only weakly useful.
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Figure 3: Coefficients with confidence intervals are shown for three hypothetical
input variables. The x-axis shows the estimated value and confidence interval.
The y-axis just lists three different events.

The American Statistical Society says this is not a correct use or interpreta-
tion of p-values [276, 208], and yet it is standard practice in credit risk modeling.
By using a p-value criterion for screening variables in regression models but not
in machine learning models, we are creating a p-value arbitrage situation. In
one of the model comparison studies, we should test the significance of the input
factors to see if machine learning models are including factors deleted from the
regression models.

It is important that we avoid creating a situation where analysts inadver-
tently choose machine learning methods over regression methods just because
of inconsistent evaluation standards by those in model risk management.
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7 Conclusions
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Figure 4: An intuitive comparison of potential strengths and weaknesses of
various models for credit scoring. 0 is the weakest and 1 is the strongest under
a given challenge.

In reviewing the many machine learning methods available and the equally
numerous applications, it becomes clear that declaring a single best method
is impossible. Methods have specific strengths and weaknesses that align to
different applications. In a specific application, the best method often involves
the combination of elements of several methods, both statistical and machine
learning.

For academics and researchers, the goal should be to develop a problem space
map showing the optimal domains for the methods. Figures 4 and 5 give the
author’s rough intuitive assessment relative to common modeling challenges for
credit scoring and credit risk time series modeling. Each vertex gives a modeling
challenge and each modeling technique is rated from 0 (worst) to 1 (best) at
addressing that challenge. In the course of creating this survey, the author did
not find any method that would be best against all challenges.

If these model rankings could truly be quantified, we could create a recom-
mendation engine that would assess a modeling task and recommend a subset
of methods that are likely candidates. Of course, these maps are only guesses,
do not include all variants of all methods, and do not consider all modeling
challenges. Adding those details would be worthy additions to the literature.

As far as where the field goes from here, several trends are apparent. Re-
search continues into how best to model image-like data sets. We noted that
some researchers used image processing techniques to analyze credit card trans-
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Figure 5: An intuitive comparison of potential strengths and weaknesses of
various models for time series modeling in credit risk. 0 is the weakest and 1 is
the strongest under a given challenge.

action data, so those could find application in credit risk. Memory-dependent
methods such as time series modeling is still seeing rapid development. For all
methods reviewed, methods for selecting meta-parameters could be dramatically
improved.

Overall, however, we must note that good machine learning methods exist
across a range of scoring and time series modeling applications. The greatest
advances from here are likely to be more in addressing the challenges of Section 6.
All of those challenges involve looking past model accuracy to issues of how to
make the models function productively in the real world.

One thing missing from all of these methods is that they produce expectation
values. Distributions of possible outcomes are obtained only by running multiple
input scenarios, as in stress testing, or looking across many models, as with
ensemble distributions. Could we move beyond these forecasts of expectation
values to performing calculations upon entire distributions so that the final
output of any model is immediately a distribution?

Perhaps, this is where quantum computing [215, 83] could revolutionize
credit risk modeling (and many other industries as well). With quantum calcu-
lations could we incorporate the full uncertainty of the non-normal distributions
of our problems through each step to the final answer? Clearly the greatest fail-
ing in using credit risk models is the infrequent generation of confidence intervals
and the even rarer use of those in decision making. If all forecasts had accurate
measures of uncertainty attached expressing their full non-normal distributions,
we would find a great deal of false precision being employed.
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Machine learning in some form is clearly the future, but that does not mean
it is the present. The challenges listed are not insignificant. The institutional
knowledge required for the proper development, validation, monitoring, and
overriding of machine learning models currently exists only in pockets. Recog-
nizing those challenges is the best way to speed wider adoption with the fewest
possible number of newsworthy blow-ups.
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lacadémie royale des sciences. Paris, France, 12, 1781.
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Abstract 
Despite the potential for machine learning and artificial intelligence to reduce 
face-to-face bias in decision-making, a growing chorus of scholars and 
policymakers have recently voiced concerns that if left unchecked, 
algorithmic decision-making can also lead to unintentional discrimination 
against members of historically marginalized groups. These concerns are 
being expressed through Congressional subpoenas, regulatory investigations, 
and an increasing number of algorithmic accountability bills pending in both 
state legislatures and Congress. To date, however, prominent efforts to define 
policies whereby an algorithm can be considered accountable have tended to 
focus on output-oriented policies and interventions that either may facilitate 
illegitimate discrimination or involve fairness corrections unlikely to be 
legally valid.  
 
We provide a workable definition of algorithmic accountability that is rooted 
in the caselaw addressing statistical discrimination in the context of Title VII 
of the Civil Rights Act of 1964.  Using instruction from the burden-shifting 
framework, codified to implement Title VII, we formulate a simple statistical 
test to apply to the design and review of the inputs used in any algorithmic 
decision-making processes.  Application of the test, which we label the input 
accountability test, constitutes a legally viable, deployable tool that can 
prevent an algorithmic model from systematically penalizing members of 
protected groups who are otherwise qualified in a target characteristic of 
interest.
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I.  INTRODUCTION  

In August 2019, Apple Inc. debuted its much-anticipated Apple Card, a 
no fee, cash-rewards credit card “designed to help customers lead a healthier 
financial life.”1 Within weeks of its release, Twitter was abuzz with headlines 
that the card’s credit approval algorithm was systematically biased against 

                                                 
1 Press Release, Apple Inc., Introducing Apple Card, A New Kind of Credit Card Created by Apple (March 
25,2019), https://www.apple.com/newsroom/2019/03/introducing-apple-card-a-new-kind-of-credit-card-
created-by-apple/. 
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women.2 Even Apple co-founder Steve Wozniak weighed in, tweeting that 
the card gave him a credit limit that was ten times higher than what it gave 
his wife, despite the couple sharing all their assets.3 In the days that followed, 
Goldman Sachs—Apple’s partner in designing the Apple Card—steadfastly 
defended the algorithm, insisting that “we have not and will not make 
decisions based on factors on gender.”4 Yet doubts persisted.  By November, 
the New York State Department of Financial Services had announced an 
investigation into the card’s credit approval practices.5   

Around that same time, buzz spread across the media about another 
algorithm, that of health insurer UnitedHealth.6 The algorithm was used to 
inform hospitals about patients’ level of sickness so that hospitals could more 
effectively allocate resources to the sickest patients. However, an article 
appearing in Science showed that because the company used cost of care as 
the metric for gauging sickness and because African-American patients 
historically incurred lower costs for the same illnesses and level of illness, 
the algorithm caused them to receive substandard care as compared to white 
patients.7   

Despite the potential for algorithmic decision-making to eliminate face-
to-face biases, these episodes provide vivid illustrations of the widespread 
concern that algorithms may nevertheless engage in objectionable 
discrimination.8 Indeed, a host of regulatory reforms have emerged to contend 
with this challenge. For example, New York City has enacted an algorithm 
accountability law, which creates a task force to recommend procedures for 
determining whether automated decisions by city agencies disproportionately 
impact protected groups.9 Likewise, the Washington State House of 
Representatives introduced an algorithm accountability bill, which would 
require the state’s chief information officer assess whether any automated 
decision system used by a state agency “has a known bias, or is untested for 

                                                 
2 See Sridhar Natarajan & Shahien Nasiripour, Viral Tweet About Apple Card Leads to Goldman Sachs 
Probe, BLOOMBERG (Nov. 19, 2019), https://www.bloomberg.com/news/articles/2019-11-09/viral-tweet-
about-apple-card-leads-to-probe-into-goldman-sachs. 
3 See Isobel Asher Hamilton, Apple Cofounder Steve Wozniak Says Apple Card Offered His Wife a Lower 
Credit Limit, BUSINESSINSIDER (Nov. 11, 2019), https://www.businessinsider.com/apple-card-sexism-
steve-wozniak-2019-11. 
4 Id. 
5 See Neil Vigdor, Apple Card Investigated After Gender Discrimination Complaints, NY TIMES (Nov. 
10, 2019), https://www.nytimes.com/2019/11/10/business/Apple-credit-card-investigation.html. 
6 Melanie Evans & Anna Wilde Mathews, New York Regulator Probes UnitedHealth Algorithm for Racial 
Bias, WSJ (Oct. 26, 2019), https://www.wsj.com/articles/new-york-regulator-probes-unitedhealth-
algorithm-for-racial-bias-11572087601 
7 Ziad Obermeyer, Brian Powers, Christine Vogeli, and Sendhil Mullainathan, Dissecting Racial Bias in 
an Algorithm Used to Manage the Health of Populations, 366 SCIENCE 447 (2019). 
8 See, e.g., Salon Barocas & Andrew D. Selbst, Big Data’s Disparate Impact, 104 CAL L. REV. 671, 673 
(2016) (“If data miners are not careful, the process can result in disproportionately adverse outcomes 
concentrated within historically disadvantaged groups in ways that look a lot like discrimination.”). 
9 See Zoë Bernard, The First Bill to Examine ‘Algorithmic Bias' in Government Agencies Has Just Passed 
in New York City, BUSINESSINSIDER (Dec. 19, 2017), http://www.businessinsider.com/algorithmic-bias-
accountability-bill-passes-in-new-york-city-2017-12?IR=T.  
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bias.”10 Federally, the Algorithmic Accountability Act of 2019, which is 
currently pending in Congress, would require large companies to audit their 
algorithms for “risks that [they] may result in or contribute to inaccurate, 
unfair, biased, or discriminatory decisions impacting consumers.”11 

Yet, a notable absence in these legislative efforts is a formal standard for 
courts or regulators to deploy in evaluating algorithmic decision-making, 
raising the fundamental question: What exactly does it mean for an algorithm 
to be accountable? The urgency of this question follows from the meteoric 
growth in algorithmic decision-making, spawned by the availability of 
unprecedented data on individuals and the accompanying rise in techniques 
in machine learning and artificial intelligence.12 

In this Article, we provide an answer to the pressing question of what 
accountability is, and we put forward a workable test that regulators, courts, 
and data scientists can apply in examining whether an algorithmic decision-
making process complies with long-standing antidiscrimination statutes and 
caselaw. Central to our framework is the recognition that, despite the novelty 
of artificial intelligence and machine learning, existing U.S. 
antidiscrimination law has long provided a workable definition of 
accountability dating back to Title VII of the Civil Rights Act of 1964.13   

Title VII and the caselaw interpreting it define what it means for any 
decision-making process—whether human or machine—to be accountable 
under U.S. antidiscrimination law. At the core of this caselaw is the burden-
shifting framework initially articulated by the Supreme Court in Griggs v. 
Duke Power Co.14  Under this framework, plaintiffs putting forth a claim of 
unintentional discrimination under Title VII must demonstrate that a 
particular decision-making practice (e.g., a hiring practice) lands disparately 
on members of a protected group.15 If successful, the framework then 
demands that the burden shift to the defendant to show that the practice is 
“consistent with business necessity.”16 If the defendant satisfies this 
requirement, the burden returns to the plaintiff to show that an equally valid 
and less discriminatory practice was available that the employer refused to 
use.17 The focus of Title VII is on discrimination in the workplace, but the 
analytical framework that emerged from the Title VII context now spans 

                                                 
10 House Bill 1655, 66th Leg., Reg. Sess. (Wash. 2019), http://lawfilesext.leg.wa.gov/biennium/2019-
20/Htm/Bills/House%20Bills/1655-S.htm.  
11 H.R. 2231, 116th Cong. (2019). 
12 See C. Scott Hemphill, Disruptive Incumbents: Platform Competition in an Age of Machine Learning, 
119 COL. L. REV. 1973, 1975-1979 (2019) (surveying rapid deployment of machine learning 
technologies). 
13 42 U.S.C. § 2000e (2012). 
14 Griggs v. Duke Power Co., 401 U.S. 424, 432 (1971). 
15 See Dothard v. Rawlinson, 433 U.S. 321, 329 (1977). 
16 42 U.S.C. § 2000e–2(k); see also Griggs, 401 U.S. at 431 (in justifying employment practice that 
produces disparate impact, [t]he touchstone is business necessity”). 
17 See Albemarle Paper Co. v. Moody, 422 U.S. 405, 425 (1975). 
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other domains and applies directly to the type of unintentional, statistical 
discrimination utilized in algorithmic decision-making.18 

Despite the long tradition of applying this framework to cases of 
statistical discrimination, it is commonly violated in the context of evaluating 
the discriminatory impact of algorithmic decision-making. Instead, for many, 
the legality of any unintentional discrimination resulting from an algorithmic 
model is presumed to depend on simply the accuracy of the model—that is, 
the ability of the model to predict a characteristic of interest (e.g., productivity 
or credit risk) generally referred to as the model’s “target.”19 An especially 
prominent example of this approach appears in the Department of Housing 
and Urban Development’s 2019 proposed rule revising the application of the 
disparate impact framework under the Fair Housing Act (FHA) for 
algorithmic credit scoring.20 The proposed rule provides that, after a lender 
shows that the proxy variables used in an algorithm do not substitute for 
membership in protected group, the lender may defeat a discrimination claim 
by showing that the model is “predictive of risk or other valid objective.”21   
Yet this focus on predictive accuracy ignores how courts have applied the 
Griggs framework in the context of statistical discrimination. 

To see why, consider the facts of the Supreme Court’s 1977 decision in 
Dothard v. Rawlinson.22 There, a prison system desired to hire job applicants 
who possessed a minimum level of strength to perform the job of a prison 
guard, but the prison could not directly observe which applicants satisfied this 
requirement.23 Consequently, the prison imposed a minimum height and 
weight requirement on the assumption that these observable characteristics 
were correlated with the requisite strength required for the job.24 In so doing, 
the prison was thus engaging in statistical discrimination: It was basing its 
hiring decision on the statistical correlation between observable proxies (an 
applicant’s height and weight) and the unobservable variable of business 
necessity (an applicant’s job-required strength).  

                                                 
18 For example, this general burden-shifting framework has been extended to other domains where federal 
law acknowledges the possibility for claims of unintentional discrimination under a disparate impact 
theory. See, e.g., Texas Department of Housing and Community Affairs v. Inclusive Communities Project, 
Inc., 135 S. Ct. 2507 (2015), (adopting burden-shifting framework for disparate impact claims under the 
Fair Housing Act); Ferguson v. City of Charleston, 186 F.3d 469, 480 (4th Cir. 1999) (discussing cases 
adopting the Title VII burden-shifting framework in Title VI disparate impact cases), rev’d on other 
grounds, 532 U.S. 67 (2001). 
19 See infra Part 2(C). 
20 See Department of Housing and Urban Development, HUD’s Implementation of the Fair Housing Act's 
Disparate Impact Standard, 84 FR 42,854 (August 19, 2019) [hereinafter “2019 HUD Proposal”]. The 
rulemaking was intended to amend HUD’s interpretation of the disparate impact standard “to better 
reflect” the Supreme Court’s 2015 ruling in Texas Department of Housing and Community Affairs v. 
Inclusive Communities Project, Inc., 135 S. Ct. 2507 (2015), which upheld the ability of plaintiffs to bring 
disparate impact cases of discrimination under the FHA. 
21 Id. 
22 433 U.S. 321 (1977). 
23 Id. at 331-32. 
24 Id.  
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Because this procedure resulted in adverse hiring outcomes for female 
applicants, a class of female applicants brought suit under Title VII for gender 
discrimination.25  Deploying the burden-shifting framework, the Supreme 
Court first concluded that the plaintiffs satisfied the disparate outcome step,26 
and it also concluded that the prison had effectively argued that hiring 
applicants with the requisite strength could constitute a business necessity.27 
However, the Court ultimately held that the practice used to discern 
strength—relying on the proxy variables of height and weight—did not meet 
the “consistent with business necessity” criteria.28  Rather, absent evidence 
showing the precise relationship between the height and weight requirements 
to “the requisite amount of strength thought essential to good job 
performance,”29 height and weight were noisy estimates of strength that 
risked penalizing females over-and-above these variables’ relation to the 
prison’s business necessity goal. In other words, height and weight were 
likely to be biased estimates of required strength whose use by the prison 
risked systematically penalizing female applicants who were, in fact, 
qualified. 

The Court thus illustrated that in considering a case of statistical 
discrimination, the “consistent with business necessity” step requires the 
assessment of two distinct questions. First, is the unobservable “target” 
characteristic (e.g., requisite strength) one that can justify disparities in hiring 
outcomes across members of protected and unprotected groups? Second, 
even with a legitimate target variable, are the proxy “input” variables used to 
predict the target noisy estimates that are biased in a fashion that will 
systematically penalize members of a protected group who are otherwise 
qualified? In this regard, the Court’s holding echoes the long-standing 
prohibition against redlining in credit markets. A lender who engages in red-
lining refuses to lend to residents of a majority-minority neighborhood on the 
assumption that the average unobservable credit risk of its residents is higher 
than those of observably-similar but non-minority neighborhoods.30 Yet 
while differences in creditworthiness can be a legitimate basis for racial or 
ethnic disparities to exist in lending under the FHA,31 courts have consistently 
held that the mere fact that one’s neighborhood is correlated with predicted 
credit risk is insufficient to justify red-lining.32 By assuming that all residents 
                                                 
25 Id. at 323. 
26 Id. at 330-31. 
27 Id. at 332. 
28 Id. 
29 Id.  
30 The term red-lining derives from the practice of loan officers evaluating home mortgage applications 
based on a residential map where integrated and minority neighborhoods are marked off in red as poor 
risk areas. Robert G. Schwemm, Housing Discrimination 13–42 (Release # 5, 1995). 
31 See infra note 170. 
32 See Laufman v. Oakley Building & Loan Company, 408 F. Supp. 489 (S.D. Ohio 1976)(redlining on 
the basis of race violates the “otherwise make unavailable or deny” provision of § 3604(a) of the FHA); 
Wai v. Allstate Ins. Co., 75 F. Supp. 2d 1, 7 (D.D.C. 1999)(interpreting identical language in § 3604(f)(2) 
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of minority neighborhoods have low credit, redlining systematically 
penalizes minority borrowers who actually have high credit worthiness.   

These two insights from Dothard—that statistical discrimination must be 
grounded in the search for a legitimate target variable and that the input proxy 
variables for the target cannot systematically discriminate against members 
of a protected group who are qualified in the target—remain as relevant in 
today’s world of algorithmic decision-making as they were in 1977. The 
primary task for courts, regulators, and data scientists is to adhere to them in 
the use of big data implementations of algorithmic decisions (e.g., in 
employment, performance assessment, credit, sentencing, insurance, medical 
treatment, college admissions, advertising, etc.).  

Fortunately, the caselaw implementing the Title VII burden-shifting 
framework, viewed through basic principles of statistics, provides a way 
forward. This is our central contribution:  We recast the logic that informs 
Dothard and courts’ attitude towards redlining into a formal statistical test 
that can be widely deployed in the context of algorithmic decision-making. 
We label it the Input Accountability Test (IAT).  

As we show, the IAT provides a simple and direct diagnostic that a data 
scientist or regulator can apply to determine whether an algorithm is 
accountable under U.S. antidiscrimination principles. For instance, a 
statistician seeking to deploy the IAT could do so by turning to the same 
training data that she used to calibrate the predictive model of a target. In 
settings such as employment or lending where courts have explicitly 
articulated a legitimate business target (e.g., a job required skill or 
creditworthiness),33 the first step would be determining that the target is, in 
fact, a business necessity variable. Second, taking a proxy variable (e.g., 
height) that her predictive model utilizes, she would next decompose the 
proxy’s variation across individuals into that which correlates with the target 
variable and an error component. Finally, she would test whether that error 
component remains correlated with the protected category (e.g., gender). If a 
proxy used to predict a legitimate target variable is unbiased with respect to 
a protected group, it will pass the IAT, even if the use of the proxy disparately 
impacts members of protected groups. In this fashion, the test provides a 
concrete method to harness the benefits of statistical discrimination with 
regard to predictive accuracy while avoiding the risk that it systematically 

                                                 
of the FHA as prohibiting insurance redlining); Laufman, 408 F. Supp. at 496–497 (mortgage redlining); 
Nationwide Mut. Ins. Co. v. Cisneros, 52 F.3d 1351 (6th Cir. 1995)(insurance redlining); American Family 
Mut. Ins., 978 F.2d at 297 (insurance redlining); Lindsey v. Allstate Ins. Co., 34 F. Supp. 2d 636, 641–
643 (W.D. Tenn. 1999)(same); Strange v. Nationwide Mut. Ins. Co., 867 F. Supp. 1209, 1213–1214 (E.D. 
Pa. 1994)(same). The regulatory agencies charged with interpreting and enforcing the lending provisions 
of the FHA have defined redlining to include “the illegal practice of refusing to make residential loans or 
imposing more onerous terms on any loans made because of the predominant race, national origin, etc. of 
the residents of the neighborhood in which the property is located. Redlining violates both the FHA and 
ECOA.” Joint Policy Statement on Discrimination in Lending, 59 Fed. Reg. 18266 (1994). 
33 See Part 4(A). 
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penalizes members of a protected group who are, in fact, qualified in the 
target characteristic of interest.  

