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Abstract—Complex Machine Learning (ML) models can be 

effective at analyzing large amounts of data and driving 

business value. However, these models can be nonintuitive, 

their parameters meaningless, their potential biases difficult to 

detect and even harder to mitigate, and their predictions and 

decisions difficult to explain. Lenders, regulators, and 

customers need explainable models for automating credit 

decisions. Lack of algorithmic transparency is a broad concern 

beyond lending, which has led to much interest in “explainable 

artificial intelligence” [1]. This paper discusses a model family 

which warrants explainability and transparency by design: the 

Transparent Generalized Additive Model Tree (TGAMT). 

Many credit risk models used in the US and internationally 

belong to this family. Today, these credit scores are developed 

painstakingly by teams of data scientists and credit risk 

experts in a tedious interplay of “art and science” in order to 

simultaneously achieve high predictive performance and 

intuitive explanations of how the scores are arrived at. The 

main contribution of this paper is to automate the learning of 

TGAMT models. We also report benchmark results indicating 

that TGAMT’s achieve strong predictive performance similar 

to complex ML models while being more explanation-friendly.  

Keywords - explainable artificial intelligence; algorithmic 

transparency; machine learning; gradient boosting; neural nets; 

credit risk scoring; scorecard; segmentation; constraining 

models. 

I.  INTRODUCTION 

Credit scoring has been an early, highly successful and 
pervasive data mining application. For a comprehensive 
survey of credit scoring see [2]. Business users in the 
Financial Services industry frequently rely on the scorecard 
format to compute scores and to create robust, interpretable 
and easily deployable scoring solutions for a wide range of 
applications including marketing targeting, origination, 
behavior scoring, fraud detection and collections scoring. 
Scorecards are deployed through automated, rule-based 
systems to effect impactful, high volume decisions on 
consumers, such as what product to offer, accept/reject, 
pricing, limit setting, card authorization and collection 
treatment, thereby impacting a large part of the economy. 
Because of the high responsibility shouldered by these 
systems, model developers and users familiar with the 
domain seek a high level of transparency and confidence into 
reasonableness and robustness of the deployed models.  

Because no database is perfect, and because future 
operational conditions tend to differ from past conditions 
under which data were collected, it has been recognized that 
incorporation of domain expertise into the data mining 
process is often essential [3]. It is indeed crucial for 
scorecard development to strike an appropriate balance 
between the desire to “let the data talk” and the necessity to 
engineer the models for deployment. Scorecard technology 
supports inclusion of domain knowledge into the models, by 
allowing users to impose constraints, such as monotonicity, 
on the fitted functional relations.  

Modelers who value interpretability nevertheless desire a 
high degree of flexibility in their scoring algorithms to 
capture complex behavior patterns and to enable discovery 
of new, unexpected relationships. This is important in a 
highly competitive environment characterized by high 
volumes of automated, high stakes decisions. Being able to 
capture fainter and more complex predictive patterns that 
may otherwise escape simplistic models, can make a 
substantial difference to the bottom line of a business. 
Segmented scorecards are one response of the scoring 
industry to these needs. Unlike a single scorecard, which is 
additive in the predictors, these models can capture 
interactions between the variables used to define the 
segments, and the predictors used in the segment-level 
scorecards. For example, the FICO® Score is constructed as a 
system of more than a dozen segmented scorecards. 

Designing a segmented scorecard system has 
traditionally been a labor-intensive and rather ad-hoc process 
during which several segmentation schemes are 
hypothesized from domain experience and guided by 
exploratory data analysis. Candidate segmentations are tested 
and refined to the extent possible given development 
resources. This process could benefit greatly from more 
objective and productive approaches.    

Independent from these developments in the credit 
industry and with a different focus, ML ensemble methods, 
such as stochastic gradient boosting [4] and random forests 
[5], have been devised in academia. These procedures can 
automatically learn highly complex relations from data, and 
despite their flexibility, generalize well to new data if drawn 
from the same population. These procedures are attractive 
for ambitious scorecard developers who desire to “leave no 
stone unturned”, because they are automated and scalable, 
make minimal functional assumptions on consumer 



behavior, and can generate insights into the learned 
relationships through various diagnostics aiding variable 
selection and interaction detection.  

