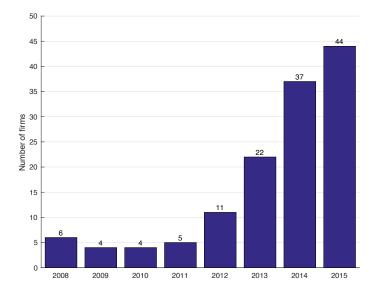
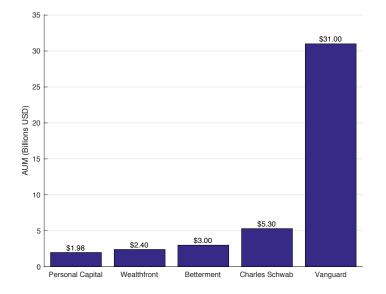
#### Competition in the Financial Advisory Market:


# Robo versus Traditional Advisors

Antje Berndt (ANU), Sevin Yeltekin (CMU) and Honglin Yu (ANU)


FRB Philadelphia

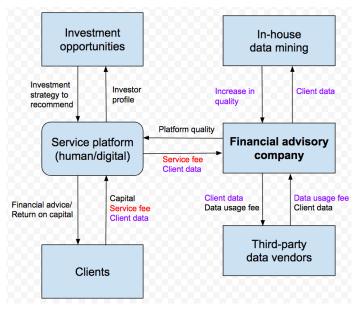
September 2017

#### Robo Advisor Launches in the U.S.



# Assets Under Management of Top U.S. Robo Advisors




# Point of Departure

- Unregulated, market features are likely to result in high levels of concentration and a small number of dominant firms
- The speed of convergence towards dominance is increased by the reinforcing interactions between firm size and profitability

#### Our paper

- Models entry, competition and exit in the financial advisory (FA) market in a dynamic games setting
- Provides framework for firm behavior in FA market suitable for evaluating regulatory policy

# Structure of Financial Advisory Market



# Static Game

- Firms (financial advisors) compete for clients in a differentiated product market
- **Clients** choose products based on their quality (ω) and price (p):

$$u(\omega, p, \theta) = \theta \cdot \omega - p$$

- Clients differ in their taste, θ ∈ [0, Θ], which can be thought of as marginal rate of substitution between income and quality
- Client distribution is modeled as  $F_{\theta}$

# Illustrative Example: Two Firms Play a Two-Stage Game

#### Stage 1

- Firms decide on quality  $\omega$  to be produced  $(\omega_2 > \omega_1 \ge \underline{\omega})$
- Use j(i) to denote product choice by firm i
- Firms incur fixed set-up cost  $c_i = c_i(\omega_{j(i)})$

#### Stage 2

- Firms set prices p<sub>j(i)</sub>
- Firms incur product-dependent production costs  $c_{i(i)}^{p}$
- We look for the subgame perfect Nash equilibrium of the game

## Demand Function and Profit Maximization

• Demands for different product types:

$$q_{j}(\mathbf{p},\omega) = \begin{cases} 1 - F_{\theta}\left(\frac{p_{2} - p_{1}}{\omega_{2} - \omega_{1}}\right), & j = 2, \\ F_{\theta}\left(\frac{p_{2} - p_{1}}{\omega_{2} - \omega_{1}}\right) - F_{\theta}\left(\frac{p_{1}}{\omega_{1}}\right), & j = 1 \end{cases}$$

· Firms choose prices to maximize their stage-two profits

$$\pi_i = p_{j(i)} q_{j(i)} - c_{j(i)}^p$$

· Firms choose quality to maximize their overall profits

$$\Pi_i = \pi_i - c_i$$

## Solutions for Heterogeneous Fixed Costs

• Suppose  $\theta \sim U([0, 10])$ ,  $c_j^p = \omega_j q_j$ , and firm-specific set-up costs

$$c_i = \alpha_i \omega_{j(i)}^2/2$$

- For  $\alpha_1 > \alpha_2 = 1$ , firm 1 will produce the low-quality good
- As  $\alpha_1$  increases, product quality  $\omega$  decreases and a somewhat smaller fraction of clients  $(1 q_0)$  are being covered

| $\alpha_1$ | $\omega_1$ | $\omega_2$ | $p_1$ | <i>p</i> <sub>2</sub> | $q_0$ | $q_1$ | $q_2$ | $\Pi_1$ | $\Pi_2$ |
|------------|------------|------------|-------|-----------------------|-------|-------|-------|---------|---------|
| 1          | 0.39       | 2.05       | 1.14  | 9.90                  | 0.29  | 0.24  | 0.47  | 0.10    | 1.60    |
| 5          | 0.10       | 2.03       | 0.30  | 10.81                 | 0.32  | 0.23  | 0.46  | 0.02    | 1.95    |
| 10         | 0.05       | 2.03       | 0.16  | 10.98                 | 0.32  | 0.23  | 0.45  | 0.01    | 2.00    |