We provide an illustration of the IAT in the Dothard setting, not only to 
provide a clear depiction of the power of the test, but also to introduce several 
challenges in implementing it and suggested solutions. These challenges 
include multiple incarnations of measurement error in the target, as 
exemplified by the UnitedHeath use of cost as a target, rather than the degree 
of illness, mentioned previously. These challenges also include 
understanding what “significantly correlated” means in our era of massive 
datasets. We offer an approach that may serve as a way forward. Beyond the 
illustration, we also provide a simulation of the test using a randomly 
constructed training dataset of 800 prison employees.  

Finally, we illustrate how the IAT can be deployed by courts, regulators, 
and data scientists. In addition to employment, we list a number of other 
sectors – including credit, parole determination, home insurance, school and 
scholarship selection, and tenant selection – where either caselaw or statutes 
have provided explicit instructions regarding what can constitute a legitimate 
business necessity target.34 We also discuss other domains such as automobile 
insurance and health care where claims of algorithmic discrimination have 
recently surfaced, but where existing discrimination laws are less clear 
whether liability can arise for unintentional discrimination. Businesses in 
these domains are thus left to self-regulating and have generally professed to 
adhering to non-discriminatory business necessity targets.35  For firms with 
an express target delineation (whether court-formalized or self-imposed), our 
IAT provides a tool to pre-test their models.  

We highlight, however, that firm profit margins and legitimate business 
necessity targets can easily be confounded in the design of machine learning 
algorithms, especially in the form of exploiting consumer demand elasticities 
(e.g., profiling consumer shopping behavior).36 In lending, for instance, 
courts have repeatedly held that creditworthiness is the sole business 
necessity target that can justify outcomes that differ across protected and 
unprotected groups.37 Yet, newly-advanced machine learning techniques 
make it possible to use alternative targets, such as a borrower’s proclivity for 
comparing loan products, that focus on a lender’s profit margins in addition 
to credit risk. In other work, we provide empirical evidence consistent with 
FinTech algorithms’  engaging in such profiling, with the result that minority 
borrowers face higher priced loans, holding constant the price impact of 
borrowers’ credit risk.38 As such, these findings illustrate how the incentive 

                                                 
34 See Id. 
35 See Part 4(B). 
36 See Part 4(C). 
37 See infra note 170. 
38 Robert Bartlett, Adair Morse, Richard Stanton, and Nancy Wallace, Consumer Lending Discrimination 
in the FinTech Era, NBER Working Paper No. 25943, available at https://www.nber.org/papers/w25943.    
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of firms to use shopping behavior as a target can lead to discrimination in 
lending—a practice that could be detected by application of the IAT.39  
Profiling for shopping behavior is a subject applicable to many settings 
beyond the lending context and a leading topic for future research and 
discourse. 

Our approach differs from other approaches to “algorithmic fairness” that 
focus solely on ensuring fair outcomes across protected and unprotected 
groups.40  As we show, by failing to distinguish disparities that arise from a 
biased proxy from those disparities that arise from the distribution of a 
legitimate target variable, these approaches can themselves run afoul of U.S. 
antidiscrimination law. In particular, following the Supreme Court’s 2009 
decision in Ricci v. DeStefano,41 efforts to calibrate a decision-making 
process to equalize outcomes across members of protected and unprotected 
groups—regardless of whether individuals are qualified in a legitimate target 
of interest—are likely to be deemed impermissible intentional 
discrimination.42  

This Article proceeds as follows.  In Part 2, we begin by articulating a 
definition for algorithmic accountability that is at the core of our input 
accountability test.  As we demonstrate there, our definition of algorithmic 
accountability is effectively a test for “unbiasedness,” which differs from 
various proposals for “algorithmic fairness” that are commonly found in the 
statistics and computer science literatures. Building on this definition of 
algorithmic accountability, Part 3 formally presents the IAT. The test is 
designed to provide a workable tool for data scientists and regulators to use 
to distinguish between legitimate and illegitimate discrimination. The test is 
directly responsive to the recent regulatory and legislative interest in 
understanding algorithmic accountability, while being consistent with long-
standing U.S. antidiscrimination principles.  Part 4 follows by exploring how 
the IAT can likewise be applied in other settings where algorithmic decision-
making has come to play an increasingly important role. Part 5 concludes. 

II.  ACCOUNTABILITY UNDER U.S. ANTIDISCRIMINATION LAW  

A.  Accountability and the Burden-Shifting Framework of Title VII 

We ground our definition of accountability in the antidiscrimination 
principles of Title VII of the Civil Rights Act of 1964.43 Title VII, which 
focuses on the labor market, makes it “an unlawful employment practice for 
an employer (1) to ... discriminate against any individual with respect to his 

                                                 
39 See Part 4(C). 
40 See Part 2(B). 
41 557 U.S. 557 (2009). 
42 We discuss this challenge in more detail in Part 2(B). 
43 42 U.S.C. § 2000e (2012). 
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compensation, terms, conditions, or privileges of employment, because of 
such individual’s race, color, sex, or national origin; or (2) to limit, segregate, 
or classify his employees or applicants for employment in any way which 
would deprive or tend to deprive any individual of employment opportunities 
... because of such individual’s race, color, religion, sex, or national origin.”44 
Similar conceptualizations of antidiscrimination law were later written to 
apply to other settings, such as the prohibition of discrimination in mortgage 
lending under the FHA.45 

In practice, Title VII has been interpreted as covering two forms of 
impermissible discrimination.  The first and “the most easily understood type 
of discrimination”46 falls under the disparate-treatment theory of 
discrimination and requires that a plaintiff alleging discrimination prove “that 
an employer had a discriminatory motive for taking a job-related action.”47 
Additionally, Title VII also covers practices which “in some cases, … are not 
intended to discriminate but in fact have a disproportionately adverse effect 
on minorities.”48 These cases are usually brought forth under the disparate-
impact theory of discrimination and allow for an employer to be liable for 
“facially neutral practices that, in fact, are ‘discriminatory in operation,’” 
even if unintentional.49   

Critically, in cases where discrimination lacks an intentional motive, an 
employer can be liable only for disparate outcomes that are unjustified. The 
process of how disparities across members of protected and unprotected 
groups might be justified is articulated in the burden-shifting framework 
initially formulated by the Supreme Court in Griggs v. Duke Power Co.50 and 
subsequently codified by Congress in 1991.51 This delineation is central to 
the definition of accountability in today’s era of algorithms. 

Under the burden-shifting framework, a plaintiff alleging discrimination 
under a claim without intentional motive bears the first burden. The plaintiff 
must identify a specific employment practice that causes “observed statistical 
disparities”52 across members of protected and unprotected groups.53 If the 
plaintiff succeeds in establishing this evidence, the burden shifts to the 

                                                 
44 42 U.S.C. § 2000e-2(a) (2012).   
45 42 U.S.C. § 3605 (2012) (“It shall be unlawful for any person or other entity whose business includes 
engaging in residential real estate-related transactions to discriminate against any person in making 
available such a transaction, or in the terms or conditions of such a transaction, because of race, color, 
religion, sex, handicap, familial status, or national origin.”) 
46 Int’l Bhd. of Teamsters v. United States, 431 U.S. 324, 335 n.15 (1977). 
47 Ernst v. City of Chi., 837 F.3d 788, 794 (7th Cir. 2016). 
48 Ricci v. DeStefano, 557 U.S. 557, 577 (2009). 
49 Id. at 577-78 (quoting Griggs, 401 U.S. at 431). 
50 Griggs, 401 U.S. at 432. 
51 Civil Rights Act of 1991, Pub. L. No. 102-66, 105 Stat. 1071 (1991). 
52 Watson v. Fort Worth Bank & Trust, 487 U.S. 977, 979 (1988). 
53 See also Albemarle Paper Co. v. Moody, 422 U.S. 405, 425 (1975) (holding that the plaintiff has the 
burden of making out a prima facie case of discrimination). 
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defendant.54 The defendant must then “demonstrate that the challenged 
practice is job related for the position in question and consistent with business 
necessity.”55 If the defendant satisfies this requirement, then “the burden 
shifts back to the plaintiff to show that an equally valid and less 
discriminatory practice was available that the employer refused to use.”56 

This overview highlights two core ideas that inform what it means for a 
decision-making process to be accountable under U.S. antidiscrimination 
law. First, in the case of unintentional discrimination, disparate outcomes 
must be justified by reference to a legitimate “business necessity.”57  In the 
context of employment hiring, for instance, this is typically understood to be 
a job-related skill that is required for the position.58 Imagine, for instance, an 
employer who made all hiring decisions based on applicant’s level of a direct 
measure of the job-related skill necessary for the job. Even if the outcome of 
these decision-making processes results in disparate outcomes across 
minority and non-minority applicants, these disparities would be justified as 
nondiscriminatory with respect to a protected characteristic.   

Second, in invalidating a decision-making process, U.S. 
antidiscrimination law does so because of invalid “inputs” rather than invalid 
“outputs” or results. This feature of U.S. antidiscrimination law is most 
evident in the case of disparate treatment claims involving the use by a 
decision-maker of a protected category in making a job-related decision. For 
instance, Section (m) of the 1991 Civil Rights Act states that “an unlawful 
employment practice is established when the complaining party demonstrates 
that race, color, religion, sex, or national origin was a motivating factor for 
any employment practice, even though other factors also motivated the 

                                                 
54 See Albemarle, 422 U.S. at 425 (noting that the burden of defendant to justify an employment practice 
“arises, of course, only after the complaining party or class has made out a prima facie case of 
discrimination.”) 
55 42 U.S.C. § 2000e-2(k)(1(A)(i); see also Griggs, 401 U.S. at 432(“Congress has placed on the employer 
the burden of showing that any given requirement must have a manifest relationship to the employment in 
question.”) 
56 Puffer v. Allstate Ins. Co., 675 F.3d 709, 717 (7th Cir. 2012); see also 42 U.S.C. § 2000e-2(k)(1(A)(ii), 
(C). 
57 42 U.S.C. § 2000e-2(k)(1(A)(i). Likewise, even in the case of claims alleging disparate treatment, an 
employer may have an opportunity to justify the employment decision. In particular, absent direct evidence 
of discrimination, Title VII claims of intentional discrimination are subject to the burden-shifting 
framework established in McDonnell Douglas Corp. v. Green, 411 U.S. 792 (1973). Under the McDonnell 
Douglas framework, a plaintiff must first “show, by a preponderance of the evidence, that she is a member 
of a protected class, she suffered an adverse employment action, and the challenged action occurred under 
circumstances giving rise to an inference of discrimination.” Bennett v. Windstream Communications, Inc., 
792 F.3d 1261, 1266 (10th Cir.2015). If the plaintiff succeeds in establishing a prima facie case, the burden 
of production shifts to the defendant to rebut the presumption of discrimination by producing some 
evidence that it had legitimate, nondiscriminatory reasons for the decision. Id. at 1266. 
58  See, e.g., Griggs, 401 U.S. at 432 (holding that the employer’s practice or policy in question must have 
a “manifest relationship” to the employee's job duties); see also Albermarle, 422 U.S. at 425 (“If an 
employer does then meet the burden of proving that its tests are ‘job related,’ it remains open to the 
complaining party to show that other tests or selection devices, without a similarly undesirable racial 
effect, would also serve the employer's legitimate interest in ‘efficient and trustworthy workmanship.’”) 
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practice.”59 However, this focus on inputs is also evident in cases alleging 
disparate impact, notwithstanding the doctrine’s initial requirement that a 
plaintiff allege disparate outcomes across members of protected and 
unprotected groups. Recall that even with evidence of disparate outcomes, an 
employer that seeks to defend against a claim of disparate impact 
discrimination must demonstrate why these outcomes were the result of a 
decision-making process based on legitimate business necessity factors (i.e., 
the disparate outcomes were the result of legitimate decision-making 
inputs).60 This focus on “inputs” underscores the broader policy objective of 
ensuring a decision-making process that is not discriminatory. 

The practical challenge in implementing this antidiscrimination regime is 
that the critical decision-making input—an individual’s possession of a job-
related skill—cannot be perfectly observed at the moment of a decision, 
inducing the decision-maker to turn to proxies for it.  However, the foregoing 
discussion highlights that the objective in evaluating these proxy variables 
should be the same: ensuring that qualified minority applicants are not being 
systematically passed over for the job or promotion. As summarized by the 
Supreme Court in Ricci v. DeStefano, “[t]he purpose of Title VII ‘is to 
promote hiring on the basis of job qualifications, rather than on the basis of 
race or color.’”61  

This objective, of course, is the basis for prohibiting the direct form of 
statistical discrimination famously examined by economists Kenneth Arrow62 
and Edmund Phelps.63 In their models, an employer uses a job applicant’s 
race as a proxy for the applicant’s expected productivity because the 
employer assumes that the applicant possesses the average productivity of his 
or her race.  If the employer also assumes the average productivity of minority 
applicants is lower than non-minorities (e.g., because of long-standing social 
and racial inequalities), this proxy will ensure that above-average productive 
minorities will systematically be passed over for the job despite being 
qualified for it.  Because this practice creates a direct and obvious bias against 
minorities, this practice is typically policed under the disparate treatment 
theory of discrimination.64 

Beyond this clearly unlawful form of statistical discrimination, a 
decision-maker can use statistical discrimination to incorporate not just the 
protected-class variable but also other proxy variables for the business-
necessity unobservable attributes. For instance, an employer might seek to 

                                                 
59 42 U.S.C. § 2000e-2(m). 
60 See, e.g., Dothard, 433 U.S. at 331 (holding that, to satisfy the business necessity defense, an employer 
must show that a pre-employment test measured a characteristic “essential to effective job performance” 
given that the test produced gender disparities in hiring). 
61 Ricci, 557 U.S. at 582 (citing Griggs , 401 U.S. at 424). 
62 Kenneth J. Arrow, The Theory of Discrimination, in DISCRIMINATION AND LABOR MARKETS 3 (Orley 
Ashenfelter & Albert Rees eds., 1973). 
63 Edmund S. Phelps, The Statistical Theory of Racism and Sexism, 62 AM. ECON. REV. 659 (1972). 
64 See text accompanying note 59. 
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predict a job applicant’s productivity based on other observable 
characteristics that the employer believes are correlated with future 
productivity, such as an applicant’s level of education or an applicant’s 
performance on a personality or cognitive ability test.65 Indeed, it is the 
possibility of using data mining to discern new and unintuitive correlations 
between an individual’s observable characteristics and a target variable of 
interest (e.g., productivity or creditworthiness) that has contributed to the 
dramatic growth in algorithmic decision-making.66 The advent of data mining 
has meant that thousands of such proxy variables are sometimes used.67  

As the UnitedHealth algorithm revealed, however, the use of these proxy 
variables can result in members of a protected class experiencing disparate 
outcomes. The problem arises from what researchers call “redundant 
encodings”—the fact that a proxy variable can be predictive of a legitimate 
target variable and membership in a protected group.68 Moreover, there are 
social and economic factors that make one’s group membership correlated 
with virtually any observable proxy variable.  As one proponent of predictive 
policy declared, “If you wanted to remove everything correlated with race, 
you couldn’t use anything. That’s the reality of life in America.”69  At the 
same time certain proxy variables may predict membership in a protected 
group over-and-above their ability to predict a legitimate target variable; 
relying on these proxy variables therefore risks penalizing members of the 
protected group who are otherwise qualified in the legitimate target 
variable.70  In short, algorithmic accountability requires a method to limit the 
use of redundantly encoded proxy variables to those that are consistent with 
the anti-discrimination principles of Title VII of the Civil Rights Act and to 
prohibit the use of those that are not.71 
                                                 
65 See, e.g., Neal Schmitt, Personality and Cognitive Ability as Predictors of Effective Performance at 
Work, 1 ANNUAL REVIEW OF ORGANIZATIONAL PSYCHOLOGY AND ORGANIZATIONAL BEHAVIOR 45, 56 
(2014) (describing web-based tests pre-employment tests of personality and cognitive ability). 
66 See Barocas & Selbst, supra note 8, at 677 (“By definition, data mining is always a form of statistical 
(and therefore seemingly rational) discrimination.”) 
67 See, e.g., Mikella Hurley & Julius Adebayo, Credit Scoring in the Era of Big Data 18 YALE. J. L. TECH. 
148, 164 (2020)(describing how ZestFinance uses an “all data is credit data” approach to predict an 
individual’s creditworthiness based on “thousands of data points collected from consumers’ offline and 
online activities”). 
68 See Barocas & Selbst, supra note 8,, at 691 (citing Cynthia Dwork et al., Fairness Through Awareness, 
3 PROC. INNOVATIONS THEORETICAL COMPUTER SCI. CONF. 214 app. at 226 (2012)). 
69 Nadya Labi, Misfortune Teller, ATLANTIC (Jan.–Feb. 2012), 
http://www.theatlantic.com/magazine/archive/2012/01/misfortune-teller/308846 (quoting Ellen Kurtz, 
Director of Research for Philadelphia’s Adult Probation and Parole Department). 
70 As noted in the Introduction, redlining represents a classic example: An individual’s zip code may be 
somewhat predictive of one’s creditworthiness, but given racialized housing patterns, it is almost certainly 
far more accurate in predicting one’s race. Assuming that all residents in a minority-majority zip code 
have low creditworthiness will therefore result in systematically underestimating the creditworthiness of 
minorities whose actual creditworthiness is higher than the zip code average.   
71 In theory, there are statistical methods that would estimate the precise degree to which a redundantly 
encoded proxy variable predicts a legitimate target variable that is independent of the degree to which it 
predicts membership in a protected classification. We discuss these methods and their shortcomings infra 
at notes 144 to 146 and in the Appendix. 
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Our central contribution is in developing accountability input criteria that 
speak directly to the process demanded by Title VII. Specifically, we use 
these accountability input criteria to develop a statistical test for whether a 
proxy variable (or each proxy variable in a set of proxy variables) is being 
used in a way that causes illegitimate statistical discrimination and should 
therefore not be used in an algorithmic model. Fundamentally, it is a test for 
“unbiasedness” designed to ensure that the use of a proxy input variable does 
not systematically penalize members of a protected group who are otherwise 
qualified with respect to a legitimate-business-necessity objective. We refer 
to this test as the input-accountability test. We illustrate the test and its 
application with a simple pre-employment screening exam designed to infer 
whether a job applicant possesses sufficient strength to perform a particular 
job.  Before doing so, however, we differentiate the input-accountability test 
from other approaches to algorithmic accountability. 
 

B. The Input Accountability Test Versus Outcome-Oriented Approaches 
 

Our input-based approach differs significantly from that of other scholars 
who have advanced outcome-oriented approaches to algorithmic 
accountability. For instance, Talia Gillis and Jann Spiess have argued that the 
conventional focus in fair lending on restricting invalid inputs (such as a 
borrower’s race or ethnicity) is infeasible in the machine-learning context.72 
The reason, according to Gillis and Spiess, is because a predictive model of 
default that excludes a borrower’s race or ethnicity can still penalize minority 
borrowers if one of the included variables (e.g., borrower education) is 
correlated with both default and race.73 Gillis and Spiess acknowledge the 
possibility that one could seek to exclude from the model some of these 
correlated variables on this basis, but they find this approach infeasible given 
that “a major challenge of this approach is the required articulation of the 
conditions under which exclusion of data inputs is necessary.”74 They 

                                                 
72 See Talia B. Gillis and Jann L. Spiess, Big Data and Discrimination, 86 U. CHICAGO L. REV 459 (2019). 
73 Id. at 468-69. 
74 Id. at 469. Elsewhere in their article, Gillis and Spiess also suggest that input-based analysis may be 
infeasible because “in the context of machine-learning prediction algorithms, the contribution of individual 
variables is often hard to assess.” Id. at 475. They illustrate this point by showing how in a simulation 
exercise, the variables selected by a logistic lasso regression in a predictive model of default differed each 
time the regression was run on a different randomly-drawn subsample of their data.  However, this 
evidence does not speak to how an input-based approach to regulating algorithms would be deployed in 
practice.  A lasso regression—like other models that seek to reduce model complexity and avoid over-
fitting—seeks to reduce the number of predictors based on the underlying correlations among the full set 
of predictor variables. Thus, it can be used in training a model on a set of data with many proxy variables, 
and running a lasso regression multiple times on different subsamples of the data should be expected to 
select different variables with each run. However, once a model has been trained and the model’s features 
are selected, the model must be deployed, allowing the features used in the final model to be evaluated 
and tested for bias. That is, regardless of the type of model fitting technique one uses in the training 
procedure (e.g., lasso regression, ridge regression, random forests, etc.), the model that is ultimately 
deployed will utilize a set of features that can be examined. 
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therefore follow the burgeoning literature within computer science on 
“algorithmic fairness”75 and advocate evaluating the outcomes from an 
algorithm against some baseline criteria to determine whether the outcomes 
are fair.76  As examples, they suggest a regulator might simply examine 
whether loan prices differ across members of protected or unprotected 
groups, or a regulator might look at whether “similarly situated” borrowers 
from the protected and nonprotected groups were treated differently.77 

Gillis and Spiess are, of course, correct that simply prohibiting an 
algorithm from considering a borrower’s race or ethnicity will not eliminate 
the risk that the algorithm will be biased against minority borrowers in a way 
that is unrelated to their creditworthiness (which is a legitimate-business-
necessity variable).78 Indeed, we share this concern about redundant 
encodings, and it motivates our empirical test.  However, we part ways with 
these authors in that we do not view as insurmountable the challenge of 
articulating the conditions for excluding variables that are correlated with a 
protected classification, as we illustrate in Part 3.   

