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Abstract

Blockchain or, more generally, distributed ledger technology allows to create a decen-
tralized digital ledger of transactions and to share it among a network of computers. In
this paper, we argue that the implementation of this technology in financial markets offers
investors new options for managing the degree of transparency of their holdings and their
trading intentions. We first identify two intrinsic features of a distributed ledger that
impact the availability of these new options, namely the mapping between identifiers and
end-investors and the degree of transparency of the ledger, and we then examine how the
implementation design of these critical features affects investor trading behavior, trading
costs, and investor welfare, in a theoretical model of intermediated and peer-to-peer trad-
ing. The most transparent setting yields the highest investor welfare, despite the risk of
front-running. In the absence of full transparency, welfare is weakly higher if investors are
allowed to split their holdings among many identifiers.
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“Blockchain” has been the buzz in the financial world since the second half of 2015. A

common thread through most of the stories in the financial press is that blockchain tech-

nology is to transactions what the internet is to information. The internet, in essence,

enables the direct, peer-to-peer digital transfer of information; blockchain technology

does the same for transfers of value. All asset transfers require a mechanism to change

the record of ownership. At present, most such records are kept in centralized ledgers

that can only be accessed and modified by select, highly trusted parties; examples are

bank accounts or central securities depositories such as those kept by the DTCC. In con-

trast, blockchain technology offers a consensus protocol to change records in distributed

ledgers that can be accessed and modified by anyone and not just trusted intermediaries.

An intrinsic feature of a distributed ledger is that ownership records and transactions

are possibly visible across a wide network with multiple parties. Since the availability

of this information is a design choice, in particular for the private blockchains that will

likely be the backbone of worldwide financial transactions in the years to come, it is

critical to understand how this information impacts economic interactions.

Market participants often prefer privacy, even when full transparency may be socially

desirable. Blockchain designers may choose to implement privacy in different ways,

and the implementation choice will influence the nature of peer-to-peer interactions. A

conservative option is to follow the current setup of centralized ledgers and to restrict

the visibility of the distributed ledger to only those who verify and record changes. Such

an arrangement does not require blockchain technology, and the impact of a distributed

ledger will likely be limited; for instance, the technology may lower verification costs.

Blockchain technology, however, offers a native option to implement privacy by allowing

users to spread their activities across numerous digital identities.1 This option gives rise

1A founder of the Ethereum Blockchain describes this option in great detail; see Buterin (2016).
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to novel peer-to-peer interactions, which we examine in this paper.

We study the pros and cons of different transparency designs in a theoretical model

of financial market trading. Transactions are recorded on a distributed ledger, and each

transaction is attributed to identifiers for the buyer and seller, respectively. The design

of the ledger’s transparency determines whether investors can identify the holdings of

other investors. We focus on the trading decision of an investor (e.g., an institution) that

has to trade a large position. Trading in our model occurs repeatedly; each period one

large investor experiences a liquidity shock. The liquidity-seeking investor can trade with

small investors, who are costly to find, with intermediaries, who require compensation

in exchange for taking a risky inventory,2 and with another large investor, who may

front-run. To prevent front-running, the liquidity-seeking trader may need to offer the

liquidity-providing trader an incentive. By construction, the welfare optimum obtains

when the large traders trade exclusively with each other.

We first establish the equilibrium behavior in a fully transparent setting, which serves

as a benchmark. In this setting, large investors can identify one another, and there exists

an equilibrium where they trade exclusively with each other. Furthermore, incentive

payments are not necessary, provided that the interactions among large traders are

sufficiently frequent. We then study two settings with reduced transparency, where

investors can only see the holdings of the identifiers that they own. In the first setting,

the ledger is not visible to investors, and each investor has a single ID. Identifiers are able

to contact one another for peer-to-peer trading, but the IDs of large investors cannot

be identified. In the second setting, investors have multiple IDs in the sense of “one

share – one ID”; the system is set up so that IDs that belong to a single large investor

cannot be identified, and an investor’s total holdings cannot be inferred. This last setting

2We model the intermediated market in the tradition of Biais (1993).
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is conceptually closest to a privacy protection solution that is technologically feasible

with current public blockchains, as described by Buterin (2016). We assume that all

the contacted IDs of a large investor take the same action: they all accept the offer to

trade, or they all reject the offer to trade, or the liquidity-providing investor uses all the

contacted IDs to front-run.

In both opaque settings, large investors trade peer-to-peer with small investors and

they also trade in the intermediated market. In the single-ID setting, large investors find

each other with zero probability. In the multi-ID setting large investors find each other

with positive probability, and they contact a subset of each other’s IDs. In this set-

ting, they accept each other’s offers and trade with each other in equilibrium, provided

front-running is not too profitable; this is the case, for instance, when the intermedi-

ated market is sufficiently liquid or when interactions among the large investors are

sufficiently frequent.

Lack of full transparency reduces welfare, because traders need to pay the intermedi-

ary for absorbing a risky position and they incur costs for dealing with small investors.

Aggregate welfare is lowest when large investors do not trade with each other at all.

When investors spread their trading activities across numerous IDs, they have more

opportunities to source a suitable liquidity provider. We conclude that the multi-ID

privacy solution, which is intrinsic to blockchain technology, improves welfare relative

to the traditional approach of directly restricting the ledger’s visibility.

I. Related Literature

In addition to contributing to the fast-growing literature on the implications of

blockchain technology for financial markets, our paper relates to several strands of the
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literature in market microstructure and market design.

Literature on Blockchain Technology. The academic literature on blockchain

technology is small but growing. As of March 19, 2016, SSRN listed only 37 working

papers that use the term “Blockchain”, as of July 24, 2017, there are 222 papers. Harvey

(2015) provides an overview of Bitcoin’s technology. Cong, He, and Zheng (2017) study

the impact of smart contracts (native to some Blockchains) and decentralized consensus

on the competitive environment, focusing on the improved contractibility and enforce-

ability potentially delivered by smart contracts. Catalini and Gans (2016) argue that

the distributed ledgers lower verification costs and networking costs and can therefore

facilitate innovation. Khapko and Zoican (2017) focus on the impact of faster settle-

ment times afforded by the blockchain and describe how settlement times affect market

makers’ strategies. Yermack (2017) discusses the potential implications of blockchain-

based trading on corporate governance. Brummer (2015) provides an overview of the

effects of technological disruption on the regulation of financial markets. We contribute

by examining the economic implications of transparency and different privacy options

afforded by a distributed ledger, in the context of financial market trading.

Several papers study the organization and economics of verification and mining,

focusing on the public blockchains. For instance, Evans (2014) discusses concerns with

regards to the verification incentives and governance systems of public decentralized

ledgers, which may render these less efficient than the existing systems. Kroll, Davey, and

Felten (2013) propose to study mining as a coordination game; Biais, Bisiere, Bouvard,

and Casamatta (2017) formally analyze the equilibrium strategies of rational, strategic

miners in a dynamic coordination game, which admits forks on the equilibrium path; they

argue that mining the longest chain is in line with the proposed Bitcoin implementation
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is an equilibrium, and that it is not a unique outcome.

Differently to this line of work, we focus on the “end-users” of the technology and

examine the impact of blockchain design on the decisions of network members who

utilize the technology to facilitate value transfers rather than to obtain payoffs from

mining. While the cost of transaction verification affects the decisions of these agents,

the source of these costs and the specifics of transaction verification are not critical to our

results; our findings remain applicable to private distributed ledgers where verification

is performed by trusted parties, similarly to the current, centralized ledger system.

