Use of Machine Learning (ML) in FICO® Score Development - FICO® Score developments use ML for over 25 years - Optimal binning - Characteristic selection - Optimizing score weights - Interaction detection and multi-scorecard segmentation - Benchmarking - Data-driven ML is balanced with domain expertise - To ensure transparency, palatability, fairness - To stand up to regulatory and consumer scrutiny - To mitigate data biases **CART** (Classification ## Anatomy of a Typical ML Model and Regression Tree) Random Forests; Stochastic Gradient Boosting #### Anatomy of FICO® Score Model* Focus on Prediction and Explanation—Balance Best Fit to Data with Domain Expertise | Category | Characteristics | Attributes | Points | |-----------------------------|--|---|----------------------------------| | Payment
History | Number of
months since
the most
recent serious
delinquency | No serious delinquency
0 - 5
6 - 11
12 - 23
24+ | 75
10
15
25
55 | | Outstanding
Debt | Overall utilization
on revolving
trades | No revolving trades
Under 6%
7 – 19%
20 – 49%
50 – 89%
90% or more | 30
65
50
45
25
15 | | Credit
History
Length | Number of months in file | Below 12
12 – 23
24 – 47
48 or more | 12
35
60
75 | | Pursuit of
New Credit | Number of inquiries in the last 6 months | 0
1
2
3
4+ | 70
60
45
25
20 | | Credit Mix | Number of
bankcard
trade lines | 0
1
2
3
4+ | 15
25
55
60
50 | Characteristic selection, Points patterns are subject to palatability constraints - Easy-to-explain multi-scorecard system captures nonlinearities, interactions; increases score power - FICO[®] Score 9 uses 13 scorecards dedicated to distinctive population segments ## Benchmarking ML Scores Against FICO® Score 9 Purely Data-driven ML Yields Modest Predictive Lift; Significantly More Streamlined Model Build 40 vs 800 < 2%Relative improvement in KS Resource hours required to on in-time holdout sample* train ML model vs multiscorecard development **Stochastic Gradient Boosting Neural Networks** *ML models were trained and evaluated on same data used to develop and to evaluate FICO® Score 9 (= nationally representative sample of 10M credit files) ## Assessing Palatability of Models Through Score Simulations - Pose payment behavior scenarios, such as: - How does paying off ~90% of total credit card debt impact my score? #### Simulations Reveal Lack of Palatability of ML Models | Probe Model | Result of Simulation* | | |---------------------------------|---|--| | FICO® Score 9 | 0 % of consumer records experienced a decrease in score as a result of this positive credit behavior (reducing debt) | | | Stochastic Gradient
Boosting | 9.2% of consumer records experienced a decrease in score | | *Based on representative national sample of millions of FICO scorable credit files Held everything else fixed in simulation (credit history, non-revolving balances, etc.) - Positive credit action leads to ML score decrease 9.2% of the time - Consumers and lenders would be confounded by such a deviation from expectations #### Explainable AI/ML Approach to Credit Score Development* **Training Data** *See full paper: "Developing Transparent Credit Risk Scorecards More Effectively: An Explainable Artificial Intelligence Approach" - 1 Find best ML model - 2 Diagnose model - 3 Augment data with Best Score variable - Approximate Best Score by automatically grown multi-scorecard system 5 Add domain expertise to segment scorecards Tree 1 ► Tree 2 ► Tree 1000 Interactions Variable importance **Diagnostics** Partial Dependence Plots **Best** Score bine ctions # Performance Comparison* | Model
(Score Development Technology) | % improvement in KS over FICO® Score 9 | | |---|--|--| | FICO® Score 9 | N/A | | | Stochastic Gradient Boosting | 1.7% | | | Neural Network | 0.5% | | | Explainable AI/ML Approach | 0.3% | | ^{*}Performance on bankcard accounts over 24 months (Bad = 90+ days past due) #### Conclusions AI/ML offers substantial efficiently gains for credit risk score developers, but lack of palatability can render purely data-driven models unfit for deployment. To ensure transparency, palatability, and fairness of scores, model development must balance data-driven learning with domain expertise. Explainable AI/ML approaches are required to strike this balance.