Equally important, it is with an outcome-based approach rather than with 
an input-based approach where one encounters the greatest conceptual and 
practical challenges for algorithmic accountability. As Richard Berk and 
others have noted, efforts to make algorithmic outcomes “fair” pose the 
challenge that there are multiple definitions of fairness, and many of these 

                                                 
75 For a summary, see Sam Corbett-Davies and Sharad Goel, The Measure and Mismeasure of Fairness: 
A Critical Review of Fair Machine Learning (arXiv.org, August 2018), available at 
https://arxiv.org/pdf/1808.00023.pdf.  In particular, a common approach to algorithmic fairness within 
computer science is to evaluate the fairness of a predictive algorithm by use of a “confusion matrix.”  Id. 
at 4. A confusion matrix is a cross-tabulation of actual outcomes by the predicted outcome. For instance, 
the confusion matrix for an algorithm that classified individuals as likely to default on a loan would 
appear as follows: 

 Default Predicted No Default Predicted 
Default Occurs  # Correctly Classified as 

Defaulting = NTP  
(True Positives) 

# Incorrectly Classified as Non-
Defaulting = NFN 
(False Negatives) 

Default Does Not 
Occur 

# Incorrectly Classified as 
Defaulting = NFP  
(False Positives) 

# Correctly Classified as Non-
Defaulting = NTN 
(True Negatives) 

 
Using this table, one could then evaluate the fairness of the classifier by inquiring whether classification 
error is equal across members of protected and unprotected groups. Id. at 5. For example, one could use 
as a baseline fairness criterion a requirement that the classifier have the same false positive rate (i.e., NFP 
/ (NFP + NTN)) for minority borrowers as for non-minority borrowers. Alternatively, one could use as a 
baseline a requirement of treatment equality (e.g., the ratio of False Positives to False Negatives) across 
members of protected and unprotected groups. 
76 See Gillis & Spiess, supra note 72, at 480 (“In the case of machine learning, we argue that outcome 
analysis becomes central to the application of antidiscrimination law.”) 
77 Id. at 484-85. 
78 See also Jon Kleinberg, et al, Algorithmic Fairness, 108 AEA PAPERS AND PROCEEDINGS 22, 22–23 
(2018) (“Our central argument is that across a wide range of estimation approaches, objective functions, 
and definitions of fairness, the strategy of blinding the algorithm to race inadvertently detracts from 
fairness.”) 
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definitions are incompatible with one another.79 The central challenge is that 
an outcome test will often result in some form of residual discrimination, 
raising the inevitable question: how much discrimination should be 
permissible in the outcomes?80 

In a concrete illustration of this challenge, Richard Berk and a team of 
researchers at the University of Pennsylvania describe a criminal-risk-
assessment tool they designed for a jurisdiction that was concerned about 
racial bias in the pre-trial release rates among criminal defendants who were 
awaiting trial.81 In general, when a defendant was arraigned in this 
jurisdiction, a magistrate judge was required to decide whether the defendant 
should be released until the trial date, considering (among other things) the 
defendant’s threat to public safety.82 Berk and his team developed a 
forecasting algorithm of a defendant’s risk, using a subsequent arrest for a 
violent crime within 21 months of release as a proxy for the defendant’s threat 
to public safety.83 

To reduce racial disparities, Berk and his team tuned the algorithm so that 
it was equally accurate at predicting release across racial categories; that is, 
the rate of re-arrest for a violent crime among minority and non-minority 
defendants was the same.84 However, the base rate of re-arrest among 
minority defendants was higher than non-minority defendants, meaning that 
the chosen fairness objective could be accomplished only by making the 
algorithm biased. In particular, the algorithm had to classify more “violent” 
non-minority defendants as “nonviolent” (thus resulting in their release), and 
it had to classify more “nonviolent” minority defendants as “violent” (thus 
resulting in their detention).85 The need to bias the algorithm in this fashion 

                                                 
79 See Richard Berk et al., Fairness in Criminal Justice Risk Assessments: The State of the Art 33 
(arXiv.org, May 30, 2017), available at https://arxiv.org/pdf/1703.09207.pdf (arguing that “[t]here are 
different kinds of fairness that in practice are incompatible”). 
80 See, e.g., Gillis & Spiess, supra note 72, at 486 (advocating an outcome test in which a regulator 
evaluates whether lending outcomes differ by race among “similarly situated” borrowers “should include 
a degree of tolerance set by the regulator”). 
81 See Berk et al., supra note 79, at 31-33. 
82 Id. at 31. 
83 Id. at 31-33. 
84 Id. 
85 As Sam Corbett-Davies and Sharad Goel note, it is the different underlying distribution of risk (or other 
unobservable characteristic of interest) among minority and non-minority populations that gives rise to the 
alternative and incompatible definitions of fairness based on classification errors.  See Corbett-Davies & 
Goel, supra note 75, at 2 (“When the true underlying distribution of risk varies across groups, differences 
in group-level error rates are an expected consequence of algorithms that accurately capture each 
individual’s risk.”).  Within the antidiscrimination literature, this statistical challenge is known as the 
problem of infra-marginality and has long plagued outcome tests of discrimination in human decisions. 
See Ian Ayres, Outcome Tests of Racial Disparities in Police Practices, 4 JUSTICE RESEARCH AND POLICY 
131 (2002). The central problem is that an inquiry into whether a decision is unbiased is concerned with 
what happens at the margin (i.e., is the same standard being applied to everyone?).  Error rates, however, 
are evaluated away from the margin as they rely on evaluating outcomes following the application of a 
cut-off standard to all individuals (both those who might be near the cut-off and those who might be far 
from it).  If the risk distributions differ across minority and non-minority individuals, lumping together 
both marginal and infra-marginal individuals will produce error rates that differ by race.  
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arose from the fact that minority defendants had a higher baseline re-arrest 
rate.86 As a result, the algorithm could achieve its particular definition of 
fairness—equality of accuracy, conditional on release—only by releasing 
more non-minority defendants that were more likely be arrested (to 
compensate for the overall lower rate of arrest for non-minority defendants) 
and by not releasing some minority defendants that were unlikely to be 
arrested (to compensate for their overall higher rate of arrest).87 As they note, 
in sacrificing one form of fairness for another, the resulting “differences [in 
error rates] can support claims of racial injustice.” 88   

To be sure, applying our test for “unbiasedness” does not solve the 
challenge of addressing concerns about fairness. A decision that passes our 
test might still be objectionable for other distributional reasons.  In the case 
of lending, for instance, creditworthiness is a well-recognized target variable, 
but the determinants of creditworthiness (e.g., income, income growth, 
wealth) also reflect long-standing racial and economic inequalities, ensuring 
that creditworthiness will likewise reflect these racial and economic 
inequalities. Thus, even an unbiased lending rule would result in lending 
outcomes that reflect these structural inequalities, and rectifying them would 
require an additional intervention, such as through subsidized loan programs 
and other policies designed to encourage lending to low and moderate-
income families.  Indeed, this approach is reflected in existing U.S. housing 
programs such as the Federal Housing Administration mortgage program 
(which seeks to provide mortgages to low and moderate-income borrowers)89 
and the Community Reinvestment Act (which seeks to encourage lenders to 
provide loans to residents of low and moderate-income neighborhoods).90      

This two-step approach—ensuring that decision-making processes are 
unbiased and then subsequently addressing distributional concerns directly 
through transfers and subsidies—is consistent with democratic principles. As 
we show, it is conceivable to design a decision-making process that is 
unbiased with respect to a legitimate business necessity. This is the objective 
of the IAT. But as Berk’s study illustrates, it is not possible to design a 
decision-making process that satisfies every possible definition of “fairness.”  
Evaluating an algorithm for whether it is “fair” rather than “unbiased” thus 
risks enforcing a particular vision of fairness and doing so in a way that lacks 
transparency.  Indeed, Berk et al. themselves provide no explanation for why 

                                                 
86 Id. at 32. 
87 Id. 
88 Id. 
89 See James H. Carr, Katrin B. Anacker, The Complex History of the Federal Housing Administration: 
Building Wealth, Promoting Segregation, and Rescuing the U.S. Housing Market and The Economy, 34 
BANKING & FIN. SERVICES POL'Y REP. 10 (2015) (describing program). 
90 See Keith N. Hylton, Banks and Inner Cities: Market and Regulatory Obstacles to Development 
Lending, 17 YALE J. ON REG. 197 (2000) (describing Community Reinvestment Act). 
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they opted to implement their particular definition of fairness.91 Likewise, an 
algorithm that seeks to “fix” disparate outcomes that arise from an unbiased 
decision-making process can risk diminishing the ability to identify the 
source of the underlying structural inequalities and/or measurement error in 
the decision-making process. In Berk’s setting, for instance, a risk-
assessment algorithm that results in equality of release rates across minority 
and non-minority defendants could hide the possibility that minority 
defendants have a higher re-arrest rate because of prejudice among police, 
which in turn would raise the question of whether re-arrests are truly a decent 
proxy for a defendant’s level of violence. For all of these reasons, 
determination of distributional equity is accordingly best left to institutions 
that can evaluate the relevant trade-offs in a transparent fashion.   

Regardless of these conceptual and practical challenges, outcome-based 
approaches to algorithmic fairness would almost certainly be deemed legally 
problematic following the Supreme Court’s 2009 decision in Ricci v. 
DeStefano.92 The facts giving rise to Ricci involved a decision by the city of 
New Haven to discard the results of an “objective examination” that sought 
to identify city firefighters who were the most qualified for promotion.93  The 
city justified its decision to discard the results on the basis that there was a 
statistical racial disparity in the results, raising the risk of disparate impact 
liability under Title VII.94 A group of white and Hispanic firefighters sued, 
alleging that the city’s discarding of the test results constituted race-based 
disparate-treatment.95 In upholding their claim, the Court emphasized the 
extensive efforts that the city took to ensure the test was job-related96 and that 
there was “no genuine dispute that the examinations were job-related and 
consistent with business necessity.”97 Nor did the city offer “a strong basis in 
evidence of an equally valid, less-discriminatory testing alternative.”98 
Prohibiting the city from discarding the test results was therefore required to 
prevent the city from discriminating against “qualified candidates on the basis 
of their race.”99  

The Court’s assumption that the promotion test identified the most 
qualified firefighters makes it difficult to see a legal path forward for explicit 
race-based adjustments of algorithmic outcomes.  Assuming the algorithm 

                                                 
91 Berk et al, supra note 79, at 32 (describing their choice of error metric as “conditional use accuracy 
equality, which some assert is a necessary feature of fairness.”) 
92 557 U.S. 557 (2009) 
93 Id. at 562. 
94 Id. 
95 Id. at 562-63. 
96 Id. 586-588. 
97 Id. at 587; see also id at 589 (“The City, moreover, turned a blind eye to evidence that supported the 
exams' validity.”) 
98 Id. at 589. 
99 Id. at 584 (“Restricting an employer's ability to discard test results (and thereby discriminate against 
qualified candidates on the basis of their race) also is in keeping with Title VII's express protection of bona 
fide promotional examinations.”) 
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properly functions to identify individuals who are qualified in a specified 
target, such race-based adjustments would appear to be no different than what 
the city of New Haven attempted to do with the promotion test results.  
Rather, Ricci underscores the fundamental importance of ensuring that 
decision-making processes do not systematically discriminate against 
qualified individuals because of their race. And as noted previously, this is 
the objective of the IAT. 
 

C. The Input Accountability Test Versus the “Least Discriminatory 
Alternative” Test  

 
We differ also from scholars and practitioners who focus only on the final 

step in the disparate-impact burden-shifting framework. Recall that according 
to this burden-shifting framework, an employer who establishes that a 
business practice can be justified by a legitimate business necessity shifts the 
burden back to the plaintiff to show that an equally valid and less 
discriminatory practice was available that the employer refused to use.100 
Some commentators have mistakenly assumed that this test implies that the 
critical question for an algorithm that produces a disparate impact is whether 
the algorithm uses the least discriminatory predictive model for a given level 
of predictive accuracy. Of course, in using machine learning over thousands 
of variables, it is easy to run many models and decide which creates the least 
disparate impact for a given level of accuracy in prediction. But this approach 
will not address whether any of the variables used in the model are 
systematically penalizing members of a protected group that are otherwise 
qualified in the skill or characteristic the model is seeking to predict. 

Nonetheless, a number of commentators have mistakenly argued that the 
central test for whether an algorithm poses any risk of illegitimate 
discrimination should be whether there are alternative models that can 
achieve the same level of predictive accuracy with lower levels of 
discrimination.101  For instance, in an oft-cited discussion paper regarding fair 
lending risk of credit cards, David Skanderson and Dubravka Ritter advocate 
that lenders should focus on this step of the disparate-impact framework when 
evaluating the fair-lending risk of algorithmic credit-card models.102 
Specifically, Skanderson and Ritter note that “a model or a model’s predictive 

                                                 
100 See text accompanying note 56. 
101 See, e.g., Nicholas Schmidt and Bryce Stephens, An Introduction to Artificial Intelligence and Solutions 
to the Problems of Algorithmic Discrimination, (arXiv.org, Nov. 2019), available at 
https://arxiv.org/pdf/1911.05755.pdf (advocating for using “a ‘baseline model’ that has been built without 
consideration of protected class status, but which shows disparate impact, and then search[ing] for 
alternative models that are less discriminatory than that baseline model, yet similarly predictive.”) 
102 See, e.g., David Skanderson & Dubravka Ritter, Discussion Paper, Fair Lending Analysis of Credit 
Cards, Federal Reserve Bank of Philadelphia (August 2014), available at 
https://www.philadelphiafed.org/-/media/consumer-credit-and-payments/payment-cards-
center/publications/discussion-papers/2014/d-2014-fair-lending.pdf?la=en (last visited February 2, 2020).  
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variable with a disproportionate adverse impact on a prohibited basis may 
still be legally permissible if it has a demonstrable business justification and 
there are no alternative variables that are equally predictive and have less of 
an adverse impact.”103  For Skanderson and Ritter, the business necessity 
defense for an algorithmic decision-making process therefore boils down to 
whether it is the most accurate possible test in predicting a legitimate target 
variable of interest.  As they summarize in the context of lending, “If a scoring 
system is, in fact, designed to use the most predictive combination of 
available credit factors, then it should be unlikely that someone could 
demonstrate that there is an equally effective alternative available, which the 
lender has failed to adopt.”104   

To see how validating an algorithm based entirely on the fact that it is the 
most predictive model available would validate algorithms that are clearly 
biased against members of a protected group, we offer an example. Consider 
an employer who needs employees that can regularly lift 40 pounds as part 
of their everyday jobs. Imagine this employer designs a one-time test of 
whether applicants can lift 70 pounds as a proxy for whether the applicant 
can repetitively lift 40 pounds. The employer can show that this test has 90% 
prediction accuracy. However, those applicants that fail the test who in fact 
could regularly lift 40 pounds are disproportionately female. Thus, the test, 
because it is not a perfect proxy, causes a disparate impact on female 
applicants. Now assume that it can be shown that a one-time test of whether 
applicants can lift 50 pounds produces no disparate impact on females but has 
an accuracy rate of just 85%.  Under Skanderson and Ritter’s approach, the 
employer would have no obligation to consider the latter test, despite the fact 
that a 70-pound test will systematically penalize female applicants that can in 
fact satisfy the job requirement. 

Not surprisingly, this approach to pre-screening employment tests has 
been expressly rejected by courts. In Lanning v. Southeastern Pennsylvania 
Transportation Authority,105 for instance, the Third Circuit considered a 
physical fitness test for applicants applying to be transit police officers. The 
fitness test involved a 1.5 mile run that an applicant was required to complete 

                                                 
103 Id. at 38. 
104 Id. at 43. This line of reasoning also informs Barocas and Selbst’s conclusion that Title VII provides a 
largely ineffective means to police unintentional discrimination arising from algorithms.  See Barocas & 
Selbst, supra note 66, at 701-714. According to Barocas and Selbst, the business necessity defense requires 
that an algorithm is “predictive of future employment outcomes.” Id.  If this is correct, it would logically 
follow that an employer will have no disparate impact liability from using the most predictive algorithmic 
model for a legitimate job-related quality since an equally predictive, less discriminatory alternative would 
not be available.  However, this conclusion relies on an assumption that predictive accuracy is a necessary 
and sufficient condition to justify a decision-making process that produces a disparate impact. As we show, 
this is an incorrect assumption as courts have been careful not to conflate the business necessity defense 
with predictive accuracy. A predictive model may be accurate in predicting whether an individual is likely 
to have a legitimate target characteristic but nevertheless be biased against members of a protected group 
who are otherwise qualified in the target characteristic.  
105 181 F.3d 478 (3rd Cir. 1999), cert. denied, 528 U.S. 1131 (2000). 
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within 12 minutes; however, the 12 minute cut-off was shown to have a 
disparate impact on female applicants.106 The transit authority acknowledged 
that officers would not actually be required to run 1.5 miles within 12 minutes 
in the course of their duties, but it nevertheless adopted the 12 minute cut-off 
because the transit authority’s expert believed it would be a more “accurate 
measure of the aerobic capacity necessary to perform the job of a transit 
police officer.”107  

In considering the transit authority’s business-necessity defense, the 
court agreed that aerobic capacity was related to the job of a transit officer.108 
It also agreed that by imposing a12 minute cut-off for the run, the transit 
authority would be increasing the probability that a job applicant would 
possess high aerobic capacity.109  Nonetheless, the court rejected this “more 
is better” approach to setting the cutoff time:   

 
Under the District Court’s understanding of business 
necessity, which requires only that a cutoff score be “readily 
justifiable,” [the transit authority], as well as any other 
employer whose jobs entail any level of physical capability, 
could employ an unnecessarily high cutoff score on its 
physical abilities entrance exam in an effort to exclude 
virtually all women by justifying this facially neutral yet 
discriminatory practice on the theory that more is better.110  

 
Accordingly, the court required “that a discriminatory cutoff score be shown 
to measure the minimum qualifications necessary for successful performance 
of the job in question in order to survive a disparate impact challenge.”111 In 
other words, in determining whether disparate outcomes are justified, the 
question to ask in evaluating a predictive model of a legitimate target variable 
is not simply whether the model is accurate in predicting the target variable.  
Rather, the inquiry should be both whether the model is accurate and whether 
the cutoff score used to classify individuals serves the employer’s legitimate 
business goals.112   

                                                 
106 Id. at 482 
107 Id.  
108 Id. at 492. 
109 Id. (“The general import of these studies is that the higher an officer's aerobic capacity, the better the 
officer is able to perform the job.”) 
110 Id. at 493. 
111 Id. 
112 The Third Circuit was even more explicit that setting the cut-off was effectively about calibrating the 
predictive accuracy of the employment test. See Lanning, 308 F.3d at 292 (“It would clearly be 
unreasonable to require SEPTA applicants to score so highly on the run test that their predicted rate of 
success be 100%. It is perfectly reasonable, however, to demand a chance of success that is better than 5% 
to 20%.”); see also E.E.O.C. vs. Simpson Timber Co., 1992 WL 420897 (finding that a pre-employment 
step test accurately measured strength and endurance, which were legitimate business goals, but an equally 
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An even stronger rejection of the “more is better” approach to predictive 
accuracy appeared in Murphy v. Derwinski.113 There, the plaintiff, Mary 
Murphy, applied to become a Roman Catholic chaplain at hospitals operated 
by the United States Veterans Administration (VA).114 The VA rejected 
Murphy’s application on the ground that VA guidelines required that all 
applicants be ordained in the relevant religion and receive an ecclesiastical 
endorsement from their churches.115  However, within the Roman Catholic 
religion, only men can be ordained as priests, making it impossible for 
Murphy to satisfy these requirements.116  In her subsequent Title VII lawsuit, 
the district court determined that Murphy made out a prima facie case of 
discrimination based on this policy and that the defendant articulated a 
legitimate business justification for it.117 In particular, the court agreed with 
the VA that the agency’s interest in providing a full range of ritual services 
to its Catholic patients creates a legitimate purpose for requiring ordination 
for VA chaplains.118  The court nevertheless rejected the VA’s argument that 
if the ordination requirement were eliminated, the VA would be unable to 
accommodate the needs of its patients by providing the full range of religious 
services.119 Rather, the court held that by removing the ordination 
requirement and requiring only ecclesiastical endorsement, the VA could still 
ensure that its patients received the religious services that the Catholic Church 
deemed sufficient.120   

On appeal, the Tenth Circuit affirmed and elaborated on why removing 
the ordination requirement would not impair the VA’s legitimate interests.121  
Citing the VA’s own administrative materials, the court noted that the 
chaplain service’s primary objective was to “provide for the spiritual 
welfare”122 of patients such as through establishing relationships with patients 
and providing patients and family members with ministry in crisis situations, 
and “[p]riests are not needed to administer these functions.”123  The court 
acknowledged that only priests could administer sacraments to patients 
subscribing to the Roman Catholic faith,124 but it concluded that the VA 
would still be able to accommodate the religious needs of its Roman Catholic 
patients:  

                                                 
effective, less discriminatory alternative existed in the form of using a lower cut-off score to determine if 
an applicant passed the test). 
113 990 F.2d 540 (10th Cir. 1993). 
114 Id. at 542. 
115 Id. 
116 Id. at 542 n. 5.  
117 Murphy v. Derwinski, 776 F. Supp. 1466, 1470 (D. Colo. 1991). 
118 Id. 
119 Id. at 1472-73 
120 Id. 
121 Murphy 990 F.2d at 545-547 
122 Id. at 546 
123 Id. 
124 Id. at 545. 
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The experience of the VA hospital in Denver where Murphy 
sought to work suggests that removal of the ordination 
requirement will not disrupt services only priests may 
perform. Of the hospital’s six chaplains at the time of this 
lawsuit, two were Catholic priests. Thus, four of the 
chaplains could not provide Roman Catholics with services 
unique to that religion. Similarly, none of the six could 
administer unique religious services to members of 
nonrepresented faiths. When a priest is needed but, for 
whatever reason, is unavailable, the VA Manual calls for 
supplementing its full-time chaplain services through 
contract help or other arrangements.125 

 
Thus, the court held that requiring only the ecclesiastical endorsement 

was an alternative, nondiscriminatory requirement that could serve the VA’s 
legitimate interest in providing the full range of religious services to its 
patients.126 In so doing, note the inconsistency with the approach to the “less 
discriminatory alternative” inquiry as interpreted by Skanderson and Ritter.  
Like the transit authority in Lanning, the VA in Murphy was concerned about 
identifying job applicants who, at any given moment during their job 
performance, were likely to serve the VA’s legitimate interest.127 That is, the 
VA’s hiring guidelines were designed to provide an answer to the question:  
When a Roman Catholic patient requires religious services, will this applicant 
be able to provide them? The two requirements—ordination and 
ecclesiastical endorsement—were clearly accurate in predicting whether an 
applicant could provide these services. And the requirement that applicants 
have both characteristics made it virtually certain that a VA chaplain could, 
in fact, provide any and all of these religious services, any time of the day 
(morning, noon or night).  But like the court in Lanning, the Murphy court 
also concluded that setting the probability threshold so high—in this case, 
imposing an application requirement that made it close to 100% certain that 
a chaplain would be available to provide any and all Catholic religious 
services—was simply too high.  As the court emphasized, most of the services 
required of chaplains did not require ordination. Thus, eliminating the 
ordination requirement might lessen the probability that a VA chaplain would 
actually be available to administer the sacraments if a patient happened to 
require them, but the probability would nonetheless remain high enough to 

                                                 
125 Id. at 546.  
126 Id. at 545-546. 
127 See Murphy, 776 F. Supp. at 1472 (“The VA asserts that if ordination were not required, it would not 
be able to accommodate the needs of its patients by providing the full range of religious services. VA 
chaplains must be able to administer the various sacraments, and only ordained priests are qualified for 
these duties.”)  
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satisfy the VA’s legitimate interest in accommodating the religious needs of 
its Roman Catholic patients. 

