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Abstract

We document high variation of bitcoin fees, not only over time, but also within blocks.
The blockchain rarely runs at capacity, even though fees tend to be higher when blocks are
fuller, so miners appear to be leaving ‘money on the table.” We present a simple model of
price discrimination to explain our results. We note that mining pools facilitate collusive
equilibria, and estimate that they have extracted least 200 million USD a year in excess fees.
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1 Introduction

On September 10, 2019 Nasdaq announced a new index, DeFix, to track firms organized along
the principle of decentralized finance. The listing is consistent with the growing importance
of financial entities that are designed to operate absent a trusted intermediary. While the
production function of such entities is clearly novel, it is less obvious if their market conduct
is also novel. In this paper, we try and understand whether the first successful decentralized
financial product, Bitcoin, has evolved into a system that provides value transfer to consumers
as it was promised to. Understanding how well the Bitcoin system works is important because
it is the first widely-adopted fully decentralized finance system. It is also unregulated, and so
provides us with insights into the sorts of economic structures that arise endogenously.

The original white paper by Nakamoto envisages a system which obviates the need for trusted
intermediaries because “competitive miners” record and settle all BitCoin transactions. The
code assigns BitCoin as an incentive for miners to do this. The first departure from the zero
direct cost settlement, is that spontaneously, over time, consumers have added fees to their
transactions to encourage speedy settlement. In this paper, we shed light on the determinants of
Bitcoin transaction fees and provide suggestive evidence that miners act in a way consistent with
fee maximization, as a monopolist intermediary might. We conclude that even a decentralized
finance system can operate non-competitively.

We have three main results. First, we document that the BitCoin blockchain rarely operates at
full capacity even in the presence of fees. Our sample comprises all Bitcoin transactions from the
genesis block to November 4, 2018. There is no day over this period in which the BlockChain
has run at full capacity. Fees began appearing in 2016, and amount to USD 844,537,503.30. The
existence of excess capacity, in the presence of fees, suggest miners appear to leave “money on the
table.” Second, we illustrate that this behavior is observationally equivalent to collusive price-
discrimination; mining pools, in as far as they restrict the number of independent players in the
system, facilitate such price discrimination. Third, consistent with a conservative interpretation
of our model, we define excess fees as those paid above the 10% quantile, which sum to USD
557,568,542.21, or approximately 200 million USD a year since the advent of mining pools.

Although the fees submitted by agents to the BlockChain appear akin to bids in a multi-
unit first price private value auction, they arise from a different protocol. In a multiunit first
price auction, higher bids are more likely to get the good (in this case, immediate settlement).
Therefore, whether a particular bid results in the bidder winning the good depends on all the
other bids because the seller commits to award the good to higher bids first. Effectively, the
rationing rule is one of strict price priority. By contrast, under the BitCoin protocol, individual
miners are not bound by any particular rationing rule, and may choose any set of transactions to
work on. Indeed, given the decentralized system miners may observe different pools of potential
transactions.

To understand how the miners’ ability to choose affects the consumer cost of using the system,
we present a simple two type framework that compares bidding behavior in two cases. First, we
characterize bids if there are capacity constraints, but miners always execute the highest bidders
first. In this case, the bidders who are most desperate for immediate settlement only have to



bid slightly higher than the lowest type. In other words, the high types retain some surplus. If
miners can pick and choose when and which bids to process, or discriminate, miners can ignore
any bids that are less than the high types’ maximal valuation. Under this rationing rule, the
miners extract the high types’ full valuation. The optimal rationing rule obviously depends on
various parameters such as how high the high types’ valuation is and how many there are of
them. This is the familiar price-quantity tradeoff.

The BitCoin protocol is designed so that miners are competitive, and it is well known that
in repeated games it is more difficult to sustain collusive equilibria as the number of players
increases. This suggests that mining pools provide an economic role besides diversifying risk
for individual participants. By acting collectively, each mining pool effectively reduces the set
of strategic players and so makes it easier to sustain price-discrimination. This observation is
consistent with mining pools’ habit of “signing” the blocks that they mine. If they do this, other,
unsuccessful, mining pools have a credible way of checking whether the block was mined at full
capacity (the pool deviated) or under-capacity. Empirically, we find a relationship between
excess fees and mining capacity concentration.

Our paper fits into a small and growing literature on transaction fees in blockchain systems.
?7 explain the observed shift from no-fee to fee paying transactions and model the interactions
of fee payments and waiting times. While the focus of their empirical analysis is on the time
series of average transaction fees our paper documents a huge variation of Bitcoin transaction
within blocks analyses the cross section of transaction fees. 7 compare Bitcoin to a traditional
payment system and derive closed form solutions for equilibrium fees.

This research on fees fits into a larger body of literature that focuses on the economics and
incentives in blockchain ecosystems (among others ?, 7, ?) and the impact on financial markets
(e.g. ? or 7). 7 analyze the incentives for miners to form pools. Other research focuses on the

pricing of crypto-currencies in the market including frictions causing pricing differences (e.g. 7,
?7,7) .

2 The Bitcoin Protocol: Block Capacity, Usage and Fees

A Bitcoin transaction comprises inputs and outputs. Once a transaction is submitted, it is
broadcast to the network. Then, each node determines if it is valid (i.e., the Bitcoin have
not already been spent elsewhere) and stores it, awaiting execution (also known as mining).
Each node keeps an inventory of valid transactions that have not yet been mined called the
“mempool.” It is important to note that the mempool is not a centralized entity but rather is
specific to each node (which typically have different capacity RAM). Each time a node competes
to mine a new block, it selects valid transactions from its own mempool to work on. Once a
block is mined, the output is then broadcast to the network and all nodes remove the relevant
transactions from their own mempools. Output in a mined block consists of a Bitcoin amount
that is deposited to an address using a public key.

Miners create blocks by being the first to solve a computational puzzle and are compensated in
two ways. First, they receive a mining or block reward, which was set at 1350 initially and is



cut in half every 210,000 blocks (roughly every four years). The block reward appears as the
first transaction in each block and is also called the coinbase. Second, and more germane to
our analysis, participants who want their transaction to be included in a block can offer fees to
miners. Fees are offered implicitly as the difference between inputs and outputs. For example, a
submitted transaction might call 32.2 as input but only assign 132.18 as output. Miners retain
the difference and pay it to themselves as part of the coinbase if they successfully mine a block.

2.1 The Data and Stylized Facts

Our sample comprises all blocks from the Genesis block (January 3, 2009) to block number
548,684 (Nov 4, 2018) and includes 903,976,764 inputs and 961,308,921 outputs. For each block
we observe the coinbase, the inputs and outputs (and hence fees paid to the miners), and the
size in bytes of each transaction.

There is a technological limit on the number of transactions that can be processed in a block.
In the original design, Satoshi Nakamoto introduced a 1MB limit to Bitcoin blocks in 2010.
However, for technical reasons, block size was limited by the number of database locks required
to process one (at most 10,000). This limit translated to around 500-750k in serialized bytes,
and was forgotten until March 11, 2013, when an upgrade to V0.8.0 with a switch of databases
caused an unplanned fork in the blockchain.