But these procedures are not designed to support 
inclusion of subtle domain knowledge. The resulting models, 
and how the scores are computed from the inputs for each 
particular case, can defy simple explanation. While a single 
shallow classification and regression tree is a transparent 
model structure which can be understood by direct 
inspection, this no longer holds true for modern ensemble 
learners that often yield more accurate predictions by 
combining hundreds or thousands of trees. Such opacity can 
render tree ensembles unfit for deployment. In order to 
engineer successful solutions, businesses need to look 
beyond off-the-shelf algorithms to customizable scoring 
procedures. This raises the methodological question of how 
to design a productive analytic process pipeline that takes 
full advantage of modern ensemble learning and associated 
diagnostic procedures, while supporting inclusion of domain 
expertise into the modeling process.  

The reminder of this paper is organized as follows: 
Section II reviews scorecard technology and discusses 
examples of imposing domain knowledge into scorecards. 
Section III describes the TGAMT method to grow 
segmented scorecard trees guided by a stochastic gradient 
boosting model, and Section IV reports experiments 
comparing the US FICO® Score against ML models and 
TGAMT.  

II. SCORECARD TECHNOLOGY 

FICO uses its own proprietary scorecard development 
platform for supervised learning applications including 
ranking, classification and regression. The platform is 
designed to facilitate variable transformations (binning), 
model selection, fitting, incorporation of domain knowledge 
through functional constraints, validation, reporting and 
deployment. In the following, we will briefly discuss the 
main building blocks from a conceptual perspective. 
Reference [6] provides more details.  

The predictive variables in a scorecard are called 
characteristics. A characteristic is composed of a set of 
mutually exclusive and exhaustive bins or attributes that 
comprise the possible values of the underlying predictor. 
Characteristics can represent continuous predictors after 
binning them into intervals, discrete or categorical predictors 
whereby subsets of values can be grouped together into bins, 
or hybrid predictors, which have interval bins for their 
continuous value spectrum and categorical bins for their 
discrete values. Missing values, even different types of 
missing or special values, are incorporated naturally as 
additional bins into characteristics. For example, a missing 
value could be an indicator of risk if a consumer declined to 
answer a question, in which case it should not be ignored. Or 
there might be a temporary issue in the historic data which 
may not replicate itself in the future (an example of 
nonstationary distributions scorecard development 
sometimes has to deal with) in which case missingness 
should be treated differently, for example by imputation or 
by assigning a neutral score contribution to such a bin, which 

is part of “score engineering”. Before raw variables can be 
used as scorecard predictors, they need to be binned. Binning 
of continuous variables allows a scorecard to model 
nonlinear relationships between inputs and score through 
flexible stair functions defined over the bins. Categorical 
variables with thinly populated categories may be binned 
into coarser categories, and missing and special values may 
receive their own bins. Various methods exist for binning 
and improvements to binning have been proposed [7]. 
Domain expertise frequently enters the binning process.  

While methodologies vary between in-house teams, 
consultants, and software vendors, often the score is 
computed as a weighted sum over dummy indicator variables 
associated with the characteristic bins, plus an intercept term. 

  

 
 

Each of the p characteristic scores is a stair function 
defined over the q bins of the characteristic. The stair heights 
are given by score weights associated with the bins. The 
model structure is similar to dummy variable regression [8]. 
However, dummy variable regression has no notion of 
“characteristics”, and variable selection happens on the level 
of the dummies, which tends to put “holes” into binned 
variables. In contrast, scorecard development technologies 
can select on the characteristic level. This can makes the 
models easier to interpret. In addition, some scorecard 
development platforms allow to constrain characteristic 
scores to desired shapes, such as monotonicity, which can be 
applied globally, or involve ranges or subsets of bins.  