In short, in the era of algorithmic decision-making, we view the need to 
inquire into whether there exists a “less discriminatory alternative” to be 
fundamentally about the cut-off threshold applied to an algorithm that 
otherwise passes our test.  Whether an algorithm is screening for acceptable 
job applicants or acceptable borrowers, the end result is both to estimate the 
probability that an individual has a legitimate target characteristic and then to 
apply a probability cut-off to make the ultimate accept/reject classification.  
In setting this cut-off, Lanning and Murphy are reminders of the need to 
consider whether the cut-off has been set at the minimum level required to 
advance a legitimate business interest, such as successful performance of the 
job in question.128  As we show below, doing so can help ensure that a 
decision-making process that passes our test is not inappropriately biased 
against members of a protected group simply because of the unequal 
distribution of a legitimate target variable (e.g., strength or speed) across 
protected and unprotected groups.129    

D.  The Input Accountability Test Versus HUD’s Mere Predictive Test 

Finally, we consider the IAT against HUD’s 2019 proposed rulemaking 
regarding the application of the disparate impact framework under the 
FHA.130  Given the increasing role of algorithmic credit scoring, the proposed 
rule-making expressly provides for a new defense for disparate impact claims 
where “a plaintiff alleges that the cause of a discriminatory effect is a model 
used by the defendant, such as a risk-assessment algorithm….”131 In 
particular, the proposed rule provides that in these cases, a lender may defeat 
the claim by “identifying the inputs used in the model and showing that these 
inputs are not substitutes for a protected characteristic and that the model is 
predictive of risk or other valid objective.”132  In other words, so long as a 

                                                 
128 See Lanning F.3d. 481 (“[U]nder the Civil Rights Act of 1991, a discriminatory cutoff score on an entry 
level employment examination must be shown to measure the minimum qualifications necessary for 
successful performance of the job in question in order to survive a disparate impact challenge.”); see also 
Association of Mexican-American Educators v. State of California, Nos. 96-17131 and 97-15422, 1999 
WL 976720 (9th Cir. Oct. 28, 1999) (upholding, against a disparate-impact challenge under Title VII, a 
requirement that public-school teachers “demonstrate basic reading, writing and mathematics skills in the 
English language as measured by a basic skills proficiency test” and holding as not clearly erroneous the 
district court’s finding that the cutoff scores “reflect[ed] reasonable judgments about the minimum levels 
of basic skills competence that should be required of teachers.”). 
129 This interpretation of the third prong of the Title VII burden-shifting framework is also consistent with 
the common view that it is effectively a test for whether an articulated business necessity defense is a 
pretext for discrimination; that is, as noted in Lanning, one could purposefully set a threshold at a 
sufficiently high level to ensure that members of protected groups will fail the test. See, e.g., Murphy 990 
F.2d at 545 (“The focus on appeal is whether the VA’s business justification for requiring an ordained 
clergy person constitutes a pretext for gender discrimination.”)   
130 See 2019 HUD Proposal, supra note 20. 
131 Id. at 42,862. 
132 Id. 
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variable is not an undefined “substitute” for a protected characteristic, any 
model that predicts creditworthiness is sufficient to defeat a claim of disparate 
impact discrimination.   

This approach to algorithmic accountability, however, suffers from the 
same defect noted previously with regard to those who have misapplied the 
“least discriminatory alternative” test. Specifically, by focusing solely on 
whether a model is “predictive of risk or other valid objective,” HUD’s test 
leaves open the possibility that a lender can adopt a model that systematically 
discriminates against borrowers who are, in fact, creditworthy. Recall that in 
our hypothetical strength test, the ability to lift 70 pounds was, in fact, 
predictive of whether an applicant could regularly lift 40 pounds; however, it 
systematically discriminated against women who were qualified for the job.  
Worse still, by not even requiring that a model have any particular level of 
accuracy, HUD’s test would seemingly permit the use of any proxy so long 
as it has some correlation with credit risk.  Indeed, this approach would even 
appear to permit the use of explicit redlining in a predictive model so long as 
a lender could show that the average credit risk of a majority-minority 
neighborhood is marginally higher than that of non-majority-minority 
neighborhoods. 

In contrast, a central goal of the IAT is to ensure that in evaluating 
whether a model is consistent with a decision-maker’s legitimate business 
necessity, it incorporates only those proxy variables that are not corelated 
with a protected characteristic beyond the proxy variables’ correlation with a 
legitimate target variable.  

III.  THE INPUT ACCOUNTABILITY TEST 

In this section, we formally present our input accountability test (IAT) 
for unintentional discrimination. We begin with some nomenclature. The 
design of a decision-making algorithm rests fundamentally on the 
relationships between a set of variables, referred to as “features,” and an 
underlying latent skill or attribute of interest (creditworthiness, productivity, 
etc.), referred to as a “target.” Today, the relationships between targets and 
features are increasingly analyzed and developed within artificial-intelligence 
and machine-learning processes, but it is just as likely that an organization 
uses an algorithmic decision process based on human-selected data or even 
on personal intuition. The IAT applies to both machine learning and human 
learning. 

Our core contribution is a test that informs when a feature’s (a proxy 
variable’s) use has correlations with a target that produce statistical 
discrimination against a protected class that is unjustified according to the 
criteria developed in Part 2.  That is, the IAT detects if the use of a feature 
results in systematically penalizing members of a protected group who are 
otherwise qualified in the target variable of interest.  After illustrating the 
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IAT, we extend our analysis to consider the mis-assertion of a target cutoff 
that does not reflect the true level of the target that is required, reflecting the 
prior example we gave of requiring job applicants to lift 70 pounds as a mis-
asserted target.  

A.  The Test 

We illustrate our test throughout with the facts giving rise to the 1977 
Supreme Court decision in Dothard v. Rawlinson.133  As noted previously, in 
Dothard, female applicants for prison guard positions challenged a prison’s 
minimum height and weight requirements as inconsistent with Title VII.134 
Because the average height and weight of females was less than that for 
males, the female applicants argued that the requirement created an 
impermissible disparate impact for females under Title VII.135  In response, 
the prison argued that a height and weight requirement was a justified job 
requirement given that an individual’s height and weight are predictive of 
strength, and strength was required for prison guards to perform their jobs 
safely.136  In short, the prison took the position that the general correlation 
between one’s height/weight and strength was sufficient to justify the 
disparate outcomes this requirement caused for women. The Supreme Court, 
however, rejected this defense.137 Rather, to justify gender differences in 
hiring outcomes, the prison would need to show that it had tested for the 
specific type of strength required for effective job performance; 138 in other 
words the prison would have to be concerned with the aspects of strength that 
the proxy variables were and were not picking up that related to a prison 
guard’s need for strength. 

We use this setup and some hypothetical applicants to lay out the IAT. 
Imagine for example that twelve individuals apply for an open prison guard 
position, of which six applicants are male and six are female.  In evaluating 
the applicants, the prison seeks to select those applicants who possess the 
actual strength required for successful job performance. For simplicity, 
assume that an individual’s strength can be measured on a scale of zero to 
one hundred, and that a strength score of at least sixty is a true target for job 
effectiveness (in the Court’s language a strength of sixty is a legitimate-
business-necessity criterion). The challenge the prison faces in evaluating job 
applicants is that each applicant’s actual strength is unobservable at the time 
of hiring, thus inducing the prison to rely on height as a proxy.   

                                                 
133 433 U.S. 321 (1977). 
134 Id. at 323-24. 
135 Id. 
136 Id. 331. 
137 Id. at 332. 
138 Id. at 332 (“If the job-related quality that the appellants identify is bona fide, their purpose could be 
achieved by adopting and validating a test for applicants that measures strength directly.”) 
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Assume that the use of a minimum height requirement results in the 
following distribution of applicants according to their actual but unobservable 
strength (Figure 1).   

 Figure 1  

 
Results with  
Height Test 

 

Actual 
Strength 

Meets Height 
Requirement 

Fails Height 
Requirement 

 

100 x   
90 x  Minimum 

Required 
Strength 

80 x  
70 x x 
60  x 
50 x   
40 x x  
30  x  
20  x  
10  x  
0    

x = applicant  
 
Consistent with the prison’s argument, there is a clear correlation between an 
applicant’s height and actual strength. However, when we examine the 
gender of the applicants, we discover that only the six male applicants satisfy 
the minimum height requirement (Figure 2). 
 

 Figure 2  

 
Results with  
Height Test 

 

Applicant’s 
Strength 

Meets Height 
Requirement 

Fails Height 
Requirement 

 

100 �   
90 �  Minimum 

Required 
Strength 

 
 

80 �  
70 � 
60  
50 �   
40 �   
30    
20    
10    
0    

� = male;  = female  
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In this situation, a basic correlation test between height and strength has 

produced exactly the same injury noted in Part 2:  The imperfect relationship 
between height and strength results in penalizing otherwise qualified female 
applicants and benefiting unqualified male applicants.  This can be seen from 
the fact that the only applicants who possessed sufficient strength but failed 
the height test were female. Likewise, the only applicants who met the height 
test but lacked sufficient strength were male. The screening test is thus 
systematically biased against female applicants for reasons unrelated to a 
legitimate business necessity. 

This example points to the crux of the IAT. In general, the objective of 
the test is to ensure that a proxy variable is excluded from use if the imperfect 
relationship between the proxy variable and the target of interest results in 
systematically penalizing members of a protected group that are otherwise 
qualified in the target of interest. In other words, since the proxy variable 
(height) is not a perfect predictor of having the target strength, there is some 
residual or unexplained variation in height across applicants that is unrelated 
to whether one has the required strength. The question is whether that residual 
is correlated with gender. In Figure 2, it is.  

To avoid this result in Dothard, the Supreme Court therefore required a 
better proxy for required strength. In particular, the prison would be required 
to “adopt[] and valida[te] a test for applicants that measures strength directly” 
in order to justify disparities in hiring outcomes.139  For example, assume that 
the prison implemented as part of the job application a physical examination 
that accurately assessed required strength, which produced the following 
results (Figure 3).  
 

                                                 
139 Id. at 332. 
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 Figure 3  

 
Results with Perfect  

Strength Exam 
 

Actual 
Strength 

Passes  
Exam 

Fails  
Exam 

 

100 �   
90 �  Minimum 

Required 
Strength 

 
 

80 �  
70 �   
60   
50  �  
40  �   
30    
20    
10    
0    

� = male;  = female  
 
The examination was perfect in classifying all individuals – male and female 
– as qualified if they in fact were so.  Note that, even under this perfect exam, 
more males than females would be deemed eligible for the position. This 
disparity, however, arises solely through differences in actual strength (a 
legitimate business necessity).  

Figure 3 is an ideal outcome in the sense that the prison was perfect in 
measuring each applicant’s actual strength, but perfect proxy variables are 
rarely available. Imagine instead that the prison asks the applicants to 
complete a simple muscle-mass index assessment (Figure 4).140 

 

                                                 
140 For instance, imagine the prison assesses each applicant’s mid-arm muscle circumference (MAMC) 
and requires a minimum measure which the prison believes is associated with having a minimum strength 
of 60.  The MAMC is one of several techniques to measure muscle mass. See Julie Mareschal et al., 
Clinical Value of Muscle Mass Assessment in Clinical Conditions Associated with Malnutrition, 8 J. CLIN. 
MED. 1040 (2019). 
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 Figure 4  

 
Results with  

Muscle Mass Exam 
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As can be seen, muscle mass proxies for required strength with a positive, 
significant correlation, but it does so with error. In particular, there are 
applicants who are sufficiently strong but fail the muscle mass requirement, 
and there are applicants who meet the muscle mass requirement but are not 
sufficiently strong. The difference from Figure 2, however, is that the proxy 
is unbiased: Neither male applicants nor female applicants are favored by the 
fact that the proxy does not perfectly measure required strength. This is 
illustrated by the fact that one male and one female fail the muscle mass 
requirement but possess sufficient strength for the job, and one male and one 
female meet the muscle mass requirement but lack sufficient strength.  
Because the proxy is unbiased with respect to gender, an employer should 
therefore be permitted to use muscle mass as a proxy for required strength. 

B.  The Test in Regression Form 

Moving from concepts to practice, standard regression techniques 
provide a straightforward means to implement the IAT.  In keeping with the 
foregoing example, we return to the modified facts of Dothard, in which a 
prison uses a job applicant’s height as a proxy for whether they have the 
required strength to perform the job of a prison officer.141 The prison does so 
based on the assumption that required strength is manifested in an 

                                                 
141 Of course, there might be multiple proxies. For instance, imagine the job requirements were strength 
and IQ, in some combination. Such a specification could be handled by more complex formations on the 
right-hand side of the regression framework that we discuss in this subsection. 
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individual’s height. However, height is also determined by a host of other 
causes that are unrelated to strength. If we represent this group of non-
strength determinants of height for a particular individual i as ߝ, we can 
summarize the relationship between the height and strength as follows: 
 

ݐ݄݃݅݁ܪ ൌ ߙ ∙ ݄ݐ݃݊݁ݎݐܵ   ,ߝ
 
where ߙ is a transformation variable mapping the relationship of strength to 
expected height. If ߝ was zero for each individual i, the equation becomes 
ݐ݄݃݅݁ܪ ൌ ߙ ∙  . In such a setting, an individual’s height would be݄ݐ݃݊݁ݎݐܵ
precisely equal to the individual’s strength, multiplied by the scalar ߙ. 
Therefore, one could compare with perfect accuracy the relative strength of 
two individuals simply by comparing their heights. 

Where ߝ is non-zero, using height as a proxy for strength will naturally 
be less accurate; however, using height in this fashion will pose no 
discrimination concerns if ߝ	(the unexplained variation in height that is 
unrelated to strength) is uncorrelated with a protected classification. This was 
precisely the case in Figure 4:  Strength was somewhat manifested through 
the muscle mass index. Thus, it would be a useful variable for predicting 
which job applicants had the required strength for the job. Moreover, while it 
was error-prone in measuring actual strength (i.e., ߝ 	് 0ሻ, using one’s 
muscle mass index to infer strength would pass the IAT: 
 

ߝ ٣  ;ݎ݁݀݊݁݃
 
the errors were not statistically correlated with gender, the protected category 
in our example. To implement this test empirically, the prison would use the 
historical data it holds concerning its existing employees’ measured height 
and strength and regress employee height on employee strength to estimate 
 ߝ  for each employee.142 Using theseߝ which can be used to estimate ,ߙ
estimates, the prison would then examine whether they are correlated with 
employee gender. 

How would the IAT be used in a setting where the proxy is not a 
continuous measure (such as one’s height or muscle mass) but rather a binary 
outcome of whether an individual possesses a specified level of the measure? 
Recall that this was the case in our hiring example where the prison first 
assessed an applicant’s height and then applied a cut-off score to eliminate 
from consideration those applicants who fell below it. As reflected in 

                                                 
142 The regression will also estimate a constant term that is utilized in calculating the relationship between 
strength and height. 
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Dothard and Lanning, applying a minimum cut-off score to a proxy variable 
is a common decision-making practice, including within machine learning.143  

The application of the IAT would use the same framework, but using as 
the left-hand-side variable an indicator variable for whether an individual i 
was above or below the cutoff—for our example, ݐ݄݃݅݁ܪ ൌ 1	for applicants 
above the cutoff and ݐ݄݃݅݁ܪ ൌ 0 for applicants below it.  To estimate a 
discrete 0-1 variable (Height) as a function a target (e.g., Strength), the 
preferred model is a logistic regression (or a comparable model for use with 
a dichotomous outcome variable). Logistic regression is a transformation that 
takes a set of zeros and ones representing an indicator variable and specifies 
them in terms of the logarithm of the odds ratio of an outcome (in our 
example, the odds ratio is the probability of ݐ݄݃݅݁ܪ being above the cut-off 
divided by the probability that it is below the cut-off). This formulation is 
then regressed on the target measure (Strength). To generate the residuals (ߝ) 
for the IAT test, one predicts the probability of a positive outcome and then 
generates the error as the true outcome minus the predicted probability. As 
above, to pass the test, the residuals should not be significantly correlated 
with gender. 

Finally, we conclude this overview with a discussion of what happens 
when a proxy variable fails the input accountability test: exclusion from the 
model.  If the residuals (ߝሻ	are correlated with a protected classification (e.g., 
gender), it may be possible to “de-bias” a model that predicts strength from 
height, most notably by adding an individual’s membership (or lack of 
membership) in a protected class as an input in the predictive model.144   

However, as shown in the Appendix, the fact that de-biasing requires us 
to include Gender in the predictive model impairs the utility of this approach. 
A predictive model that explicitly scores individuals differently according to 
gender constitutes disparate treatment, making it a legally impermissible 
means to evaluate individuals.  To avoid this challenge, proponents of this 
approach have therefore advocated that, in making predictions, the model 
should assign all individuals to the mean of the protected classification;145 in 
our example, one would do so by treating all individuals as if Gender = 0.5 
(i.e., (1 + 0) / 2) when estimating the effect of Gender on predicted strength.  
Doing so introduces prediction error, however, and as demonstrated by 
Kristen Altenburger and Daniel Ho, this error can be especially problematic 

                                                 
143 See, e.g., Elizabeth A.Freeman & Gretchen G.Moisen, A Comparison of the Performance of Threshold 
Criteria for Binary Classification in Terms of Predicted Prevalence and Kappa, 217 ECOLOGICAL 

MODELING 48 (2008) (reviewing criteria for establishing cutoffs in ecological forecasting). 
144 This approach to de-biasing proxy variables has been advanced by several scholars. See Devin G. Pope 
& Justin R. Sydnor, Implementing Anti-Discrimination Policies in Statistical Profiling Models, 3 AM. 
ECON. J. 206, 206 (2011); Crystal Yang & Will Dobbie, Equal Protection Under Algorithms: A New 
Statistical and Legal Framework, John M. Olin Center For Law, Economics, and Business Discussion 
Paper No. 1019 (October 2019). We provide an example of this approach, as well as its limitations, in the 
Appendix. 
145 See, e.g., Pope & Sydnor, supra note 144, at 212. 
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when the approach is deployed in common machine-learning models.146 More 
troublesome, these prediction errors can themselves be systematically biased 
against members of a protected group who are otherwise qualified in the 
target. We illustrate this challenge in the Appendix, which presents a simple 
example showing that this “de-biasing” procedure may actually have almost 
no effect on the extent of bias in the final outcome. 

 These considerations reinforce our conclusion that any variable that fails 
our test should be excluded from a decision-making model. While this 
approach risks sacrificing some degree of predictive accuracy in favor of 
ensuring an unbiased decision-making process, our discussion in Part 2(C) 
illustrates that U.S. antidiscrimination law has long made this trade-off.  
Additionally, a rule of exclusion also creates obvious incentives to seek out 
observable variables that can more accurately capture the target variable of 
interest, consistent with the holding of Dothard that the prison should adopt 
a test that more directly measured applicant’s strength.147 Indeed, in the 
machine learning context, this history of U.S. antidiscrimination law provides 
an independent reason to adhere to a rule of exclusion given the capacity of 
machine-learning processes to analyze an ever-increasing volume of data to 
identify proxy variables that enhance accuracy while remaining unbiased 
with respect to a protected classification. 