After resolving the crisis, the community reached a consensus to remove this unknown limit and
a hardfork was scheduled and cleanly activated on May 15, 2013. From then on, the 1 MB limit
became the effective limiting factor of the block size for the first time.! Subsequently, after much
debate, Segregated Witness (Segwit) was implemented on August 24, 2017. This implemented
a way to store signatures and scripts outside of the block. The Segwit effectively increased the
block size available to process transactions to 4MB under ideal circumstances. The first block
exceeding 1MB limit was block 481,947 mined on Aug 25, 2017 with a size of 1032 KB.

Figure 1 shows the evolution of block size over time. Clearly, average block size increases steadily
over time. Transaction capacity seems scarce mid 2017 just before the Segwit update.

In spite of the implicit capacity concern that lead to the Segwit, Figure 1 illustrates that there
are empty blocks added to the blockchain. From a mining process perspective, there is no
difference between mining a full and an empty block (empty spaces are also data). Further, for
mining pools there is an advantage to mining a non-empty block as these prevent free riding. To
prevent any one pool member from claiming the whole reward, the pool coordinator does not
disclose a full list of all transactions that should be included in a candidate block. Instead, pool
participants get aggregate transaction information. Once a miner finds the right solution she
has an incentive to report it to the pool, as the the pool coordinator’s information is required to
claim the reward. Empty blocks do not allow the pool coordinator to withhold information and
therefore increase the moral hazard problem. (We also note that empty blocks are sometimes
mined with malicious intent to slow down transactions in Bitcoin, as in the fight between two

'Details of this system change are available at https://en.bitcoin.it/wiki/Block_size_limit_
controversy,https://blog.bitmex.com/bitcoins-consensus-forks/
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Figure 1. Minimum, average, and maximum daily block size. The red bars mark the safe
implementation of the 1MB block size limit and the Segwit update, respectively. Days are
defined over UTC.

competing Bitcoin Cash developer groups in November 2018, but these events are rare.?)

Figure 2 illustrates the fraction of total blocks per day that are mined either completely full or
empty. We note that the blockchain has never run at full capacity for a full day.

We note that before Segwit, capacity seems to be constrained. However, on the “worst” day
there was excess capacity for 1,444 transactions. Figure 3 illustrates the unused capacity based
on the median transaction size.

To verify that space in mined blocks is not simply due to a lack of transaction demand, we
collected minute by minute mempool data, which comprises summary statistics on the trans-
actions that have been verified and are waiting to be included in a block.® Figure 4 contrasts
the daily unused capacity (red line) with the size of the mempool (green line). When median
fees (orange line) and bitcoin prices peaked, unused capacity exceeded the size of the mempool,
meaning that it would have been easy to include all pending transactions in the empty capacity
of the blocks on any one day. The graph also shows that excess capacity is not the result of

20n November 15, 2008 the Bitcoin Cash blockchain forked in two parts as competing developer groups fought
over the future development of the crypto-currency. Craig Wright, representing one group threatened to halt
transactions in the competing fork by constantly adding empty blocks to the competitor’s blockchain, therefore
increasing processing times for transactions, thus making the other crypto-currency worthless.

3We obtained the data from Jochen Hoenicke’s website, https://jochen-hoenicke.de/queue/#0,all, which
contains minute by minute snapshots of the mempool. Transactions are grouped into fee buckets based on
sat/byte.
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Figure 2. Number of blocks and fraction of empty and full blocks per day. Days are
defined over UTC.

2500
* 2000
1500

1000

Unused capacity (thsd tx

500

1 T 1T 1T T T T T T T T T T T T T T T T°7T
22225 UNEERRE2BNBEE
'E'E‘EV'E'%”E%“E%”E%'E'%'E € 33 3 2 23
2858835329303 8%83%222¢
S 202 BORERERSIRVSIBTSIRRR IR
8220229222222 22229892a5<2
= = ° SRR P e PETG 2 3 N
day

Figure 3. Unused Capacity denominated in thousands of the median transaction size.

an empty mempool. Our measure of mempool size is conservative as we only keep observations
immediately after a block was mined. Our graph therefore represents the part of the mempool
that was not picked up when miners confirm transactions in a new block.* In our sample the

4We go through the minute by minute snapshots of the mempool and look for instances where the size and
the number of transactions in the pool drop and identify these drops as blocks being mined. We cannot reconcile



minimum size of the mempool was 112 KB, at any time there were at least 214 unconfirmed
transactions in the mempool.
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Figure 4. Unused Capacity denominated in thousands of the median transaction size.

In addition to the strategic reasons for mining a non-empty block, there is a financial motive.
As we mentioned above, in addition to the coinbase or block reward, the successful miners
may receive fees from agents who want to have their transaction prioritized. Thus, if there are
transactions waiting in a miner’s mempool with fees attached, the successful miner appears to
be “leaving money on the table” by failing to put such transactions in his block. To get a sense
of the importance of fees, Figure 5 indicates fee revenue as fraction of the block reward. The
red lines indicate cuts in the block reward. Clearly, from 2016, fees gain importance as source
of revenue for miners.

Figure 6 shows the total number of transactions over time as well as the number of transactions
with zero fees over time. The number of transactions increases over time and peaks in mid
December 2017 coinciding with the peak in Bitcoin prices. The fraction of transactions without
fees declines over time. On the last full month of our sample, October 2018 only 67 out of
7,570,407 non-coinbase transactions were mined without a fee. High variation in Bitcoin’s early
days are possibly could arise from low transaction volume.

blocks based on the timestamp as timestamps of blocs are inaccurate. Because mempool data is specific to each
node as transactions are shared via peer-to-peer communication our data might have at a given time more or less
transactions in the mempool than other nodes.
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of the block reward. Median and 10%/90% quantile are of the daily distribution. The red
lines show when the block reward was cut in half, the green lines indicate when the block
capacity was increased.

3 Optimally “leaving money on the table”

To motivate our framework, we present a simple model of on-chain settlement. The population
comprises two types of bidders, those with high valuations for settlement v, and those with
low, vy, where vy, > vy > 0. These agents also differ in the cost incurred for every block that
the transaction is delayed, where ¢, > ¢y, and we normalize ¢, to zero. We refer to the pair
{c;i,v;} as the type of the agent i, where i € {¢,h}. For compactness we sometime denote that
cp, —cp = A and vy, —vp = A,

Each agent arriving at the market has the same outside option, v > 0, which determines his
willingness to participate. This is the expected utility any agent participating in the Bitcoin
system obtains if he chooses his own optimal alternative.

We consider an infinite horizon, discrete time model. Here, one period corresponds to one
mining block, so the culmination of each period is the addition of another block to the chain.
The sequence of events within a period is as follows: first, \; agents of type i = h, £ arrive, and
then submit their transaction (normalized to 1) and bid b; to the network. Transactions and
bids are then submitted to a common mempool and the transaction servicer then picks the bids
to process.

Each block has a fixed capacity of k. We assume that A\, < & < Ay + Ay, so that there is
congestion in the blockchain and some types will have to be rationed. (We note that if there is
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no congestion, in the case in which the servicer exhausts capacity, the optimal bid is always 0.)

In reality, each miner keeps track their own mempool. We abstract from this and consider
a common mempool. Unprocessed bids remain in the mempool, as agents cannot revise or
cancel their bids. However, as a practical matter, a mempool does not grow without bound
because each mining pool flushes its mempool depending on its local conditions and capacity.
For modeling purposes, we assume that the common mempool is flushed after ever period, but
that agents whose transaction was not settled automatically resubmit their transaction at the
same price. Thus, the arrival rate A; should be understood to include new transactions and
those that were submitted earlier but have not been executed. The timeline for one period is
presented in Figure 7 below.

