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Abstract
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consistency of the impulse response matching estimator in this situation, we derive
its asymptotic distribution, and we show how this distribution can be approximated
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also show that under our assumptions special care is needed to ensure the asymptotic
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using these methods may affect the substantive conclusions in empirical work.
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1 Introduction

Structural impulse responses play a central role in modern macroeconomics. It is common

to estimate the structural parameters of a dynamic stochastic general equilibrium (DSGE)

model by choosing these parameters so as to minimize a suitably weighted average of the

distance between the structural impulse responses implied by the DSGE model and the

corresponding structural impulse responses implied by an approximating vector autore-

gressive (VAR) model fit to actual data. One advantage of this approach compared with

full information maximum likelihood estimators of DSGE models is that it does not require

the model to fit well in all dimensions, but allows the user to focus on the dimension of

the model that matters most to macroeconomists (also see Dridi, Guay and Renault 2007;

Hall, Inoue, Nason, and Rossi 2012).

Such impulse response matching estimators have been employed in Rotemberg and

Woodford (1997), Christiano, Eichenbaum and Evans (2005), Iacoviello (2005), Boivin

and Giannoni (2006), Uribe and Yue (2006), DiCecio and Nelson (2007), Dupor, Han and

Tsai (2007), Jordà and Kozicki (2007), DiCecio (2009), and Altig, Christiano, Eichenbaum

and Lindé (2011), among others. In related research, Christiano, Trabandt and Walentin

(2011) propose a Bayesian version of the impulse response matching estimator in which the

quasi-likelihood function based on the distance between VAR and DSGE model impulse

responses is combined with prior information. Other applications of Bayesian impulse

response matching estimators include Christiano, Eichenbaum and Trabandt (2013) and

Kormilitsina and Nekipelov (2013).

Because impulse response matching estimators are classical minimum distance (CMD)

estimators, by construction they inherit the usual properties of CMD estimators (see, e.g.,

Newey and Smith 2004). Notably, the use of the optimal weighting matrix induces finite-

sample bias in the estimator, which is why most applied users employ a diagonal weighting

matrix instead. In this paper we identify another potential problem that is specific to

impulse response matching estimators. In estimating the structural parameters of DSGE



models, macroeconomists often match response functions evaluated across many horizons

such that the number of impulse response coefficients exceeds the dimensionality of the

VAR model parameters (see, e.g., Iacoviello 2005; Uribe and Yue 2006; Altig, Christiano,

Eichenbaum and Lindé 2011). This practice causes the joint distribution of the structural

impulse responses to be singular, which in turn renders the asymptotic behavior of the re-

sulting impulse response matching estimator nonstandard. As a result, standard asymptotic

and finite-sample results for CMD estimators no longer apply. We develop an alternative

asymptotic theory of the impulse response matching estimator for this practically relevant

context. Our paper makes four distinct theoretical contributions.

First, we show that in this case the impulse response matching estimator has a non-

standard convergence rate when using the optimal weighting matrix. While the estimator

remains consistent, its asymptotic distribution is nonstandard. Both the rate of conver-

gence and the nonnormality of the asymptotic distribution differ from standard results

for CMD estimators. We establish that the nonstandard asymptotic approximation may

be recovered by bootstrap methods. Of course, in the absence of asymptotic normality,

one would not want to report standard errors for this estimator, but rely on bootstrap

confidence intervals that do not rely on asymptotic normality.

In contrast, the impulse response matching estimator based on the diagonal weighting

matrix remains
√
T -consistent and asymptotically normal as in the standard CMD case.

The asymptotic variance of the latter estimator, however, differs from the case in which the

number of impulse responses to be matched is no larger than the number of VAR model

parameters. We show that the asymptotic variance may nevertheless be approximated by

the same bootstrap methods as in the case in which the dimensionality of the impulse

response vector is no larger than that of the VAR model parameters. The latter result

provides a formal justification for the use of the diagonal weighting matrix in applied work

in a case not covered by existing asymptotic theory.

Second, our asymptotic results matter not only for the construction of point and interval

2



estimates for structural parameters. We also prove that conventional tests of overidentifying

restrictions, as employed in Boivin and Giannoni (2006), for example, have a nonstandard

asymptotic distribution, when the number of impulse response parameters exceeds the

number of VAR model parameters, invalidating the use of conventional critical values.

