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Abstract

We propose first a static and then a dynamic infinite-horizon model of the financial advisory

market and show how to compute equilibrium solutions. Unregulated, market features are likely

to result in high levels of concentration and a small number of dominant firms, with the speed

of convergence towards dominance increased by the reinforcing interactions between firm size and

profitability. Our goal is to provide regulators and market participants with a framework and tool

kit that offers insights into how firm behavior in the financial advisory market may evolve as new

digital technologies emerge and new entrants disrupt the market.
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1. Introduction

Over the past few years, technological innovation has transformed the financial advisory industry.

With the advent of Robo Advisors, who provide digital platforms that connect investors with analytic

tools to create financial plans or investment portfolios, low cost alternatives to traditional wealth

managers have emerged. With over 40% of the global adult population still without access to financial

services, digital advising is in a unique position to drive not only economic but also social change.1

Whether or not the emergence of Robo Advisors will lead to a permanent cost reduction for and

broader access to financial advisory services will depend on the long-term level of competition in the

asset management industry. The goal of our study is to develop a dynamic model of entry, competition

and exit in the financial advisory market that provides a framework for discussing welfare implications

and the impact of potential policy interventions.

Our framework captures many characteristics of the financial advisory market. First, we acknowl-

edge that digital and human advising are not perfect substitutes. We therefore model the financial

advisory market as a market for differentiated products, where the differentiation dimension is called

“quality.” There are two ways one could approach this: Fix the quality spectrum and have firms offer

a price menu for different qualities, or have each firm choose a single price/quality combination. We

will explore the latter. There is of course a trade-off as higher quality can fetch a higher price but is

also costlier to produce.

Second, new entrants to the asset management industry face high start-up costs. We envision

this entry cost to be the initial cost firms need to bear to match with clients, including advertising,

collecting information, developing an initial algorithm and passing regulatory hurdles to become a

financial advisor. Once firms enter into the industry, they continue to invest to match with clients,

build a reputation, further their information stock and build up a client base. We call this stock value

“client capital.” Client capital can help firms reduce their cost of providing financial services, especially

in quality. It also allows financial advisors to foster and improve client relationships. For example, firms

can leverage client capital by reaching out to clients whose accounts are declining in value and they

can reward desired client behavior such as a regular contribution of funds. We allow the technology of

producing products to be heterogeneous across firms, so that firms that have the same client capital

1For details, see PwC’s strategy paper on the FinTech market at www.strategyand.pwc.com/media/file/DeNovo-
Quarterly-Q1-2016.pdf.
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don’t have to have the same cost of production.

Third, investors are heterogeneous in that they may have different preferences over “quality.” In-

vestors are willing to pay more for higher quality but there will be a threshold price where they will

be willing to switch to another product. For example, Robo Advisors may lower the price so much

that some clients switch to using their financial products, rather than going with traditional advisors.

Investors also have the option of simply not purchasing anything.

Unregulated, these market features are likely to result in high levels of concentration and a single

or small number of dominant firms, with the speed of convergence towards dominance increased by

the reinforcing interactions between size and profitability of financial advisors: More clients generate

more client data with can be mined or sold to increase service quality or reduce user fees which in turn

attracts more clients.

New regulation may be aimed at increasing the size of the Robo Advisor market, the quality of

Robo Advisor platforms, competition among wealth management companies, or the utility generated

for clients. We will use our model to discuss the pros and cons of introducing such regulation. Our

goal is to provide regulators and market participants with a framework and tool kit that enables them

to quantify the impact new regulation may have.

The remainder of the paper is structured as follows. In Section 2 we review the related literature,

and in Section 3 we give an overview of the financial advisory market and discuss the recent growth

of digital advicing. In Section 4 we propose a static model of the financial advisory market and in

Section 5 we use this framework to show that regulation that aims at lowering fixed costs for new

market entrants has a positive impact on the accessibility of wealth management services. Section 6

describes the dynamic infinite-horizon extension of our model.

2. Related Literature

The academic finance and economics literature on Robo Advisors is still very thin, with only a few

working papers in circulation (McDonald and Gao (2016), Kim, Maurer, and Mitchell (2016)).2 But

there exist a fair number of general overview articles in practitioner-focused journals such as Lopez,

2Fein (2015) examines, from a legal perspective, whether Robo Advisors in fact provide personal investment advice,
minimize costs, and are free from conflicts of interest. In another legal brief, Baker and Dellaert (2017) identify a number
of questions that regulators need to be able to answer about Robo Advisors, and the capacities that regulators need to
develop in order to answer those questions.
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Babcic, and Ossa (2015), Schacht (2015), Weber (2016) and Falcon and Scherer (2017). And FinTech

in general, and Robo Advisors in particular, have received wide coverage in the main stream media.

For example, the “News” category on Google Search records over 44,000 entries for the term “Robo

Advisor.”

To the best of our knowledge, there are no theoretical models of Robo Advisors and their disruption

to the financial advisory market in the literature. Our study offers the first such framework. In our

model, the specification of investor utility allows for substitution between income and quality (Tirole

(1988)), and our interpretation of the marginal rate of substitution is analogous to models where

consumers differ by their incomes rather than by their tastes such as Gabszewicz and Thisse (1979

and 1980), Shaked and Sutton (1982, 1983, and 1984), Bonanno (1986), and Ireland (1987).

Computational methods for solving dynamic and repeated games have been developed in Judd,

Yeltekin, and Conklin (2003), Sleet and Yeltekin (2016), and Yeltekin, Cai, and Judd (2017). Game-

theoretic models of policy design can be found in Sleet and Yeltekin (2007), Sleet and Yeltekin

(2008), Farhi, Sleet, Werning, and Yeltekin (2012), Judd, Schmedders, and Yeltekin (2012), and Bern-

heim, Ray, and Yeltekin (2015).

3. The Financial Advisory Market

A financial advisory company provides services to investors in exchange for a fee. As shown in

Figure 1, the interaction between the financial advisor and its clients can be facilitated by a human

advisor or a digital platform. The financial advisory company decides what service platform (or service

quality) to offer and what service fee to charge its clients. Financial advisors also collect and analyze

client data using in-house data miners, with the goal of improving the platform’s quality and/or re-

ducing costs. In addition, firms may buy additional data from third-party vendors or sell their client

data to external data miners who want to analyze investor behavior.

Financial advisory services include guidance towards an appropriate asset allocation, selection of

suitable investment products, development of tax efficient portfolio management strategies, estate

planning services, and facilitation of the execution of client-directed trades. Financial advisors are

expected to understand the client’s investment needs and exert financial efforts to help investors meet

their financial goals. The barriers to entering the financial advisory market include licensing, experience,
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Figure 1: Intermediation in the financial advisory market

marketing and regulatory costs.