Literature on Over-the-Counter Markets. Peer-to-peer trading has been exten-

sively studied in the context of over-the-counter (OTC) markets. This literature started

with Diamond (1982), Rubinstein andWolinsky (1985), Gehrig (1993), and Yavas (1996),

and it developed into a related strand on asset pricing in search-based models, e.g., Weill

(2002), Duffie, Garleanu, and Pedersen (2005), Miao (2006), Vayanos and Wang (2007),

Lester, Rocheteau, and Weill (2015), or Cujean and Praz (2015).

The multi-ID ownership that is native to public blockchains gives rise to new strategic

considerations in peer-to-peer trading. For instance, sending two requests for quotes in

a classic OTC market is synonymous with contacting two parties. In contrast, with

multi-ID ownership the sender does not know whether two distinct recipient IDs belong

to the same counterparty or to two different counterparties. Furthermore, an OTC

dealer, upon receiving a request-for-quote typically does not know whether the sender

has contacted other dealers. In contrast, a large investor who owns multiple IDs may

be contacted multiple times and may therefore obtain additional insights (e.g, that the

other side wants to trade a large quantity).

Our contribution is to identify the novel features of peer-to-peer interactions that
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emerge when transactions are recorded on a distributed ledger, and we examine the

economic impact of the relevant design choices.

Literature on Centralized vs. Decentralized Markets. Our model also touches

upon the literature that compares centralized with decentralized markets. Pagano (1989)

describes how the existence of multiple markets may lead, among other things, to frag-

mentation, where traders cluster according to the size of their desired transactions. Biais

(1993) compares trading systems where quotes are collected and published centrally with

fragmented, decentralized systems where deals are outcomes of bilateral negotiations.3

Our model implicitly combines a centralized, intermediated market with a decentral-

ized, peer-to-peer market, and we do not study the pros and cons of either market in

isolation. Instead, we assume that peer-to-peer trading, facilitated by the presence of a

distributed ledger, is always available to investors, and that the intermediated market

serves as an outside option and determines the peer-to-peer trading price. Our focus

is on examining different decentralized, peer-to-peer arrangements that are enabled by

different blockchain design choices, rather than on comparing the centralized vs. decen-

tralized markets.

II. Model

Our model has three types of market participants: two large institutional investors,

one of which is randomly hit by a liquidity shock and must trade a large quantity; a

continuum of small investors that in aggregate have the capacity to absorb the institu-

tional order; a group of risk-averse intermediaries that can absorb order flow for a fee.

We allow investors to directly interact with each other, and they also have access to an

3See also De Frutos and Manzano (2002), or Yin (2005).
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intermediated market.

The Asset has a fundamental value that is normally distributed with mean 0 and

variance σ2. Information regarding the distribution of the fundamental value is public

knowledge. The asset is infinitely divisible.

Large Investors. There are two large, risk neutral investors. Each period, one

of them is hit by a liquidity shock that requires them to trade a large quantity. We

refer to this trader as the liquidity demader. To simplify the exposition, we assume that

the large investor wants to buy, and we normalize the quantity to 1; the arguments are

symmetric for a negative quantity. Investors discount future trading opportunities at

rate δ < 1. Each large investor has the capacity to absorb the other’s shock without

incurring a cost; and we refer to the large trader that is not hit by the liquidity shock

as the liquidity provider.

Small Investors. There is a continuum of 1/ρ many small investors, who can

trade unit quantities, with ρ ≤ 1/2. Each period mass 2 of small investors are hit by

liquidity shocks, mass 1 of them want to buy and mass 1 want to sell; the remaining

small investors do not trade. We assume that small investors who are hit by liquidity

shocks are willing to trade at any price that is at or better than what they can obtain

from the intermediary at the time they agree to trade. Thus if a mass q of investors are

approached with an offer to buy at or above the fair market price, mass ρq of them are

willing to trade.

Intermediated Market. The model includes an intermediated market, where an

investor is able to trade with risk-averse intermediaries who provide liquidity at a price.

Following Biais (1993), an investor who wants to buy quantity q from intermediaries
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who hold an aggregate inventory of I pays uniform price pmm(I, q) per unit:

pmm(I, q) =
κσ2

N
(q − I) =:

ℓ

2
(q − I), (1)

where κ > 0 is an intermediary’s risk aversion coefficient, N is the number of inter-

mediaries in the market, and σ2 is the variance of the fundamental value distribution.

Parameter ℓ, defined by (1), signifies the liquidity or the price impact cost in the in-

termediated market. Appendix VII. provides the micro-foundation, in the tradition of

Biais (1993), for the pricing equation (1). We assume that the intermediaries’ aggregate

inventories are zero at the beginning of the stage game, I :=
∑N

i=1
Ii = 0.4

Timing. Trading is organized as an infinitely repeated game in discrete time. The

stage game timing is as follows. At the beginning of each stage game, one of the large

investors is randomly selected to be hit by a liquidity shock. This trader then approaches

the other investors (small and/or large). The investors either accept the offer and the

trade(s) occur, or they reject. The liquidity demander can contact the other investors

only once; if necessary, he fills the remainder of his position in the intermediated mar-

ket. Small traders who are hit by liquidity shocks and do not trade with the liquidity

demander fill their positions in the intermediated market, after the large investor has

traded. We assume that these remaining small investors all trade at the same time and

that their trades in the intermediated market clear at the price pmm(I, q), defined in (1),

where q is the net amount demanded by these investors. This implies, in particular,

that when large investors trade exclusively between each other, small investors trade in

the intermediated market at the expected value of the asset.

4Loosely, we assume that between the arrivals of liquidity shocks for large investors, the intermedi-
aries manage their inventories.
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The intermediaries fill the large trader’s request immediately upon receipt. We allow

large investors to “front-run” each other in the sense that before responding to the

liquidity demander’s request, the liquidity provider can build up a position and make a

counter-offer to the liquidity demander. A large investor that is being approached by

the liquidity demander thus chooses between accepting the offer, rejecting the offer, or

front-running and making a counter-offer.

Finally, we assume that trading offers are binding and cannot be withdrawn.

Direct Trading Costs. Direct trading costs in our model arise for two reasons.

First, contacting mass q of small investors is complex (e.g., data processing, or keeping

track of offers) and costs C(q), where, for simplicity, C(q) = c
2
q2.

Second, transaction validation is costly. We assume, as with the Bitcoin and Ethereum

blockchains, that costs accrue linearly based on the number of transactions, at a cost

of γ per transaction, to be paid by the party that initiates a trade. These validation fees

are paid to the underlying network, which we do not model explicitly.5 If two parties

trade mass q in a single trade, the costs are zero. If a trader initiates a trade with mass q

of trader IDs or uses q IDs, costs are γq.