Third, our work also has implications for the use of Bayesian impulse response matching

estimators. Often in the literature, Bayesian estimators are used as a convenient device

for constructing asymptotic approximations. It may be tempting to base inference on a

point estimate constructed from the mean, median or mode of the quasi-posterior of the

structural parameters together with an estimate of the asymptotic standard error based on

the standard deviation of this distribution. Although Markov Chain Monte Carlo methods

may indeed be used to construct point estimators of the structural parameters based on

the mean, median or mode, we show that one cannot use the standard deviations of the

quasi-posterior distribution to approximate the asymptotic standard errors of the struc-

tural parameter estimator, when the number of impulse responses exceeds the number of

VAR model parameters. This is true whether one employs the optimal weighting matrix

or the diagonal weighting matrix. In contrast, the frequentist impulse response matching

estimator based on the diagonal weighting matrix allows consistent estimation of the asymp-

totic standard errors by bootstrap methods. Alternatively, asymptotically valid Bayesian

inference may be conducted by constructing the variance using the sandwich formula of

Chernozhukov and Hong (2003).

Fourth, it is well known that structural parameters of macroeconomic models may not

be strongly identified. This problem also afflicts impulse response matching estimators, as

documented in Canova and Sala (2009). We propose a nonstandard confidence interval for

the structural parameters of the underlying data generating process that is robust to weak

identification problems.

The remainder of the paper is organized as follows. Section 2 examines the consis-

tency and asymptotic distribution of the impulse response matching estimators in question
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and proposes suitable bootstrap methods of inference. Because both the impulse response

matching estimator based on the optimal weighting matrix and the estimator based on

the diagonal weighting matrix are practically feasible and asymptotically valid, the ques-

tion arises which approach implies more accurate confidence intervals for structural model

parameters in finite samples.

Section 3 evaluates the quality of these asymptotic approximations based on a Monte

Carlo simulation experiment. Based on a small-scale New Keynesian model we provide

some tentative evidence that confidence intervals for structural DSGE model parameters

based on the diagonal weighting matrix tend to be more accurate than intervals based on

the optimal weighting matrix. They also appear more robust to the choice of the VAR

lag order and to the maximum horizon of the impulse response function. Satisfactory

coverage accuracy, however, may require fairly large sample sizes, even when using the

diagonal weighting matrix. The coverage deficiencies in small samples can be traced to

approximation error in the VAR representation of the DSGE model. When bootstrapping

the state-space representation of the DSGE model directly rather than its VAR approx-

imation, high coverage accuracy is obtained even in small samples, albeit at the cost of

taking a stand on the parametric structure of the data generating process. These baseline

simulation results pertain to strongly identified structural DSGE model parameters. We

also provide simulation evidence that VAR-based bootstrap confidence intervals that allow

for weak identification tend to be reasonably accurate even in realistically small samples

and are not systematically less accurate than their DSGE model bootstrap counterparts.

In Section 4, we illustrate the implementation of the proposed methods in the context of

a prototypical medium-scale New Keynesian DSGE model of the type used at many central

banks. This empirical example illustrates that basing estimates of the asymptotic standard

error on the standard deviation of the quasi-posterior of the structural parameters results

in much lower standard error estimates than the alternative estimation methods developed

in this paper. For example, whereas the point estimate of the price-markup factor is quite
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robust to the choice of method, its standard error is about three times as large one would

have concluded based on the standard deviation of the quasi-posterior. These results

are based on the conventional premise in empirical work that the structural parameters

are strongly identified. We also present alternative estimates that take account of the

possibility that some parameters are only weakly identified. We illustrate that allowing for

weak identification in some cases affects the substantive conclusions, while in others it does

not. The concluding remarks are in Section 5. The proofs are contained in the appendix.

2 Asymptotic Theory

The thought experiment is that the data are generated by a DSGE model. At least some

of the structural parameters of this DSGE model are unknown. The DSGE model is

approximated by a finite-order structural VAR model with identifying restrictions that are

consistent with the underlying DSGE model.1 The objective is to recover an estimate of

the unknown structural parameters in the DSGE model by searching the space of these

parameters for the parameter values that result in the closest match between the structural

VAR impulse responses based on the actual data and those from the DSGE model evaluated

at the hypothesized parameter values. We are concerned with the asymptotic properties

of this impulse response matching estimator in repeated sampling. As is standard in this

literature, it is assumed that the structural impulse responses obtained from the VAR

model are strongly identified.

Let γ0 denote the q × 1 vector of the population structural impulse responses (exclud-

ing all impulse responses that are not estimated). Then the structural impulse response

estimator γ̂T of γ0 is obtained from an estimated VAR model fitted to the actual data, its

bootstrap analogue γ̂∗T is obtained from a VAR model fitted to data simulated from the

estimated VAR model, and the double-bootstrap estimator γ̂∗∗T is obtained from a VAR

1Fernandez-Villaverde, Rubio-Ramirez, Sargent and Watson (2007) make precise the conditions under
which a DSGE model may be approximated by a finite-order VAR model.