3.1 Traditional advisors

Traditional financial advisors offer services through a human professional who is trained and has

experience with a variety of clients and life situations. These advisors tailor their clients’ portfolio

based on hard and soft information. In addition to investment advice, traditional financial advisors

often also offer other services, such as estate planning, college savings and insurance advice. Traditional

financial advisors generally charge fees in the range of 1% to 2% of clients’ assets.

3.2 Robo advisors

A Robo Advisor is a company that provides an online platform through which it offers wealth

management services. The platform provides financial advice based on a formula- and data-driven

algorithm and operates with minimal human intervention. Robo Advisors emerged in 2008 with the

5



founding of Betterment LLC.3. Growth accelerated in the United States and other countries after 2011,

and today there are over 100 RAs. Figure 2 shows the number of Robo Advisor launches in the United

States between and 2015. Robo Advisors tend to charge lower fees than traditional advisors, at about

25 to 50 basis points.
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Figure 2: Robo Advisor launches in the U.S. The data were sourced from Tracxn Report: Robo Advisors (Feb.
2016) and BlackRock (2016).

KPMG estimated assets under management (AUM) for digital advice assets to be between $55-60

billion as of December 2015, which constituted only a very small portion of total U.S. retirement market

assets of approximately $24 trillion.4 The top U.S. Robo Advisors based on AUM as of December 2015

are shown in Figure 3. The top RAs include both independent start-ups and organizations that are

part of larger firms providing asset management and/or brokerage services.

To better understand the evolution of the financial advisory market, we are interested in time

series data on assets under management. Unfortunately, historical data are not available for all Robo

Advisors. We argue, however, that we can proxy for AUM using the number of firms’ Twitter followers.

Figure 4 shows that there is a strong positive link between the number of Twitter followers of Robo

3For a detailed history of Betterment, see www.betterment.com/resources/inside-betterment/our-story/the-history-of-
betterment.

4For details, see BlackRock (2016).
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Figure 3: Assets under management of top U.S. Robo Advisors The figure shows the assets under management
in billion USD as of December 2015 for top US Robo Advisors. The data were sourced from Tracxn Report: Robo
Advisors (Feb. 2016) and BlackRock (2016).

Advisors and their AUM. Indeed, the R2 of the log-linear fit is above 78%.

Using the number of Twitter followers as a proxy for AUM, Figure 5 visualizes the evolvement

of Robo Advisors. Betterment enters first, but the in-house digital platforms of traditional wealth

management services have since garnered the biggest market share. Nevertheless, a number of digital

advisory firms have been competing over the last five years.

Robo Advisors often attract younger investors, such as millennials, who seek out low-cost services

and are comfortable managing their portfolios online without personal advice. As these individuals

mature and build assets, either through their own efforts and through their boomer parents and grand-

parents, they are likely to represent a significant growth opportunity. Indeed, over the next several

decades, baby boomers are expected to pass down an estimated $30 trillion in assets to their children

and grandchildren.5

5For details, see www.cnbc.com/2016/11/29/preparing-for-the-30-trillion-great-wealth-transfer.html.
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Figure 4: Assets under management versus twitter followers of top US Robo Advisors The figure shows the
assets under management in million USD and number of twitter followers, logarithmic, for top US Robo Advisors. The
data was sourced from Wikipedia and Twitter, and describes the market as of February 2017. For Vanguard and Charles
Schwab, the assets under management are for their in-house Robo Advisors, i.e., for Vanguard Personal Advisor Services
and Schwab Intelligent Portfolios.

4. A Static Model of Competition in the Financial Advisory Market

Before we develop a fully dynamic model, we first analyze the static competition among financial

advisors to highlight the basic trade-offs for market participants. Suppose advisors compete for clients

in a differentiated product market by determining the quality and price pair. Clients choose among

products based on their quality and price. As is typical in differentiated product market models, we

assume that clients have the following indirect utility function:

u(ω, p, θ) = θ · ω − p. (1)

Here, ω represents the quality and p the price of the product. Clients differ in their taste, which is

described by the parameter θ. We assume that θ has support on the interval [0,Θ], and use Fθ to

denote its distribution.

The higher the quality ω of the good, the higher the utility reached by the client for any given price

p. However, clients with a higher θ will be willing to pay more for a higher quality good. In accordance
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Figure 5: Twitter followers of top U.S. Robo Advisors The figure shows the time series of the number of Twitter
followers of top U.S. Robo Advisors, from 2008 to 2017. Historical data are obtained from the Internet Archive website
(https://archive.org/web/) which keeps caches of web pages from 2001 onwards. We use these caches to observe past
Twitter accounts? websites and the number of Twitter followers on those days.

with the literature on product differentiation, we assume that clients can buy at most one unit of the

good.6 If clients decide not to buy the differentiated good, their utility is zero.

For this static exercise, we assume that there are only two financial advisory firms, and that they

play the following two-stage game. In the first stage, they decide on the quality ω to be produced. We

denote the two goods that will be produced by ω1 and ω2, and identify them by imposing ω2 > ω1 ≥ ω.7

If financial advisory firm i chooses to produce quality ω1, we denote its product choice by j(i) = 1. If

the firm instead chooses quality ω2, then j(i) = 2. At this stage of the game, each firm incurs a fixed

set-up cost ci to produce quality ωj(i).

In the second stage of the game, firms set prices. At this stage, the fixed set-up costs ci have already

been paid and product-dependent production costs cpj are incurred.

We look for the subgame perfect Nash equilibrium of the game. As usual, this will be obtained by

6In the language of Tirole (1988), θ can be interpreted as the marginal rate of substitution between income and quality,
so that a higher θ corresponds to a lower marginal utility of income and hence a higher income. Under this interpretation,
the model proposed here is the analog of models where customers differ by their incomes rather than tastes (Gabszewicz
and Thisse (1979 and 1980), Shaked and Sutton (1982, 1983, and 1984), Bonanno (1986), and Ireland (1987)).

7There is no a priori upper bound to the level of quality, but we assume that there exists a lower bound ω to it. The
latter can be interpreted as a minimum standard legal requirement or as being inherent to the production process.
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backward induction. We first have to derive the equilibrium for the price-setting subgame, taking as

fixed qualities ω1 and ω2. Clients that prefer buying good 2 over good 1 have a taste parameter θ such

that u(ω2, p2, θ) ≥ u(ω1, p1, θ), or θ ≥ (p2 − p1)/(ω2 − ω1). Clients who prefer buying good 1 over not

buying at all have a taste parameter θ such that 0 ≤ u(ω1, p1, θ) < u(ω2, p2, θ), or (p2−p1)/(ω2−ω1) >

θ ≥ p1/ω1. For clients θ = p1/ω1, the purchase of the good of quality ω1 will imply zero utility.