## Solutions for Heterogeneous Fixed Costs

 As α<sub>1</sub> increases, quality decreases and price increases for higher-quality product

| $\alpha_1$ | $\omega_1$ | $\omega_2$ | $p_1$ | <i>p</i> <sub>2</sub> | $q_0$ | $q_1$ | <i>q</i> <sub>2</sub> | $\Pi_1$ | П2   |
|------------|------------|------------|-------|-----------------------|-------|-------|-----------------------|---------|------|
| 1          | 0.39       | 2.05       | 1.14  | 9.90                  | 0.29  | 0.24  | 0.47                  | 0.10    | 1.60 |
| 5          | 0.10       | 2.03       | 0.30  | 10.81                 | 0.32  | 0.23  | 0.46                  | 0.02    | 1.95 |
| 10         | 0.05       | 2.03       | 0.16  | 10.98                 | 0.32  | 0.23  | 0.45                  | 0.01    | 2.00 |

# Duopolistic versus Monopolistic Outcome

| $\alpha_1$           | $\omega_1$ | $\omega_2$ | $p_1$ | <i>p</i> <sub>2</sub> | $q_0$ | $q_1$ | <b>q</b> 2 | $\Pi_1$ | $\Pi_2$ |  |
|----------------------|------------|------------|-------|-----------------------|-------|-------|------------|---------|---------|--|
| Duopolistic outcome  |            |            |       |                       |       |       |            |         |         |  |
| 1                    | 0.39       | 2.05       | 1.14  | 9.90                  | 0.29  | 0.24  | 0.47       | 0.10    | 1.60    |  |
| 5                    | 0.10       | 2.03       | 0.30  | 10.81                 | 0.32  | 0.23  | 0.46       | 0.02    | 1.95    |  |
| 10                   | 0.05       | 2.03       | 0.16  | 10.98                 | 0.32  | 0.23  | 0.45       | 0.01    | 2.00    |  |
| Monopolistic outcome |            |            |       |                       |       |       |            |         |         |  |
| _                    | _          | 2.03       | _     | 11.14                 | 0.55  | _     | 0.45       | _       | 2.05    |  |

- Clients with  $heta < p_1/\omega_1$  are not covered by the FA market
- Low- $\theta$  individuals tend to be low-income individuals
- If a social welfare function puts positive weight on these individuals, then lowering barriers to entry would be welfare-improving

# Modeling Entry, Competition and Exit in the FA Market

- N firms enter at different times and have evolving market power
- Each firm supplies one good j = j(i) with quality  $\omega_{j(i)}$ , price  $p_{j(i)}$
- Each period has two sub-periods

#### First sub-period:

- Firms choose their quality ω<sub>j(i)</sub>
- ► Firms pay set-up costs c<sub>i</sub> = c<sub>i</sub>(ω<sub>j(i)</sub>, k<sub>i</sub>) that are functions of product quality and client capital

#### Second sub-period:

- Firms compete on prices
- Firms decide how much client capital to invest in
- Firms incur production cost
- Clients choose product that maximizes their utility

# Financial Advisors' Client Capital

- Client capital: Stock of information about potential clients
- Client data include hard and soft information about potential investors' financial circumstances, risk tolerance and utility
- FAs can either collect data from existing clients or purchase them from third-party vendors
- Firms can mine client data to produce a higher-quality product at the same cost, or the same quality product at a lower cost
- Evolution of client capital k<sub>i</sub> over time:

 $k_{t+1,i} = \left(1 + \delta_1\left(\omega_{t,j(i)}\right)\right) \left(1 - \delta_2\right) k_{t,i} + a_{t,i},$ 

where  $a_{t,i}$  is the period-t investment in client capital

• High quality (through  $\delta_1 \omega_{t,j(i)}$ ) offsets depreciation (through  $-\delta_2$ )

# Equilibrium and Its Characterization

- The equilibrium concept we employ is **subgame-perfect** equilibrium, or SPE
- At any history, the "remaining game" is called a subgame and can be regarded as a game of its own
- Subgame-perfection strengthens Nash equilibrium
- It imposes the sequential rationality requirement that behavior be optimal in all circumstances (i.e., subgames), both those that arise in equilibrium (as required by Nash equilibrium) and those that arise out of equilibrium

# Solving the Dynamic Game

- There are multiple equilibria. We will compute all equilibrium values
- The equilibrium value correspondence of the dynamic game does not admit a closed-form solution
- We will use the numerical procedures of Sleet and Yeltekin (2016) and Yelteking, Cai and Judd (2017) to compute equilibria

# Why a Dynamic Model?

- Allows us to look at firm entry and exit
- Client capital is a strategic variable
  Implications for regulation of information
- Supports cooperative outcomes that are not possible in static setting
  Allows regulation to take a long-term view
- **Central idea**: Provide framework to identify policies that can rule out BAD equilibria (such as extreme preemptive behavior that forces competitors out of the market, price wars, tacit collusion) without ruling out good equilibria

# Historical Time-Series Data on Firm Size

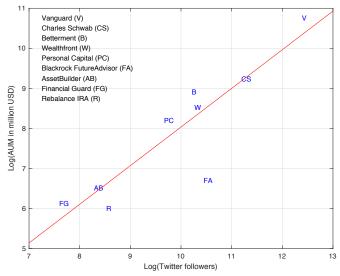



Figure: AUM versus Twitter followers of top US Robo Advisors