Indirect Trading Costs: Front-running. We model the indirect trading costs

that arise from disclosing one’s trading intent through the cost of front-running. When

a liquidity demander contacts the liquidity provider, the liquidity demander may be

front-run. We model the mechanics as follows. Suppose a large investor is contacted by

the liquidity demander who wishes to buy a quantity q. If he chooses to front-run, this

investor buys quantity q from the intermediary at a price and resells it to the liquidity

demander at a higher price. We assume that the front-runner makes an “all-or-nothing”

5For Bitcoin or Ethereum transactions, “miners” receive a fee for each transaction that they verify.
Analyzing the mechanics of transaction validation is outside the scope of this paper; see e.g., Biais,
Bisiere, Bouvard, and Casamatta (2017) for a detailed study on the economics of mining.
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offer to the liquidity demander for the quantity q, and that he charges the liquidity

demander the minimum cost that the latter would incur to acquire q in the “public

market” after front-runner has moved the price by purchasing q.6

Transparency of Ownership. Distributed ledger technology admits multiple levels

of transparency about investors’ holdings. In our benchmark setting, which we refer to

as the full transparency setting, we assume that ownership is fully transparent in the

sense that trader identifiers (IDs) that belong to large investors are publicly known.

Since validation costs increase in the number of IDs, we assume that large investors

concentrate their holdings under a single ID.

We then consider two settings with reduced transparency. In the first, investors

concentrate their ownership under a single ID, as before, but an identifier’s holdings and

trades are not observable, and market participants cannot identify IDs that belong to

large traders. We refer to this setting as the single-ID opaque ownership setting. In

the second setting, each large investor owns a continuum 1 of IDs and equally disperses

ownership over these IDs; in this setting, there are a total of of ρ−1 +1 IDs. We assume

that the system is set up in a way that investors cannot infer whether a given ID belongs

to a small or to a large investor, and we refer to this setting as the multi-ID opaque

ownership setting. As we explain in the introduction, the multi-ID opaque ownership

setting corresponds to the solution that the Ethereum platform founders (see Buterin

(2016)) describe as the simplest solution to achieve privacy in public blockchains.

Equilibrium Concept. In each period, the liquidity demander wants to trade

6The advantage of our formulation is that the tension is created within the model. One can imagine
other costs, for instance, investors may copy a competitor’s portfolios and eliminate someone’s compar-
ative advantage; see Christoffersen, Danesh, and Musto (2015) who document that mutual funds often
delay publishing their holding information in 13-F forms for as long as possible. Christoffersen et al.
argue that mutual fund managers are mostly concerned about being front-run by competitors.Danesh
(2015) provides a theoretical model in the tradition of Kyle (1985) to analyze front-running behavior.
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q = 1, mass 1 of small investors want to buy and mass 1 want to sell. As a consequence,

in our setup q = 1 would need to be traded with the intermediary — unless the liquidity

demander can “tap into” the latent liquidity that can be provided by the other large

trader. Any quantity that the large traders exchange with one another reduces the costs

of an inefficient risk transfer that arise from trades with risk-averse intermediaries. In

what follows, we search for equilibria in which large traders trade with each other. If

large traders do not trade with each other, and instead trade with small investors, then

some small investors will have to pay the intermediaries, which possibly redistributes

welfare from small to large traders.

We examine the equilibria of the infinitely repeated stage game that can be sus-

tained by so-called “trigger” strategies. That is, if any participant observes an “off-the-

equilibrium-path” outcome, i.e., a deviation from an equilibrium strategy, then hence-

forth large investors follow a path of action in which no longer interact with one another.

Examples for deviations that lead to “off-the-equilibrium-path” outcomes include a price

other than the equilibrium price, a front-running by a liquidity provider, or trades by the

liquidity demander with the intermediary or the small investors when the equilibrium

strategy prescribes that large investors trade with each other.

III. Full Transparency Setting

We first describe the equilibrium behavior in the benchmark setting of full trans-

parency where all trades are publicly observed, and trading identifiers that belong to

large investors are publicly known.

In a stage game, the liquidity demander may choose to offer the other large investor

a price concession or the liquidity demander may trade with the intermediary and the
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continuum of small investors. The liquidity provider may choose to accept the offered

price or he may front-run. We search for an equilibrium where large traders trade

“peer-to-peer” in that sense that the liquidity demander makes an offer to the liquidity

provider, for the full quantity demanded, and the latter accepts. In what follows, we

refer to this type of equilibrium as “peer-to-peer.”

Peer-to-Peer Trading Payoffs. After the liquidity demander is hit by a shock, he

contacts the liquidity provider, and makes a take-it-or-leave it offer to trade at a price

p ≥ 0.7 We further restrict attention to the case where the liquidity demander has full

bargaining power, that is, if there are multiple feasible non-negative equilibrium prices,

the smallest possible one obtains.

When offering the liquidity provider price p per unit and trading q = 1, in the

absence of front-running, the liquidity demander pays p today. In the next period, with

probability 1/2, the trader receives another liquidity shock and has to pay p, and with

probability 1/2, the other trader receives a shock and the liquidity demander receives

payment p. Taken together, the continuation payoff is 0, and the equilibrium payoff to

the liquidity demander when the large traders trade peer-to-peer is Π∗

LD
(p) = −p.

The liquidity provider receives p today, and his equilibrium continuation payoff is the

same as that of the liquidity demander, 0. Therefore, the liquidity provider’s equilibrium

payoff is Π∗

LP
(p) = p.

Deviation Payoffs. If the liquidity demander chooses to deviate, he approaches the

continuum of small investors and the intermediaries. The following lemma describes

the liquidity demander’s optimal strategy and the payoff for this outside option. The

lemma admits the possibility of the intermediaries having non-zero inventory, so that

7Negative equilibrium prices are, in principle, possible because liquidity providers may “pay it for-
ward”, meaning that they accept a low price today in return for getting a better price in the future
when they are hit with a shock.
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it also captures the liquidity demander’s behavior in the event he is front-run by the

liquidity provider. We also make the dependance on the probability of acceptance and

the per-ID transaction cost explicit in this lemma, so that it continues to apply in the

absence of full transparency.

Lemma 1 (Trading with the Continuum and Intermediaries): When trading with the

intermediaries who hold an aggregate inventory of I and with the continuum of investors

IDs that accept the offer with probability ρ, at cost γ per ID, the liquidity demander

optimally approaches mass x̂(γ, ρ) of investor IDs with p = pmm(I, 0), and he obtains

payoff π̂(γ, ρ, I):

x̂(γ, ρ) = max

{

0,
ρ(ℓ− γ)

ℓρ2 + c

}

, (2)

π̂(γ, ρ, I) = −
1

2

ℓc

ℓρ2 + c
−

γρ2

2

2ℓ− γ

ℓρ2 + c
+

ℓ

2
I. (3)

Proof. Since mass 1 of the ρ−1 small investors are interested in selling, each offer is

accepted with probability ρ. Therefore when approaching measure x of small investors,

the liquidity demander trades quantity ρx, at the price pmm(I, 0) per unit, and he ad-

ditionally incurs complexity cost C(x) = cx2/2 (for all offers) and validation cost γρx

(for accepted offers). The liquidity demander then trades the remaining quantity 1− ρx

with the intermediaries at the price pmm(I, 1−ρx) per unit; in the single-ID setting, this

transaction incurs zero validation costs. The continuation payoffs do not depend on the

quantity x, and the liquidity demander chooses x to maximize his stage game payoff:

max
x

−
c

2
x2 − γρx− ρx

ℓ

2
× (−I)− (1− ρx)(1− ρx− I)×

ℓ

2
. (4)
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Solving the optimization problem yields the optimal quantity as described in (2). The

optimal quantity choice does not depend on the intermediaries inventory, and it is re-

duced by the validation cost. For large validation costs, γ > ℓ, the large investor would

not approach the continuum. The liquidity demander’s payoff is found by substituting

the expression for the optimal quantity x̂ into the expected payoff expression (4).