{An, Actagents arrive Servicers select One servicer mempool
| join mempool | orders | finds nonce | flushed

1 2 3 4

Figure 7. Sequence of Events within a block mining period

We characterize time invariant outcomes both because agents (and econometricians) do not
observe the contents of the mempool, and the time between blocks — on average 10 minutes —
probably does not admit time trends. We note, however, that in our empirical section, we use



the random time between blocks as a proxy for congestion. In our base model, the arrival rates
of different types are exogenous. In section 3.3, we consider the relationship between the stock
of agents in the mempool and the in-flows and out-flows.

Let p; be the time invariant probability that a transaction with bid b; is executed in the current
block. Then, an agent with cost ¢; and valuation v;, who submits a bid of b; that executes after
k periods, garners expected utility of v; — b; — ¢;(k — 1). The costs of waiting are illustrated in
Figure 8 below.

i pi(1 —pi) pi(1 —p;)?
‘ 'Uz‘—b ‘ vi—b—ci ‘ Ui—b—QCi
t t+1 t+2

Figure 8. Probability of execution and payoff for an agent with type {c;,v;}. Here t refers
to the block height.

Lemma 1 The expected utility of an agent who submits a bid b; and anticipates an execution
probability p; s

Vb | ci) = (vi—b;)— ol ;ipi. (1)

Agents take the execution probabilities as given. However, the execution probabilities depend
on the actions of the miners, i.e., those who select transactions out of the mempool to process.
We characterize two types of liquidity provision, first in which miners execute all orders by price
priority and operate at full capacity, and second in which miners execute orders by price priority
and ration strategically.

3.1 Different Rationing Rules

We know from the utility function of the consumer, and the participation constraint that the
bid is

Further, because v, > vy and ¢, > ¢ = 0, we know that the type h has an incentive to bid
higher than the type ¢, and so we consider the minimum bid at which the type h agents execute
with probability 1 and the type ¢ are rationed. Let the superscript ¢ denote bids, and execution
probabilities if the servicer exhausts all available capacity.

Proposition 2 (Competitive Servicing) If the servicers execute by price priority and ex-
haust all capacity then



i. Type h bids no more than bj = lim. .ovy — v + €, and executes with probability pj = 1.

ii. Type £ bids at most b = vy — v and evecutes with at least probability pj = ”;j‘h

iti. The profits of the servicer are ¢ = ((vg — 0))) K.

If the servicer commits to exhaust all capacity, then the execution probability of the lower
bidder type is determined by the arrival of traders and block capacity. The high types bids just
enough to ensure that their orders will always execute. We note in passing that although we
have continuous prices, in a model with arbitrarily small prices, the high types would bid the
smallest price increment above the lowest types. In short, the high type retains rents and enjoys
a surplus by participating in the system.

By contrast, if the servicer strategically chooses the execution probabilities, he can induce higher
bids. We establish that if a transaction servicer can commit to execution probabilities for certain
bids, he can elicit higher bids from agents who face higher costs. Specifically, the servicer only
executes bz with probability 1, and all other bids with probability p@l.

Proposition 3 (Discriminatory Servicing) If the servicers execute by price priority and ra-
tion, then

i. Type h bids b% = v, — 0, and executes with probability p;ll =1.

1. Type £ bids b‘} =vp— 10— Ce(%ﬁ) and executes with probability p@l = min [ﬁ, K— An

iii. The profits of the servicer are T = (v, — D)\, + %)\g

These two different types of servicing strategies will generate different observables. First, it
follows immediately from inspection of the two propositions that the maximum bid observed
under discriminatory servicing is higher than that under full capacity servicing.

Corollary 1 The mazimum bid observed under discriminatory pricing is higher than the mazx-
tmum bid under capacity servicing.

Further, changes in capacity will have differential effects on the observed bids. Under full
capacity servicing, the higher the capacity, the higher the utility agents get from using bitcoin.
They are therefore willing to pay more for the system. Thus, after the Segewit, bids should
increase. By contrast, in the discriminatory environment, bids are insensitive to capacity, so
there is no effect of the Segewit.

Corollary 2 In full capacity servicing, bids are increasing in capacity, whereas under discrim-
inatory servicing, changes in capacity will have no effect on bids.

10



3.2 Sustaining Discriminatory Pricing with Competitive Miners

Suppose that discriminatory pricing is optimal. It is straight forward to show that even a
decentralized financial system such as the BitCoin protocol can lead to discriminatory pricing
equilibrium. Suppose that there are i = 1,... N servicers of varying size. Let x; denote a
servicer’s hash rate as the proportion of the total Bitcoin system hash capacity. We assume that
this is also the probability that a servicer wins the nonce.

Consider the payoff to servicer ¢. Mining garners a block reward in addition to fees. For
simplicity, we normalize the block reward to zero as this is awarded mechanically. Under pricing
regime j = ¢, d, a servicer obtains a per block profit at time ¢ of ]. Thus, under either regime
j = d, ¢, the servicer anticipates from the next block onwards of

o0

I = ) &y j=d,ec. (2)
t=1

Thus, a servicer who is playing adhering to discriminatory pricing and wins the nonce receives
a payoff of:
1-— pg

Hgoop = (v —0)\p + ((W —0) — ¢y pd ))\gpzl + 51_[?
L

Discriminatory pricing requires each miner to refrain from executing low bids to ensure that their
expected execution probability is sufficiently low that the agents who value a rapid settlement
are willing to bid aggressively up to their valuation. A miner who deviates would include too
many transactions from the low bid types. If he finds the nonce, this would become public.
Full capacity mining in perpetuity is a natural punishment strategy. The maximum profit to
deviating is thus:

dev ~ ~ 1_pg c
T = (o= o)+ (5= M) (0 = 2) — e ) o o1 (3)
l

It is immediate in this framework that if the payoff to discriminating is higher than the payoff to
full capacity mining, then full capacity as a punishment strategy will sustain the discriminatory
pricing outcome. The condition to sustain collusive outcome is

mer > e )

1 -

S 1) > (o =) — e ) (5= M~ Aarf) o)

As with most collusive equilibria, the fewer the participants, the easier it is to sustain collusive
equilibria. In this framework, fewer participants is equivalent to a higher probability that a

11



particular miner or mining pool finds the nonce and is successful. This suggests that an effect
of mining pools is to make collusive equilibria much easier to sustain. To see this note, the
continuation payoffs in equation 5) are scaled by the probability that a miner wins the nonce.
Thus, to sustain collusion, a minimum mining capacity as a function of the total capacity is
required. Finally, we note that the miners’ habit of signing the blocks they mine ensures that
other pools can easily verify that a pool did not exhaust capacity.

3.3 Long and Short Run

The analysis so far takes as given the arrival rate of the different types of traders as given, thus the
analysis is essentially “short run.” However, we note that the arrival rate will be determined by
investors’ participation constraint. In what follows, we consider what effect these strategies have
on the arrival rates under the various regimes. This illustrates that, given a fixed participation
constraint, the volume of trade will depend on the agents’ execution probabilities which in turn
depend on the servicers’ strategies. To clarify the way in which different arrival rates may be
affected by different servicing strategies, we use the notation A/, and m? to represent the stock
of a particular type in the mempool where j = ¢,d and ¢ = h, ¢ to distinguish between the
different regimes.