5



model fitted to data simulated from the VAR model evaluated at the bootstrap parameter

estimates. Closed-form solutions for the structural impulse response estimator from VAR

models are provided in Lütkepohl (1990). Because structural impulse responses are func-

tions of the slope parameters and of the error covariance matrix of the VAR model, which

in turn are an implicit function of the first and second moments of the data, we can write

γ0 = γ(µ), γ̂T = γ(X̄T ), γ̂∗T = γ(X̄∗T ) and γ̂∗∗T = γ(X̄∗∗T ) where µ, X̄T , X̄∗T and X̄∗∗T are

k × 1 vectors of the population moments of the data, the sample moments, the bootstrap

sample moments and the double-bootstrap sample moments, respectively. k corresponds

to the number of VAR model parameters, defined as the total number of slope parameters

plus the number of unique elements in the error covariance matrix.

In impulse response matching estimation, an l × 1 vector of structural parameters of a

macroeconomic model, θ, is estimated based on a restriction of the form:

γ0 = f(θ0). (1)

In this paper, we consider two types of impulse response matching estimators. One is based

on the optimal weighting matrix,

θ̂opt,T = argminθ∈Θ(γ̂T − f(θ))′Σ̂∗−1
T (γ̂T − f(θ)), (2)

where Σ̂∗T is the bootstrap covariance matrix estimator of impulse responses,

Σ̂∗T =
1

B

B∑
b=1

(γ̂
∗(b)
T − ¯̂γ

∗
T )(γ̂

∗(b)
T − ¯̂γ

∗
T )′, (3)

γ̂
∗(b)
T is the bth bootstrap estimator of impulse responses for b = 1, 2, ..., B, and ¯̂γ

∗
T =

(1/B)
∑B

b=1 γ̂
∗(b). The other is

θ̂diag,T = argminθ∈Θ(γ̂T − f(θ))′WT (γ̂T − f(θ)), (4)
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where WT is a positive definite diagonal matrix, whose diagonal elements are the reciprocals

of the diagonal elements of Σ̂∗T . The bootstrap version of the impulse response matching

estimators, θ̂∗opt,T and θ̂∗diag,T , is defined in equations (2) and (4) with γ̂T and Σ̂∗T replaced

by γ̂
∗(b)
T and Σ̂∗∗T . We refer to the bootstrap that is used to generate γ̂

∗(b)
T as the bootstrap.

The bootstrap version of θ̂opt,T and θ̂diag,T is obtained by bootstrapping the realizations of

the bootstrap data and calculating γ̂∗∗T and their covariance matrix Σ̂∗∗T . We refer to this

bootstrap as the double bootstrap.

2.1 Asymptotic Properties of Impulse Response Matching Esti-

mators of Structural Model Parameters

We initially focus on a situation in which the structural parameters are strongly identified.

Our results are based on stochastic expansions and matrix decompositions. Suppose that

there are conformable matrices B0,...,BH such that

T
1
2 (γ(X̄T )− γ(µ)) = B0ZT + T−

1
2B1(ZT ⊗ ZT )

+ · · ·+ T−
H
2 BH(ZT ⊗ · · · ⊗ ZT ) + op(T

−H
2 ), (5)

where H is the maximum horizon of the impulse responses to be matched. Conventional

delta-method asymptotics are based on the leading term of this expansion. If q > k,

the first-order asymptotic variance, B0B
′
0, will be singular. It follows from the Schur

decomposition theorem (Theorem 13 of Magnus and Neudecker, 1999, p.16) that there

exists an orthonormal matrix S̃ whose columns are eigenvectors of B0B
′
0 and a diagonal

matrix Λ whose diagonal elements are the eigenvalues of B0B
′
0 such that

S̃ ′B0B
′
0S̃ = Λ. (6)
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The stochastic expansion (5) and the decomposition (6) allow us to analyze the asymptotic

behavior of the impulse response matching estimator when the number of impulse response

parameters exceeds the number of VAR model parameters.

To be precise, let (Ω,F , P ) denote the data probability space, (Ψ,G, P ∗) the bootstrap

probability measure, and (Φ,H, P ∗∗) the double bootstrap probability measure. Let X∗T

and X∗ [X∗∗T and X∗∗] denote a generic bootstrap statistic and a random variable that are

defined on the product probability space (Ω,F , P ) × (Ψ,G, P ∗) [(Ω,F , P ) × (Ψ,G, P ) ×

Φ,H, P ∗∗)], respectively. Following Dovonon and Gonçalves (2014), we define:

(i) X∗T = o∗p(1) in prob-P if for any ε, δ > 0, P (P ∗(|X∗T | > ε) > δ)→ 0 as T →∞.

(ii) X∗T = O∗p(1) in prob-P if for any δ > 0 there exists 0 < M < ∞ such that

P (P ∗(|X∗T | ≥M) > δ)→ 0 as T →∞.