And clients with θ < p1/ω1 will not buy the differentiated product at all. In that sense, the financial

advisory market is not covered.

The demand function can then be easily built. Given the price vector p ≡ (p1, p2) and quality pair

ω ≡ (ω1, ω2) we can express the demands for different product types as follows:

qj(p, ω) =


1− Fθ

(
p2 − p1
ω2 − ω1

)
, j = 2,

Fθ

(
p2 − p1
ω2 − ω1

)
− Fθ

(
p1
ω1

)
, j = 1.

(2)

Firms choose prices to maximize their stage-two profits πi = pj(i) qj(i) − c
p
j(i), for the given quality

pair ω. The associated first-order conditions are:

∂πi
∂pj(i)

= 0, i = 1, 2. (3)

From these conditions we can derive the equilibrium prices charged by the high and the low quality

firm by solving the following two-equation system for p as a function of ω:

1− Fθ
(
p2 − p1
ω2 − ω1

)
+ p2 F

′
θ

(
p2 − p1
ω2 − ω1

)
1

ω2 − ω1
− ∂cp2
∂p2

= 0, (4)

Fθ

(
p2 − p1
ω2 − ω1

)
− Fθ

(
p1
ω1

)
− p1 F ′θ

(
p2 − p1
ω2 − ω1

)
1

ω2 − ω1
− p1 F ′θ

(
p1
ω1

)
1

ω1
− ∂cp1
∂p1

= 0. (5)

In the special case where the distribution function Fθ(x) is affine in x—as is the case for the uniform

distribution—and production costs scale linearly with quantity, the system (4)-(5) will have a unique

solution p = p(ω).

Given the solution to the price competition part of the game, we look for solutions to the quality
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game. Firms choose their quality specification to maximize their overall profits

Πi = πi − ci, i = 1, 2. (6)

The first- and second-order conditions of the profit maximization problem are

∂Πi

∂ωj(i)
=

∂(qj(i)pj(i))

∂ωj(i)
− ∂ci
∂ωj(i)

= 0 (7)

∂2Πi

∂ω2
j(i)

=
∂2(qj(i)pj(i))

∂ω2
j(i)

− ∂2ci
∂ω2

j(i)

< 0, (8)

for i = 1, 2. Equations (7) and (8) ensure that the solution ω∗ = (ω∗1, ω
∗
2) represents a local maximum.

Finding a local maximum, however, does not guarantee that we found a Nash equilibrium. Ad-

ditional incentive compatibility conditions must be satisfied. In other words, we need to make sure

no financial advisor has an incentive to deviate from its quality choice. Let us imagine that firm ih

is producing the high quality, j(ih) = 2, and that firm il is producing the low quality, j(il) = 1. To

be sure that the candidate solution ω∗ = (ω∗1, ω
∗
2) to system (7)–(8) is indeed an equilibrium solution,

we also have to check that firm il has no incentive to “leapfrog” the rival firm ih and itself produce

the higher quality. In other words, we have to prove that producing ω∗1 is the optimal reply by firm il

“from below” to the choice by the rival firm ih to produce ω∗2. Likewise, we have to prove that firm

ih has no incentive to deviate and produce a quality lower than that produced by firm il, meaning we

have to prove that producing ω∗2 is the optimal reply “from above” to ω∗1 along the whole spectrum of

possible qualities.

Formally, the following conditions have to be satisfied:

Πil(ω
∗) ≥ Πil(ωil = ω, ωih = ω∗2) for ω ≤ ω∗2 and (9)

Πil(ω
∗) ≥ Πil(ωih = ω∗2, ωil = ω) for ω ≥ ω∗2; (10)

Πih(ω∗) ≥ Πih(ωih = ω, ωil = ω∗1) for ω ≤ ω∗1 and (11)

Πih(ω∗) ≥ Πih(ωil = ω∗1, ωih = ω) for ω ≥ ω∗1. (12)

Expressions (9)-(10) give the conditions for the optimal reply of the firm producing the low quality,
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while expressions (11)-(12) give the conditions for the optimal reply of the firm producing the high

quality. Note that expression (10) ensures that the low-quality firm has no incentive to “leapfrog” its

rival by producing the highest quality itself, whereas the expression (12) ensures that the high-quality

firm does not want to offer a lower quality than its low-quality rival.

Finally, we can derive the positions of the indifferent clients. Clients with θ = (p2−p1)/(ω2−ω1) are

indifferent between products 2 and 1, and clients with θ = p1/ω1 are indifferent between product 1 and

not buying the differentiated product at all. Therefore, clients with θ < p1/ω1 are not covered by the

market. Note that with the particular utility specification (1), θ can be interpreted as the marginal rate

of substitution between income and quality, so that a higher θ corresponds to a lower marginal utility

of income and therefore a higher income. In that sense, the low-θ individuals not served by the market

would be low-income individuals. If a social welfare function puts positive weight on these individuals,

then lowering prices for a given quality would be welfare-improving and this is where regulation would

have an impact.8

5. Welfare Implications from the Static Model

In the appendix, we solve the static model for the special case where θ is uniformly distributed on

[0, θ̄], production costs are product specific and scale linearly with quantity, cpj = c ωjqj , and set-up

costs are firm-specific,

ci = αi
ω2
j(i)

2
, (13)

where α1 ≥ α2 = 1.

We show that for α1 > α2, firm 1 will produce the low-quality good. As α1 decreases towards

α2 = 1, product quality increases and a larger fraction of clients are being covered by the financial

advisory market. The results are summarized in Table 1. We observe that a lower start-up cost for

firm 1, i.e., a lower α1, is associated not only with higher product quality but also with a larger fraction

of the clients being covered by the financial advisory market. In this sense, regulation that aims at

lowering fixed costs for new market entrants would have a positive impact on the accessibility of wealth

8Note that instead of having θ ∈ [0, θ̄], we could have θ ∈ [θ, θ̄]. Prices and cutoff θ’s would be in relationship to the
lower as well as the upper bound, but would not change the basic results of the game.
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management services.