A powerful feature of scorecards is their ability to model 
nonlinear effects through nonparametric stair functions. At 
the same time, scorecards, and how the scores for each case 
are calculated, remain easy to explain. A scorecard can be 
represented in tabular form made up of the characteristics, 
their bins (or attributes), and their associated score weights, 
as illustrated by Fig. 1. This scheme shows one variable from 
each of the five key categories that compose the US FICO® 
Score and is for illustrative use only. “Points” refer to a 
scaled version of the score weights in eq. (1). For a given 
applicant, points are added according to his/her attributes 
across all characteristics, to compute the total score. The 
assignment of points to attributes is guaranteed to follow 
explainable patterns which can be reinforced by the model 
developer via constraints, for example constraints may be 
necessary to smooth noise or to mitigate data biases. A 
typical scorecard may contain between 12 and 20 
characteristics. How the variables combine with each other 
to impact the score is very clear, and explainable. The 
simplicity of the scorecard format was historically important 
and still is today, to gain business users’ trust in these 
models, and to facilitate the inclusion of domain expertise 
into the modeling process.  



 

 
 

Figure 1. Simplified version of a scorecard. 

 
Estimation of score weights in eq. (1) is possible using 

many approaches. FICO’s technology accommodates various 
objective functions including penalized maximum likelihood 
for regression, ranking and classification, and penalized 
maximum divergence (related to discriminant analysis) for 
classification and ranking. Regression applications include 
normal, logistic and Poisson regression, whereby the score 
models the linear predictor as in Generalized Linear Models. 
In the logistic regression case with a dichotomous dependent 
variable, the score models log(Odds). The score weights are 
the decision variables of the ensuing optimization problems. 
Nonlinear programming techniques can be used to optimize 
the score weights subject to linear equality and linear 
inequality constraints. These constraints provide mechanisms 
to incorporate subtle domain knowledge into the models. For 
example, inequality constraints between neighboring bins of 
an ordinal variable can be used to restrict a fitted relationship 
between the variable and the score to be monotonic. 
Consider the characteristic score for ‘Time On Books 
(TOB)’, assuming for simplicity only 3 TOB bins: 

 

 
 
To enforce a monotonic increasing relation between ‘TOB’ 
and the score, specify inequality constraints as follows: 
 

 
 
With this, the optimization will solve for the optimal 

score weights subject to the desired monotonic shape. 
Monotonicity can be useful for various reasons: 

(a) Dependencies between predictors and score can be 
restricted to intuitive shapes. For example, 
everything else being equal one might expect equal 
or higher credit quality associated with longer TOB, 
or one might expect lower credit quality associated 
with higher frequency of late payments.  

(b)  Constraints reduce the hypothesis space and effective 
degrees of freedom of the model family, hence if 
constraints are applied sensibly, a constrained model 
can be less prone to over-fitting [9].  

(c) Constraints may be necessary to ensure legal 
compliance. For example, the US Equal Opportunity 
Act implies that elderly applicants must not be 
assigned lower score weights than the younger. An 
empirical derived, flexible model may not be 
compliant, in which case a monotonicity constraint 
can rectify the desired relation. 

(d)  Imposing constraints may be necessary when adverse 
decisions, such as credit rejections, need to be 
justified to customers.  

Monotonicity constraints can be imposed over the entire 
range of an ordinal variable, or they can be imposed over 
specific intervals, for example to allow for unimodal 
functional forms, as illustrated by ‘Number of bankcard trade 
lines’ in Fig. 1.    

The scorecard format comprises a flexible family of 
functions capable of modeling nonlinear effects of predictors 
on the score by means of constrainable stair functions. 
However, eq. (1) specifies an additive function of the 
predictors which cannot capture interactions between 
predictors. If the true relationship is characterized by 
substantial interactions then this model is biased and might 
under-fit the data. To overcome this limitation, several 
approaches exist, including: 

(a)  Creation of derived predictors, such as ratios between 
the original predictor variables. This is part of data 
pre-processing or featurization and outside the 
scorecard model.  

(b) Inclusion of cross-characteristics into the models, 
which generate products of bin indicator variables.   