Under single-ID ownership, trading with an intermediary incurs zero validation costs,

irrespective of the traded size, whereas trading with a continuum of small investors has

a positive validation cost. As a consequence, when validation costs are too high, γ > l,

the large liquidity demander never approaches small investors. Since the focus of our

paper is on peer-to-peer trading, in what follows we assume that the per unit validation

cost is bounded by twice the price impact of trading with an intermediary, so that the

existence of a continuum of small investors is meaningful.

Assumption 1: With single-ID ownership, validation costs satisfy γ < ℓ.

As a next step we compute the stage game deviation payoff to the liquidity provider,

when he is offered to trade quantity q by the liquidity demander but chooses to front-run

the liquidity demander.

Lemma 2 (Front-Running Profits): The stage payoff that the liquidity provider obtains

by front-running is −π̂(ρ, γ, 0).

Proof. To extract rents from the liquidity demander, the front-runner first accumulates

a position of size 1 by trading with the intermediary. We assume that he is then able to

resell this quantity to the liquidity demander at a price that equals the minimum possible

price that the liquidity demander would need to pay to build this position on the open

market (i.e., with the continuum of small investors and with the intermediaries). Front-
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running is costly to the liquidity demander because the trade of the front-runner with

the intermediaries would (i) move the public price, which the liquidity demander trades

at with the small investors, and (ii) results in a positive inventory of the intermediaries,

who then charge a higher price. The front-runner pays ℓ/2 to build his position in

the intermediated market. After being front-run, the liquidity demander solves the

optimization problem as described in Lemma 1 for I = −1, and he earns −π̂(ρ, γ,−1)

as defined in (3). The front-runner could then offer the liquidity demander quantity 1

at a price such that the liquidity demander’s payoff remains that same, π̂(ρ, γ,−1). The

front-runner’s payoff is then −π̂(ρ, γ,−1)− ℓ/2, and the result of the Lemma obtains by

equation (3), which defines the payoff function π̂.

In what follows, we use π = π̂(ρ, γ, 0) to denote the stage game payoff to the liquid-

ity demander when he chooses to deviate and to trade with the intermediary and the

continuum of small investors, instead of making an offer to the other large trader. Note

that the payoff π is negative (it is costly for the liquidity demander to build a position),

while the liquidity provider extracts a positive payoff of −π by front-running.

After a deviation, either by the liquidity demander or by the liquidity provider,

the trigger strategy would prescribe that the liquidity demander only traders with the

intermediaries and the small investors. As a consequence, a large investor’s stage game

payoff will be π when he is hit by a liquidity shock and 0 otherwise. Each large trader

experiences a liquidity shock with probability 1/2 in each stage game, and a large trader’s

continuation value after a deviation is:

1

2
π + δ

1

2
π + δ2

1

2
π + . . . =

1

2

1

1− δ
π. (5)
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Lemmas 1 and 2 together with equation (5) imply the following result.

Lemma 3 (Deviation Payoffs): The repeated game deviation payoffs that the liquidity

demander and the liquidity provider achieve, respectively, by trading with the continuum

of small investors and intermediaries and by front-running, are as follows:

π∗

LD
= π

(

1 +
1

2

δ

1− δ

)

, and π∗

LP
= π

(

−1 +
1

2

δ

1− δ

)

. (6)

Equilibrium Existence. It is always an equilibrium for the liquidity demander to ap-

proach only the continuum of small investors and the intermediaries, and for the liquidity

provider to reject all offers. We ask whether there exists a “peer-to-peer” equilibrium

where large investors trade with each other, so that the inefficient risk transfer to risk-

averse intermediaries does not arise. For the large investors to trade with each other,

there must exist a price p such that the equilibrium payoffs exceed the deviation payoff

for both, the liquidity demander and the liquidity provider:

Π∗

LD
(p) ≥ π∗

LD
and Π∗

LP
(p) ≥ π∗

LP
. (7)

Proposition 1 (Peer-to-Peer Trading with Full Transparency): For all parametric con-

figurations, there exists a price p ≥ 0 such that the large investors trade with each other

in equilibrium. For δ ≥ 2/3, the large investors trade with each other at p = 0.

Proof. When the liquidity demander offers price p, the equilibrium payoff for the liquidity

demander and the liquidity provider are −p and p, respectively; their deviation payoffs

are given by expressions (6). For the price p to be an equilibrium price, both inequalities
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in (7) must hold. Expressing them in terms of p:

π

(

−1 +
1

2

δ

1− δ

)

≤ p ≤ −π

(

1 +
1

2

δ

1− δ

)

. (8)

Since π < 0, the above inequalities are equivalent to:

1−
1

2

δ

1− δ
≤

p

−π
≤ 1 +

1

2

δ

1− δ
. (9)

First, observe that the above relation always holds for p = −π, therefore large investors

trading with each other is always an equilibrium. Second, for δ ≥ 2/3, δ
2
> 1 − δ, the

left-hand side of the inequality in (9) is negative, and p = 0 satisfies the inequality.

The inequality (9) illustrates, in particular, that the lowest non-negative price that

the liquidity demander and the liquidity provider agree on is given by:

p = max

{

0,−π

(

1−
1

2

δ

1− δ

)}

. (10)

Since, by assumption, we allow the liquidity demander to choose his preferred price,

expression (10) describes the equilibrium price in the full transparency setting.

IV. Opaque Single-ID Ownership

In the single-ID opaque ownership setting, the ledger designers require that investors

concentrate their holdings under a single ID, and they do not allow investors to observe

the ledger. In this setting, IDs of large investors cannot be identified, and therefore the

liquidity demander is not able to contact the large liquidity provider directly. Since there

is a continuum of traders (and therefore a continuum of IDs), the probability that the
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liquidity demander contacts an ID that belongs to the other large investor when sending

a trading request to the continuum is zero.

The liquidity demander’s behavior in this setting is therefore captured by Lemma 1.

Proposition 2 (Single-ID Opaque Ownership): Liquidity demanders always split their

position among small investors and intermediaries, as described in Lemma 1.

The price impact cost l of trading in the intermediated market, defined by equa-

tion (1), increases with the intermediaries’ risk aversion and the volatility of the asset

value. Expression (2), which describes the quantity that the the liquidity demander

trades with small investors, then yields the following corollary to Lemma 1:

Corollary 1: In the single-ID opaque ownership setting, Iiquidity demanders trade more

with small investors if intermediaries are more risk-averse or if fundamental risk in-

creases, and they trade less with small investors if complexity costs or validation costs

increase.

V. Multi-ID Opaque Ownership

Multi-ID ownership allows traders to obfuscate the holdings of their IDs in public

blockchains, following the mechanism described in Buterin (2016), even when the ledger

designers do not mandate its opaqueness. We model this native way to achieve opaque-

ness on a distributed ledger by assuming that each large trader owns a continuum of

trading identifiers (“one share, one ID”), and that the system has no memory after

each round of trading – so that traders are not able to identify which IDs belong to

large investors. Consequently, in this setting, the large liquidity demander is not able

to contact exclusively the IDs that belong to the large liquidity provider, as the latter
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IDs are indistinguishable from the IDs that belong to small investors. We search for an

equilibrium in which the liquidity demander contacts the continuum of IDs and possibly

the intermediary, offers the continuum a price concession, and the liquidity provider

accepts the offer, where we only allow pure strategies in the sense that the public IDs

that belong to the liquidity provider either all accept or all reject.