C.  Challenges in Implementing the Test 

Implementing the IAT faces several challenges, which we list below and 
then discuss in the context of the hiring test ሺݐ݄݃݅݁ܪ ൌ ߙ ∙ ݄ݐ݃݊݁ݎݐܵ   ,ሻߝ
where the target variable is ݄ܵݐ݃݊݁ݎݐ.  

i.  Unobservability of the Target Variable  

The problem of an unobservable target variable of interest is always the 
starting point for constructing an algorithm to screen an applicant (or make 
some other decision), since the motivation for using statistical inference in 
the first place is the challenge of measuring unobservable characteristics such 
as creditworthiness, productivity, longevity, or threat to public safety.148 In 
designing a machine-learning algorithm, the need to solve this problem arises 
in the training procedure, where data on a target variable are required to 
determine which features predict the target. In practice, the solution is to turn 
to historical data, which can be used to train the predictive model.149 In the 

                                                 
146 See Kristen M. Altenburger and Daniel Ho, When Algorithms Import Private Bias into Public 
Enforcement: The Promise and Limitations of Statistical Debiasing Solutions, 175 JOURNAL OF 

INSTITUTIONAL AND THEORETICAL ECONOMICS 98 109-118 (2018). 
147 See supra note 138. 
148 See Jon Kleinberg, Jens Ludwig, Sendhil Mullainathan and Cass R. Sunstein, Discrimination in the Age 
of Algorithms, 10 J. LEG. ANALYSIS 113, 132 (2019) (“One way to think about the goal of prediction is to 
overcome a missing information problem.”). 
149 Id.  
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employment setting, for instance, an employer seeking to predict the future 
productivity of job applicants could train a model with data concerning the 
productivity of existing employees along with data concerning the 
characteristics of these employees at the time of application.  The data may 
suffer from selection bias given that the employer will not observe applicants 
who were not hired, which is why in both training a model and in running the 
IAT, one must be attendant to measurement error—a point we discuss in 
subsection (ii). 

Nonetheless, the threshold challenge for the IAT—that the target is 
unobservable—is in many ways one of transparency.  That is, data concerning 
the target variable exist (after all, these data were required to train the model), 
but they may not necessarily be available. As Jon Kleinberg, Jens Ludwig, 
Sendhil Mullainathan, and Cass Sunstein emphasize, transparency in the 
training data is therefore an important step in ensuring the ability to evaluate 
whether algorithmic decision-making facilitates discrimination.150 We agree. 
The ability to examine the training data used in designing a model would 
allow a regulator, litigant or data scientist to conduct the empirical test we 
describe in this section. In the UnitedHealth example discussed in the 
Introduction, one could apply the IAT using actual morbidity data to assess 
whether the substitute measure of the target—the cost of healthcare—has a 
discriminatory effect. Indeed, the availability of actual morbidity data was 
what enabled researchers to quantify the racial bias in Science.151   

Even with data on the target variable of interest, however, this last 
example highlights the problem of measurement error: Do the data on the 
target measure what they purport to measure with error?  We address this 
problem in the following subsection. 

 
ii.  Measurement Error in the Target  

In addressing the unobservability problem of the target, one can 
inadvertently mis-measure it. This challenge of measurement error—or what 
is alternatively referred to as “label bias”152—has been studied in the 
computer science and economics literatures, providing useful guidance for 
addressing it when applying our test.153 

Consider, for instance, judicial bail decisions where data scientists have 
used past judicial bail decisions to train algorithms to decide whether a 

                                                 
150 Id. at 114 (arguing that harnessing the benefits of algorithmic decision-making while avoiding the risk 
of discrimination “will only be realized if policy changes are adopted, such as the requirement that all 
the components of an algorithm (including the training data) must be stored and made available for 
examination and experimentation”). 
151 Obermeyer, et al., supra note 7, at 447 (“Because we have the inputs, outputs, and eventual outcomes, 
our data allow us a rare opportunity to quantify racial disparities in algorithms and isolate the 
mechanisms by which they arise.”). 
152 Corbett-Davies & Goel, supra note 75, at 3. 
153 See id. at 17-18. 
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defendant should be released on bail pending trial.154 In many states, judges 
are required to consider the risk that a defendant poses for public safety, and 
in training the model, the target variable is often defined to be whether a 
defendant who was released was later arrested prior to the trial.155  However, 
heavier policing in minority neighborhoods might lead to minority defendants 
being arrested more often than non-minorities who commit the same 
offense.156 Consequently, Sam Corbett-Davies and Sharad Goel have warned 
that this form of label bias risks causing a model to estimate a positive 
relationship between a defendant’s race (and correlates of race) and whether 
the defendant poses a risk to public safety, simply due to the correlation of 
race with measurement error.157  

Likewise, as Jon Kleinberg and others have noted, an employer who 
seeks to measure employee productivity through the number of hours that an 
employee spends at work will likely be using a biased measure of productivity 
if there are gender differences in how efficiently an employee works at the 
office (for example, to attend to childcare obligations before or after work).158  
Similar to the bail example, this form of label bias is problematic because the 
measurement error may be correlated with a protected characteristic, in this 
case, gender.  

These examples illustrate a more general point, which is that 
measurement error in a target variable will create discriminatory bias when 
the measurement error is correlated with membership in a protected group.  
This result occurs because a statistical model that seeks to estimate the 
predictors of a true target y that is mis-measured as y +  will inevitably 
discover that the protected classification (and any correlate of it) predicts the 
level of the mis-measured target.  

For similar reasons, when measurement error in a target variable is 
correlated with a protected classification, application of our test may fail to 
detect this bias. Returning to the Dothard example, imagine that we applied 
the IAT to Height as before, but we use a measure for strength, Strength*, 
that has measurement error  that is correlated with gender. Formally, the test 
would be: 

 
ݐ݄݃݅݁ܪ ൌ ߙ ∙ ݄ݐ݃݊݁ݎݐܵ

∗   ߝ
 
which is equivalent to: 
 

ݐ݄݃݅݁ܪ ൌ ߙ ∙ ሺ݄ܵݐ݃݊݁ݎݐ  ሻߤ   ߝ

                                                 
154 See, e.g., Berk et al., supra note 79, at 31-33. 
155 Id. at 31. 
156 Corbett-Davies & Goel, supra note 75, at 18. 
157 Id. 
158 See Kleinberg et al., supra note 148, at 139. 
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In such a setting, the IAT may fail to reveal that the errors (ߝሻ	are correlated 
with the protected classification of gender. The reason is because the 
unexplained variation between “true” Strength and Height is (ߤ   ሻ, butߝ
the IAT will not be able to detect how gender is correlated with ߤ because it 
is part of Strength*, the mis-measured target. In short, measurement error in 
a target variable is a critical issue to consider regardless of whether one is 
calibrating a model or running our test. 

Recognition of this latter point is implicit in Kleinberg, Ludwig, 
Mullainathan, and Sunstein’s argument for making training datasets 
transparent. Often, the data for a target will reveal fairly obvious risks that 
the measurement error is biased with respect to a protected classification 
(such as the example cited earlier when an employer uses hours-worked as a 
measure for productivity). At the same time, other instances when this 
problem arises may be less obvious. In the example we provided in the 
Introduction, that of UnitedHealth, it may not have been immediately obvious 
that patient costs—the substitute measure of the target of interest—had 
measurement error for the true target (severity of illness) that was correlated 
with race. Yet this correlated measurement error was nevertheless revealed 
when researchers used an alternative estimate for severity of illness.  

This last example thus underscores the need to run the IAT with 
alternative measures of the target which may reveal problematic 
measurement error in the primary target data. Moreover, opening up the 
possibility of running the IAT with alternative measures of the target variable 
should also encourage the use of theory-based models of target 
characteristics. Theory-based estimates of target variables may be especially 
valuable in addressing the measurement error that arises from estimating 
targets based on binary outcomes.  Common approaches to estimating target 
variables often rely on estimating a predictive model based on a binary 
outcome variable, such as whether a borrower defaults on a loan or whether 
a defendant who was released on bail later commits a crime prior to trial. Yet 
estimating unobservable characteristics such as “creditworthiness” or “risk” 
based on these binary behaviors necessarily implicates the risk of 
measurement error in the true target of interest.   

Consider, for instance, a model that seeks to predict creditworthiness 
based solely on whether a borrower defaults in the training data. By 
construction, the training dataset consists only of those borrowers who 
received a loan; borrowers who do not get a loan provide no information. 
Thus, it is infeasible to estimate actual creditworthiness within the broader 
group of all applicants.  This is the “selective labels” problem that has been 
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studied in the computer science and economics literatures.159 The literature 
on selective labels in training a model has suggested a process of 
interventions to correct the misestimations.160 Another approach would be to 
implement the IAT through a structural estimation of theoretic 
representations of the target business necessity.161   

Another version of the problem of measurement error comes in the 
context of threshold analysis. In our example, the prison asserted that it 
needed a minimum required level of strength. As a result, the target was not 
the continuous variable of strength, but the applicant possessing a strength 
level of at least 60, which we assumed was a legitimate business necessity 
threshold for a prison guard job. But what if the level of strength needed is 
not obvious? What if the prison erroneously thought the true level of required 
strength was 80? We previously referred to this setting as a mis-asserted 
target threshold. Cases such as Lanning v. Southeastern Pennsylvania 
Transporation Authority underscore the potential for these target thresholds 
to be mis-asserted in a way that results in intentional discrimination, such as 
when they are purposefully set at a level that will adversely affect members 
of a protected group. 

In Figure 5, we assume that, as in Figure 3, the prison implements a 
physical exam that perfectly measures actual strength. If the prison 
mistakenly sets the minimum required strength threshold at 80 (the dashed 
line), the resulting problem is that more women cluster in the just-failed space 
(between the dashed and straight line), which is the region of between the 
mis-asserted target threshold relative to the true required strength level. In 
fact, if an employer did not want to hire women, it could intentionally 

                                                 
159See Himabindu Lakkaraju, et al., The Selective Labels Problem: Evaluating Algorithmic Predictions in 
the Presence of Unobservables, in KDD Conference Proceedings, 2017; Kleinberg et al., Human 
Decisions and Machine Predictions, 133 Q. J. ECON. 237, 256- (2018). 
160 See, e.g., Maria De-Arteaga, et al., Learning Under Selective Labels in the Presence of Expert 
Consistency, (July 4, 2018), https://arxiv.org/abs/1807.00905v1 (proposing a data augmentation approach 
that can be used to leverage expert consistency to mitigate the partial blindness that results from selective 
labels). 
161For instance, consider a credit scoring algorithm that predicts credit risk based on default rates for loans 
that were previously extended to a group of borrowers.  A model built using these target data (i.e., whether 
or not a borrower defaults) suffers from bias insofar as it only includes default data for loans that were 
approved by a lender.  This selective labels problem can result in bias if the human decision-maker who 
approved the loans based the approval decision on borrower characteristics that were observable to the 
loan officer but are unobservable to the data scientist because they do not appear in the dataset.  Imagine, 
for instance, that a loan officer records data on a loan applicant’s occupation and, for low-paying 
occupations, the loan officer also evaluates informally an applicant’s attire, which the officer believes is 
associated with creditworthiness.  Assume the loan officer approves loans to well-dressed applicants in 
occupations that would otherwise make them ineligible for a loan and that these applicants are, in fact, 
more creditworthy than their occupation would suggest. Training a predictive model using only default 
data and occupation at the time of application would therefore suggest to the model that “high risk” 
occupations are actually more creditworthy than they are because they default infrequently.  Moreover, 
given racial, ethnic and gender differences in the composition of certain occupations, this model would 
likely be biased in addition to being inaccurate.  However, evidence of this bias would become apparent 
in applying the IAT if one were to run the test using an estimate for creditworthiness that was based on 
borrowers’ cash flow data as opposed to default data. 
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implement a mis-asserted target, knowing that more women would be 
excluded.  
 

 Figure 5    

 
Results with Valid  

Strength Exam 
   

Actual 
Strength 

Passes  
Exam 

Fails  
Exam Minimum Required 

Strength 

 

100 �   
90 �  True  Model  
80 �    
70  �    
60     
50  �    
40  �     
30      
20      
10      
0      

� = male;  = female    
 
In this setting, the exam would pass the IAT insofar that it was unbiased with 
respect to gender in predicting whether an applicant had strength of at least 
80. However, the employer’s use of the exam would nevertheless fail our 
definition of accountability set forth in Part 2 because the employer has set 
the cut-off at a level where qualified females are systematically exluded from 
the position. As emphasized in Lanning, this example underscores the 
importance of supplementing the IAT with the ability to scrutinze whether a 
classification threshold has been set at a level that is justified by actual 
business necessity. 

iii.  Testing for “Not Statistically Correlated”  

The third challenge concerns how to reject the null hypothesis that no 
correlation exists between a set of proxy variable residuals and a protected 
category. In our Dothard illustration, the use of Height as a proxy for Strength 
would pass the IAT if the unexplained variation between Strength and Height 
 :ሻ is uncorrelated with Gender, as given by the testߝ)

 
Regression: ߝ ൌ ߚ   ݎ݁݀݊݁ܩଵߚ
Null Hypothesis: ߚଵ ൌ 0. 

 
The tradition in courts and elsewhere is to use a statistical significance level 
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of 0.05;162  i.e., we are willing to allow for a 5% probability of making the 
“Type I” error of rejecting the null hypothesis (1 = 0) by chance, when it is 
actually true. A related concept is the p-value of an estimate: the probability 
of obtaining an estimate for ߚଵ	at least as far from zero as the value estimated, 
assuming the null hypothesis is true. If the p-value is smaller than the 
statistical significance level, one rejects the null hypothesis.  

However, a problem with focusing on p-values is that as the sample size 
grows increasingly large, realized p-values converge to zero if the sample 
estimate for ߚଵ	is even trivially different from the null. This is because as the 
sample size grows larger, the uncertainty of our estimates (usually measured 
by their “standard error”) gets closer and closer to zero, causing any 
coefficient (even magnitude-irrelevant ones) to look different from an exact 
null of ߚଵ ൌ 0 in a p-value test. In particular, a company that brings a large 
dataset to bear on an IAT test might be disadvantaged relative to firms with 
less data.  

The source of the problem is the fact that in any statistical test we are 
actually trading off the probabilities of making two different errors: Type I 
errors (when we wrongly reject the null when it is, in fact, true) and Type II 
errors (when we wrongly fail to reject the null when it is, in fact, false). The 
“significance level” of a test is the probability of making a Type I error. 
Keeping this fixed (e.g., at 5%) as the sample size increases means that we 
are keeping the probability of a Type I error fixed. But at the same time, again 
because the standard error of our estimates is going to zero as the sample size 
gets large, the probability of a Type II error is actually converging to zero. If 
we care about both types of error, it makes sense to reduce the probability of 
both as the sample size increases, rather than fixing the probability of Type I 
errors and letting that of Type II errors go to zero. This point has been made 
forcefully by many authors, especially Edward Leamer, and a number of 
solutions have been proposed for adjusting the significance level as the 
sample size increases.163 A full consideration of these different approaches is 

                                                 
162 See, e.g., Karen A. Gottlieb, What Are Statistical Significance and Probability Values? 1 TOXIC TORTS 

PRAC. GUIDE § 4:10 (2019)(“Through a half century of custom, the value of 0.05 or 1 in 20 has come to 
be accepted as the de facto boundary between those situations for which chance is a reasonable explanation 
(probabilities > 0.05) and those situations for which some alternative is a reasonable explanation 
(probabilities < 0.05).”); see also Eastland v. Tennessee Valley Authority, 704 F.2d 613, 622 n. 12 (1983) 
(in employment discrimination lawsuit, noting that “a probability level of .05 is accepted as statistically 
significant” in determining whether racial disparities in pay were statistically significant). 
163 See, e.g., Edward Leamer, SPECIFICATION SEARCHES: AD HOC INFERENCE WITH NONEXPERIMENTAL 

DATA (1978) (proposing p-value adjustment to minimize error losses associated with Type I and Type II 
error);  I.J. Good, Standardized Tail-Area Prosabilities, 16 JOURNAL OF STATISTICAL COMPUTATION AND 

SIMULATION 65 (1982) (proposing p-value adjustment based on a “Bayes/non-Bayes compromise”); 
Mingfeng Lin,  Henry C. Lucas, Jr., and Galit Shmueli, Too Big to Fail: Large Samples and the p-Value 
Problem, 24 INFORMATION SYSTEMS RESEARCH 906, 908-915 (2013) (surveying approaches to adjusting 
p-values in large samples and recommending the reporting of effect sizes and confidence intervals and 
using coefficient/p-value/sample-size plots for interpreting the data along with Monte Carlo simulations); 
Eugene Demidenko, The p-value You Can’t Buy, 70 THE AMERICAN STATISTICIAN 33, 34-37 (2016) 
(proposing use of d-values for assessing statistical inference in large datasets). 
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beyond the scope of this Article; however, we provide below an example of 
one such approach to illustrate how it can be utilized to discern when a 
seemingly significant result when applying the IAT is actually a function of 
the large sample size and not evidence of a discriminatory proxy variable. 

iv.  Nonlinearities or Interactions Among Proxies  

Machine learning models are often focused on forming predictions based 
on nonlinear functions of multiple variables. In introducing the IAT, our 
specification focused on linear settings, but the IAT could in principle be 
amended to handle nonlinear models as well. For example, rather than just 
running the test regression once, we could run it repeatedly, with each of a 
set of basis functions of the explanatory variables on the left-hand side. Full 
consideration of this topic is beyond the scope of this Article, but in general, 
implementation of the IAT could be made part of the type of feature selection 
and feature analysis protocols that are used in practice with both linear and 
non-linear machine-learning processes.164      

D.  Simulation 

To illustrate how the concerns of discrimination enter though proxy 
variables, we simulate the setting in Dothard of hiring a prison worker.  

i.  Set Up  

The simulation assumes that the prison has historical records for 800 
employees, of which roughly one-third are female (n=256) and two-thirds are 
males (n=544). We further assume that the prison uses these historical records 
to develop a sorting algorithm for considering a pool of 1,200 applicants. The 
800 employees are endowed with an unobservable strength level, which we 
model as a random variable distributed normally with (i) a mean of 68 and a 
standard deviation of 10 for male employees and (ii) a mean of 62 and a 
standard deviation of 6 for female employees. With these modeling 
assumptions, females have lower mean strength but a smaller standard 

                                                 
164In particular, a related literature in computer science focuses on feature selection to enhance model 
interpretability.  See Datta et al. Algorithmic  Transparency via Quantitative Input  Influence: Theory and 
Experiments  with Learning Systems, Proceedings of IEEE Symposium  on Security  & Privacy 2016, 598–
617, 2016 (proposing a quantitative-input-influence (QII) protocol based upon Shapley values to 
determine the importance of features and clustering metrics to summarize feature influence); see also 
Phillipe Bracke et al., Machine learning explainability in default risk analysis, Bank of England Staff 
Working Paper No. 816 (June 5, 2019) (implementing QII method in predicting mortgage defaults).    More 
formally, Lundberg, et al., Consistent Individualized Feature Attribution for Tree Ensembles, 
arXiv:1802.03888v3 [cs.LG], March 7, 2019 and Merrill et al., Generalized Integrated Gradients: A 
practical method for explaining diverse ensembles,” ArXiv 2019, build upon game-theoretic SHAP 
(Shapley Additive explanation) values and propose new feature credit-assignment algorithms that can 
handle a broad class of predictive functions with both piecewise-constant (tree-based), continuous (neural-
network or radial-basis-function based),  and mixed models. 
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deviation, as plotted below in Figure 6. To be an effective prison guard 
requires a strength of 60, the business necessity. Hiring is not perfectly 
effective at sorting which guards will meet this threshold; therefore, even 
among the employees, there are guards who fall below the required strength 
for the job.  For now, we assume that the prison can implement a costly 
physical exam to measure true strength for these employees. (We abstract 
from other aspects of effectiveness such as psychological and managerial 
skills needed for prison-guard work.) 

We assume the strength of applicants is likewise distributed randomly.  
However, for obvious reasons, the applicant pool has not been previously 
selected for strength as employees have. Therefore, we model strength 
across applicants as a random variable distributed normally with a mean of 
50 and a standard deviation of 10 for male employees and a mean of 44 and 
a standard deviation of 6 for female employees.  

 
Figure 6 

 

The prison managers cannot directly observe applicants’ strength, and, as 
noted, implementing a full physical exam across applicants is costly. 
Therefore, the prison decides to use height as a proxy variable for an 
applicant’s strength, since it is easily measured on applications. We model 
height as a sum of a baseline 50 inches (with a normally-distributed error of 
4 inches) plus a concave (quadratic) function increasing in strength. Female 
height has the same relation to strength but a ten percent lower baseline. The 
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resulting mean height in the employee training dataset is 5’10” with a 
standard deviation of 5”. 