Proposition 4 In long run steady steady state,

i. Under full capacity servicing, the arrival rate of the high types, \j = k.

1. Under discriminatory servicing, the arrival rate of high types, )\fl C [0, k]

Clearly, XZ < A7, so under full capacity servicing, the arrival rate of agents with extreme values

is be higher. Further, if the size of the mempool does not grow, then in both cases, )\é =K— )\i,
j=cd.

Corollary 3 The distribution of types that arrive is driven by the liquidity supply strategy. With
the discriminatory equilibrium, there are fewer high (extreme) types than the capacity constrained
equilibrium.

4 Empirical Analysis

4.1 Fee Heterogeneity

Figure 9 plots the time series of the median as well as the 25 and 75 percentiles of transaction
fees starting in March 2015 when reliable price data exists. The graphs for USD and KRW are
similar.

12
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One of the key predictions of discriminatory service is a high dispersion in fees. Figure 10
illustrates the heterogeneity of the Bitcoin fee distribution in December 2017, which was the
peak of Bitcoin prices in our sample. The left panel shows the lower end of the fee distribution
documenting that a substantial fraction of transactions occurred at low or modest fees. The
right panel details the upper end of the distribution documenting that as Bitcoin fell from its
peak price some people were willing to pay enormous fees to have their transactions processed.
On Dec 24, 2017, for example, the 99 percentile fee was USD 433.23 while the largest fee paid
was USD 14,174.64. We note that there are 80 transactions in our sample with fees greater than
USD 10,000, of which 51 occur between Dec 20, 2017 and Dec 24, 2017. However over these
same five days 1,674,141 transactions were processed out of which 752 had no fee and 16,191
transactions are mined with fees less than USD 5.
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Figure 10. Fees in USD (right axis) and Bitcoin price in USD (left axis) in December 2017.
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4.2 Cross-sectional determinants

Our model predicts that under discriminatory pricing fees increase with the valuation of the
high type, while under competitive pricing the valuation of the low type determines the fees.
In this section we first analyze how transaction and blockchain specific variables drive fees and
then provide evidence that is consistent with the idea that high value types pay higher fees.
Recall, that we posit two dimensions to liquidity, the cost of waiting per block and the valuation
of having a transaction processed.

We define minimum outtime as the time (in blocks) until the first output of this transaction is
spent again. Recipient wallet owners that spend their funds very quickly have a more immediate
need for funds and might thus put pressure on their debtors to send funds quickly. The Op-ret
dummy is set to one for all data insertion transactions as discussed in Section ??7. The Sum
Inputs variable adds up all input values to a transaction. We choose inputs rather than outputs
because some transactions, most of them data-insertion transactions, have almost all their inputs
dedicated to fees and only have negligible output. Transaction size is the physical size of all
inputs and outputs in bytes. The transaction size represents an opportunity cost for miners as
block space is limited. Blocksize is the absolute size of the block in bytes. Larger blocks have
less space for additional transactions and are an indication for transaction demand.

Nobs Mean Std.Dev. Median Min Max
Fee (Satoshi) 353,306,421 52,406 2,826,555 18,802 0 29,124,090,000
Fee (USD) 291,702,649 2.90 36.86 .20 0 137,186.10
Sumin (Satoshi) 353,306,421  1,370,000,000 40,500,000,000 19,800,000 0 55,000,000,000,000
Sumin(USD) 291,702,649 25,690.01 556,020.30 256.64 0 947,000,000.00
Blocksize (bytes) 353,306,421 834,072 325,063 998,126 267 2,324,736
Tx-Size (bytes) 355,725,559 537 2,210 250 62 999,657
dum-OPRet 353,306,421 .02 15 .00 .00 1.00
Minouttime (blocks) 350,031,634 547.54 4,950.34 4.00 .00 474,195.00
Priceusd (USD) 291,702,649 3,604.66 4,162.71 1,188.28 204.84 19,828.76

Table 1. Summary statistics

Table 1 contains summary statistics. Some transactions contain unusually high fees which
are either errors or payments miners make to themselves to consolidate their bitcoin balances
together with the block award they earned under a new address. For example on April 26, 2016
someone paid 291.241 BTC to an output with 0.0001 BTC, leaving fees of 291.2409 (or USD
137,186.07 at the time) for the miner.” We found overall 80 transactions with fees over USD
10,000. These transactions have an average input of 140.89 BTC, and an average fee of 7.55
BTC or (USD 16,974.42 at the time). These transactions can be found between April 2016
and October 2018, but most of them are concentrated from Dec 21-14 in 2017. Bitcoin prices
peaked on Dec 16 2017 at USD 19,200 and feel back to USD 15,191 on Dec 21. One potential
explanation for these high fees is that investors wanted to move Bitcoin from their private wallet
to an exchange quickly in a market panic. Transactions from the earlier days of Bitcoin may
also show unusually high fees denominated in bitcoin. In December 2011 a transaction can be

Sthis is the highest fee transaction in BTC and USD terms in our sample, see transaction
cc4b55ae816e6¢dafdb58d54e35d4{46d860047458eact1c7405dc634631¢570d.
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found with inputs of over 207 BTC and outputs of 36 BTC, leaving a huge fee for the miner.
At that time bitcoin were worth very little, yet since there was no shortage of transaction space
in the blockchain, there is no obvious rationale for paying such a high fee.

Many variables show some extreme observations. The average Bitcoin transaction was for 13.7
BTC (one bitcoin equals 100 million Satoshi) while the largest transaction was for 550,000 BTC
on Nov 16, 2011 at a zero fee.5 The largest transaction in dollar terms occurred on Dec 17th,
2017 at the peak of the bitcoin price when 48,500 BTC valued at over 946 million USD changed
wallet for a fee of 80,908 Satoshi or USD 15.8.7 In our sample we find 54,907 transactions with
a value of more than USD 10 million. Out of those 20,956 were processed with a fee of less than
USD 5 and the average fee of those transactions was USD 90.54.

Most transactions are small in size with a mean of 537 and a median of 250 bytes. The largest
transaction in our sample consumes the entire block 364,292 with a size of 999,657 bytes. The
transaction was mined on July 7th, 2015 and consolidates 5,569 inputs of 1,000 Satoshi each
in a single output.® Minouttime measures the time (in number of blocks) until the first output
of a transaction gets spent again. In some cases a transaction output gets spent in the same
block that it is received, showing a minouttime of zero. The mining difficulty is set such that on
average one block is mined every 10 minutes. We chose blocks and not calendar time as measure
to make our findings robust to smaller variations in the time between blocks especially when the
output is spent shortly after it is being received. For longer timespans the difference between
calendar time and block time is irrelevant as blocks are mined every 10 minutes.

To purge our sample from extreme outliers we windsorize our fee data, the transaction size, the
inputs, and the outtime at the 99.9% level. We find our results to be robust to different levels of
windsorizing. Bitcoin fees also vary tremendously over time. To control for this time variation
we include day-fixed effects in our regression analysis. To control for variation of fees across
miners we cluster standard errors per block.