The Liquidity Demander’s Choice. The liquidity demander is ’s optimization problem

is similar to that described in Lemma 1, with three crucial differences.

First, the probability of acceptance when contacting the continuum of IDs depends

on whether the IDs that belong to the large liquidity provider accept or reject the offer.

The mass of the continuum of traders that the liquidity demander is able to contact is

1 + ρ−1, where mass 1 of IDs belong to the other large trader. If the liquidity provider

accepts the offer, then when contacting mass x of IDs, the liquidity demander trades

quantity 2ρ/(1 + ρ) × x with the continuum. If the liquidity provider rejects the offer,

then the liquidity demander only trades with small investors, and by contacting mass x of

IDs the liquidity demander trades quantity ρ/(1+ρ)×x. In equilibrium, the probability

of acceptance is either strictly larger than the probability ρ for the case of single-ID

ownership or strictly smaller: 2ρ/(1 + ρ) > ρ > ρ/(1 + ρ).

Second, differently to the setup of Lemma 1, with multi-ID ownership the liquid-

ity demander must always pay a validation fee of γ because the trader’s holdings are

dispersed and trading quantity 1 requires mass 1 transactions. The validation costs

therefore do not affect the optimal quantity for the case of multi-ID ownership.

Third, when offering a price concession, this price cannot be paid exclusively to

the large liquidity provider, because the liquidity demander cannot differentiate the

IDs that belong to small investors from the liquidity provider’s IDs. Consequently, in
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contrast to the single-ID ownership case, transfers between the liquidity demander and

the liquidity provider are not zero-sum among them: with non-zero price concession, the

small investors necessarily capture some of this payment.

Denoting the probability of acceptance by the continuum of IDs by ρ̂, when offering

price p to the continuum at the beginning of a stage game (I = 0), the liquidity demander

approaches mass x of IDs to maximize the following payoff:

max
x

−p · xρ̂−
c

2
x2 −

ℓ

2
(1− xρ̂)2 − γ. (11)

This maximization problem is similar to that in the single-ID case, described by equa-

tion (4), except that a per-unit transaction cost in this setting stems from a per-unit

price concession p instead of the per-unit validation cost γ. The following Corollary to

Lemma 1 summarizes the liquidity demander’s optimal choice, described by (11):

Corollary 2: When trading with the intermediaries and continuum of investor IDs at

the beginning of a stage game, and given the price concession p and probability ρ̂ of

acceptance by the continuum, the liquidity demander optimally approaches mass x̂(p, ρ̂)

of trader IDs, and he obtains payoff π̂(p, ρ̂, 0).

We restrict attention to prices such that trading with both the continuum and the

intermediaries is cheaper than trading exclusively in the intermediated market.

Assumption 2: With multi-ID ownership, the price concession satisfies p < ℓ.

Peer-to-Peer Equilibrium Payoffs. We search for a “peer-to-peer” equilibrium where

large traders accept each other’s offers and do not front-run each other. In this case,

the liquidity demander’s stage payoff is given by π̂(p, ρ̂, 0), defined in (2), where the

probability of acceptance is ρ̂ = 2ρ/(1 + ρ) := ρ̄.
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When the liquidity demander approaches a continuum of x, mass x/(1+ρ−1) ≡ xρ̄/2

of the liquidity provider IDs receive the trading request. The liquidity provider’s stage

payoff, provided he accepts the offer, is pxρ̄/2.

Since a large trader receives the liquidity shock with probability 1/2 in each pe-

riod, the repeated game equilibrium payoffs to the liquidity demander and the liquidity

provider, respectively, when they trade at price p are given by:

Π∗∗

LD
(p) = π̂(p, ρ̄, 0) +

1

2

δ

1− δ

(

pρ̄x̂(p, ρ̄)

2
+ π̂(p, ρ̄, 0)

)

(12)

Π∗∗

LP
(p) =

pρ̄x̂(p, ρ̄)

2
+

1

2

δ

1− δ

(

pρ̄x̂(p, ρ̄)

2
+ π̂(p, ρ̄, 0)

)

(13)

Deviation Payoffs. The liquidity demander may deviate by offering a price or quan-

tity that are different from those prescribed by the equilibrium strategy; either of these

deviations is observable by the liquidity provider. In an equilibrium supported by the

trigger punishment strategy, large trader IDs reject each other’s offers after a deviation.

Consequently, if a large trader deviates, the probability of acceptance by the continuum

of IDs is ρ̂ = ρ/(1 + ρ) = ρ̄/2 := ρ. Since the IDs that belong to small investors accept

the offer with probability ρ, irrespective of the price concession, to maximize the stage

payoff from the deviation, the liquidity demander offers zero price concession to the

continuum, and he contacts mass x̂(0, ρ) of IDs. The liquidity provider rejects the offer,

and he earns zero stage profits.

These deviation strategies constitute an equilibrium in a stage game. Given that the

liquidity provider IDs reject the offers, approaching mass x̂(0, ρ) with p = 0 maximizes

the liquidity demander’s payoff. The liquidity provider earns zero profit by rejecting the

offer, and he cannot earn positive profits by either accepting it, since p = 0, or by front-
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running, since the liquidity demander fully fills his position with the small investors and

the intermediaries before the liquidity provider is able to front-run.

Since a large trader receives the liquidity shock with probability 1/2 each period, the

liquidity demander’s repeated game payoff in the event of the deviation is given by:

π∗∗

LD
= π̂(0, ρ, 0) +

1

2

δ

1− δ
· π̂(0, ρ, 0). (14)

The liquidity provider may deviate by front-running the liquidity demander for quan-

tity x̂(p, ρ̄)ρ̄/2 (which equals the mass of contacted IDs that belong to the large liq-

uidity provider). To build this position with the intermediary, the liquidity provider

pays ℓ/2× (x̂(p, ρ̄)ρ̄/2)2 to the intermediary, and he additionally incurs validation costs

of γ per unit. He then makes a counter-offer to the liquidity demander. Since the

liquidity demander has already contacted the continuum, he can either accept the front-

runner’s counter-offer or purchase this quantity from the intermediated market at price

pmm(−x̂(p, ρ̄)ρ̄/2, x̂(p, ρ̄)ρ̄/2) per unit. The total cost of the latter purchase to the liq-

uidity demander would be ℓ × (x̂(p, ρ̄)ρ̄/2)2 plus the validation costs. The liquidity

provider’s counter-offer is such that the liquidity demander is indifferent between these

two options, and the liquidity provider’s stage payoff from front-running is:8

πfr = ℓ×

(

ρ̄x̂(p, ρ̄)

2

)2

−
ℓ

2
×

(

ρ̄x̂(p, ρ̄)

2

)2

−
γρ̄x̂(p, ρ̄)

2
. (15)

Once the trigger strategy is invoked, the continuation payoff for the liquidity provider

is the same as for the liquidity demander. Taken together, the payoff to the liquidity

8The front-runner extracts the maximum possible surplus, by assumption, and the payoff to him
does not depend on who pays the validation costs for trades between the IDs of large investors after
front-running.
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provider if he deviates and front-runs is:

π∗∗

LP
(p) =

ℓ

2
×

(

ρ̄x̂(p, ρ̄)

2

)2

−
γρ̄x̂(p, ρ̄)

2
+

1

2

δ

1− δ
· π̂(0, ρ, 0). (16)

Equilibrium Existence. As we discuss earlier in this section, there always exists an

equilibrium where the large traders do not trade with each other. For an equilibrium

where the liquidity demander and the liquidity provider trade with each other at price p,

the following conditions must be satisfied:

Π∗∗

LD
(p) ≥ π∗∗

LD
and Π∗∗

LP
(p) ≥ π∗∗

LP
(p). (17)

We provide the following equilibrium characterization.