(c)  Segmented scorecards, whereby different scorecards 
apply to different segments of a population.  

In the following, we will focus on segmented scorecards, 
which are most widely used in the financial services, likely 
because the models are easy to inspect, to interpret and to 
engineer.  

Reference [10] includes an overview of reasons and 
practices for undertaking model segmentation. The authors 
report mixed results with a research algorithm for finding 
good segmentations for credit risk score development data 
sets. The findings cast doubt over whether segmentations are 
as useful as they are widely thought to be, when looking at 
the benefits from a purely predictive standpoint (in terms of 
improving model fit). There are also other reasons for 
creating segmented models, such as availability of different 
variables for different customer types, or a need for 
subpopulation homogeneity in the segments for managerial 
reasons. On the other hand, the findings in [11] are more 
upbeat about the predictive benefits of 2-way segmentations 



for improving the discriminatory power of the resulting 
score. According to the omnipresent bias-variance tradeoff, 
and since a single scorecard is already a flexible model, it 
stands to reason that segmentation may indeed sometimes do 
more harm than good, because the larger hypothesis space 
for the segmented model family makes it easy to over-fit the 
data, eventually outweighing the benefits of reducing the 
single-scorecard structural bias. For this reason it is 
important to carefully navigate the bias-variance tradeoff 
during segmented scorecard development.  

Scorecard segmentations can be represented as binary 
tree structures. The root node represents the entire 
population. Starting from the root node, the population is 
split into child nodes, defined by a first split variable, such as 
‘TOB’ in the example of a simple segmentation given by eq. 
(2).  One of the two child nodes there is further split 
according to ‘Number of accounts’ which results in an 
asymmetric binary tree. Splitting eventually stops and leaf 
nodes are created. The leaf nodes represent nonoverlapping 
population segment which together make up the full 
population. Each leaf node contains a dedicated scorecard 
denoted by Scorecard1, Scorecard2, and Scorecard3 for the 3 
leaf nodes in this example: 

 

 
 

Another example of a segmented scorecard tree is 
graphically illustrated by Fig. 2 (bottom left).  

In principle, any candidate predictor can define a split. In 
practice, model developers and domain experts may avoid 
certain split variables, such as variables that are less trusted, 
difficult to interpret, or highly volatile. Segment scorecards 
can be developed independently from each other which is 
can speed up model development by a team.  

To score out a new case, its segment is first identified and 
then the case is scored out using the associated scorecard, 
keeping computation light.   

The deeper the segmentation tree, the higher the order of 
interactions the model can capture, and the more degrees of 
freedom can be devoted to refining the interactions. A single 
split at the root node (e.g. at ‘TOB’ = 24) can capture 2-way 
interactions between ‘TOB’ and all other characteristics. 
Further splitting a child node (e.g. ‘TOB’ >= 24), say, by 
‘Number of accounts’ allows capturing 3-way interactions 
between ‘TOB’, ‘Number of accounts’ and all other 
predictors, etc. If a segmentation tree is allowed to grow 
infinitely deep, it can approximate arbitrary orders of 
interactions, rendering this model family a universal 
approximator. This is an asymptotic consideration. In 
practice segmented scorecard trees tend to be rather shallow. 
One quickly runs out of data, and deeper segmentation trees 
may underperform shallower ones due to over-fitting. In 
contrast to traditional classification and regression trees, 
which can grow deep and become difficult to comprehend, 
segmented scorecard trees tend to be rather shallow with no 
more than a few levels. This makes segmented scorecard 
trees easier to comprehend and to explain than traditional 

trees. Segmentation variables are typically selected not just 
with predictive power in mind, but also to make the resulting 
population segments easy to describe. The US FICO® Score 
uses more than a dozen segments tuned to distinctly different 
population segments, such as consumers with: 

• Short credit history 
• Long credit history without major blemishes  
• Long credit history with major blemishes 

and other segments that are defined by a segmentation tree of 
modest depth.  