Table 1: Solutions to the static game with heterogeneous fixed costs The table reports the outcome of the
static game for θ̄ = 10, c = 1 and different values of α1. q0 described the demand for the outside option. θ10 identifies
clients that are indifferent between product 1 and not buying the differentiated product at all. θ21 identifies clients that
are indifferent between products 2 and 1.

α1 ω1 ω2 p1 p2 q0 q1 q2 θ10 θ21 Π1 Π2

1 0.39 2.05 1.14 9.90 0.29 0.24 0.47 2.91 5.28 0.1002 1.6035
2 0.22 2.03 0.68 10.41 0.31 0.23 0.46 3.06 5.37 0.0565 1.8090
3 0.15 2.03 0.48 10.63 0.31 0.23 0.46 3.12 5.41 0.0393 1.8858
4 0.12 2.03 0.37 10.74 0.31 0.23 0.46 3.15 5.43 0.0301 1.9256
5 0.10 2.03 0.30 10.81 0.32 0.23 0.46 3.17 5.45 0.0244 1.9500
6 0.08 2.03 0.26 10.87 0.32 0.23 0.45 3.18 5.45 0.0205 1.9663
7 0.07 2.02 0.22 10.90 0.32 0.23 0.45 3.19 5.46 0.0177 1.9782
8 0.06 2.03 0.20 10.93 0.32 0.23 0.45 3.20 5.47 0.0155 1.9871
9 0.05 2.03 0.18 10.96 0.32 0.23 0.45 3.20 5.47 0.0138 1.9940

10 0.05 2.03 0.16 10.98 0.32 0.23 0.45 3.21 5.47 0.0125 1.9995

6. Modeling Entry, Competition and Exit in the Financial Advisory Market

Having identified the basic trade-offs that face firms in a differentiated market, we now turn to the

dynamic problem. Firm behavior documented in the financial advisory market shows that firms enter

at different times and have evolving market power over time. Our ultimate goal is to develop a model

of this market that can be used for policy intervention exercises. To fully understand the implications

of any policy intervention in this market, we need a dynamic, infinite-horizon model that can give

insights into how firms behave in the market today and how that behavior will evolve in the future as

policies change and new technologies and new entrants alter the nature of the market.

We therefore provide a dynamic strategic model of competition among financial advisors with entry,

exit, differentiated financial products and investment in attracting clients and developing a client base

to deliver quality services at a lower price. In the dynamic set-up, we have each period divided into two

sub-periods, as in the static version. In the first sub-period, firms choose their quality. In the second

sub-period, firms compete on prices and decide how much client capital to invest in.

Unlike the static case, we do not constrain the model to have duopoly competition only. Instead, N

firms each supply one good j = j(i) with quality ωj(i), and price pj(i). In other words, firms specialize

in one product by choosing a quality and price combination (ωj , pj). Let j = 1, . . . ,m ≤ N , index the
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distinct qualities on offer, where products are identified via ωm > ωm−1 > . . . > ω1 ≥ ω. Product j = 0

is assumed to deliver zero utility as before.

Each client has multiple options—buying one of the products from the menu of offerings or not

buying a product at all—and chooses the one that maximizes her utility. This yields 0 ≤ θ1 ≤ θ2 ≤

. . . ≤ θm ≤ 1 such that clients in [0, θ1) do not buy a product, clients in [θ1, θ2) buy product 1, . . ., and

clients in [θm, 1] buy product m. This assumes that when clients are indifferent, they choose buying

over not buying and higher quality product over others. It is straightforward to show that the marginal

client θj who is indifferent between buying products j and (j−1) is given by θj = (pj−pj−1)/(ωj−ωj−1).

Similarly, the marginal client θ1 who is indifferent between buying product 1 and not buying a product

at all is given by θ1 = p1/ω1.

Thus, given the price vector p = (p1, . . . , pm) and quality vector ω = (ω1, . . . , ωm), we can express

the total client demand for product j as

qj(p, ω) =



1− Fθ
(
pm − pm−1
ωm − ωm−1

)
, j = m;

Fθ

(
pj+1 − pj
ωj+1 − ωj

)
− Fθ

(
pj − pj−1
ωj − ωj−1

)
, 1 < j < m;

Fθ

(
p2 − p1
ω2 − ω1

)
− Fθ

(
p1
ω1

)
, j = 1.

(14)

6.1 Firms and the timing of their decisions

We assume that each financial advisor has the technological capability to offer any quality, albeit at

a cost that increases with quality. Firms compete along the price/quality dimension and in equilibrium

unit prices for the same quality will be the same. We assume that firm i offers product ωj(i) at a unit

price of pj(i) at a firm-specific but constant unit cost of ci.

In addition to competing along the price/quality dimension, firms also make investment decisions

regarding their client capital. We think of client capital as the stock of information a firm has about

potential clients. Client data include hard and soft information about potential investors’ financial

circumstances, their risk tolerance and utility function. Financial advisors can either collect such data

from their existing client base or purchase the data from third-party vendors. Firms can mine client

data to learn about investors’ preferences and produce a higher quality product at the same cost or,
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equivalently, the same quality product at a lower cost.

We refer to the cumulative investment in client data that firm i has undertaken in the past as client

capital ki. For each firm, its next-period client capital depends upon its current-period client capital,

the quality of the good it produces this period and the amount of data collection it chooses to invest

in. Using subscript t to identify the current period t, firm i’s client capital evolution can be written as

kt+1,i =
(
1 + δ

(
ωt,j(i)

))
kt,i + at,i, (15)

where at,i is the amount of data purchased from third-party vendors in the current period. We assume

that kt,i ∈ Ki, where Ki is compact for each firm i. The function δ(ω) ≥ 0 represents the growth rate

of existing client capital after providing a product of quality ω. With this specification, even though

firms do pay quality costs every period, the quality costs can decline over time with investment.

The timing of decisions within each period is as follows. Firms come into the period with ki, the

client capital they accumulated so far. In Stage 1, they make a quality decision and pay the set-up

cost ci, where

ci = ci(ωj(i), ki).

In Stage 2, firms compete on prices. At this point, they have already made their quality choices and

paid the set-up costs ci. Given the firm’s quality and price choices, the quantities of product j produced

by firm i, qj,i, have to add up to the total demand for product j:

qj(p, ω) =
∑N

i=1 qj,i(p, ω), for all j, (16)

where qj(p, ω) is given by Equation (14). In Stage 2, firms also decide how much to invest into client

capital, i.e., they also set ai.

6.2 Costs, revenues, profits

In Stage 2, firms incur a unit production cost cpi = cp(ωj(i)) that is a function of product quality.