Finally, as in Dothard, the prison seeks to filter applicants by imposing a 
minimum height requirement. To determine the height cut-off, the prison runs 
a classification analysis. In doing so, the prison determines that they want to 
ascertain that an individual will be above the strength threshold with an 80% 
certainty, i.e., they want only a 20% risk of incorrectly classifying an 
applicant as eligible for hiring (above the strength threshold of 60) when the 
person in fact has a strength of less than 60. Based on the height and strength 
of the prison employees, this results in a 5’10” cut-off.  The prison applies 
this cut-off to all 1,200 applicants.  

Among the 370 female applicants, 344 (93%) fail the height test. In 
contrast, among the 830 male applicants, 504 (61%) fail the height test. These 
disparities suggest that the height cut-off may discriminate against females 
applicants, but we cannot definitively conclude this from the high rejection 
rates because, as we saw in Figure 6, females in our samples have lower 
strength than males on average. 

ii.  Applying the Input Accountability Test  

Assume that in advance of deploying the height test, the prison instead 
decides to conduct the IAT to ensure that any disparities in hiring would be 
based on differences in predicted applicant strength. Table 1 presents the 
results from the test. To run the IAT, the prison would return to the training 
data it possesses regarding its employees’ actual strength and height that it 
used to determine the 5’10” cut-off. In panel A, we present the first step of 
regressing the proxy variable on employee strength, the target of interest. 
Because the prison is focused on using a cutoff for height, we estimate a 
logistic regression of whether an employee passes the height cut-off as a 
function of the employee’s strength. (To do so, we use as our dependent 
variable an indicator variable that equals 1 for employees that are at least 
5’10” and 0 for all others.) Note that this indicator variable is on the left-hand 
side of the regression (and not strength) because we want to decompose 
whether an employee meets the height cut-off into two components – the part 
that can be predicted from an employee’s strength and the part that cannot be 
predicted from an employee’s strength (the “residual”). Stated differently, 
logistic regression effectively estimates the probability that an employee is 
5’10” based on employee strength. Therefore, the residual, which is equal to 
one minus this predicted probability for each employee, can be viewed as the 
variation in whether an employee meets the height threshold of 5’10” that is 
unrelated to an employee’s strength. In panel B, we present the results from 
regressing the residual from panel A onto the indicator variable for female. 
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Table 1 
 (1) (2) (3) (4) (5) 

Panel A: First Step of IAT (DV=Column Heading) 

 

Cut-Off 
Height 

Cut-Off 
Muscle 
Mass 

Muscle 
Mass 

Job 
Performance 

Cut-Off 
Muscle 
Mass 

Strength 0.0206*** 0.0377*** 0.9965*** 0.0387*** 

 [0.00155] [0.000747] [0.0191] [0.0000138] 

Performance Score  0.675***  

  [0.0307]  
Observations 800 800 800 800 2,000,000 

[Pseudo] R-squared 0.111 0.466 0.772 0.376 0.496 

   
Panel B: Second Step of IAT (DV=Residuals from Step 1) 

Female -0.354*** -0.013265 -0.3552 -8.858*** -0.0013*** 

 [0.0327] [0.02625] [0.379] [0.542] [0.000505] 

   
Observations 800 800 800 800 2,000,000 

R-squared 0.128 0 0 0.25 0 

d-value     50% 

Standard errors in brackets     
*** p<0.01, ** p<0.05, * p<0.1     
 

Panel A of Column (1) reports that strength only accounts for a small part 
of the variation (R-squared = 0.111) for whether an employee is (or is not) 
taller than 5’10”. In Panel B, our column (1) results show that the residual of 
the first step regression has a negative, significant correlation with gender, 
thus failing the IAT. Females incur a penalty because the proxy variable for 
the business necessity of required strength has residual correlation with 
gender. 

Imagine that the prison realizes this flaw in using a height cut-off and 
decides instead to consider incurring an extra cost for doing a muscle-mass 
index evaluation of applicants. Because the evaluation is imperfect in 
assessing true strength, we assume that the results of a muscle-mass index 
evaluation is equal to an individual’s strength plus random noise.165 To 
implement this screening procedure, the prison first applies the muscle-mass 
index evaluation to existing employees so that it can estimate the minimum 
muscle mass an individual should have to be above the minimum strength 

                                                 
165 We model the random noise as a randomly distributed variable with a mean of zero and a standard 
deviation of 5. 
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threshold with an 80% certainty. The classification analysis produces a 
muscle-mass cut-off score of 64. As above, the prison then conducts the IAT. 

In column (2) of panel A we present the results of the IAT for the muscle-
mass index evaluation based on the employee training data. To implement the 
IAT, we run the same regressions that we used for testing the height cut-off, 
but we substitute an indicator variable for whether an employee has a muscle 
mass of at least 64 for the indicator variable for whether an employee is at 
least 5’10”. In panel A, column (2) shows that the probability that an 
employee has a muscle mass of at least 64 is (unsurprisingly) related to an 
employee’s strength, resulting in a much larger R-squared. Importantly, the 
residual should not fail the IAT, because it has no bias against females. In 
column (2) of panel B, we see that this is indeed the case; the coefficient on 
female is statistically insignificant and small in magnitude. 

In column 3, we instead consider a continuous variable version of muscle 
mass as a scoring variable rather than a cut-off version of the indicator 
variable. Perhaps the underlying job-required strength is not a threshold but 
a strength score that will feed into wage-setting or other profiling of 
individuals that focus on continuous rather than discrete measures. To 
implement the IAT in this context, we use the same training data that was 
used for column (2) of Table 1; however, the regression specification for the 
first step takes the form of a linear regression of employees’ muscle mass 
scores on their measured strength. As in column (2), column (3) shows that 
muscle mass is a legitimate business necessity variable. In panel A, we find 
that muscle mass and strength are very correlated, with strength accounting 
for almost 80% of the variation in muscle mass. Column (3) of panel B shows 
that muscle mass again passes the IAT: the residual is uncorrelated with the 
female indicator variable.  

In the final two columns of Table 1, we demonstrate the importance of 
the challenges we introduced in Part 3(C).  

First, we use column (4) to illustrate the concern about measurement 
error in the target (strength). Thus far, we have been working under the 
assumption that the prison can take an accurate measurement via a physical 
exam of the training dataset employees. However, what if instead the prison 
cannot measure actual strength but uses a job performance assessment made 
by a manager. (We label this job performance measure an employee’s 
“Performance Score”). As noted above, a central challenge in real world 
settings is that target variables used to train predictive models are typically 
estimated in this fashion and may contain measurement error that is correlated 
with a protected characteristic.  We therefore simulate an employee’s 
Performance Score as biased against females.166 In this regard, the simulation 

                                                 
166 In particular, for males, we model the job performance measure as strength plus random noise; however, 
for females, we model job performance as concave in strength (like the height variable)—a quadratic 



ALGORITHMIC ACCOUNTABILITY   45

replicates the same problem illustrated with the UnitedHealth example 
(where the illness severity measure was inadvertently biased against African 
Americans).  

In addition to employees’ Performance Scores, assume that the prison 
also has at its disposal data from the muscle measure index evaluation used 
in columns (2) and (3). Even without perfect data regarding employee 
strength, the prison can still use these data with the IAT to evaluate whether 
its preferred estimate of the target (an employee’s Performance Score) suffers 
from bias.  To implement this test, we treat muscle mass as an alternative 
measure of the target of interest (strength), and we treat the Performance 
Score as a proxy for strength.  Accordingly, the first step of the IAT is 
conducted by regressing employees’ Performance Scores on the muscle mass 
evaluation data. The results are shown in column (4) of panel A. Not 
surprisingly, an employee’s muscle mass is closely related to an employee’s 
Performance Score. In column (4) of panel B, we show the results of 
regressing the residuals from this regression on the gender variable. As shown 
in the table, Job Performance fails the IAT.  In this fashion, the IAT can be 
used to test whether an estimate for a target suffers from biased measurement 
error, so long as one has an alternative estimate for the target (even a noisy 
one) that is believed to be unbiased.   

The final column in Table 2 illustrates the concern of large data samples. 
For this column, we implement the same muscle mass test as in column (2), 
except that we randomly draw 2 million employees for the training dataset 
rather than 800 employees. (For all 2 million employees, we model their 
strength using the same assumptions used for the original 800 employees). 
For each employee, we likewise calculate muscle mass as employee strength 
plus a random variable distributed normally with a mean of 0 and a standard 
deviation of 5. Thus, in our simulated setting, muscle mass is a noisy estimate 
of employee strength but it has zero bias with respect to gender. Even so, 
however, the possibility remains that in drawing random measurement error 
for our sample, very slight differences may exist by chance between the 
average measurement error of females and males. (This is equivalent to 
observing that even if a coin is unbiased, it may still return more than 50% 
heads in a trial of 100 flips). Moreover, as we described in section 3, the p-
value may converge to 0 for any small deviation, as sample sizes approach 
infinity. Thus, even a small (economically non-meaningful) correlation may 
look significant. This would create a setting of a large-dataset proxy variable 
failing the IAT, not because of a fundamental problem, but just because of 
the use of a fixed p-value. This is what we have modeled in column (5). The 
coefficient on female in column (5) is very small (-0.0013) but statistically 

                                                 
concave function of strength plus random noise.  The managers evaluating females do not fairly evaluate 
them, especially for the stronger females. 
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significant, notwithstanding the fact that we modeled measurement error 
from a distribution that had exactly zero gender bias.  

As noted in subsection 3(C)(iii), where the IAT is applied to a large 
dataset, it is therefore critical to check whether a proxy that fails the IAT 
might have failed the test simply because of the large number of observations 
in the sample. That the seemingly statistical finding in column (5) may be an 
artifact of a trivial difference within a large dataset can initially be seen by 
the fact that the R-squared in column (5) is 0%; if effectively no variation in 
the residuals can be explained by gender, how can it be that this proxy is 
penalizing females in a systematic fashion? Additionally, as noted previously, 
a number of formal solutions also exist to examine this issue more fully. Here, 
we illustrate one such approach using the concept of the “d-value” proposed 
by Eugene Demidenko.167 Rather than focus on a comparison of group means, 
the d-value is designed to examine how a randomly chosen female fared 
under this proxy variable relative to a randomly chosen male. Specifically, in 
the context of the IAT, the d-value answers the question “what is the 
probability that members of a protected group are being penalized by the 
proxy?” As shown in the last row of column (5), the d-value is approximately 
50%, indicating that the probability that females are penalized by the use of 
a muscle-mass proxy is effectively a coin-toss; that is, there is no evidence 
that female applicants are being systematically penalized by the use of this 
proxy.  

 This finding, of course, is hardly a surprise given that we designed the 
simulation to ensure that it was an unbiased proxy.   In this fashion, the use 
of a d-value can highlight when a seemingly significant finding is a function 
of the large sample size and not evidence of a discriminatory proxy 
variable.168 

IV.  APPLICATIONS BEYOND EMPLOYMENT 

The fact that the IAT is rooted in general antidiscrimination principles 
makes it applicable to any setting where a decision-maker relies on statistical 
discrimination, regardless of whether conducted by humans or algorithms. 

                                                 
167 See Demidenko, supra note 163. 
168 To the extent one utilizes the d-value in this fashion, a natural question is what level of a d-value would 
constitute evidence of a discriminatory proxy. Given that the d-value answers the question “what is the 
probability that members of a protected group are being penalized by the proxy?”, any result that yields a 
d-value deviating from 50% would presumably be evidence of a discriminatory proxy, allowing for a 
percentage difference to incorporate a far tail sampling draw.  This conclusion follows from the 
conventional judicial reliance to on p-values, which likewise assumes that any finding with a p-value of 
less than 0.05 is evidence of discrimination. That said, in adopting such an approach, it would be important 
to utilize a d-value analysis only upon a finding that a proxy fails the IAT using a conventional statistical 
test. The reason stems from the fact that in smaller samples, even an unbiased proxy could result in a d-
value that is slightly different from 50% due sample variance. For example, the d-value for column (3) is 
just slightly less than 51%, despite the fact that muscle mass is modeled as an unbiased proxy. However, 
running the same simulation with 50,000 observations produces a d-value of 50%. 
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Central to our argument is the idea of using a test to ascertain adherence to 
business necessity targets when designing a decision-making process. Indeed, 
even the Equal Employment Opportunity Commission subscribes to a 
business necessity test in its Uniform Guidelines on Employee Selection 
Procedures, stating that: “[e]vidence of the validity of a test or other selection 
procedure by a criterion-related validity study should consist of empirical 
data demonstrating that the selection procedure is predictive of or 
significantly correlated with important elements of job performance.”169 
Note, however, that even the EEOC’s validity test looks only to the predictive 
capacity of an employment exam. But as we have emphasized throughout this 
Article, a simple correlation test leaves open the possibility that a test will 
penalize members of a protected group who are, in fact, qualified in the job-
related skill in question. This, of course, was the lesson of Dothard and the 
cases examined in Part 2. In this regard, a simple method to remedy this defect 
when conducting a criterion-related validity study would be to incorporate 
the IAT. 

In this section, we discuss additional implementations outside of the 
employment setting. We first focus on settings where a decision-maker can 
face liability for claims of unintentional discrimination and where a court or 
legislature has expressly considered what constitutes a legitimate business 
necessity target. We then address the application of the IAT in settings where 
formal liability for claims of disparate impact or other claims of unintentional 
discrimination are currently less clear, but where firms can use the IAT to 
self-regulate. Finally, given the latitude firms have to set their own business 
necessity targets, we conclude with an admonition that firms must be vigilant 
in monitoring whether a purported target is, in fact, a legitimate one to use. 

 
A.  Domains with Court-Defined Business Necessity Targets 

 
Consider, for instance, a regulator tasked with evaluating a decision-

making algorithm in one of the following domains where claims of 
unintentional discrimination may be possible, and where courts have 
expressly defined a legitimate “target” variable that can justify unintended 
disparities that vary across protected and unprotected groups: 

 

Table 2 

Domain: Legitimate Target Variable: 

Credit Determinations Creditworthiness170 

                                                 
169 29 C.F.R. § 1607.5B. 
170 See A.B. & S. Auto Service, Inc. v. South Shore Bank of Chicago, 962 F. Supp. 1056 (N.D. Ill. 1997) 
(“[In a disparate impact claim under the ECOA], once the plaintiff has made the prima facie case, the 
defendant-lender must demonstrate that any policy, procedure, or practice has a manifest relationship to 
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Home Insurance Pricing Risk of Loss171 
Parole Determinations Threat to Public Safety172 

Tenant Selection 
Ability to meet lease obligations,173 

pay rent,174 and resident safety175 

Post-Secondary School 
Admission 

Predicted academic success176 

Selection into Special Education Educational ability177 
State Merit Scholarship 

Eligibility 
Academic achievement in high 

school178 
 
Just as employers are permitted to make hiring decisions based on the 
legitimate target variable of a job-required skill, courts in these settings have 
likewise determined that decision-making outcomes can lawfully vary across 
protected and unprotected groups only if decisions are based on the target 
variable noted in Table 2.  

                                                 
the creditworthiness of the applicant…”); see also Lewis v. ACB Business Services, Inc., 135 F.3d 389, 
406 (6th Cir. 1998)(“The [ECOA] was only intended to prohibit credit determinations based on 
‘characteristics unrelated to creditworthiness.’”); Miller v. Countrywide Bank, NA, 571 F.Supp.2d 251, 
258 (D. Mass 2008)(rejecting argument that discrimination in loan terms among African American and 
white borrowers was justified as the result of competitive “market forces,” noting that prior courts had 
rejected the “market forces” argument insofar that it would allow the pricing of consumer loans to be 
“based on subjective criteria beyond creditworthiness.”) 
171 See, e.g., Owens v. Nationwide Mut. Ins. Co., No. Civ. 3:03-CV-1184-H, 2005 WL 1837959, at *9 
(N.D. Tex. Aug. 2, 2005)(minimizing the “risk of loss in homeowner’s insurance” was a legitimate 
business necessity under the Fair Housing Act that justified the use of facially neutral policy of using credit 
to determine eligibility for homeowner’s insurance). 
172 See, e.g., CAL. PENAL. CODE § 3041 (West 2017) (The Board of Prison Term “shall grant parole to an 
inmate unless it determines that the gravity of the current convicted offense or offenses, or the timing and 
gravity of current or past convicted offense or offenses, is such that consideration of the public safety 
requires a more lengthy period of incarceration for this individual.”); see also Smith v. Sisto, 2009 WL 
3294860 at *6 (E.D. Cal. Oct. 13, 2009) (denying claim that denial of parole constituted discrimination 
and concluding that “[t]he need to ensure public safety provides the rational basis for section 3041)”). 
173 See 24 C.F.R. § 100.202(c)(1) (permitting under the FHA a landlord’s “[i]nquiry into an applicant's 
ability to meet the requirements of ownership or tenancy”). 
174 See Ryan v. Ramsey, 936 F.Supp. 417 (S.D.Texas 1996)(noting that under the FHA, “there is no 
requirement that welfare recipients, or any other individuals, secure apartments without regard to their 
ability to pay.”) 
175 See Evans v. UDR, Inc., 644 F.Supp.2d 675, 683 (2009) (permitting landlord to reject tenant based on 
prior criminal history as the “policy against renting to individuals with criminal histories is thus based 
concerns for the safety of other residents of the apartment complex and their property”). 
176 See Kamps v. Baylor University, 592 F. App'x 282 (5th Cir. 2014) (rejecting age discrimination case 
based on law school admissions criteria that relied on applicant’s grade point average (GPA) because GPA 
is quantitative predictor of academic success in law school and thus a “a reasonable factor other than age”).  
177 See Ga. State Conf. of Branches of NAACP v. Georgia, 775 F.2d 1403, 1420 (11th Cir. 1985) (finding 
that, in Title VI case alleging that school district achievement grouping caused disparate impact on 
minority students, school district’s effort to classify students based on assessment of ability was justified 
because it bore “a manifest demonstrable relationship to classroom education”). 
178 See Sharif by Salahuddin v. New York State Educ. Dept., 709 F. Supp. 345, 362 (SDNY 1989) (finding 
that state’s use of SAT scores did not have a “manifest relationship … [to] recognition and award of 
academic achievement in high school” in Title IX claim of disparate impact alleging that state’s use of 
SAT scores to determine student eligibility for merit scholarships had a discriminatory effect on women). 
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In applying the IAT in these settings, the regulator’s task thus follows the 
same process noted in Part 3.  First, the regulator must evaluate whether the 
decision-making process does, in fact, seek to produce outcomes based on the 
legitimate target variable.  Second, using historical data for both the target 
variable and the model’s full set of features, the regulator would then apply 
the IAT to each feature used in the model.  Finally, any feature that failed the 
test would be required to be excluded from the model.  

 
B.  Domains Without Court-Defined Business Necessity Targets 

 
The IAT is equally applicable to domains where antidiscrimination laws 

do not formally regulate decision-making processes governing disparities 
across protected and unprotected groups or where the legal risk for 
unintentional discrimination is presently unclear.  We provide an example of 
each.  

The first domain concerns insurance outside the context of home 
insurance.179 As Ronen Avraham, Kyle Logue, and Daniel Schwarcz show, a 
number of jurisdictions do not have any laws restricting providers of 
automobile or life insurance from discriminating on the basis of race, national 
origin, or religion.180 Nor is there a federal antidiscrimination statute 
applicable to insurance outside of the context of home insurance.181 
Consequently, insurers likely have considerable discretion to rely on 
statistical discrimination to underwrite policies, which may produce 
unintended disparities across protected and unprotected groups. Yet evidence 
that racial disparities exist in the pricing of auto loans has routinely been met 
by the insurance industry with assurances that premiums are based on risk. 
For instance, following a nationwide study by the Consumer Federation of 
America in 2015 that found that predominantly African-American 
neighborhoods pay higher auto premiums,182 the Property Casualty Insurers 
Association of America responded with a declaration that “Insurance rates 
are color-blind and solely based on risk.”183 Thus, insurers claim to self-
regulate themselves by setting risk as the business necessity target. To the 

                                                 
179 As noted in Table 2, discrimination in home insurance is governed by the FHA. 
180 See Ronen Avraham, Kyle D. Logue & Daniel Benjamin Schwarcz, Understanding Insurance Anti-
Discrimination Laws, 87 S. Cal. L. Rev. 195, 239 (2014). 
181 Id. at 241. Additionally, the few cases alleging discrimination by insurance providers under 42 U.S.C. 
§ 1981—a Reconstruction-era statute that prohibits racial discrimination in private contracting—have 
required a showing of intentional discrimination. See, e.g., Amos v. Geico Corp. , 2008 WL 4425370 (U.S. 
Minn. 2008) (“To prevail under § 1981, plaintiffs must prove that GEICO intentionally discriminated 
against them on the basis of race.”). 
182 Consumer Federation of America, High Price of Mandatory Auto Insurance in Predominantly African 
American Communities (2015), available at https://consumerfed.org/wp-
content/uploads/2015/11/151118_insuranceinpredominantlyafricanamericancommunities_CFA.pdf. 
183 Press Release of American Property Casualty Insurers Association of America, Auto Insurance Rates 
are Based on Cost Drivers, Not Race, November 18, 2015, available at 
https://www.pciaa.net/pciwebsite/cms/content/viewpage?sitePageId=43349.  
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extent insurers are sincere in this claim, the IAT provides them with a ready 
test to ensure compliance.   