In summary, the family of constrained, segmented 
scorecards provides a very flexible, yet easy to interpret 
functional form, capable of representing complex predictive 
relations characterized by nonlinearities and interactions, 
whereby subtle domain knowledge can be imposed onto the 
structure of the segmentation and onto the functional forms 
of the segment scorecards. Interpretable shallow 
segmentation schemes with easy to explain scorecards 
associated with each segment thus form a Transparent 
Generalized Additive Model Tree (TGAMT). It is state of 
the art in the credit scoring industry to develop TGAMT’s 
painstakingly by teams of data scientists and credit risk 
experts in a tedious interplay of “art and science” to 
simultaneously achieve high predictive performance and 
intuitive explanations how the scores are computed. The next 
section introduces a novel algorithmic approach to 
automatically learn TGAMT’s. 

III. LEARNING TRANSPARENT GENERLIZED 

ADDITIVE MODEL TREES 

A. CART-like Greedy Recursive Search 

Given a pre-existing segmentation scheme, developing 
the associated scorecards is a relatively easy task as long as 
the segments contain a sufficient number of informative 
training examples. Finding a good segmentation scheme is 
however a difficult problem, because the space of possible 
segmentations is extremely large. Domain knowledge tends 
to be insufficient to decide on an appropriate segmentation 
scheme. Due to the large number of possible solutions, it is 
unlikely that the “best” scheme with “optimal” score 
performance will ever be found. This is also not likely to be 
necessary, as there can be many good solutions that are close 
enough to optimal for all practical purposes. Similar to 
growing classification and regression trees [12] we apply a 
greedy recursive search heuristic to grow a TGAMT. 
Starting with the root node a set of candidate split variables 
and a finite set of split locations for each split candidate 
variable (e.g. taken at distribution deciles) are considered to 
split the current data set tentatively into two parts. It is 
evaluated whether there is a performance gain by fitting 
separate scorecards for each subset of the data instead of 
fitting a single scorecard to the entire current data. If so, the 
winning split that offers the greatest performance gain is 
made permanent. This process is performed recursively to 
grow a TGAMT until there is no more split that provides a 
performance gain exceeding some threshold, or until the 
number of training examples in the resulting segments falls 
below some minimum counts threshold. In the following, we 



distinguish between two broad approaches to grow the tree: 
direct and ensemble-guided approaches.  

(a)  Direct approaches decide on splits based on measures 
relating to the original dependent variable, 
characterizing discriminatory power, such as 
divergence, KS (Kolmogorov-Smirnov statistic) or 
AUC (Area Under the Curve) for binary dependent 
variables, or closeness of fit (likelihood statistics) for 
binary or continuous dependent variables.  

(b) Ensemble-guided approaches use a new dependent 
variable which is the ensemble learner’s prediction 
of the original dependent variable. When the original 
dependent variable is binary it is sensible to generate 
the new dependent variable on the log(Odds) scale. 
A reasonable performance measure for this approach 
is closeness of fit between the segmented scorecard 
score and the ensemble prediction in the least 
squares sense.  

Both approaches can employ cross-validation and use 
out-of-bag estimates to obtain unbiased empirical 
distributions of gains in the objectives associated with the 
tentative split. One can thus account for statistical 
significance when making split decisions. Corrections for 
multiple comparison testing are also possible. Cross-
validation has benefits for smaller data sets (or at nodes in a 
deeper tree where data become scarce), as it stabilizes split 
decisions further thus mitigating the risk of over-fitting.  

B. Challenges for Direct Approaches 

From our experiments, direct approaches face challenges 
if the dependent variable is very noisy, which is often the 
case when predicting consumer credit behavior:  

(a)  As the tree grows, segment volumes decrease rapidly 
and variances of performance measures increase fast, 
making split or stopping decisions fraught with 
uncertainty. This can result in over-fitting and 
unreliable, unstable segmentation solutions. 

(b) Setting minimum counts threshold too low makes it 
likely to over-fit. Setting the threshold too high 
makes it likely to under-fit because the tree may not 
be able to grow deep enough to capture complex 
interaction effects adequately.   