They can also alter their client capital by purchasing data from third-party vendors. The unit cost of
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adding to their client capital is ca. As a result, firm i’s Stage 2 profits are given by

πi = qj(i),i
(
pj(i)(k, ω)− cp(ωj(i))

)
− ai ca. (17)

When firms make their Stage 2 price choices, they must take into consideration the quality choices

ω = (ω1, . . . , ωN ) and existing client capital k = (k1, . . . , kN ) of their competitors.

Stage 1 set-up costs ci = ci(ωj(i), ki) are firm-specific functions of product quality and client capital.

We assume that ci is increasing in ωj(i) and decreasing in ki. Firm i’s Stage 1 profits are given by

Πi = πi − ci. (18)

Equilibrium quantities are determined by the market clearing condition (16).

6.3 Notation

Before we move onto the equilibrium definition, we introduce some notation. In each period, firms

choose product quality in sub-period 1, and price and investment in sub-period 2. Firms make these

choices simultaneously with other firms. Although actions are observable after decisions are made, the

simultaneity of the moves implies that firms must anticipate and internalize their competitors’ action.

We use si = {ωj(i), pj(i), ai} to denote the action choices of firm i, and assume that si is drawn from

a finite set Si. Elements of the set S = ×Ni=1Si represent all possible combinations of player actions

and are called action profiles. A particular action profile will be denoted by s, and s−i refers to that

action profile when player i is excluded.

The vector of client capital, k = (k1, . . . , kN ), evolves deterministically over time according to

kt+1 = K(st,kt)

= (1 + δ (ωt)) kt + at,

where K : S ×K → K, ω = (ωj(1), . . . , ωj(N)) and a = (a1, . . . , aN ). The action space for the dynamic

game is S∞.
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Firm i’s average discounted payoffs from a specific sequence of states and action profiles are

(1− β)
∞∑
t=0

βt Πi(st,kt), (19)

where β ∈ (0, 1) is the common discount factor amongst financial advisors.9

6.4 Histories and strategies

At time t = 0, the history of the game is denoted by h0. It contains just the initial client capital

states k0. For time t > 0, the history ht of the game is a sequence {k0, {sτ ,kτ+1}t−1τ=0}, which includes

the vector of client capitals, quality, price and investment choices of all the firms prior to t and the

client capital firms enter into the period t with. Let Ht = Ht(k0) denote the set of feasible t-period

histories from a given k0.

A pure strategy for player i is a sequence of functions {gt,i}∞t=0 that map histories to actions,

gt,i : Ht → St,i. A strategy profile is a sequence of functions {gt}∞t=0, where gt maps from Ht to St.

We use g|ht to denote the continuation strategy profile for the remainder of the game that follows the

history ht.

Suppose that per-period profits for each financial advisor i, Πi, are bounded by [Πi,Πi]. In each

state k, the set of equilibrium profits is then contained within the compact set Ω = ×Ni=1[Πi,Πi]. We

define P∗ as the set of all correspondences that map from K ≡ ×Ni=1Ki to some closed subset of Ω,

P∗ = {W : K ⇒ Ω}.

6.5 Equilibrium and its characterization

The equilibrium concept we employ for our dynamic game is subgame-perfect equilibrium, or SPE.

In a dynamic game, at any history, the “remaining game” is called a subgame and can be regarded

as a game of its own. In dynamic games, Nash equilibrium is too permissive because it imposes

no optimality conditions in these subgames, opening the door to violations of sequential rationality.

Subgame-perfection strengthens Nash equilibrium by imposing the sequential rationality requirement

9Note that average discounted payoffs can be decomposed into a convex combination of current period payoffs (with
weight 1− β) and the average discounted payoffs for the rest of the game.
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that behavior be optimal in all circumstances (i.e., subgames), both those that arise in equilibrium (as

required by Nash equilibrium) and those that arise out of equilibrium.

Definition 1. A strategy profile g is a subgame-perfect equilibrium if for any history ht ∈ Ht the

continuation strategy g|ht is a Nash equilibrium of the continuation game.

Now we can formally define the subgame-perfect equilibrium payoff correspondence of our dynamic

game.

Definition 2. Let V ∗ denote the correspondence that maps the current state into the set of average

discounted payoffs that can be sustained in pure SPE.

In our formulation of the dynamic game, each subgame-perfect equilibrium payoff vector v ∈ V ∗

is supported by a profile of actions a consistent with Nash play in the current period and a vector

of continuation payoffs w that are themselves payoffs in some subgame-perfect equilibrium. The key

to finding V ∗ involves defining a recursive operator that maps future SPE payoffs into current SPE

payoffs.

In analogy with the Bellman operator of dynamic programming, this observation motivates the

introduction of the operator B∗ : P∗ → P∗. Let W ∈ P∗. We define B∗(W )k to be the set of possible

payoffs consistent with a Nash equilibrium profile s in state k today and continuation payoffs drawn

from the set Wg(s,k).
10 That is,

B∗(W )k =


v

∣∣∣∣∣∣∣∣∣∣∣
wg(s,k) ∈Wg(s,k), s ∈ S, and for each i = 1, . . . , N,

vi = (1− β) Πi(s,k) + β wi,g(s,k)

vi ≥ max
Si

min
{W(g(s−i,s

′,k))}
(1− β) Πi(s−i, s

′,k) + β wi,g(s−i,s′,k)


, (20)

where the prime superscript is used to indicate next period.

Note that a value v is in B∗(W )k if there is a continuation payoff profile wg(s,k) ∈Wg(s,k) such that

v = (1− β) Π(s,k) + β wg(s,k) is the value of playing s today and, for each i, firm i will choose to play

si = {ωj(i), pj(i), ai} because it believes that to do otherwise would yield a worse continuation payoff in

10Note that B∗(W )x describes the x component set of the B∗(W ) correspondence, not B∗(Wx).
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next period’s state,

vi ≥ max
Si

min
{W(g(s−i,s

′,k))}
(1− β) Πi(s−i, s

′,k) + β wi,g(s−i,s′,k). (21)

Inequality (21) will be referred to as the incentive compatibility constraint.11

6.6 Solving the Dynamic Game

Because the equilibrium value correspondence of the dynamic game does not admit a closed-form

solution, we will use the numerical procedures of Sleet and Yeltekin (2016) and Yeltekin, Cai, and Judd

(2017) to compute equilibria.