Proposition 3 (Peer-to-Peer Trading with Multi-ID Ownership): When the intermedi-

ated market is sufficiently liquid (ℓ is sufficiently small), or when the discount factor δ

is sufficiently large (the future is important), or when validation cost γ is sufficiently

high, there exists a “peer-to-peer trading” equilibrium where the large liquidity deman-

der trades with the intermediaries, the continuum of small investors, and the liquidity

provider at price p = 0.

Proof. Using the definitions of ρ̄ and ρ together with the explicit expressions (2)-(3) for

x̂ and π̂, we can rewrite the future value in an equilibrium when the large traders trade

with each other (from expressions (12)-(13)) as:

pρ̄x̂(p, ρ̄)

2
+ π̂(p, ρ̄, 0) = −

ℓ

2

pρ̄2 + c

ℓρ̄2 + c
. (18)

The payoff to the liquidity demander (12) when he offers price p and the large liquidity
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provider accepts can then be expressed as

Π∗∗

LD
(p) = −

ℓ

2
×

pρ̄2 + c

ℓρ̄2 + c

(

1 +
1

2

δ

1− δ

)

−
pρ̄2

2

ℓ− p

ℓρ̄2 + c
. (19)

The liquidity demander’s payoff when he offers the price p = 0 to the continuum and

when the other large trader rejects is:

π∗∗

LD
= −

ℓ

2
×

c

ℓρ2 + c

(

1 +
1

2

δ

1− δ

)

. (20)

At p = 0, the payoff to the liquidity demander when the large traders trade with each

other exceeds the payoff that obtains when they don’t:

Π∗∗

LD
(0)− π∗∗

LD
=

ℓ

2
×

cℓ(ρ̄2 − ρ2)

(ℓρ2 + c)(ℓρ̄2 + c)
×

(

1 +
1

2

δ

1− δ

)

> 0. (21)

The liquidity demander does not have an incentive to deviate at p = 0.

Similarly to the computations for the liquidity demander, the payoff to the liquidity

provider (13) when he is offered price p and accepts can be expressed as:

Π∗∗

LP
(p) =

pρ̄2

2

ℓ− p

ℓρ̄2 + c
−

ℓ

2
×

pρ̄2 + c

ℓρ̄2 + c
×

(

1

2

δ

1− δ

)

. (22)

The payoff to front-running is:

π∗∗

LP
=

ρ̄2

2

ℓ− p

ℓρ̄2 + c
×

(

ℓ

2

ρ̄2

2

ℓ− p

ℓρ̄2 + c
− γ

)

−
ℓ

2
×

c

ℓρ2 + c
×

(

1

2

δ

1− δ

)

. (23)

The liquidity provider is willing to accept the price p = 0 when Π∗∗

LP
(0)−π∗∗

LP
≥ 0. Using

expressions (22)-(23) and dividing both sides of this inequality by ℓ/2, the liquidity
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provider accepts p = 0 when:

ρ̄2

ℓρ̄2 + c
×

(

γ −
ℓ2

2

ρ̄2

2

1

ℓρ̄2 + c

)

+
cℓ(ρ̄2 − ρ2)

(ℓρ2 + c)(ℓρ̄2 + c)
×

1

2

δ

1− δ
≥ 0. (24)

Inequality (24) is satisfied, in particular, when ℓ → 0, δ → 1, or γ is sufficiently large.

If the market is very liquid (ℓ small), then front-running is not profitable. Both the

stage payoff to deviating and the future cost decline as the market is more liquid (ℓ

declines), however, the costs decline proportional to ℓ2 whereas the benefit declines at

rate ℓ3. When future interactions and payoffs are sufficiently important (δ is large), e.g.,

when investors interact sufficiently frequently, front-running can also be avoided because

future benefits of being able to trade with the other large investor when hit by a liquidity

shock outweigh the one-time profits that can be obtained by front-running. This latter

result is a standard Folk Theorem. When validation costs are high, front-running itself

becomes very costly, which reduces its benefit.

Finally, we illustrate that an equilibrium where large traders trade with each other

does not always exist. Rearranging the payoff differences illustrates that the difference

between the “peer-to-peer” equilibrium payoff and the deviation payoff are quadratic in

the price concession, with the negative coefficient on p, for both the liquidity demander

and the liquidity provider. For the liquidity demander, this difference is always positive

at p = 0, and he therefore is always willing to offer a range of prices between 0 and

a positive price PLD, as an incentive for the large trader IDs to accept his offer in

equilibrium. If the liquidity provider accepts p = 0, the “peer-to-peer” equilibrium exists.

When he is only willing to accept a higher price, the equilibrium only exists if he the

lowest price that he is willing to accept is below PLD, the highest price that the liquidity

demander is willing to offer. Inequality (24) illustrates that the liquidity provider front-

25



runs at p = 0 if, for instance, when both the discount rate δ and the validation cost γ are

very low and the intermediated market is sufficiently illiquid (ℓ is high). We can show,

by taking the derivative with respect to p of the payoff difference, that for sufficiently

low values of δ, the payoff difference is increasing in p at p = 0, implying that the roots

of the quadratic equation, if they exist, are both positive. Denoting these roots by pLP

and PLP > pLP, for the liquidity provider to not front-run, the price concession must be

sufficiently large: p ∈ [pLP, PLP].

The existence of a “peer-to-peer” equilibrium in this case depends on the relation

between PLD, the highest price that the liquidity demander is willing to offer, and pLP,

the lowest price that the liquidity provider is willing to accept.

Numerical Observation 1: There exist parametric configurations such that a “peer-to-

peer” equilibrium where large traders trade with each other does not exist in the multi-ID

ownership setting.

The above numerical observation obtains, for instance, by using the following set of

parameters: δ = 1/100, ρ = 1/2, c = 1, ℓ = 10, γ = 1/100. Under these parameters,the

liquidity demander is willing to offer at most PLD = 1.64, and the liquidity provider only

accepts if p is between pLP = 1.68 and PLP = 9.87.

We further note that there also exist parametric configurations where the large

traders do not trade with each other at p = 0, but they do trade at positive price

concessions. For instance, lowering the illiquidity of the intermediated market in the

preceding example to ℓ = 5 leads to PLD = 1.08, pLP = 0.72, and PLP = 4.94. Under

these parameters, large traders trade with each other for p ∈ [0.72, 1.08].

Finally, our numerical results illustrate that private blockchain designers may be

able to affect the type of equilibrium by adjusting the validation costs. For instance,
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increasing the validation cost to γ = 1/10 in the original example reduces the liquidity

provider’s incentives to front-run and lowers the minimum price that he is willing to

accept from pLP = 1.68 to pLP = 1.60, while leaving the maximum price that the liquidity

demander is willing to pay unaffected at PLD = 1.64. Under these parameters, large

traders are willing to trade with each other at p ∈ [1.60, 1.64].