We first examine how transaction and blockchain specific explanatory variables influence trans-
action fees. Table 2 presents our findings for the fees in term of Satoshis (1 BTC is 100 million
Satoshis) and Table 3 for fees in USD. In line with our intuition fees are higher when trans-
actions space is scarce (larger blocksize) and when the transaction is larger in terms of bytes
(TXSize) and value (Sum Inputs). In the context of our model, this arises because more high
fee transactions are in the mempool and therefore the block is larger.

Fees are also higher when the funds are spent sooner (lower min. outtime). One possible expla-
nation is that receivers who are in need for liquidity pressure senders to accelerate payments by

Ssee transaction 29a3efd3ef04f9153d47a990bd7b048a4b2d213daaa5fb8ed670fb85f13bdbcf

"see transaction 261d69b25896034325d8ad3e0668f963346fd79baefb6a73bdeabd68cH8cS1fF

8 According to some forum posts an unknown spammer created all these wallets to test the limits of the UTXO
database. Somebody created many small outputs locked up under different addresses. To speed up the time it
takes to verify the validity of a transaction each node holds in RAM memory a complete lust of all unspent BTC
amounts per address. This list is called the Unspent Transaction Output (UTXO) database. The attack of the
spammer forced each of the nodes to expand the UTXO list thereby increasing the memory requirement for each
node. The Intentions of the spammer are unclear as all the transactions were protected by very weak private keys
such as ’passowrd’ or ’cat’. Somebody eventually guessed the private keys and consolidated all the small inputs
in block 364,292, freeing up space in the UTXO list.
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Blocksize 0.0024*** 0.0012%**

(0.0001) (0.0001)
TXSize 49.4070%** 49.5693%**
(0.1380) (0.1382)
Sum Inputs 1.04e-06*** 5.75e-07***
(8.65¢-09) (5.65¢-0)
OP-Ret -10371.4000*** -502.8570**
(232.5050) (243.3099)
Min. Outtime -1.2260*** -2.1106***
(0.0144) (0.0199)
constant 44750.4000%%*  21403.3000%**  45713.6000*** 46993.6000*%**  47288.5000***  20521.8000***
(74.5277) (67.0622) (39.8744) (40.5487) (40.2871) (115.3693)
R? 0.0951 0.3688 0.0973 0.0952 0.0952 0.3708
N 353,306,421 353,281,736 353,306,421 353,306,421 350,031,634 350,008,404

Table 2. Regression results of fees in Satoshis (1 BTC is 100 million Satoshis). Regressions
include day fixed effects. Standard errors are clustered by block. One, two, and three stars
indicate significance at the 10%, 5%, and 1% level, respectively.

offering higher fees. Data insertion transactions pay on average lower fees in BTC other users
of the blockchain. While being statistically significant some results are economically insignifi-
cant. The value of the transaction, for example, only has a small impact on the fees, which is
consistent with the fact that the miner’s opportunity cost for including a transaction in a block
of limited size is determined by the transaction size in bytes and independent of the value. In
Appendix A we provide more details on the determinants of transaction size. Transaction size
has therefore an economically significant impact on fees. Adding one input (with an average size
of 180 bytes) to a transaction (the average transaction has 2.5 inputs in our sample) increases
the fee by 8,893 Satoshi or USD 0.41. Given that the median fee over the whole sample is USD
0.20 this effect is economically large. Results are mixed for the data-insertion (OP-Ret) dummy.
In terms of BTC we see that data-insertion transactions post lower fees, yet when controlling
for other variables we see that they pay a higher fee in USD. We attribute that to the increasing
volume of data insertion transactions towards the end of our sample, where BTC prices were
generally higher than at the beginning.

Outtime is measured in blocks, which are mined every 10 minutes on average. People spending
their funds a day (~144 blocks) earlier pay on average USD 0.014 more in fees. Receivers
that are keen to spend their coins sooner put a higher value on the execution. Consistent with
discriminatory service those users pay higher fees as miners are able to price discriminate by
delaying users that put a low priority on execution.

We first analyze if fees are higher at certain times. We argue that more sophisticated, high
value, investors are active during the week and when the Bitcoin futures at CME are trading.’
The results in Table 4 are consistent with discriminatory service. Transaction fees are lower on
weekends by almost USD 0.196, which is close to median transaction fee for the whole sample.

9BTC futures at CME are trading Sunday to Friday from 6pm to 5pm EDT with a daily one hour break
between 5pm and 6pm EDT. Futures were first traded on December 18, 2017. Settlement is on the last Friday
of the contract month. For this analysis we convert all block timestamps from UTC to Eastern Time considering
summer daylight savings time when appropriate.
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Blocksize 9.06e-08*** 5.03e-08%**

(5.89-09) (6.87¢-09)

TXSize 0.0023*** 0.0023***
(9.90e-06) (9.76¢-06)

Sum Inputs 7.69e-06%** 6.15e-06%**
(6.65¢-08) (5.85¢-08)

OP-Ret -0.3681*** 0.1247%**
(0.0168) (0.0157)

Min. Outtime -0.0001*** -0.0001***
(1.30e-06) (1.45¢-06)

constant 2.3626*** 1.2527%** 2.2053*** 2.4579*** 2.4814*** 1.1323%**
(0.0068) (0.0054) (0.0034) (0.0035) (0.0035) (0.0088)
R? 0.2741 0.3997 0.2858 0.2741 0.2747 0.4079

N 291,702,649 291,678,054 291,702,649 291,702,649 288,555,299 288,532,152

Table 3. Regression results of fees in USD. Regressions include day fixed effects. Standard
errors are clustered by block. One, two, and three stars indicate significance at the 10%,
5%, and 1% level, respectively.

Looking at individual days of the week it seems that fees gradually increase during the work
week with the highest observed fees on Fridays (which is also the settlement day for futures).
Fees are also higher by about half a dollar, or twice the median fee, whenever the futures market
is open.

Bitcoin is a pseudo-anonymous system, all wallet addresses can be identified and payments can
be tracked moving from one wallet to another but the identity of the wallet owner is usually un-
known. In some cases, e.g. voluntary disclosure, court proceedings, the owner of some addresses
gets known. Gambling sites often use vanity addresses, which start with a suggestive word like
‘ldice....” or ‘1Lucky....” which are easily identified. Such vanity addresses have to be found by
trial and error in a time consuming process and therefore get often reused.'® Once an address
is known other addresses controlled by the same walled can be inferred in a process commonly
known as address clustering see e.g. 7 or 7. The idea is that if multiple addresses are used as
inputs in the same transaction these addresses most likely belong to the same person because
the private key has to be used to sign the transaction.!!

We use data from lists of known addresses such as wallet explorer and are able to identify
the identity of the sender for 18,123,498 transactions, out of which 7,250,374 (or 2.05% of all
transactions) were initiated by an exchange and 10,873,124 (or 3.07% of all transactions) were
initiated by a gambling site. Similarly we are able to identify 32,771.960 payments to an exchange
and 23,099,021 payments to a gambling site. Table 5 presents our findings for fees in USD. Flows
to and from exchanges transact at higher than average fees. Since we control for day fixed effects
our results cannot be driven by more exchange flows occurring on days when fees are generally

10 Addresses are encoded in a Base58 alphabet (i.e. there are 58 possible ‘letters’ consisting of upper case, lower
case letters and numbers with some combinations dropped that are often mixed up when printed on paper, e.g.
capital i and lower case L) and start with 1. To get an address with ‘1Lucky’ one has to try 58° ~ 656million
combinations. Vanity address companies offer computing resources for custom bitcoin addresses.