11In constructing the equilibrium of the dynamic game, we use the one-stage deviation principle for infinite horizon
games, which provides a useful characterization of SPE. This principle applies to games where overall payoffs are a
discounted sum of uniformly bounded stage payoffs, as is the case in our setting.
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A. Solutions of the Static Game with Zero Production Costs

In this appendix, we solve the static model in Section 4 for the special case where θ is uniformly

distributed on [0, θ̄]. Under these assumptions, the demand function (2) takes on the simple form

qj(p, ω) =


1− 1

θ̄

p2 − p1
ω2 − ω1

, j = 2;

1

θ̄

p2 − p1
ω2 − ω1

− 1

θ̄

p1
ω1
, j = 1.

(A.1)

The first-order conditions (3) can then be written as

∂π2
∂p2

= 1 +
1

θ̄

p1 − 2p2
ω2 − ω1

= 0,

∂π1
∂p1

=
1

θ̄

p2 − 2p1
ω2 − ω1

− 1

θ̄

2p1
ω1

= 0.

The first equation can be rewritten as

p1 = 2p2 − θ̄(ω2 − ω1) (A.2)

which, when substituted into the second equation, implies

(−3p2 + 2θ̄(ω2 − ω1))ω1 − 4p2(ω2 − ω1) + 2θ̄(ω2 − ω1)
2 = 0. (A.3)

Solving Equation (A.3) for p2 and then substituting p2 into Equation (A.2) yields the equilibrium

prices charged by the high- and low-quality firm:

p2(ω) = 2 θ̄ ω2
ω2 − ω1

4ω2 − ω1
, (A.4)

p1(ω) = θ̄ ω1
ω2 − ω1

4ω2 − ω1
. (A.5)

As a result, stage-two profits πi = pj(i) qj(i) are given as

πi(ω) =

 θ̄ 4 (ω2 − ω1)
(

ω2
4ω2−ω1

)2
, j(i) = 2

θ̄ ω1ω2(ω2 − ω1)
(

1
4ω2−ω1

)2
, j(i) = 1.
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Suppose firm i’s cost function is given by ci = ω2
j(i)/2. Then the first-order conditions of the overall

profit maximization problem (7) are:

θ̄ 4
(
4ω2

2 − 3ω1ω2 + 2ω2
1

)
− (4ω2 − ω1)

3 = 0, (A.6)

θ̄ ω2
2 (4ω2 − 7ω1)− ω1 (4ω2 − ω1)

3 = 0. (A.7)

Equations (A.6) and (A.7) can be rewritten as

4ω3
2 − 23ω1ω

2
2 + 12ω2

1ω2 − 8ω3
1 = 0 (A.8)

64ω3
2 − (48ω1 + 16θ̄)ω2

2 + (12ω2
1 + θ̄ 12ω1)ω2 − ω3

1 − θ̄ 8ω2
1 = 0. (A.9)

We solve the 2-equation system (A.8)–(A.9) as a function of θ̄. It is straightforward to show that

the second-order conditions for profit maximization are met, and that the local maximum identified

does indeed satisfy the incentive compatibility conditions (9)-(12) and hence represents a Nash equi-

librium. The results are shown in Figure A.1. For a given θ̄, the solid curve shows pairs (ω1, ω2)

that satisfy Equation (A.8) and the dashed curve shows pairs (ω1, ω2) that satisfy Equation (A.9). A

candidate solution ω∗ is obtained when the two curves intersect. We observe that a more disperse client

distribution Fθ results in an increase in product quality.

Table A.1 reports additional results for the static game, including qualities, prices, quantities, and

profits, as a function of θ̄. For θ̄ = 1, the only solution in real numbers is: ω∗ = (0.05, 0.25). In this

scenario, clients with θ = 0.48 are indifferent between product 2 and 1, and clients with θ = 0.21 are

indifferent between product 1 and not buying the differentiated product at all. In this scenario, 21% of

clients are not covered by the market, 26% of clients buy the low-quality product and 53% of clients buy

the high-quality product. The firm that produces the low-quality good makes no measurable profit,

and the firm that produces the high-quality good makes a small profit of 0.02.

As the client distribution becomes more disperse and we observe a wider range for clients’ marginal

rate of substitution between income and quality, product quality, prices and firm profits increase. Note,

however, that the percentages of clients not covered by the market and of clients preferring the low-

or high-quality product remain the same. Independent of θ̄, 21% of clients opt out of the financial

advisory market.
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Figure A.1: Quality choices in the static game The figure shows solutions ω∗ = (ω∗1 , ω
∗
2) to the system (A.8)–(A.9),

for different values of θ̄.

Table A.1: Solutions to the static game The table reports the outcome of the static game for different values of
θ̄. q0 described the demand for the outside option. θ10 identifies clients that are indifferent between product 1 and not
buying the differentiated product at all. θ21 identifies clients that are indifferent between products 2 and 1.

θ̄ ω1 ω2 p1 p2 q0 q1 q2 θ10 θ21 Πi, j(i) = 1 Πi, j(i) = 2

1 0.05 0.25 0.01 0.11 0.21 0.26 0.53 0.21 0.48 0.00 0.02
2 0.10 0.51 0.04 0.43 0.21 0.26 0.53 0.43 0.95 0.01 0.10
3 0.14 0.76 0.09 0.97 0.21 0.26 0.53 0.64 1.43 0.01 0.22
4 0.19 1.01 0.16 1.72 0.21 0.26 0.53 0.85 1.90 0.02 0.39
5 0.24 1.27 0.26 2.69 0.21 0.26 0.53 1.06 2.38 0.04 0.61
6 0.29 1.52 0.37 3.88 0.21 0.26 0.53 1.28 2.85 0.06 0.88
7 0.34 1.77 0.50 5.28 0.21 0.26 0.53 1.49 3.33 0.07 1.20
8 0.39 2.03 0.66 6.89 0.21 0.26 0.53 1.70 3.80 0.10 1.56
9 0.43 2.28 0.83 8.72 0.21 0.26 0.53 1.91 4.28 0.12 1.98

10 0.48 2.53 1.03 10.77 0.21 0.26 0.53 2.13 4.75 0.15 2.44
11 0.53 2.79 1.24 13.03 0.21 0.26 0.53 2.34 5.23 0.18 2.96
12 0.58 3.04 1.48 15.50 0.21 0.26 0.53 2.55 5.70 0.22 3.52
13 0.63 3.29 1.73 18.19 0.21 0.26 0.53 2.76 6.18 0.26 4.13
14 0.68 3.55 2.01 21.10 0.21 0.26 0.53 2.98 6.65 0.30 4.79
15 0.72 3.80 2.31 24.22 0.21 0.26 0.53 3.19 7.13 0.34 5.50
16 0.77 4.05 2.62 27.56 0.21 0.26 0.53 3.40 7.60 0.39 6.26
17 0.82 4.31 2.96 31.12 0.21 0.26 0.53 3.61 8.08 0.44 7.06
18 0.87 4.56 3.32 34.88 0.21 0.26 0.53 3.83 8.55 0.49 7.92
19 0.92 4.81 3.70 38.86 0.21 0.26 0.53 4.04 9.03 0.55 8.82
20 0.96 5.07 4.10 43.07 0.21 0.26 0.53 4.25 9.50 0.61 9.78
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B. Solutions of the Static Game with Non-zero Production Costs