(c)  Results are sensitive to choice of the performance 
gain threshold.  

(d) There is no notion of how close or how far away a 
heuristically derived segmentation solution is from 
the “optimum”. 

C. Benefits of Ensemble-Guided Approach 

To mitigate these challenges, we developed the hybrid 
approach, as outlined in Fig. 2 (models shown in the figure 
are for illustrative use only.) First, the ensemble model is 
trained involving optimal hyper-parameter search. Various 
diagnostics for the best ML models are then generated. Data 
records are scored out by the best ML model and a “Best 
Score” variable is appended to the data. Next, the TGAMT is 
grown with the objective to approximate the “Best Score” in 
the Least Squares sense. Once a segmentation is accepted by 
domain experts, the segment scorecards can be fine-tuned  

 
 

Figure 2. Process flow for learning TGAMT. 

 
based on domain expertise. For example, characteristic 
selections, binnings, or constraints might be adapted with a 
view of the specific segment. Finally, the segmented 
scorecard system is deployed.  

In our experience, replacing the original noisy binary 
dependent variable by a regression-smoothed “Best Score” 
as new dependent variable, greatly reduces sampling 
variance in scorecard parameters and uncertainties in split 
decisions when growing the tree, thus mitigating the risk of 
overfitting.  

To provide motivation and evidence for the effectiveness 
of the ensemble-guided approach through a simplified 
experiment, consider the problem of binning the 
characteristics of a scorecard. If the binnings are too coarse, 
the relationship between the variables and the score becomes 
too inflexible to capture the signal accurately; the model is 
biased. Coarse step function approximations of true 
relationships, which are often expected to be smooth, may 
also not be palatable. If however the binnings are too fine, 
variances of fitted score weights tend to increase and models 
starts to over-fit. Noisy step function approximations are 
again not palatable. Typically, scorecard developers may use 
5 to 15 bins per characteristic depending on the size of the 
training sample. 

For both the direct and the ensemble-guided approach, 
we developed 10 scorecards each, all using the same fixed 
set of predictive variables (mostly ordinal continuous types), 
but distinguished by the granularity of their binning, ranging 
from an average of 3.8 bins/characteristic up to 40.9 bins per 
characteristic, which is a far finer binning than typical. Fig. 3 
illustrates the over-fitting problem encountered by the direct 
approach, as the number of bins is increased. Predictive 
performance is measured by 5-fold cross-validated AUC. 
Findings for other common measures of score performance 
are qualitatively similar. The direct approach was 
implemented by training the scorecards to maximize 
divergence, using the original binary dependent variable. 
Findings for logistic regression are qualitatively similar. The 
direct approach reaches a performance plateau where it no 
longer improves beyond 8 bins/characteristic, and starts to 
over-fit the data beyond 20 bins/characteristic. In contrast, 
the ensemble-guided approach shows no signs of over-fitting 
within the tested range. For fine binnings with more than 12 
bins/characteristic it is able to improve beyond the best 
models trained by the direct approach. Our findings indicate  
 



 
Figure 3. Effect of model degrees of freedom on performance for direct 

approach (red boxplot) versus ensemble-guided approach (green boxplot). 

 
that the ensemble-guided approach is more resistant to over-
fitting than direct approaches and therefore has a potential to 
train more flexible and more powerful scorecard models. 
These findings indicate that the ensemble-guided approach to 
growing TGAMT’s will mitigate over-fitting challenges 
encountered by the direct approach and therefore lead to 
more stable and improved segmentation solutions. 

The ensemble-guided approach has additional practical 
benefits over the direct approach by informing the learning 
of TGAMT through diagnostics obtained from ML: 

 (a) The list of candidate characteristics considered for 
inclusion into the TGAMT scorecards can be 
curtailed when it is found that certain variables may 
be unimportant as predictors in the ML models. 
Reference [13] proposes a statistic for input variable 
importance in the context of ensemble learning. 
Reducing the number of predictor candidates speeds 
up the learning of TGAMT.   