10One notable exception are anonymizing services that for a fee combine transactions of several users into one
large transaction so that it is not that clear who paid whom. See e.g. 7.
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Blocksize 1.88e-08** 3.90e-08%** 4.4Te-08***
(8.34e-09) (8.13¢-09) (8.27¢-08)
TXSize 0.0023*** 0.0022%*** 0.0023***
(9.76¢-06) (9.76¢-06) (9.76¢-06)
Sum Inputs 6.13e-06%** 6.13e-06%** 6.13e-06%**
(5.91¢-08) (5.91¢-08) (5.91¢-08)
OP-Ret dummy 0.0832%*** 0.0848*** 0.08056***
(0.01870) (0.01859) (0.01859)
Min. Outtime -0.0001*** -0.0001 *** -0.0001***
(1.51e-06) (1.51e-06) (1.51e-06)
Monday 0.2683***
(0.02050)
Tuesday 0.3749%**
(0.01963)
Wednesday 0.4388%**
(0.01873)
Thursday 0.5236***
(0.01961)
Friday 0.6379%**
(0.02209)
Saturday 0.4847%**
(0.02119)
Weekend -0.1962%***
(0.01197)
Open Futures Mkt 0.4932%***
(0.0369)
Constant 0.7662%** 1.1966*** 1.0571%**
(0.01649) (0.01089) (0.01045)
R? 0.3952 0.3949 0.3950
N 288,532,152 288,532,152 288,532,152

Table 4. Regression results of fees in USD - day of the week and opening hours of the
futures market. Regressions include week fixed effects. Days are defined in UTC. Standard
errors are clustered by block. One, two, and three stars indicate significance at the 10%,
5%, and 1% level, respectively.

higher. Our findings are also not driven by outliers since the data is windsorized. Transactions
flowing out of exchanges pay USD 3.15 more, which is remarkable given that the median fee for
the whole sample is USD 0.19. Fees into exchanges are paying USD 1.24 more than average.
We argue that traders moving funds in and out of exchanges and gamblers put a high value on
immediate execution. Consistent with discriminatory service we observe that high types pay
higher fees.

We investigate how block capacity or “congestion” affects the fees that are submitted. First,
we examine how many blocks have been recently mined. Notice that the time between blocks
is a random variable. The Bitcoin protocol calibrates the difficulty, i.e. the number of leading
zeros that a block hash has to have to qualify as valid, in such a way that on average a new
block is added every ten minutes. Yet the times between blocks as they are recorded on the
blockchain wary widely as illustrated in Figure 11. This is because mining a successful block is
purely random and so sometimes blocks are found very quickly and sometimes it takes a long
time. Another reason is that the time a block was mined is self reported by the miner and
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Identity sender Identity Receiver

Blocksize 7.00e-08%** 5.76e-08%**
(0.0000) (0.0000)

TXSize 0.0023*** 0.0024***
(0.0000) (0.0000)

Sum Inputs 5.98e-06%** 7.75e-06%**
(0.0000) (0.0000)

OP-Ret dummy -0.0874*** 0.0884***
(0.0154) (0.0158)

Minimum Outtime -0.0001*** -0.0001***
(0.0000) (0.0000)

Exchange 5.4745%** 3.1496*** 2.1978%** 1.2460***
(0.0478) (0.0350) (0.0140) (0.0099)

Gambling 0.3528*** 0.1914*** 0.7724*** 0.5259***
(0.0039) (0.0069) (0.0060) (0.0050)

constant 2.3485%** 1.0723%** 2.3281*** 0.9826***
(0.0033) (0.0089) (0.0036) (0.0098)
Rz 0.2789 0.4095 0.2637 0.4062

N 291,702,649 288,532,152 294,586,994 291,416,436

Table 5. Regression results of fees in USD - day of the week. Regressions include week
fixed effects. Days are defined in UTC. Standard errors are clustered by block. One, two,
and three stars indicate significance at the 10%, 5%, and 1% level, respectively.

miners can have their local clocks not aligned with the world time. These clock mis-alignments
can be substantial. Out of the 548,648 blocks in our sample we find 13,848 cases in which a
block has an earlier time-stamp than its predecessor. This is technically impossible. Each block
contains information from the previous block, which links the blocks together in a blockchain.
The only rational explanations for the inconsistency in time-stamps is improper alignment of
miners’ clocks. To accommodate potential synchronization problems in miners’ clocks the bitcoin
protocol allows a block to have time-stamp up to two hours earlier than the previously mined
block. Despite these problem cases for the vast majority of the sample the time-stamps seem to
be properly recorded.

Under the assumption that the arrival rate of orders to the mempool is independent of the time
between blocks, then fewer recently mined blocks should imply more congestion in the mempool.
Second, we measure the capacity utilization of the recently mined blocks, which we define as
the fraction of available space used by the miners. Table 6 includes our measures of congestion
in the fee regression. The coefficient on both variables is negative. So, if more blocks have been
mined recently the lower the fees in addition, the lower the capacity use, the higher the fees. At
least the second observation is consistent with price discrimination. When miners successfully
coordinate to leave more block-space empty by delaying users that put low priority on execution,
the users that are keen on execution will bid more in equilibrium.

One group of users with high valuations on execution are arbitrageurs who take advantage of
cross exchange pricing differences. The arbitrageurs’ preference for immediacy will be propor-
tional to the price differential between exchanges as they need to process transactions on the
blockchain to move Bitcoin from one exchange to the next. Under competitive pricing we should
find that fees are independent of the value that the high types put on immediacy. Under dis-
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Figure 11. Time between blocks as recorded on the blockchain. Quantiles are computed
from the monthly distribution.

criminatory pricing we should find that miners can extract at least part of that surplus and
therefore charge arbitrageurs a higher fee when the price differential is high.

To test this prediction empirically we take high frequency prices from Korea and the US and
compute the Kimchi premium as the relative price difference of Bitcoin in the US and Korea at
the block level. We interact a dummy for payments being made to and from wallets that can
be identified as exchanges with the absolute value of the Kimchi premium and and find that
fees made to exchanges increase in the Kimchi premium for these users. Since arbitrage profits
are increasing in the absolute value of the price difference between BTC markets our evidence
is consistent with discriminatory pricing and the idea that miners can extract more if the value
of the high type v, increases.