In this appendix, we solve the static model in Section 4 for the special case where θ is uniformly

distributed on [0, θ̄] and stage-two costs cpj = c ωj qj . The demand function (2) remains the same as

in (A.1). The first-order conditions (3) can then be written as

∂π2
∂p2

= 1 +
1

θ̄

p1 − 2p2
ω2 − ω1

+ c
1

θ̄

ω2

ω2 − ω1
= 0,

∂π1
∂p1

=
1

θ̄

p2 − 2p1
ω2 − ω1

− 1

θ̄

2p1
ω1

+ c
1

θ̄

ω1

ω2 − ω1
+ c

1

θ̄
= 0.

The first equation can be rewritten as

p1 = 2p2 − θ̄(ω2 − ω1)− c ω2 (B.1)

which, when substituted into the second equation, implies

(−3p2 + 2θ̄(ω2 − ω1) + c(2ω2 + ω1))ω1 − 4p2(ω2 − ω1) + 2θ̄(ω2 − ω1)
2 + c(2ω2 + ω1)(ω2 − ω1) = 0.(B.2)

Solving Equation (B.2) for p2 and then substituting p2 into Equation (B.1) yields the equilibrium

prices charged by the high- and low-quality firm:

p2(ω) = 2 θ̄ ω2
ω2 − ω1

4ω2 − ω1
+ c (2ω2 + ω1)ω2

1

4ω2 − ω1
, (B.3)

p1(ω) = θ̄ ω1
ω2 − ω1

4ω2 − ω1
+ 3 c ω1 ω2

1

4ω2 − ω1
. (B.4)

As a result, stage-two profits πi = pj(i) qj(i) − c
p
j(i) are given as

πi(ω) =

 4 (θ̄ − c) (1− c/θ̄)(ω2 − ω1)
(

ω2
4ω2−ω1

)2
, j(i) = 2

(θ̄ − c) (1− c/θ̄)ω1ω2(ω2 − ω1)
(

1
4ω2−ω1

)2
, j(i) = 1.

Suppose firm i’s fixed cost is given by ci = ω2
j(i)/2. Then the first-order conditions of the overall
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profit maximization problem (7) are:

θ̃ 4
(
4ω2

2 − 3ω1ω2 + 2ω2
1

)
− (4ω2 − ω1)

3 = 0, (B.5)

θ̃ ω2
2 (4ω2 − 7ω1)− ω1 (4ω2 − ω1)

3 = 0, (B.6)

where θ̃ = (θ̄ − c) (1− c/θ̄) = (θ̄ − c)2/θ̄. Equations (B.5) and (B.6) can be rewritten as

4ω3
2 − 23ω1ω

2
2 + 12ω2

1ω2 − 8ω3
1 = 0 (B.7)

64ω3
2 − (48ω1 + 16θ̃)ω2

2 + (12ω2
1 + θ̃ 12ω1)ω2 − ω3

1 − θ̃ 8ω2
1 = 0. (B.8)

We solve the 2-equation system (B.7)–(B.8) as a function of θ̄ and c. It is straightforward to show

that the second-order conditions for profit maximization are met, and that the local maximum identified

does indeed satisfy the incentive compatibility conditions (9)-(12) and hence represents a Nash equi-

librium. The results are shown in Figure B.1. For a given θ̄ and c, the solid curve shows pairs (ω1, ω2)

that satisfy Equation (B.7) and the dashed curve shows pairs (ω1, ω2) that satisfy Equation (B.8). A

solution ω∗ is obtained when the two curves intersect. We observe that higher proportional production

costs result in a decrease in chosen product quality.

Table B.1 reports additional results for the static game, including qualities, prices, quantities, and

profits, as a function of cp. For zero production costs (cp = 0), 21% of clients are not covered by the

market, 26% of clients buy the low-quality product and 53% of clients buy the high-quality product.

As production costs increase, the costs of producing the same level of quality increase. As a result,

firms choose to produce lower-quality goods. The relative quality of and demand for the high- versus

low-quality good remain the same though.

If production costs increase with product quality, product 1 becomes more expensive relative to

product 2.
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Figure B.1: Quality choices in the static game with non-zero production costs The figure shows solutions
ω∗ = (ω∗1 , ω

∗
2) to the system (B.7)–(B.8), for θ̄ = 10 and different values of cp.

Table B.1: Solutions to the static game with non-zero production costs The table reports the outcome of the
static game for θ̄ = 10 and different values of cp. q0 described the demand for the outside option. θ10 identifies clients
that are indifferent between product 1 and not buying the differentiated product at all. θ21 identifies clients that are
indifferent between products 2 and 1.

cp ω1 ω2 p1 p2 q0 q1 q2 θ10 θ21 Πi, j(i) = 1 Πi, j(i) = 2

0 0.48 2.53 1.03 10.77 0.21 0.26 0.53 2.13 4.75 0.1527 2.4438
1 0.39 2.05 1.14 9.90 0.29 0.24 0.47 2.91 5.28 0.1002 1.6035
2 0.31 1.62 1.14 8.75 0.37 0.21 0.42 3.70 5.80 0.0626 1.0010
3 0.24 1.24 1.06 7.42 0.45 0.18 0.37 4.49 6.33 0.0367 0.5867
4 0.17 0.91 0.92 5.97 0.53 0.16 0.32 5.28 6.85 0.0198 0.3167
5 0.12 0.63 0.73 4.51 0.61 0.13 0.26 6.06 7.38 0.0095 0.1527
6 0.08 0.41 0.53 3.12 0.69 0.11 0.21 6.85 7.90 0.0039 0.0626
7 0.04 0.23 0.33 1.89 0.76 0.08 0.16 7.64 8.43 0.0012 0.0198
8 0.02 0.10 0.16 0.90 0.84 0.05 0.11 8.43 8.95 0.0002 0.0039
9 0.00 0.03 0.04 0.24 0.92 0.03 0.05 9.21 9.48 0.0000 0.0000
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C. Solutions of the Static Game with Heterogeneous Fixed Costs

In this appendix, we extend the analysis in the previous appendix to allow for a more flexible form

of the fixed costs. Suppose firm 2’s fixed cost is given by c2 = ω2
j(i)/2, and firm 1’s fixed cost is given

by c1 = αω2
j(i)/2, where α ≥ 1. In other words, firm 1 faces higher fixed costs than firm 2 to produce

the same quality good. Then the first-order conditions of the overall profit maximization problem (7)

depend on whether it is firm 1 that produces the low-quality good or not.