VI. Comparing Regimes

A. Welfare Comparison of ID Ownership Setting

The full transparency benchmark setting in our model is superior in terms of aggre-

gate welfare, as there is no inefficient transfer of risk to the risk-averse intermediary and

no complexity costs. We thus focus on comparing the two non-transparent regimes.

Welfare comparisons across the different designs require further assumptions on vali-

dation costs. To see why this is the case, observe that if, for instance, the per transaction

cost is assumed to be the same for both the single-ID and the multi-ID setting, then

the latter is mechanically more expensive in terms of validation costs, simply due to

the larger number of IDs and therefore expected transactions. We believe that in prac-

tice validation costs will be part of the blockchain design, in particular, for private

blockchains, and that they will be endogenous to the expected number of transactions

and to the ownership ID design. The design of validation costs is outside the scope

of this paper, and we henceforth make the simplifying assumption that γ = 0 when

comparing the payoffs across the settings with different numbers of IDs.

There are two sources of welfare loss in our model. First, the liquidity demander in-

curs complexity costs when contacting the continuum. Second, if the liquidity demander

fills part of his position with the risk averse intermediaries to fill part of his position,
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there is an inefficient transfer of risk relative to the equilibrium where the large traders

trade with each other. This cost is borne both, by the liquidity demander and by the

small investors — in the absence of the large liquidity demander, the latter avoid this

price impact cost since their net demand is zero. Finally, a price concession paid by the

liquidity demander has no direct impact on welfare because the concessions are zero-sum

among the traders.

In equilibrium, the only change from one period to the next pertains to which of the

two large traders is hit by the liquidity shock, and it suffices to compare the welfare for

the stage game.

Let x denote the mass of IDs that the liquidity demander contacts in equilibrium,

and let ρ̂ denote the probability of acceptance. The liquidity demander then trades

1 − ρ̂x with the intermediaries. The amount that small investors must trade with the

intermediaries depends on whether or not large traders trade with each other in equi-

librium. By assumption, mass 1 of small investors want to buy and mass 1 want to sell

each period. When the large traders do not trade with each other, either in the opaque

single-ID setting or in the multi-ID setting when the liquidity provider IDs reject the of-

fer, the liquidity demander’s buys force the small investors to trade quantity ρ̂x with the

intermediaries. When the large traders trade with each other in the multi-ID ownership

setting, only half of the ρ̂x trades of the liquidity demander are with the small investors

and the remaining traders are with IDs of the large liquidity provider. Consequently,

the small investors demand net amount ρ̂x/2 from the intermediaries.

By assumption, the liquidity demander acts first, and the intermediaries have in-

ventory I = 0 at the beginning of a stage game. Therefore, when the small investors

approach the intermediaries, their aggregate inventory is I = −(1 − ρ̂x). Denoting the
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net demand by small investors by y ∈ {ρ̂x/2, ρ̂x}, per-stage aggregate investor welfare

can then be expressed as:

W (x, y, ρ̂) = −
c

2
x2 −

ℓ

2
(1− ρ̂x)2 −

ℓ

2
y (y + (1− ρ̂x)). (25)

When the liquidity demander trades a larger quantity with the continuum, he incurs

a larger complexity cost (the first term in (25)) and a smaller price impact cost of

trading with the intermediaries (the second term), whereas small investors incur a larger

price impact cost (the third term). Proposition 4 illustrates that these effects exactly

offset each other in equilibria when the large traders do not trade with each other,

and that the aggregate welfare in these equilibria only depends on the liquidity of the

intermediated market but not on the complexity costs or the probability of acceptance

by small investors.

Proposition 4: Assume validation costs γ = 0. The aggregate welfare in an equilibrium

of a multi-ID setting when the large traders do not trade is the same as that in an opaque

single-ID setting: W = −ℓ/2.

Proof. When large traders do not trade with each other, small investors trade the net

quantity y = ρ̂x with the intermediary. By Lemma 1 and Corollary 2, with zero vali-

dation cost γ = 0 and zero price concession p = 0, the optimal mass x of IDs that the

large liquidity demander contacts is given by x = x̂(0, ρ̂) = ρ̂ℓ/(ℓρ̂2 + c). Substituting

this expression into equation (25) and re-arranging delivers the constant welfare.

We next compare the equilibrium of the opaque single-ID setting to the “peer-to-

peer” equilibrium of the multi-ID ownership setting, where the large traders trade with

each other. In the multi-ID ownership setting, the large buyer may need to pay the other
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traders an incentive. This incentive is zero-sum among the large traders, but it affects

how much the large trader seeks to trade with the continuum, and through this, it affects

the complexity costs and the price impact costs. The following proposition illustrates

that when large traders trade with each other in equilibrium in the multi-ID ownership

setting, achieving opaqueness through this blockchain-native channel is welfare-superior

to imposing an opaque single-ID regime.

Proposition 5: Assume validation costs γ = 0. Assume further that model parameters

are such that large traders trade with each other in the multi-ID ownership setting. Then

welfare is higher in the multi-ID ownership setting than in the opaque, single-ID setting.

Proof. In the multi-ID ownership setting, the acceptance probability is ρ̂ = ρ̄ = 2ρ/(1+

ρ) and the net demand by small investors in the intermediated market is y = ρ̂x/2 =

ρ̄x̂(p, ρ̄)/2, where function x̂ is defined in (2). Welfare in the opaque single-ID ownership

setting equals −ℓ/2, by Proposition 4.

Substituting all the above expressions into (25) and rearranging, the difference be-

tween welfare in the multi-ID ownership setting where the large traders trade with each

other and welfare in the opaque single-ID setting is positive:

W

(

ρ̄, x̂(p, ρ̄),
ρ̄x̂(p, ρ̄)

2

)

−

(

−
ℓ

2

)

=
ρ̄2(l − p)

8

(3ρ̄2ℓ+ 2c)(ℓ+ p) + 2cp

(ρ̄2ℓ+ c)2
> 0, (26)

where the inequality follows since we study equilibria with p < ℓ, so that trading exclu-

sively in the intermediated market is more expensive than trading with the continuum

and the intermediaries.
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B. Payoffs to the Large Trader

Although a market designer’s goal is maximizing aggregate welfare, it is also instruc-

tive to understand the payoffs of the large trader, for instance because these market

participants may have lobbying power for market design. In the opaque single-ID set-

ting, the large liquidity provider is contacted with probability zero, and the large trader’s

average stage payoff equals half the liquidity demander’s payoff:

π̄∗ =
π∗

2
= −

ℓ

4

c

ℓρ2 + c
, (27)

where, as before, we set γ = 0. In the multi-ID setting, the average stage payoff for a

large trader can be expressed as:

π̄∗∗(p̂, ρ̂) =
1

2

(

π̂(p̂, ρ̂) +
p̂ρ̂x̂(p, ρ̂)

2

)

= −
ℓ

4

p̂ρ̂2 + c

ℓρ̂2 + c
, (28)

where ρ̂ = ρ̄ = 2ρ/(1+ ρ) and p̂ = p when large traders trade with each other at price p,

and ρ̂ = ρ = ρ̄/2 and p̂ = 0 when they do not trade with each other.

Comparing the average payoffs leads to the following proposition.

Proposition 6: Assume γ = 0. Then the following relations hold for the average

equilibrium stage payoffs of large traders.

