

Use of Machine Learning (ML) in FICO® Score Development

- FICO® Score developments use ML for over 25 years
 - Optimal binning
 - Characteristic selection
 - Optimizing score weights
 - Interaction detection and multi-scorecard segmentation
 - Benchmarking
- Data-driven ML is balanced with domain expertise
 - To ensure transparency, palatability, fairness
 - To stand up to regulatory and consumer scrutiny
 - To mitigate data biases

CART

(Classification

Anatomy of a Typical ML Model

and Regression Tree)

Random Forests; Stochastic Gradient Boosting

Anatomy of FICO® Score Model*

Focus on Prediction and Explanation—Balance Best Fit to Data with Domain Expertise

Category	Characteristics	Attributes	Points
Payment History	Number of months since the most recent serious delinquency	No serious delinquency 0 - 5 6 - 11 12 - 23 24+	75 10 15 25 55
Outstanding Debt	Overall utilization on revolving trades	No revolving trades Under 6% 7 – 19% 20 – 49% 50 – 89% 90% or more	30 65 50 45 25 15
Credit History Length	Number of months in file	Below 12 12 – 23 24 – 47 48 or more	12 35 60 75
Pursuit of New Credit	Number of inquiries in the last 6 months	0 1 2 3 4+	70 60 45 25 20
Credit Mix	Number of bankcard trade lines	0 1 2 3 4+	15 25 55 60 50

Characteristic selection, Points patterns are subject to palatability constraints

- Easy-to-explain multi-scorecard system captures nonlinearities, interactions; increases score power
- FICO[®] Score 9 uses 13 scorecards dedicated to distinctive population segments

Benchmarking ML Scores Against FICO® Score 9

Purely Data-driven ML Yields Modest Predictive Lift; Significantly More Streamlined Model Build

40 vs 800 < 2%Relative improvement in KS Resource hours required to on in-time holdout sample* train ML model vs multiscorecard development **Stochastic Gradient Boosting Neural Networks**

*ML models were trained and evaluated on same data used to develop and to evaluate FICO® Score 9 (= nationally representative sample of 10M credit files)

Assessing Palatability of Models Through Score Simulations

- Pose payment behavior scenarios, such as:
 - How does paying off ~90% of total credit card debt impact my score?

Simulations Reveal Lack of Palatability of ML Models

Probe Model	Result of Simulation*	
FICO® Score 9	0 % of consumer records experienced a decrease in score as a result of this positive credit behavior (reducing debt)	
Stochastic Gradient Boosting	9.2% of consumer records experienced a decrease in score	

*Based on representative national sample of millions of FICO scorable credit files Held everything else fixed in simulation (credit history, non-revolving balances, etc.)

- Positive credit action leads to ML score decrease 9.2% of the time
- Consumers and lenders would be confounded by such a deviation from expectations

Explainable AI/ML Approach to Credit Score Development*

Training Data

*See full paper: "Developing Transparent Credit Risk Scorecards More Effectively: An Explainable Artificial Intelligence Approach"

- 1 Find best ML model
- 2 Diagnose model
- 3 Augment data with Best Score variable
- Approximate Best Score by automatically grown multi-scorecard system

5 Add domain expertise to segment scorecards

Tree 1

► Tree 2

► Tree 1000

Interactions

Variable importance

Diagnostics

Partial Dependence Plots

Best

Score

bine ctions

Performance Comparison*

Model (Score Development Technology)	% improvement in KS over FICO® Score 9	
FICO® Score 9	N/A	
Stochastic Gradient Boosting	1.7%	
Neural Network	0.5%	
Explainable AI/ML Approach	0.3%	

^{*}Performance on bankcard accounts over 24 months (Bad = 90+ days past due)

Conclusions

AI/ML offers substantial efficiently gains for credit risk score developers, but lack of palatability can render purely data-driven models unfit for deployment.

To ensure transparency, palatability, and fairness of scores, model development must balance data-driven learning with domain expertise.

Explainable AI/ML approaches are required to strike this balance.