An example in the second domain concerns disparities in medical 
treatment, as motivated by our example in the Introduction concerning 
UnitedHealth. Discrimination in healthcare provision is covered by Title VI 
of the Civil Rights Act of 1964, thus making it a more regulated setting than 
the insurance example. However, in Alexander v. Sandoval,184 the U.S. 
Supreme Court held that Title VI does not provide for a private right of action 
to enforce disparate impact claims, greatly diminishing the risk that a provider 
of healthcare will face a claim of unintentional discrimination. Nonetheless, 
the UnitedHealth algorithm was designed to determine optimal medical 
treatment according to an individual’s level of illness. Thus, one can presume 
that “level of illness” is a revealed business necessity target. Here, too, the 
IAT can provide healthcare providers such as UnitedHealth with a means to 
test the proxy variables utilized in predicting their target of interest. 

 
C.  Self-Determining Business Necessity 

 
Regardless of whether an algorithm is based on complex machine-

learned insights or on conventional physical exams, the IAT can serve as an 
important check for consistency with the principles undergirding U.S. 
antidiscrimination law across a number of decision-making domains.  This 
tool is not simply a utility for courts to evaluate claims of discrimination, but 
a tool for regulators and self-regulating firms seeking to detect and avoid 
discrimination in the first place. Before closing, however, we emphasize two 
considerations. First, the fact that a proxy input variable is predictive of a 
business necessity target is not sufficient to rule out the possibility that it 
systematically penalizes members of a protected group who are actually 
qualified in the target. This is the principle behind the IAT. Second, although 
we have argued above that often businesses self-regulate themselves to 
determine business necessity targets (e.g., risk for insurers, illness intensity 
for healthcare providers), businesses must be ever vigilant that a purported 
target is a legitimate one to use. This is especially the case when working in 
a domain where courts have defined what can (and cannot) constitute a 
business necessity target. 

A case in point comes from the credit markets, whereby lenders may have 
incentives to deploy predictive algorithms to estimate demand elasticities 
across different borrowers to engage in price discrimination. Price 
discrimination is made possible by the fact that certain borrowers are more 
prone to accept higher priced loans rather than engage in price shopping. 
These borrowers may not shop around for a host of reasons: They might live 
in financial desert locations of low competition, lack the knowledge to shop 
                                                 
184 532 U.S. 275 (2001). 
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for the best rate, need to transact in a hurry, have a historical discomfort with 
financial institutions due to prior discrimination, and/or have a history of 
being rejected for loans in the past. Empirical studies document that loan 
officers and mortgage brokers are aware of variation in borrowers’ interest 
rate sensitivity and engage in price discrimination.185  

A loan applicant’s “price sensitivity” or “willingness to shop” may 
therefore be an additional unobserved characteristic that is of interest to a 
lender. Said another way, a lender’s profit margin depends on both 
creditworthiness (the court-determined legitimate business necessity from 
Table 2) and shopping profiles. A lender might therefore design an algorithm 
that seeks to maximize profits by uncovering credit risk and shopping 
profiles. Furthermore, the lender (if lending were not in a formally-regulated 
domain) would argue that profits are legitimate business necessity. Yet, as 
noted in Table 2, lending is a domain where courts have expressly held that 
if a lending practice creates a disparate impact, “the defendant-lender must 
demonstrate that any policy, procedure, or practice has a manifest 
relationship to the creditworthiness of the applicant.”186 That is, while 
differences in creditworthiness can justify disparate outcomes in lending, 
differences in shopping behavior cannot. 

The concern of algorithmic profiling for shopping behavior is of general 
concern because empirical evidence, again in lending, finds that profiling on 
lack-of-shopping almost certainly leads to higher loan prices for minority 
borrowers.  For instance, Susan Woodward and Robert Hall187 as well as 
Mark Cohen188 find that adverse pricing for minority borrowers has generally 
been the rule when it comes to lenders engaging in price discrimination.  In 
separate work,189 we likewise find empirical evidence that, even after 
controlling for borrower credit risk, “FinTech” lenders charge minority 
homeowners higher interest rates.  We interpret these pieces of evidence as 
consistent with loan originators using a form of algorithmic price 
discrimination.  Were these algorithms subject to an internal or external 
“accountability audit,” it is likely that the proxy variables used would fail the 
IAT because, no matter how well the algorithm performed in detecting the 
profitability of a loan, the target for the test would, by law, be 
creditworthiness—not an outcome that included price sensitivity. In this 

                                                 
185 See, e.g., Susan E. Woodward, U.S. Dep't of Hous. & Urban Dev., A Study of Closing Costs for FHA 
Mortgages xi (2008), http:// www.huduser.org/Publications/pdf/FHA_closing_cost.pdf (“In 
neighborhoods where borrowers may not be so familiar with prevailing competitive terms, or may be 
willing to accept worse terms to avoid another application, lenders make higher-priced offers….”) 
186 A.B. & S. Auto Service, Inc., 962 F. Supp. at 1056. 
187 Susan Woodward and Robert E. Hall, Consumer Confusion in the Mortgage Market: Evidence of Less 
than a Perfectly Transparent and Competitive Market, 100 AMER. ECON. REV. 511 (2010). 
188 Mark Cohen, Imperfect Competition in Auto Lending: Subjective Markup, Racial Disparity, and Class 
Action Litigation, 8 REV. LAW ECON. 21 (2012) 
189 Bartlett, et al., supra note 38. 
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fashion, simply asking what target variable an algorithm seeks to detect can 
illuminate illegitimate algorithmic discrimination. 

Finally, we want to end this applications section on a positive note. In 
many discussions with lenders, it has become evident that, at least in the 
finance realm, firms want to be able to validate what they are doing or what 
they intend to do before they invest and commit to a predictive algorithm. As 
we have demonstrated throughout this Article, the standard set by an IAT-
accepted environment can provide the valuable consequence of validating the 
use of proxy variables when their use causes no disparities except through 
their role in picking up business necessity leveling.  

V.  CONCLUSION 

The era of Big Data places the antidiscrimination mandate at the heart of 
the Civil Rights Acts of 1964 and 1968 at a critical cross-roads.  By relying 
on data-driven, statistical models, machine learning provides a promising 
alternative to the type of subjective, face-to-face decision-making that has 
traditionally been fraught with the risk of bias or outright animus against 
members of protected groups. Yet left unchecked, algorithmic decision-
making can also undermine a central goal of U.S. antidiscrimination law.  As 
we have shown throughout this Article, any decision-making rule that simply 
maximizes predictive accuracy can result in members of historically 
marginalized groups being systematically excluded from opportunities for 
which they are qualified to participate.  

Ensuring that algorithmic decision-making promotes rather than inhibits 
equality thus demands a workable antidiscrimination framework. To date, 
however, prevailing approaches to this issue have focused on solutions that 
fail to grapple with the unique challenge of regulating statistical 
discrimination. Prominent legal approaches (such as reflected in HUD’s 
recent proposed rule-making) have frequently prioritized predictive accuracy 
despite the fact that such an approach ignores the central risk posed by 
statistical discrimination demonstrated in our simulation. Conversely, 
interventions emanating from the field of computer science have largely 
focused on outcome-based interventions that could themselves lead to claims 
of intentional discrimination. 

Because we derive our input accountability test from caselaw addressing 
statistical discrimination—in particular, the burden-shifting framework—the 
IAT advances a vision of algorithmic accountability that is consistent with 
the careful balance courts have struck in considering the decision-making 
benefits of statistical discrimination while seeking to minimize their 
discriminatory risks.  By enhancing the predictive accuracy of decision-
making, statistical discrimination can greatly enhance the ability of an 
employer, lender or other decision-maker to identify those individuals who 
possess a legitimate target characteristic of interest.  However, cases such as 
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Griggs and Dothard underscore the danger of simply focusing on predictive 
accuracy because a proxy that predicts a target variable can nonetheless result 
in systematically penalizing members of a protected group who are qualified 
in the target characteristic. That such discriminatory proxies have been 
consistently declared to be off limits underscores the conclusion that 
predictive accuracy alone is an insufficient criterion for evaluating statistical 
discrimination under U.S. antidiscrimination law. 

At the same time, our approach is also consistent with the focus in Griggs 
and Dothard that differences in a legitimate target can justify disparities that 
differ across members of protected and unprotected groups. As we show, so 
long as a proxy used to predict a legitimate target variable is unbiased with 
respect to a protected group, it will pass the IAT, even if it results in disparate 
outcomes.  The IAT can therefore provide greater transparency into whether 
disparate outcomes are the result of a biased model or more systemic 
disparities in the underlying target variable of interest, such as credit risk. In 
so doing, it can provide vital information about whether the proper way to 
address observed disparities from an algorithmic model is through de-biasing 
the model or through addressing disparities in the underlying target variable 
of interest, such as through targeted subsidies or other transfers. More 
generally, because the goal of the IAT is to avoid penalizing members of a 
protected group who are otherwise qualified in a target characteristic of 
interest, our approach will also be immune to the concern informing cases 
such as Ricci v. DeStefano that our test is biased against qualified individuals.  

Finally, our approach provides clear “rules of the road” for how to exploit 
the power of algorithmic decision-making while also adhering to the 
antidiscrimination principles at the heart of the Civil Rights Acts of 1964 and 
1968.  In particular, the IAT offers data scientists a simple test to use in 
evaluating the risk that an algorithm is producing biased outcomes, mitigating 
a key source of the regulatory uncertainty surrounding the growing use of 
algorithmic decision-making.  Additionally, our exploration of the early 
caselaw considering statistical discrimination also reveals that these rules of 
the road encompass more general concepts to guide both data scientists and 
regulators when evaluating algorithmic discrimination. These include the 
notion that, fundamentally, algorithmic decision-making is an effort to assess 
an unobservable attribute, such as productivity, criminality, longevity, or 
creditworthiness, through the use of one or more proxy variables. 
Consequently, evaluating an algorithm must begin with transparency about 
this target characteristic. And they likewise include the fact that correlation 
between the unobservable characteristic and the proxy is not, by itself, 
sufficient to justify the use of the proxy under antidiscrimination principles. 
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APPENDIX 
DE-BIASING PROXY VARIABLES VERSUS DE-BIASING PREDICTIVE MODELS 
 

In this Appendix, we conduct a simulation exercise to illustrate how 
attempting to de-bias a proxy variable used in a predictive algorithm may do 
little to de-bias the ultimate predictions. The example we use assumes that a 
college admissions director wishes to use applicants’ standardized test scores 
(STS) to predict college success (the criterion for allowing an application to 
continue to the next stage of evaluation.)  For this purpose, we assume that a 
student’s performance on the STS is a function of just two factors: aptitude 
and family wealth. In our simulation, wealth contributes to test performance 
because children of wealthier households purchase expensive test preparation 
classes. To keep the simulation tractable, we assume that wealth does not 
affect college performance; its only effect is on a student’s STS. 

Our simulation involves 1,000 college graduates where the admissions 
director has data on each student’s STS at the time of application, student 
race, and the student’s ultimate college performance (e.g., a weighted grade 
point average or other measure of performance).  We divide the race of 
students, ܺ

ோ, equally so that 500 students are Non-White ( ܺ
ோ ൌ 0ሻ	and 500 

are White ( ܺ
ோ ൌ 1ሻ. We assume that wealth and aptitude are distributed as 

follows: 
   

ܺ
ௐ௧~ ൜

ܰሺ0,1ሻ	݂݅	 ܺ
ோ ൌ 0

	ܰሺ5,1ሻ	݁ݏ݅ݓݎ݄݁ݐ
 

 

ܺ
௧௧௨ௗ~ܰሺ0,1ሻ 

 
Note that under these distributional assumptions, there is very little common 
support in wealth across race categories. As noted by Kristen Altenburger and 
Daniel Ho, it is in these settings where the effort to de-bias proxy variables 
can produce the largest estimation errors.190  As noted, a student’s STS ( ܺ

ௌ்ௌ) 

is a function of ܺ
ௐ௧ and ܺ

௧௧௨ௗ, with each variable given equal 
weight: 
 

ܺ
ௌ்ௌ ൌ 0.5൫ ܺ

ௐ௧൯  0.5ሺ	 ܺ
௧௧௨ௗሻ 

 
Finally, we simulate college performance (Performancei) to be entirely 
determined by aptitude multiplied by a scalar (which we assume here to be 
2).   
                                                 
190 See Altenburger & Ho, supra note 146, at 111.  These settings arise “where sharp preexisting 
demographic differences may exist across groups.” Id. 
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Aptitude is unobservable to the admissions director, inducing her to 
estimate whether she can use STS to predict college performance. In Figure 
1A, we plot separately for White and Non-White graduates the relationship 
between college performance and STS based on data simulated using the 
foregoing assumptions.  We also include a line that provides the predicted 
college performance from a simple regression of college performance on 
STS.  As shown in the figure, White graduates had much higher STS scores 
on average, as would be expected from their much higher family wealth.   

 

 
The director of admissions would like to admit students that are likely to 

have a positive measure of college performance (i.e., Performance>0). She 
therefore runs a simple regression of STS on Performance, which produces a 
regression coefficient (ߚመௌ்ௌ) of 0.47.  This estimate indicates that a one-point 
change in STS is associated with a 0.47 change in Performance. Using this 
regression estimate, the director generates the fitted line shown in Figure 1A, 
which provides a predicted measure of Performance based solely on STS.  
The fitted line predicts that Performance is zero at roughly 1.3, suggesting 
that using a minimum STS of 1.3 would admit students with an expected 
college performance of at least 0.  However, had the admissions director 
applied this cut-off to these individuals, the bias in STS would result in 
significant bias against Non-White students owing to their lack of access to 
test preparation classes:  
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 Non-White White 
# of Qualified Candidates 
Predicted by Test Score 

13 465 

 
Now assume that the admissions director seeks to control for the greater 

wealth (and therefore, the greater test preparation bias) among White student 
applicants.  Using the same data, the director expressly adds ܺ

ோ	as a control 
variable in the regression of STS on Performance.  Doing so allows the 
director to predict Performance as a function of both STS and Race.  The 
results are presented in Figure 2A. 

 

 
This procedure corrects for the racial bias that arises from using only STS 

to predict Performance. This can be seen by the two fitted regression lines, 
which do a much better job of predicting measured performance across the 
two racial groups than in Figure 1A.  The reason stems from the fact that this 
regression specification estimates a different y-intercept for each racial 
category in estimating the relationship between STS and Performance. 
Specifically, the regression yields a y-intercept for ܺ

ோ of -4.72, which 
indicates that in using STS to predict Performance, it is necessary to deduct 
4.72 from the expected performance of White students. (Recall that the 
difference in average wealth across White and Non-White students is 5.0, so 
this adjustment eliminates the bias that Wealth creates when using STS as a 
measure of aptitude). With that adjustment, the regression coefficient for STS 
increases from 0.47 to 1.89 because the regression has effectively removed 
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the confounding effect of wealth on STS so that it more cleanly reflects 
aptitude. As above, the admissions director evaluates each fitted line and 
determines that the fitted line for Non-White students predicts that 
Performance is zero where STS is also zero and that the fitted line for White 
students predicts that Performance is zero at 2.53. Applying a minimum test 
cut-off of 0 for Non-White students and 2.53 for White students would result 
in the following students being deemed qualified:   
 
 Non-White White 
# of Qualified Candidates 
Predicted by Test Score 

250 248 

 
This procedure solves the racial bias created by using only STS to 

estimate Performance, but it is clearly problematic insofar that it requires a 
different minimum cut-off for White and Non-White students. This is 
disparate treatment. To avoid this problem the director therefore turns to the 
approach advanced by Devin Pope and Justin Sydnor as well as by Crystal 
Yang and Will Dobbie.191 This procedure involves using the regression 
estimates generated for Figure 2A but treating all students as if they had the 
average value of race, or in this example, a race of 0.5. Making this 
adjustment means that every student receives a deduction of -2.36 (i.e., 0.5 x 
-4.72) after multiplying their exam score by the slope coefficient for STS of 
1.89, which remains purged of the confounding influence of Wealth. This 
permits the director to estimate a single fitted regression line as shown in 
Figure 3A:  
 

                                                 
191 See supra note 71. 
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The fitted line predicts that Performance is zero at approximately 1.28, which 
the director uses as the minimum cut-off. Had the director applied this cut-
off to this group of individuals, the following results would have occurred: 
 
 Non-White White 
# of Qualified Candidates 
Predicted by Test Score 

15 468 

 
In effect, the results are largely identical to those obtained by using only STS 
to predict performance. The reason stems from the lack of common support 
in wealth across White and Non-White students, resulting in the need for a 
significant negative adjustment to every White student when estimating 
performance from STS. Applying half of this negative adjustment to every 
student thus works against the de-biasing of the slope coefficient for STS. In 
short, the slope coefficient for STS in Figure 3A is unbiased with respect to 
Non-White students, but the predictive model is not. This problem was 
significant in this example because there was so little common support in 
wealth across White and Non-White students—a problem that will exist 
whenever there are significant demographic differences across protected and 
unprotected groups. 
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How Economists Think about Discrimination

TASTE-BASED DISCRIMINATION

▰ An individual dislikes members 
of a particular group and 
derives utility from 
discriminating against them 
(Becker 1957)

▰ Should not persist in the long 
run because of competition
 Costly

▰ De facto: discretion persists

STATISTICAL DISCRIMINATION

▰ A decision-maker (employer, lender) does not 
observe a business necessity variable 
(productivity, creditworthiness).

▰ Uses a proxy for that variable, such as the average 
for a group of people (Arrow, 1973, Phelps, 1972)
 Profit Maximizing

▰ De facto use of statistical discrmination term: 
Indirect stat discrmination: using averages 
over a non-protected group (not “black” but 
“high school name”) as a proxy for 
creditworthiness.
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How the Law Thinks about Discrimination

The mapping of the law to economists’ thinking is clear on the below:

1. Let’s make sure to make taste-based discrimination illegal 
(And anyway, it is not profit maximizing)

2. And then let’s make sure technology does not implement the direct form of 
Arrow/Phelps discrimination
◦ i.e.: allowing lenders to score by a protected category or a “highly 

correlated” variable
◦ Protected category: race, ethnicity, gender, etc.
◦ Highly-correlated = hair styles, redlining, etc.
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How the Law Thinks about Discrimination
But the law is not quite so simple as 1 and 2:
1. Let’s make sure to make taste-based discrimination illegal 

2. And then let’s make sure technology does not implement the direct form of 
Arrow/Phelps discrimination 

Rather, the law further demands that a lending  process :

3. Only induces statistical discrimination for business necessity
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Proxy Variables for Statistical Discrimination & 
Accountability

Outline
I. Law / Caselaw
II. Input Accountability Test
III.Application in Credit Data
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Example: UnitedHealth (UH) - insurance co
Ziad Obermeyer, Brian Powers, Christine Vogeli, and Sendhil Mullainathan, Dissecting Racial 
Bias in an Algorithm Used to Manage the Health of Populations, 366 SCIENCE 447 (2019)

UH used an algorithm to inform hospitals about patients’ level of 
sickness, which the hospitals used in prioritizing intensity of care 
◦ Purpose: Effectively allocation of resources to the sickest patients
◦ Problem: 
◦ UH had gauged sickness using historical expense data (cost of care)
◦ African-American patients historically spend less for the same illnesses and 

level of illness
◦ Result: The algorithm caused African Americans to receive substandard care 

as compared to white patients
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Setting: Algorithmic Accountability
 Two new State-level “algorithm accountability” legislations 

 New York State law: creates a task force to recommend procedures for deciding if 
automated decisions by city agencies disproportionately impact protected groups

Washington State bill: Requires the state’s CIO to assess whether any automated 
decision system used by a state agency has a known bias, or is untested for bias

 Absent: Formal standard for courts or regulators to deploy in evaluating algorithmic 
decision-making…. 

i.e.:   What exactly does it mean for an algorithm to be accountable?
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Title VII of the Civil Rights Act of 1964

An unlawful practice for an employer

1. “to ... discriminate against any individual with respect to his compensation, 
terms, conditions, or privileges of employment, because of such individual’s race, 
color, sex, or national origin; or 

2. to limit, segregate, or classify his employees or applicants for employment in any 
way which would deprive or tend to deprive any individual of employment 
opportunities ... because of such individual’s race, color, religion, sex, or national 
origin.”
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What do Lenders Say they do?
 Lender : a platform lender or bank with 1,000s of variables
 Objective: use machine learning (ML) to do credit scoring without discrimination
 Lawyers: “To avoid discrimination, implement a `least discriminatory’ approach”
How?

1. Define “target” (ML term) : = the business necessity need for proxy variables
 Courts: in lending, target = “creditworthiness”

 ( Note: credit risk != profits; courts make this point explicit))
2. Come up with models of predicting accuracy of default
3. If outcomes are disparately applied against a protected category…

lender needs to be able to show that the algorithm uses the least 
discriminatory predictive model for a given level of predictive accuracy
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Problems with this:
Part 1: An econometrician / data scientist point of view

10

ROC curves, think…
 Run logit model of default on cash flow variables plus 

1,000s of proxies for missing fundamentals 
 Calculate how predictive model is (goodness of fit)

 Imagine result… 
 “my best predictive model generates ROC of 0.78”
 I can generate many models with interactions of 

variables /nonparametrics that have similar ROC
Which one has least impact on protected group?

Problem: let’s say with just pure cash flow variables 
the model yields ROC of 0.68. 