(b) The list of candidate variables for segmentation splits 
can be informed by interaction diagnostics. 
Reference [13] proposes a statistic for testing 
whether any given variable interacts with one or 
more other variables. Variables with a high value of 
this statistic may be good split candidates. Variables 
that do not interact significantly with other variables 
may be removed from the candidate list of splitters, 
as no interactions need to be captured involving 
these variables. This can drastically reduce the 
search space and further speed up learning of 
TGAMT.  

(c) ML models trained to maximize predictive power 
provide a “Best Score” upper bound on predictive 
performance. This bound informs TGAMT 
developers about the tradeoff they are willing to 
make between predictive performance and simplicity 
and transparency of the resulting TGAMT model.   

IV. BENCHMARKING THE US FICO® SCORE 

AGAINST OPAQUE AND EXPLAINABLE MACHINE 

LEARNING APPROACHES 

FICO® Scores are based on characteristics derived from 
credit bureau reports. The scores are designed to rank order 
the odds of repayment of credit while being easy to explain, 
such that higher scores indicate better credit quality. For our 
case study we chose the latest version of the US FICO® 

Score which is FICO 9. It is of interest whether ML models 
that are not restricted to be explainable might outperform 
FICO 9 by a substantial margin.  

A. Predictive Performance Comparisons 

We created “apples-to-apples” comparisons by 
developing a Stochastic Gradient Boosting (SGB) model and 
a multilayer Neural Network (NN) based on the same data 
set used to develop FICO 9, which consists of millions of 
credit reports. We allowed the same predictive variables that 
enter the FICO 9 model to enter the ML models. These 
comparisons thus provide insights into the potential impact 
of enforcing explainability constraints on score performance.  

We also created “more data” comparisons for which we 
developed SGB and TGAMT models to investigate the 
potential performance gains possible for ML when taller and 
wider data are available for model development. For this we 
increased the number of candidate variables for the ML 
models to ca. 10 times as many variables than are input into 
the FICO 9 model (the additional variables are typically 
somewhat different versions of the variables used in the 
“apples-to-apples” comparisons). At the same time we also 
doubled the number of development records by sampling 
additional records from the same population from which the 
FICO 9 development data were sampled.  

All important ML hyper-parameters, including learning 
rates, number of trees, depth of trees, minimum leaf size, 
number of random features for splitting, and number of 
hidden neurons, were tuned on a validation sample using 
multidimensional grid searches in order to warrant best 
possible performance of these models.  

Table 1. compares model performance measures for 
discriminatory power (AUC, KS) for the various models and 
comparison scenarios, on bankcard accounts. All models are 
evaluated on an independent test sample that was not 
touched for model training and hyper-parameter tuning.  

For the “apples-to-apples” comparisons the ML models 
mildly outperform FICO 9. It has been argued that marginal 
accuracy improvements observed under “laboratory 
conditions” may not carry over to the field where they can 
easily be swamped by other sources of uncertainty, such as 

TABLE I.  PERFORMANCE COMPARISON 

Technology/Comparison AUC KS 

FICO 9 Segmented scorecards 0.893 61.96 

“Apples-to-apples” SGB 0.899 63.07 

“Apples-to-apples” NN 0.895 62.48 

“More data” SGB 0.902 63.92 

“More data” TGAMT 0.894 62.19 

 



changes to the environment and uncertain misclassification 
costs [14]. Therefore, from a practical perspective, these 
performance differences are minor. This finding supports 
that segmented scorecards are a very flexible model class 
capable of capturing nonlinear and interaction effects similar 
to complex ML models. Interestingly, explainability 
constraints on the FICO 9 model impact performance only 
slightly. This finding is in agreement with an often-made 
experience by scorecard developers, namely that enforcing 
explainability constraints, such as monotonicity, on the 
models often has little or no impact on score performance. 
This can be explained theoretically by the “Flat Maximum 
Effect”, according to which “often quite large deviations 
from the optimal set of weights will yield predictive 
performance not substantially worse than the optimal 
weights” [14].  