If firm 1 chooses ω1, then

θ̃ 4
(
4ω2

2 − 3ω1ω2 + 2ω2
1

)
− (4ω2 − ω1)

3 = 0,

θ̃ ω2
2 (4ω2 − 7ω1)− αω1 (4ω2 − ω1)

3 = 0,

where θ̃ = (θ̄ − c) (1− c/θ̄) = (θ̄ − c)2/θ̄. These equations can be rewritten as

4ω3
2 − (7 + 16α)ω1 ω

2
2 + 12αω2

1ω2 − 8αω3
1 = 0 (C.1)

64ω3
2 − (48ω1 + 16θ̃)ω2

2 + (12ω2
1 + θ̃ 12ω1)ω2 − ω3

1 − θ̃ 8ω2
1 = 0. (C.2)

If firm 1 chooses ω2, then

θ̃ 4
(
4ω2

2 − 3ω1ω2 + 2ω2
1

)
− α (4ω2 − ω1)

3 = 0,

θ̃ ω2
2 (4ω2 − 7ω1)− ω1 (4ω2 − ω1)

3 = 0,

where θ̃ = (θ̄ − c) (1− c/θ̄) = (θ̄ − c)2/θ̄. These equations can be rewritten as

4αω3
2 − (7α+ 16)ω1 ω

2
2 + 12ω2

1ω2 − 8ω3
1 = 0 (C.3)

64αω3
2 − (48αω1 + 16θ̃)ω2

2 + (12αω2
1 + θ̃ 12ω1)ω2 − αω3

1 − θ̃ 8ω2
1 = 0. (C.4)

We solve the 2-equation systems (C.1)–(C.2) and (C.3)–(C.4) as a function of θ̄, c and α. The

results are shown in Figure C.1. For a given θ̄ and c, the solid curves shows pair (ω1, ω2) that satisfy

Equation (C.1)/ (C.3) and the dashed curve shows pairs (ω1, ω2) that satisfy Equation (C.2)/ (C.4).

A solution ω∗ is obtained when the two curves intersect. We observe that lower fixed costs result in an
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increase in chosen product quality.
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Figure C.1: Quality choices in the static game with heterogeneous fixed costs The figure shows solutions
ω∗ = (ω∗1 , ω

∗
2) to the system (C.1)–(C.2) (left plot) and system (C.3)–(C.4) (right plot), for θ̄ = 10, c = 1 and different

values of α.

Table C.1 reports additional results, including qualities, prices, quantities, and profits, as a function

of α. We observe that overall profits are larger when firm 1 produces the low-quality product, meaning

that this is the only practically relevant solution. (If firm 1 were to choose the high-quality product,

firm 2 could always pay firm 1 to switch to the low-quality product and still be better off.)

Focusing on the scenario where firm 1 produces lower quality, we observe that a lower α is associated

not only with higher product quality but also with a larger fraction of the clients being covered by the

financial advisory market. In this sense, regulation that aims at lowering fixed costs for new market

entrants would have an impact.

It is straightforward to show that the second-order conditions for profit maximization are met, and

that the local maximum identified does indeed satisfy the incentive compatibility conditions (9)-(12)

and hence represents a Nash equilibrium.
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Table C.1: Solutions to the static game with heterogeneous fixed costs The table reports the outcome of the
static game for θ̄ = 10, c = 1 and different values of α. q0 described the demand for the outside option. θ10 identifies
clients that are indifferent between product 1 and not buying the differentiated product at all. θ21 identifies clients that
are indifferent between products 2 and 1.

α ω1 ω2 p1 p2 q0 q1 q2 θ10 θ21 Π1 Π2

Firm 1 produces low-quality good
1 0.39 2.05 1.14 9.90 0.29 0.24 0.47 2.91 5.28 0.1002 1.6035
2 0.22 2.03 0.68 10.41 0.31 0.23 0.46 3.06 5.37 0.0565 1.8090
3 0.15 2.03 0.48 10.63 0.31 0.23 0.46 3.12 5.41 0.0393 1.8858
4 0.12 2.03 0.37 10.74 0.31 0.23 0.46 3.15 5.43 0.0301 1.9256
5 0.10 2.03 0.30 10.81 0.32 0.23 0.46 3.17 5.45 0.0244 1.9500
6 0.08 2.03 0.26 10.87 0.32 0.23 0.45 3.18 5.45 0.0205 1.9663
7 0.07 2.02 0.22 10.90 0.32 0.23 0.45 3.19 5.46 0.0177 1.9782
8 0.06 2.03 0.20 10.93 0.32 0.23 0.45 3.20 5.47 0.0155 1.9871
9 0.05 2.03 0.18 10.96 0.32 0.23 0.45 3.20 5.47 0.0138 1.9940

10 0.05 2.03 0.16 10.98 0.32 0.23 0.45 3.21 5.47 0.0125 1.9995

Firm 1 produces high-quality good
1 0.39 2.05 1.14 9.90 0.29 0.24 0.47 2.91 5.28 1.6035 0.1002
2 0.31 1.05 0.84 4.64 0.27 0.24 0.49 2.71 5.14 0.6464 0.0808
3 0.25 0.71 0.66 2.97 0.26 0.25 0.49 2.59 5.06 0.3594 0.0674
4 0.21 0.54 0.54 2.17 0.25 0.25 0.50 2.51 5.01 0.2310 0.0577
5 0.18 0.44 0.45 1.71 0.25 0.25 0.50 2.45 4.97 0.1615 0.0504
6 0.16 0.37 0.39 1.40 0.24 0.25 0.51 2.41 4.94 0.1196 0.0448
7 0.15 0.32 0.35 1.19 0.24 0.25 0.51 2.38 4.92 0.0922 0.0403
8 0.13 0.28 0.31 1.03 0.24 0.25 0.51 2.35 4.90 0.0732 0.0366
9 0.12 0.25 0.28 0.91 0.23 0.26 0.51 2.33 4.89 0.0596 0.0335

10 0.11 0.23 0.25 0.82 0.23 0.26 0.51 2.31 4.88 0.0495 0.0309
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