Does the court allow us to increase ROC by 0.10 and 
then apply the discrimination test?

AOC =0.5

AOC ~0.8

AOC >0.9



Problems with this:
Part 2: The law…….Burden- Shifting Framework

Original frame from Supreme Court:
◦ Griggs v. Duke Power Co

Codified by Congress:
◦ Civil Rights Act of 1991

Important Caselaw from Supreme 
Court:
• Ricci v. DeStefano
• Dothard v. Rawlinson

Aside

 Like the Civil Rights Act of 1964, 
1991 and their caselaw, original 
application is in context of 
employment decisions. 

However, credit and housing 
decisions adopted the interpretation 
of discrimination and this framework 
explicitly in Equal Credit Opportunity 
Act and Fair Housing Act
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Burden- Shifting Framework
First Burden: Plaintiff must identify a specific employment practice that causes 
“observed statistical disparities”  across members of protected and unprotected 
groups. 
◦ If plaintiff successful…

Second Burden: The defendant must then “demonstrate that the challenged 
practice is job related for the position in question and consistent with business 
necessity.”  
◦ If defendant successful…

Third Burden: Plaintiff must show that an equally valid and less discriminatory 
practice was available that the employer refused to use
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Burden- Shifting Framework
First Burden: Plaintiff must identify a specific employment practice that causes 
“observed statistical disparities”  across members of protected and unprotected 
groups. 
◦ If plaintiff successful…

Second Burden: The defendant must then “demonstrate that the challenged 
practice is job related for the position in question and consistent with business 
necessity.”  
◦ If defendant successful…

Third Burden: Plaintiff must show that an equally valid and less discriminatory 
practice was available that the employer refused to use
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This is where the least 
discriminatory approach 

comes from



Burden- Shifting Framework
First Burden: Plaintiff must identify a specific employment practice that causes 
“observed statistical disparities”  across members of protected and unprotected 
groups. 
◦ If plaintiff successful…

Second Burden: The defendant must then “demonstrate that the challenged 
practice is job related for the position in question and consistent with business 
necessity.”  
◦ If defendant successful…

Third Burden: Plaintiff must show that an equally valid and less discriminatory 
practice was available that the employer refused to use
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This is where the least 
discriminatory approach 

comes from

But it does not excuse the 
defendant from satisfying 

Second Burden



Burden- Shifting Framework
First Burden: Plaintiff must identify a specific employment practice that causes 
“observed statistical disparities”  across members of protected and unprotected 
groups. 
◦ If plaintiff successful…

Second Burden: The defendant must then “demonstrate that the challenged 
practice is creditworthiness for the loan in question and consistent with 
business necessity.”  
◦ If defendant successful…

Third Burden: Plaintiff must show that an equally valid and less discriminatory 
practice was available that the employer refused to use
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Fair Lending laws adopted 
burden shifting for 

lending… switch 
employment language to 

creditworthiness



Dothard v. Rawlinson
A California Prison wanted to hire prison guards
 Determined that a job-required necessity is strength (legitimate)
 Could not measure strength of applications, so used proxy of height
 A group of female applicants sued and won

Court: 
 Indeed strength is legitimate as target and height predicts performance
 But the strength needed is a specific strength and the height measurement 

penalizes females beyond the business necessity
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Dothard v. Rawlinson: IAT
 Econometrician Version
Decompose height into that which predicts the target strength and a 

residual
Test if the residual is still correlated with female:

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖 = 𝛼𝛼 � 𝑆𝑆𝐻𝐻𝑆𝑆𝐻𝐻𝑆𝑆𝐻𝐻𝐻𝐻𝐻𝑖𝑖 + 𝜀𝜀𝑖𝑖
Test: 𝜀𝜀𝑖𝑖 ⊥ 𝐻𝐻𝐻𝐻𝑆𝑆𝑔𝑔𝐻𝐻𝑆𝑆…..                𝑆𝑆𝐻𝐻𝐻𝐻𝑆𝑆𝐻𝐻𝑟𝑟𝑟𝑟: 𝜀𝜀𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝐻𝐻𝐻𝐻𝑆𝑆𝑔𝑔𝐻𝐻𝑆𝑆

Proxy height fails  𝛽𝛽1 ≠ 0
If so, exclude height as only legitimate business necessity
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A fix instead of exclude?
Question: Why can’t we just fix the scoring by a protect group to de-bias?
◦ Pope and Sydnor (2011) 

Answer: It only works on average, not for individuals. The law is about individuals

Answer: It is illegal (Ricci v. DeStefano)

New Haven wanted to discard the results of an “objective examination” that sought 
to identify city firefighters who were the most qualified for promotion because thre
was statistical racial disparity in the results against a minority group.  A group of 
white and Hispanic firefighters sued, alleging that the city’s discarding of the test 
results constituted race-based disparate-treatment.  

Court ruled for plaintiff… no discarding

Why: Can’t use a protected class variable in a decision because (again) it could cause 
disparities because of the averages part
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Challenges of the IAT
1. Unobservability of Target 
 Kleinberg, Ludwig, Mullainathan Sunstein (2019): training datasets 
 Calculating thresholds

2. Measurement Error in Target

𝑆𝑆𝐻𝐻𝑆𝑆𝐻𝐻𝑆𝑆𝐻𝐻𝐻𝐻𝐻𝑖𝑖∗ = 𝑆𝑆𝐻𝐻𝑆𝑆𝐻𝐻𝑆𝑆𝐻𝐻𝐻𝐻𝐻𝑖𝑖 + 𝜇𝜇𝑖𝑖
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = 𝛼𝛼 � 𝑆𝑆𝐻𝐻𝑆𝑆𝐻𝐻𝑆𝑆𝐻𝐻𝐻𝐻𝐻𝑖𝑖∗ + 𝜁𝜁𝑖𝑖

𝜁𝜁𝑖𝑖 = −𝜇𝜇𝑖𝑖 + 𝜀𝜀𝑖𝑖
Note: UnitedHealth is this problem. Also, selective labels problem (De-Arteaga, et al., 2018). 
Idea: Structural version

3. Standard errors as n grows large. 
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Implementation: “Footprints & Discrimination”
Motivation 

U.S. household debt: $14 trillion
 Increase of $1.3 trillion from peak in 2008 (NY Fed)
 If annual debt turnover is 15%

 Then… new float of recent years ~$2.2 trillion per year

 Of this, how much algorithmically-decided based on 
1,000s of proxy variables?
 ?, but just Quicken is $100 bn of it.
All big Banks have big data now.

Jeff Budzik

CTO of ZestFinance: 

“The models we put into 
production for our 
customers tend to have 
hundreds or thousands 
of variables in them. We 
have one with 2200 
variables that’s running 
an auto lending 
business”
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Footprints & Discrimination
Question 

Fuster, Goldsmith-Pinkham, Ramadorai, and Walther (2019),

Bartlett, Morse, Stanton, and Wallace (2019)

How can the use of machine learning in credit profiling avoid being 
inadvertently discriminatory?

Outline of Application :

(1) ROC Analysis

(2) IAT Tests for Gender Discrimination
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Data
 Data from a consumer lender in Eastern Europe

 300,000 consumer loans

 Loans made in stores but not collateralized, just loans for good

 Borrowers have thin credit record

 Dataset contains default (the target)

Unique:
 124 variables (many of the them categorical)
Can be made “long” into 1,000s of variables even without interactions
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Step 1 – Looking for footprints
How well can we do as a ML-er?

Prediction target: Default via area under ROC assessment

Footprints of creditworthiness literature  (abridged)

 Berg, Burg, Gombovic, and Puri (2019) :“digital footprints” type of device 
(tablet, computer, phone), operating system (Windows, iOS, Android), and email 
provider predicted default rates among the customers of a German lender. 

 Bjorkegren and Grissen (2019) mobile phone usage data

 Vissing (2010) : Consumer goods products people buy
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Types of Variables
1. Fundamentals (cash flow, wealth, cost of capital)

2. Occupation

3. Goods

4. Shelter

5. Family Life

6. Soft Info Applying

7. Soft Info Credit
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Fundamental Variables
Mean StDev Mean StDev

Income 168,797 237,125 Missing data Credit Bureau 0.1350 0.3417
Credit Amount 599,028 402,494 # Outstanding Loans 4.3184 10.5095
Payment Amount 27,109 14,494 Prior Loans Delinquent % 0.0054 0.0312
payment_to_credit 0.0537 0.0225 How Delinquent, if any 0.0089 0.0851
payment_to_income 0.1809 0.0946 Ontime Prior Payments, if any 0.1371 0.2522
Homeowner 0.6937 0.4610 Percent of Prior Loans Closed, if any 0.0991 0.2089
Credit Score Max 0.6159 0.1561 Remaining Days on Last Issue -928.0 644.8
Cedit Score Min 0.3996 0.1874 Days Since Last Issue -419.3 526.3
# Credit Bureau Requests 0.2313 0.8568 Own Car? 0.3401 0.4737

Age of Care, if any 0.3418 0.7508
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Goods & Durables Variables

Mean StDev
Purchase Price of Good 538,398 369,447
LTV of Loan to Good 1.1230 0.1240
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Occupation Variables

Mean StDev Mean StDev
Low Skill Worker 0.2058 0.4043 Pensioner 0.1800 0.3842
Drivers Security 0.0824 0.2749 Working - Unnamed 0.5163 0.4997
Office Worker 0.1983 0.3987 Employ Commercial 0.2329 0.4227

Manager /Skilled 0.1658 0.3719 Employment Years 5.3562 6.3202
Prof Services 0.0344 0.1821 Gives Office Phone 0.8199 0.3843
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Living / Family Variables

Mean StDev
Civil Marriage 0.0968 0.2957
Religious Marriage 0.6388 0.4804
Widow 0.0523 0.2227
# Children 0.4171 0.7221
Rural 0.1047 0.3062
Large Metro 0.1572 0.3640
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Shelter Variables

Mean StDev
Municipal Housing 0.0364 0.1872
Office Housing 0.0085 0.0919
Live with Parents 0.0483 0.2143
Age Building 0.2532 0.3626
N/A Age Building 0.6650 0.4720
Elevators Relative 0.0365 0.0998
N/A Elevators 0.5330 0.4989
Entrances relative 0.0741 0.1028
N/A Entrances 0.5035 0.5000
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Soft Application Variables

Mean StDev
# Documents 0.9302 0.3443
No Documents 0.0961 0.2947
# Contacts Provided 1.5371 0.7221
Social Network: Defaulters 0.1434 0.4466
Spouse Present 0.0370 0.1887
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Prior Credit Proprietary Variables

Mean StDev
Previous Good Loan LTV 0.960 0.255
Previous  Rejection % 0.223 0.257
# Previous Apps 4.597 4.180
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ROC Analysis

Logit (Default ) =   fundamentals  +
(iteratively, then all)

1. Occupation
2. Goods
3. Shelter
4. Family Life
5. Soft Info Applying
6. Soft Info Credit
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Dependent Variable: Default

Ln Income -0.151*** Homeowner -0.0131
[0.0391] [0.0148]

Ln Credit Amount -1.934*** Credit Score Max -2.084***
[0.0902] [0.0464]

Ln Payment Amount 2.269*** Credit Score Min -2.676***
[0.0996] [0.0467]

Payment_to_credit -32.35*** # Credit Bureau Requests -0.0112
[1.540] [0.00961]

Payment_to_income -0.372* Missing data,Credit Bureau -0.141***
[0.202] [0.0245]

Cut off the prior balances debt vars
Observations 307,321
Pseudo R-squared 0.0872
Area under ROC 0.7217

Logit (default) = function of Fundamental `Permanent Income’ Variables)



ROC Analysis … Columns adding Proxies

Funda-
mentals

Variables Included: Fundamentals + ….
Occu-
pation Goods Shelter Family  

Life
Soft Info 

App
Soft Info 

Credit All

Dependent Variable: Default
Observations 307,321 307,321 307,045 307,321 307,321 307,321 306,302 306,026
Pseudo R-squared 0.0872 0.0944 0.0937 0.0885 0.0872 0.0916 0.0904 0.108
Area under ROC 0.7217 0.7297 0.7289 0.7232 0.7217 0.7262 0.7255 0.7434
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Do the proxies add to the ROC?
How did the “Adair-Bobby-ML-Lasso Optimizing’ do?



Step 2: Which of those Proxy Variables enhancing 
ROC area pass the Input Accountability Test?

Regress: Proxy = fundamentals + error
Regress: Error = b0 + b1* female
Test: b1 != 0

Standard Errors… with 300,000 observations, asterisks are “cheap”

- The test should be more rigorous, trying to empower firms to be able to use 
variables, not to say everything has asterisks (not a useful test)

- Cannot go down an “economic significance” argument because this is law. 
There is no sense in the law that “5 people out of 10,000 do not matter”

- d-value approach to the p-value problem as n-> large
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D-value : Demidenko (2013)
“The P-value You Can’t Buy” American Statistician

- Rather than focus on a comparison of group means, the d-value is designed to examine 
how a randomly chosen female fared under this proxy variable relative to a randomly 
chosen male. 

P value (under normality):    

D-value (under normality):

Where s is the standard error:  𝑟𝑟 = stdev/ 𝑆𝑆
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Family Lifestyle
(1) (2) (3) (4) (5) (6)

Civil 
Marriage

Non-civil 
Marriage Widow # Children Rural Large Metro

Sign indicating disparate outcome 
against protected category + ─ ─ + ─ +

female 0.0174 -0.0684 0.042 -0.00596 0.0112 0.00604
[0.00112] [0.00177] [0.000833] [0.00272] [0.00110] [0.00136]

Observations 307,321 307,321 307,321 307,321 307,321 307,321
R-squared 0.001 0.005 0.008 0.000 0.000 0.000
Standard errors in brackets

On d-values below: range +/- 1% around 50% is not concerning
d-value 51.1% 47.2% 53.6% 49.8% 50.7% 50.3%
Coefficient from default logit 0.0198 -0.0999*** -0.146*** 0.0155 -0.198*** 0.0915***37



Occupation – part 1
(1) (2) (3) (4) (5)

Low Skill 
Worker

Drivers 
Security Office Worker Manager 

/Skilled Prof Services

Sign that would indicate disparate 
outcome against protected category + + ─ ─ ─

female -0.166 -0.157 0.148 0.0571 0.0482
[0.00150] [0.000988] [0.00149] [0.00139] [0.000685]

Observations 307,321 307,321 307,321 307,321 307,321
R-squared 0.038 0.076 0.031 0.005 0.016
Standard errors in brackets

On d-values below: range +/- 1% around 50% is not concerning
d-value 42.1% 38.7% 57.1% 53.0% 55.1%
Coefficient from default logit 0.195*** 0.308*** -0.038 -0.0281 -0.253***
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Occupation – part 2
(1) (2) (3) (4) (5)

Pensioner Working -
Unnamed

Employ 
Commercial

Employment 
Years

Gives Office 
Phone

Sign that would indicate disparate 
outcome against protected category ─ + + ─ ─

female 0.0494 -0.079 0.00753 0.323 -0.0495
[0.00140] [0.00187] [0.00157] [0.0235] [0.00140]

Observations 307,321 307,321 307,321 307,321 307,321
R-squared 0.004 0.006 0.000 0.001 0.004
Standard errors in brackets

On d-values below: range +/- 1% around 50% is not concerning
d-value 56.3% 45.7% 48.3% 50.6% 43.7%
Coefficient from default logit -2.119*** 0.270*** 0.168*** -0.0266*** -1.917***
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Shelter – part 1
(1) (2) (3) (4) (5)

Municipal 
Housing Office Housing Live with 

Parents Age Building N/A Age 
Building

Sign that would indicate disparate 
outcome against protected category + ─ + ─ ─

female 0.00467 -0.00134 -0.0149 0.0146 -0.0193
[0.000705] [0.000349] [0.000799] [0.00136] [0.00178]

Observations 307,321 307,321 307,321 307,321 307,321
R-squared 0.000 0.000 0.001 0.000 0.000
Standard errors in brackets

On d-values below: range +/- 1% around 50% is not concerning
d-value 50.5% 49.7% 48.7% 50.8% 49.2%
Coefficient from default logit 0.105*** -0.255*** 0.00486 -0.441*** -0.267***40



Shelter – part 2
(1) (2) (3) (4)

Elevators 
Relative N/A Elevators Entrances relative N/A Entrances

Sign that would indicate disparate 
outcome against protected category ─ + ─ +

female 0.00194 -0.0242 0.00294 -0.0263
[0.000373] [0.00186] [0.000386] [0.00187]

Observations 307,321 307,321 307,321 307,321
R-squared 0.000 0.001 0.000 0.001
Standard errors in brackets

On d-values below: range +/- 1% around 50% is not concerning
d-value 50.4% 49.1% 50.5% 49.0%
Coefficient from default logit -0.255** 0.00388 -0.298** 0.0095 41



Goods  & Durables
(1) (2)

Goods Price Goods LTV
Sign that would indicate disparate 
outcome against protected category ─ +

female 5437 -0.00547
[563.8] [0.000463]

Observations 307,045 307,045
R-squared 0.001 0.000
Standard errors in brackets

On d-values below: range +/- 1% around 50% is not concerning
d-value 50.7% 49.1%
Coefficient from default logit -5.25e-07*** 0.947***
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Proprietary Prior Credit
(1) (2) (3)

previous good loan 
LTV

Previous  
Rejection % # Previous Apps

Sign indicating disparate outcome against 
protected category + + ─

female 0.0154 0.0139 0.439
[0.000950] [0.000962] [0.0156]

Observations 307,321 307,321 307,321
R-squared 0.001 0.001 0.003
Standard errors in brackets

On d-values below: range +/- 1% around 50% is not concerning
d-value 51.8% 50.4% 51.6%
Coefficient from default logit 0.213*** 0.617*** -0.0109*** 43



Soft Info – Application Variables
(1) (2) (3) (4) (5)

# Documents No Documents # Contacts 
Provided 

Social Network: 
Defaulters

Spouse 
Present

Sign indicating disparate outcome 
against protected category ─ ─ + + ─

female -0.00753 0.0035 -0.0121 0.0111 -0.0155
[0.00121] [0.00102] [0.00273] [0.00170] [0.000715]

Observations 307,321 307,321 307,321 306,302 307,321
R-squared 0.000 0.000 0.000 0.000 0.002
Standard errors in brackets

On d-values below: range +/- 1% around 50% is not concerning
d-value 49.6% 50.1% 49.5% 50.7% 48.3%
Coefficient from default logit -0.317*** -0.615*** 0.0515*** 0.160*** -0.0492
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Eliminate & Re-run Default Model

Eliminate 5 of 37 variables for bias

- buy car, previous goods loan-to-value, religious marriage, gives 
phone for employer, spouse present 

How much area under the ROC curve / pseudo r-square is sacrificed?
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Logistic regression     Number of obs =    306,026      Pseudo R2    =     0.1054
Coef Z-stat Coef Z-stat

lnamt_income_total 0.0909 2.27 occ_lowskilllabor 0.1927 8.29
lnamt_credit -1.1398 -10.31 occ_drivers_security 0.2659 9.38
lnamt_payment 1.4618 13.44 occ_office_workers -0.0306 -1.25
payment_to_credit -24.1704 -14.44 occ_managers_skill -0.0315 -1.20
payment_to_income 0.7993 3.94 occ_profserv -0.2464 -5.00
Homeowner 0.0007 0.04 employ_pensioner -0.2186 -5.24
Max Credit Score -1.8938 -39.94 employ_workingunnamed 0.2696 8.49
Min Credit Score -2.4276 -51.09 employ_commercial 0.1472 4.35
# Request Credit Bureau -0.0141 -1.44 employed_years -0.0268 -17.82
Missing Requests -0.1116 -4.5 shelter_municipal 0.1044 2.86
age_car -0.0398 -4.27 shelter_office -0.2463 -3.00
amt_goods_price 0.0000 -9.06 shelter_parents 0.0322 1.13
ltv 0.9696 15.64 years_build_medi -0.3906 -3.32
bb_outstanding_count 0.0005 0.48 na_years_build_medi -0.2273 -2.51
bb_delinquent 1.8054 6.21 elevators_medi -0.4098 -4.00
bb_howdelinquent -0.2077 -1.98 na_elevators_medi -0.0001 0.00
bb_ontime -0.1306 -4.22 entrances_medi -0.2567 -2.19
bb_succ_closed -0.1768 -3.71 na_entrances_medi 0.0119 0.30
Days outstanding on credit 0.0002 11.93 documents_count -0.4149 -7.73
Days outstanding on last credit -0.0001 -2.26 documents_none -0.7271 -11.51
prev_rej_count_pct 0.6405 20.85 contacts_personal_count 0.0414 4.25
prev_apps_HC_count -0.0090 -4.59 Network Defaulters 0.1596 11.83



Re-running 
Logit (default) 
dropping biased 
proxies

Area under ROC
drops from 
0.7434 to 0.7409

Pseudo rsquared
drops from 
0.108 to 0.1054
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Conclusions
Objectives:
Get more finance research engaged in the policy debate about algorithmic 

use in credit scoring
 Debunk the emerging literature that AI poses not dangers because it 

removes discretion and any biases can be corrected
Accomplished (hopefully)

1) Demonstrated what the law dictates about inputs
2) Provided a really simple test for firms to use ex ante and regulators or 

courts ex post
3) Showed that at least in our application, the test provides results that are 

workable to firms
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