For the “more data” comparisons we observe a further 
mild performance improvement by SGB. The “Best Score” 
from this SGB model was used to guide the learning of the 
“more data” TGAMT, as described in Section 3. The 
resulting TGAMT performs practically on par with the FICO 
9 Score. Inspection of its segmentation structure reveals a 
similar segmentation scheme as implemented by the FICO 9 
model. The similarity between the automatically learned 
TGAMT structure and the laboriously derived FICO 9 
segmentation structure is quite remarkable and illustrates the 
potential of TGAMT learning to increase the effectiveness of 
credit risk model development.  

B. Opaqueness of Unconstrained Machine Learning 

The opaqueness of ML models can be illustrated by 
exploring the input-output relationships captured by the 
models. It is possible to gain insights into the inner workings 
of ML models by plotting partial dependence functions [15]. 
These capture the average influences of single predictors, or 
sets of two or more predictors, on the score. 1-dimensional 
plots provide a summary of the average contributions of each 
predictor to the score, as illustrated for two variables in Fig. 
4. We chose these variables as representative to illustrate 
certain problems with explaining opaque SGB models: 

(i)  Having longer ‘Time on Books’ intuitively should 
increase the score (reflecting higher credit quality). 
This experience is borne out from many score 
developments. This general directionality is indeed 
captured by our SGB model, except for many 
wiggles—presumably capturing noise—that cannot 
be explained. In our research, partial dependence 
functions for the more important predictors turned 
out to be directionally intuitive, except for noisy 
wiggles.  

(ii)  The contribution of ‘Number of Trade Lines 30 Days 
Late’ is directionally counterintuitive. It is very 
difficult to explain an increasing score with more 
trade lines showing late payments. Some of the less 
important predictors exhibited such counterintuitive 
behavior in our studies. 

There are also two- and higher-dimensional versions of 
partial dependency plots that summarize joint effects of two 
or more predictors on the score. In our experience relating to 

 
 

Figure 4. 1-dimensional partial dependence functions derived from the 
“more data” SGB model, for two predictive variables. 

 

credit scoring, these plots are often difficult to rationalize. 
In our experiments these opaqueness phenomena were 

not artefacts of a specific model, but persisted under 
variations of hyper-parameter settings for SGB. 

V. CONCLUSION 

Complex modern ML techniques compete well with 
state-of-the-art credit scoring systems in terms of predictive 
power. However, their lack of explainability hampers trust 
and creates barriers for relegating high-stakes consumer 
lending decisions to these algorithms. In the artificial 
intelligence community the notion of an “explainable 
artificial intelligence” has been popularized whose lines of 
reasoning and decisions aim to be easily understood by 
humans, while hopefully not sacrificing substantial 
performance.  

Our contribution is in a similar vein. We demonstrated 
how performance similar to that of complex and opaque ML 
models can be achieved within the family of explainable 
Transparent Generalized Additive Model Trees. The 
structure of these models was motivated by state-of-the-art 
credit risk scoring models. We discussed how TGAMT’s can 
be learned automatically and effectively being guided by 
modern ML techniques. This contrasts with the rather 
painstaking, high-effort analytic processes, by which many 
credit risk scoring systems are being developed today. What 
makes TGAMT’s different and more explanation-friendly 
than complex ML models, is that subtle domain expertise 
can be easily imposed into the model during its construction. 
Whereas opaque ML models search for the most predictive 
model in very large and less structured function spaces, 
TGAMT searches for the most predictive model in a smaller, 
more structured subspace of segmented, explainability-
constrained scorecard models. We found that TGAMT’s 
sacrifice very little predictive power compared to 
unconstrained ML models for the credit scoring problem we 
investigated. Our methods provide an effective approach to 
develop explainable credit risk scores, by effectively 
combining the benefits of data-driven ML with diagnostic 
information and with domain expertise.  

This approach might also benefit other application areas 
where domain knowledge exists, where operational context 
needs to be taken into account during model construction, 
and where predictions and decisions need to be accurate, 
transparent, and easy to explain.  
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