1. When large traders do not trade with each other with multi-ID ownership, their

equilibrium payoffs in this setting are lower than those the opaque single-ID setting.

2. When large traders trade with each other with multi-ID onwership at p = 0, their

equilibrium payoffs in this setting dominate those in the opaque single-ID setting.

Proof. When large traders do not trade with each other, they offer zero price concessions.
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With p = 0, the average payoff for all the cases can then be expressed as−ℓ/2×c/(ℓρ̂2+c),

where ρ̂ is the relevant probability of acceptance. The payoff ranking follows directly

from the relation of the probabilities of acceptance, with the highest payoff corresponding

to the setting with the highest probability of acceptance.

Since the aggregate welfare is constant when the large traders do not trade with each

other (by Proposition 4), a corollary to Proposition 6 is that when the large traders do

not trade with each other, small investors are better off with multi-ID ownership.

When large traders trade with each other at p ≥ 0 in the multi-ID setting, their

payments to each other are zero sum. However, the price concession affects the quantities

that are traded in the continuum and in the intermediated market, with larger price

concessions potentially leading to larger quantities traded in the intermediated markets

and larger payouts to small investors. As a consequence, the average payoff for large

traders in the multi-ID setting, π̄∗∗(p, ρ̄), decreases in p. This leads to the following

observation:

Numerical Observation 2: There exist parametric configurations such that large traders

trade with each other at p > 0 in the multi-ID ownership setting, but their average equi-

librium payoff in the opaque single-ID setting is higher: π̄∗ > π̄∗∗(p, ρ̄).

The numerical observation obtains, for instance, by using the following set of pa-

rameters: δ = 2/3, ρ = 2/3, c = 4ℓ/25. Under these parameters, large traders trade

with each other in the multi-ID setting for p = αℓ, for all α ∈ [0, 1/5], yet the average

payoff difference for the large traders between the multi-ID and opaque single-ID setting,

π̄∗∗(p, ρ̄)− π̄∗, changes sign from positive to negative as α increases from 0 to 1/5.
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VII. Conclusion

At its core, the purpose of a primary financial market is to connect issuers and end-

investors, and the purpose of a secondary financial market is to connect end-investors.

Blockchain and distributive ledger technologies have the capacity to fundamentally

change the interactions among market participants by eliminating intermediaries, which

historically served as trusted parties to connect end-investors, and by replacing them

with direct connections between end-investors. In this paper, we address several key

market design questions that arise with the advent of this new technology.

First, distributed ledger technology allows for peer-to-peer interactions among anony-

mous identifiers, without the need for a trusted third party to verify the ownership of

an identifier. The anonymity of identifiers raises questions with respect to their design

and regulation; in particular, should the number of identifiers per investor be restricted?

Second, the distributed nature of the ledger raises a question with respect to its trans-

parency; in particular, should traders be permitted to see transactions of identifiers

that they do not own? Third, blockchain transaction validation typically involves costs,

raising the question of how these impact trading decisions.

We emphasize that the above three design choices become critical as soon as dis-

tributed ledgers are used, for instance, in clearing and settlement, and they must be

considered carefully in debates about the roll-out of the technology and in market reg-

ulation. Our analysis focusses on the informational implications of the organization of

distributed ledgers, and not on a specific blockchain validation protocol. We acknowledge

that peer-to-peer trading does not require blockchain technology, and that our findings

apply to trading arrangements that are not facilitated by it. We believe, however, that

blockchain technology will enable the specific peer-to-peer trading features that we ex-
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amine in this paper. First, the possibility to digitally and anonymously transfer value

will expand the scope of peer-to-peer trading, in particular, by extending the option to

small, retail investors. Second, the usage of numerous digital IDs to achieve privacy,

which we focus on in this paper, is native to public blockchains. Our contribution is to

identify the new strategic considerations that arise in anonymous peer-to-peer trading

with numerous IDs and to highlight the implications of the related ledger design choices.

In our framework, by design, the optimal system is a private blockchain that offers

full transparency and mandates a single, unique ID per user. Our focus is on the role of

privacy implementation, and we compare two fully opaque systems. The first is a private

blockchain that achieves investor privacy by restricting the ledger visibility to the trusted

parties who verify transactions; similarly to the current setup with centralized ledgers.

The second is a blockchain, which can be public or private, where users obfuscate their

holdings and behavior by using numerous digital IDs; similarly to what is technologically

feasible in public, inherently transparent blockchains. Our analysis illustrates that the

implementation of privacy on a distributed ledger has economic implications beyond

simply reducing the level of transparency; between the two fully opaque setups, the

blockchain-native solution of multiple IDs is superior in terms of welfare.

Finally, our findings in this paper are most applicable to trading securities such as

bonds, where most costs arise from finding liquidity rather than from being adversely

selected by insiders. Arguably, bonds and also derivatives are the natural candidates

for the first implementation of distributed-ledger-based trading, because digital versions

of these instruments can take advantage of smart contract features, e.g. by automating

coupon payments. Our analysis therefore is well-positioned as a starting point for a de-

bate on the market design with these new technologies. We illustrate that transparency

34



of a distributed ledger and its design of privacy options play a critical role, even in the

absence of asymmetric information, and we leave an analysis on the role of asymmetric

information in blockchain design for future work.
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Appendix: The Intermediated Market

We assume that there are N > 0 intermediaries. When asked to sell quantity q (i.e.,

when an investor wants to buy q units), each intermediary maximizes their expected

utility by selling qi(p); in equilibrium the price clears the market so that
∑N

i=1
qi(p) = q.

At the beginning of each stage game, intermediaries hold no inventory. An intermediary

may hold a position when contacted by a front-runner, as a consequence of an earlier

trade with the liquidity demander. He also holds a position when approached by the

liquidity demander who has been front-run by the liquidity provider. We derive the price

in the intermediated market, assuming that an intermediary holds a position Ii.

With negative exponential (i.e., CARA) utility of wealth w, u(w) = −e−κw, where

w = −(v−p)qi+Ii ·v and v denotes the asset value, the intermediary chooses quantity qi

given price p, in order to maximize his expected utility, maxqi EU [−(v−p)qi(p)+ Ii×v].

For CARA-normal frameworks, this task reduces to maximizing the certainty equivalent

for each price p:

max
qi

[Ii × V − (V − p)qi]−
κ

2
σ2[−qi + Ii]

2,

where V denotes the expected value of the asset; in the main text, we assume V = 0.

The maximization problem results in the following first order condition:

V − p− κσ2 × Ii + κσ2qi = 0.

Solving this equation for qi yields the demand schedule

qi(p) = −
V − p

κσ2
+ Ii.
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The market clearing condition
N
∑

i=1

qi(p) = q

implies, substituting for qi, and simplifying, that

N
∑

i=1

(

−
V − p

κσ2
+ Ii

)

= q ⇔ pmm(I, q) = V +
κσ2

N
(−I + q), (29)

where I denotes the combined inventory of the intermediaries: I =
∑N

i=1
Ii. We further

simplify the exposition by defining the (il-)liquidity factor ℓ as follows

ℓ :=
2κσ2

N
.

Price changes in this model occur for two reasons: changes in the fundamental, and

trades due to liquidity shocks. When an investor approaches the intermediaries who

hold total inventory I in order to buy q units, and the investor’s payoff is

πmm(I, q) = q × (V − pmm(I, q)) = −
ℓ

2
q(q − I).
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