Our findings are in Table 7. Exchange is a dummy that identifies 35,163,580 payments to and
from known exchange wallets, the Kimchi Premium is measured as relative price difference or
the BTC price between Korbit in Korea and coinbase in the US, respecively. The interaction
term of Exchange and Kimchi preium is statisically and economically significant. For an increase
of the Kimchi premium by 10 percentage points users are willing to pay USD 3.22 more in fees.
Our analysis most likely underestimate the importance that the demand for immediacy has for
equilibrium fees for two reasons. First we can not identify all payments to exchanges. Observed
high fees to exchanges might therefore coincide with similar high fee payments to unidentified
exchanges making it harder to identify any effect in the data. Second, arbitrage between KRW
and USD is only one of many potential trading strategies to exploit price differences, within
one country, or between countries. We might therefore also observe high fees for payments to
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Blocksize -3.51e-07***

(0.0000)

TXSize 0.0023***
(0.0000)

Sum Inputs 6.11e-06%**
(0.0000)

OP-Ret dummy 0.1416%**
(0.0152)

Minimum Outtime -0.0001***
(0.0000)

Num blocks 1h -0.0957*** -0.1343***
(0.0018) (0.0018)

Num Blocks 24h -0.0107***
(0.0006)

Capacity use 1Th ~ -0.6112%** -0.8866%**
(0.0160) (0.0172)

Capacity use 24h -0.9620%**
(0.0999)

constant 3.3813*** 5.0140%**
(0.0193) (0.1433)
R? 0.2789 0.4088

N 291,702,649 288,532,152

Table 6. Regression results of fees in USD including measures of congestion. Regressions
include day fixed effects. Days are defined in UTC. Standard errors are clustered by block.
One, two, and three stars indicate significance at the 10%, 5%, and 1% level, respectively.

exchanges at times when two different markets have a large price difference which would not
be captured in our regression. The results are robust to the introduction of Segwit and other
control variables. Our finding cannot be driven by general variation in fees over time as we
include day fixed effects.

In sum, fees are higher when the recipient spends the output faster, consistent with some liquidity
need of the receiver. We find that transaction fees are higher on workdays and when CME bitcoin
futures are trading consistent with the idea that miners can extract a portion of the higher value
institutional investors put on execution. Using a sub-sample of identifiable wallets we find that
payments to and from exchanges and gambling sites have substantially higher fees. We also
find that the fees miners can extract from users making payments to exchanges increase in the
opportunities for cross country arbitrage as measured by the Kimchi premium.

4.3 Time Series evidence

In this section we analyze aggregated block level data to test some time series predictions of
our model. Our model predicts that fee levels change in the value market participants put
on execution but also on their opportunity cost and their costs of waiting. Since all of these
parameters are unobservable we cannot use fee levels as explanatory variables.'? Our model

- - . ime variation in v . . <
1211 the cross sectional regressions we control for time variation in values and costs by incorporating day fixed
effects.
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Kimchi Premium * exchange  35.05%** 35.05%** 32.22%%*

(0.3815) (0.3815) (0.3366)

Exchange 0.93%%* 0.93%%* -0.10%**
(0.0155) (0.0155) (0.0135)
Kimchi Premium -1.52%* -1.52%* -0.58
(0.6830) (0.6830) (0.6292)

Segwit 1.81%%x 1,113
(0.3888) (0.3720)

Blocksize -3.30%**
(0.0000)

TXSize 0.00***
(0.0000)

Sum Inputs 7.62%**
(0.0000)

OP-Ret dummy 0.19%**
(0.0147)

Minimum Outtime -0.33%**
(0.0054)

Min Outtime Zero 0.00%**
(0.0000)

Num blocks 1h -0.14%**
(0.0019)

Num Blocks 24h -0.01%**
(0.0006)

Capacity use 1h -0.93***
(0.0183)

Capacity use 24h -0.93%**
(0.1068)

constant 2.36%** 1.71%%* 4.62%%*
(0.0275) (0.1420) (0.2043)

N 293,822,933 293,822,933 290,655,603
R? 0.2706 0.2706 0.4124

Table 7. Regression results of fees in USD including payments to exchanges and the size
of the Kimchi premium. Regressions include day fixed effects. Days are defined in UTC.
Standard errors are clustered by block. One, two, and three stars indicate significance at
the 10%, 5%, and 1% level, respectively.

predicts that the dispersion of fees is higher under discriminatory service. We define feespread
as the difference between the 90% and the 10% quantile of fees in a given block, standardized
by the average fee. We choose this measure of fee dispersion over, say, a standard deviation, to
reduce the influence of outlyers.

The collusive discriminatory service is easier to maintain whenever mining concentration is high,
which we measure by the market share of mining pools. We collect miners’ signatures from each
block’s coinbase transaction. Unlike any other transaction on the bitcoin blockchain the bitcoin
in the coinbase are newly created and therefore do not originate from another wallet. Miners
use the space reserved for the input script to insert data into the blockchain. This space is used
to send messages to the community like the miners’ opinion on Bitcoin improvement proposals,
it can contain other philosophical statements,'®> but most important for our purpose it usually

13¢.g. "Welcome to the real world.” in block 328465, or ’smile to life and life will smile back at you’ in block
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contains a signature identifying the mining pool. We automatically search for commonly used
signatures and then manually examine unidentified blocks for reoccurring signature patterns.™

We compute the daily Hirschman Herfindahl index (HHI) of mining concentration as the sum
of the squared shares of each mining pool computed over the day where the block is mined. We
also compute the miningpools’ daily share of all mining activity. Table 8 presents our findings.
We find that the feespread increases in both, the HHI and the miningpool’s aggregate share
of mining activity. This finding is consistent with the idea that more mining by pools and
more concentrated mining makes it easier to maintain the collusive discriminatory equilibrium
in which the dispersion of fees increase within blocks.

HHI 3.1684*** 3.1502%**
(0.0373) (0.0421)
Agg Pool Share 0.8188*** 1.1161***
(0.0134) (0.0163)
Mpool 0.0144*** 0.0022 -0.0150*** -0.0115**
(0.0047) (0.0048) (0.0049) (0.0048)
Segwit 0.2025%** 0.2943*** 0.1859%** 0.0899***
(0.0027) (0.0095) (0.0027) (0.0097)
Blocksize -2.04e-09*** -2.02-07***
(0.0000) (0.0000)
TXSize 0.0000 0.0000
(0.0000) (0.0000)
Sum Inputs -1.62e-07* -1.51e-07*
(0.0000) (0.0000)
OP-Ret dummy 1.0195%** 1.0220%**
(0.0459) (0.0462)
Minimum Outtime 0.0002%** 0.0002%***
(0.0000) (0.0000)
Num blocks 1h 0.0117%%* 0.0119%**
(0.0011) (0.0011)
Num Blocks 24h -0.0005*** -0.0014***
(0.0001) (0.0001)
Capacity use 1h 0.2621*** 0.2538***
(0.0116) (0.0119)
Capacity use 24h -0.0323 -0.4090***
(0.0212) (0.0219)
constant 0.8455%** 0.7578%** 0.4995%** 0.5419%**
(0.0057) (0.0175) (0.0117) (0.0208)
R? 0.0702 0.1095 0.0557 0.0992
N 198,111 198,105 198,111 198,105

Table 8. Regression results of fee spread per block defined as the difference of the 90% and
10% quantile over the average fee. HHI is the Hirschman Herfindahl index of mining pool
activity and Agg Pool Share is the share of mining done by mining pools. One, two, and
three stars indicate significance at the 10%, 5%, and 1% level, respectively.

328444, or ’the Lord of the harvest, that he send forth labourers into his harvest’ in Block 143822.

14 1t is unclear why pools sign blocks. There is gain in expected revenue from joining a larger pool. While
larger pools are expected to mine a block more often, the reward has to be shared among a larger group. In the
context of our model mining pools find it optimal to disclose their identity to show that they do not deviate from
the collusive equilibrium.
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4.4 Overall impact of collusion

The total amount of fees paid in all transactions of our sample is USD 844,537,503.30. How
much was extracted from miners via collusion is hard to estimate. According to our model the
equilibrium fee under competitive mining should be below the value that the low type puts on
execution. If there is no congestion, as it is for practically our whole sample, equilibrium fees
should be zero without collusion. As conservative estimate of maximum fees under competitive
mining we approximate the fees that the lowest type would be willing to bid with the 10%-
quantile of the fee distribution per block. We then define excessive fees as the sum of all fees
above the 10%-quantile. For the whole sample these excessive fees sum to USD 557,568,542.21 To
make the result robust to outliers we re-compute excessive fees and winsorize fees per block at the
99% quantile. With winsorizing excessive fees for the whole sample add to USD 416,006,674.88.
Overall we argue that excessive fees paid because of collusion are between half and two thirds of
total fees paid. Figure 12 shows the daily ratio of excessive fees over total fees, bitcoin prices, and
the mining concentration as measured by the HHI. Excess fees seem to be positively correlated
with mining concentration.
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Figure 12. Daily excessive fees, mining concentration as measured by the HHI, and Bitcoin
price. Days are defined over UTC.

5 Conclusion

We have documented stylized facts about the Bitcoin protocol. In particular, we observe that
there appears to be excess capacity as a significant portion of blocks are empty or not at
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capacity. We note that this is consistent with collusive price discrimination. Indeed, the rise of
fees coincided with the rise of mining pools. Given that the idea behind the bitcoin system was
to provide a completely decentralized way of transferring value based on competitive mining, the
possibility that there could be collusive equilibria raises questions about the viability of proof
of work blockchains.

Our preliminary evidence suggests that one implementation of decentralized finance may oper-
ate in a way that is observational equivalent to traditional finance. Indeed, our analysis has
highlighted the cost to the consumer of the higher fees they pay because of unused capacity.
However, we note that there is a positive side to these rents. Higher profits are one way to
ensure that miners will view participating as a valuable exercise which ensures the continuity
and stability of this aspect of the BitCoin protocol. Similar to financial intermediaries, market
power and the ability to extract rents provide an incentive to continue.
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A  Determinants of Btcoin Transaction Sizes

Transactions sizes are influenced by the number of inputs and outputs as well as by the type
of the transaction. The Bitcoin eco-system allows several types of transactions from the simple
pay to an address, to multi-signature transactions where, for example, two out of three people
need to digitally sign a transaction for validation, to pay-to-script-hash transactions where the
precise rules of redemption are not known at the time an output is locked but only the hash
of the redemption script is recorded. Transaction size increases in the number of inputs and
outputs with inputs contributing more since they have to hold the transaction signature and the
public key. For basic transactions with 4 inputs and o outputs a common rule of thumb is that

the transaction size in bytes is 1807 + 340 + i.1°.

To confirm this idea and to show that value
does not drive transaction size we regress transaction size in bytes on the number of in, and
outputs (numin and numout, respectively) as well as on the value of all inputs (sumin). The
results in Table 9 document that the rough rule mentioned above is approximately true for our

sample as well. We also find that that the value has no economically significant impact on the

size of a transaction.

Numin 164.74%**
(0.06414)

Numout 37.781%%*
(0.02734)

Sum Inputs 9.23e-12***
(1.07e-12)

constant 19.617%**
(0.16118)

R? 0.9394

N 350,008,404

Table 9. Regression of transaction size in bytes on the number of inputs, number of outputs,
and the value of the inputs. One, two, and three stars indicate significance at the 10%, 5%,
and 1% level, respectively.

5see e.g. https://bitcoin.stackexchange.com/questions/1195/how-to-calculate-transaction-size-before-sending-

legacy-non-segwit-p2pkh-p2sh
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Proof of Lemma 1

The utility of an agent with cost ¢; who bids b and executes in period k is v — b(v, ¢) — c(k — 1).

If the probability of execution is p;, they obtain utility

Vi) = Y pll—pl" v —b—ci(k
P

= (v=0)—cpi Y_[1—pil’y
j=0
1 —pi
= (v—=>b)—¢ .
(v—"0) p

where

Proof of Proposition 2

-1)

As the servicer is assumed to exhaust capacity, and the type h agents all execute, we know that

the probability any single type ¢ will execute is

o = K — Ap
¢ N

Thus, the highest such a type will bid is

1 — gt
b% = ’L)g—ﬁ—Cg( pﬁ)

Py
by = Ué—l_)—Cg()\e_(:;_ Ah))(ﬁi\@/\})
bi = Ué—U—Cg(W>

The maximum bid for a low type is bj = vy — U, as this is the highest bid which still generates
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his reservation utility.

The high type will bid no more than bf, = lim._,0(bj+e€) as at this price, he will obtain immediate
execution.

Thus, if the servicer uses all capacity, the maximum bids of the agents is

Type Bid Execution Probability Quantity
1 vw—v+e 1 Ah
2 vp— 2 (Ae)pg

Table 10. Maximum Bids and quantity executed if the servicer exhausts capacity

Proof of Proposition 3
The high type bids bfL = v, — ¥ and is executed with probability 1.

The second highest type is executed with probability pg, which satisfies incentive compatibility,
that ensures that type 2 doesn’t want to bid b;il.

1— d

Ug—bz < 'Ug—b;l—Cg dp2

V25

_ 1—pf

ve— (v, —0) < Ug—bzl—Cg d2
Vo)

-~ 1 —pd

bl < (up—7) -« dQ

Y25

i 1—pj
v > vp—by —en—y (7)
)
1-— pd
bl > w—T—cp d2 (8)
D
Subtracting these two equations from each other yields:
1— d
0< (Ch—Cg)< dp2>
Dy
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Type Bid Execution Probability Quantity
1 Vp — U 1 Al

2 Vg —V — CZ(%Z) ﬁ (ma + A2)pd

Table 11. Bids and quantity executed if the servicer discriminates

As the RHS is strictly positive, these conditions are satisfied. To pin down b‘g, we note that

and use this in the incentive compatibility constraint Equation 7:

1— d
v > vh—bg—ch dp2
D
1— d 1— d
vo> vh—<vg—ﬁ—04 dpz) dp2
Dy D>
1— d
0 > A, —A—12
P
1- pd Av
Ps c
A
d c
= 1
:>p2 Av +Ac ( 0)
A
1—pd = v 11
Y2 A, + A, (11)
In this case, the flow revenue of the servicer is:
7 = b\, + bIpd (M)
1—
= (vn —0)An + (Uz —0—c w)p (M)
_ Av A.
= (Uh — v))\h+ ((W — 1)) — CgAC) <Av +Ac ) )\g)
_ (ve = 9)(Ac) — co(Ay)
= —V)A A
(vh — 0)An + A LA, (Ae)
[
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Proof of Proposition 4

Consider the arrival rates of type h traders. Under discriminatory liquidity supply, the utility
they receive is just v, so they are indifferent between entering and not. Thus, any quantity
)\fL C [0,k] is consistent with equilibrium. Whereas, for type h traders under the capacity
liquidity supply, the traders make positive profits, so A\f = x.

For type £ traders under discriminatory liquidity supply, they receive zero utility, but the arrival
rate that is consistent with a finite size of the mempool is determined by:

mf = (mf+ )1~ p))
Al
mi = 0 - 2 50)
A,
mi = (53 5)
v C
Al

Further, the total quantity executed must be consistent with the capacity of the system.

A d
< _
AU i Ac S R )\h

— N <k— )\

(m§ + A7)
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