(iii) X∗∗T = o∗∗p (1) in prob-P ∗ if for any ε, δ > 0, P ∗(P ∗∗(|X∗∗T | > ε) > δ) → 0 a.s. as

T →∞.

(iv) X∗∗T = O∗∗p (1) in prob-P ∗ if for any δ > 0 there exists 0 < M < ∞ such that

P ∗(P ∗∗(|X∗∗T | ≥M) > δ)→ 0 a.s. as T →∞.

(v) X∗T
d∗→ X∗ in prob-P if E∗f(X∗T ) → E(f(X∗)) in prob-P for every continuous

and bounded function f , where E∗(·) is the expectation operator with respect to the

bootstrap probability measure conditional on data.

(vi) X∗∗T
d∗∗→ X∗∗ in prob-P ∗ if E∗∗f(X∗∗T ) → E∗(f(X∗∗)) in prob-P ∗ a.s. for every contin-

uous and bounded function f , where E∗∗(·) is the expectation operator with respect

to the double bootstrap probability measure conditional on a bootstrap realization

and the data.

Our analysis requires the following conditions.
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Assumptions.

(a) ZT ≡ Ω−
1
2

√
T (X̄T − µ)

d→ Z ∼ N (0, Ik) and Z∗T ≡ Ω−
1
2

√
T (X̄∗T − X̄T )

d∗→ Z∗ ∼

N (0, Ik) in prob-P where Ω is a positive definite matrix.

(b) Given the maximum impulse response horizon H, there are conformable matrices

B0,...,BH and B̂0,...,B̂H such that

T
1
2 (γ(X̄T )− γ(µ)) = B0ZT + T−

1
2B1(ZT ⊗ ZT )

+ · · ·+ T−
H
2 BH(ZT ⊗ · · · ⊗ ZT ) + op(T

−H
2 ), (7)

T
1
2 (γ(X̄∗T )− γ(X̄T )) = B̂0Z

∗
T + T−

1
2 B̂1(Z∗T ⊗ Z∗T )

+ · · ·+ T−
H
2 B̂H(Z∗T ⊗ · · · ⊗ Z∗T ) + o∗p(T

−H
2 ) in prob-P,(8)

where B̂j = Bj + op(1) for j = 0, 1, ..., H.

(c) Let S0 be the q × q0 matrix that consists of the eigenvectors associated with the

k largest eigenvalues of B0B
′
0 where q0 = k. We assume that there are matrices

S1, S2, ..., Sr of dimension q × q1, q × q2, ..., q × qr, respectively, that consist of the

column vectors of S̃ such that the rotation matrix S = [S0, S1, ..., Sr] may be obtained

by interchanging the columns of S̃, such that q0 + q1 + ...+ qr = q, and such that

ξ =



S ′0B0Z

S ′1Bj1 (Z ⊗ · · · ⊗ Z)

...

S ′rBjr (Z ⊗ · · · ⊗ Z)


has a nonsingular second moment matrix J = E (ξξ′) for some integers 0 < j1 < j2 <

... < jr.

(d) Ŝ − S = op(1), Ŝ∗ − Ŝ = o∗p(1) in prob-P and Ŝ∗∗ − Ŝ∗ = o∗∗p (1) in prob-P ∗ where Ŝ,

Ŝ∗ and Ŝ∗∗ are the sample, bootstrap and double bootstrap analogues of S.
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(e)

ΥTS
′(γ(X̄∗T )− γ(X̄T ))(γ(X̄∗T )− γ(X̄T ))′SΥT

and

ΥTS
′(γ(X̄∗∗T )− γ(X̄∗T ))(γ(X̄∗∗T )− γ(X̄∗T ))′SΥT

are uniformly integrable with respect to the bootstrap and the double bootstrap

probability measures, respectively, conditional on the data, where S has been defined

in Assumption (c) and where

ΥT =



T
1
2 Iq0 0q0×q1 · · · 0q0×qr

0q1×q0 TIq1 · · · 0q1×qr
...

...
. . .

...

0qr×q0 0qr×q1 · · · T
r+1
2 Iqr


.

(f) There is a unique value of θ, θ0, in the interior of a compact set in <l, Θ, such that

γ(µ) = f(θ0), where f : Θ → <q is continuously differentiable in θ in the interior of

Θ. The Jacobian matrix of f at θ0, F0 = F (θ0), where F (θ) = ∂f(θ)/∂θ′, has rank l

and l is the dimension of θ.

(g) WT , W ∗
T and W ∗∗

T are sequences of positive definite matrices such that WT = W +

op(1), W ∗
T = WT + o∗p(1) in prob-P , and W ∗∗

T = W ∗
T + o∗∗p in prob-P ∗ where W is

positive definite.

(h) (1) For the optimal weighting matrix, if q > k, then θ0 is the unique value of θ in

Θ that satisfies S ′r(f(θ0) − f(θ)) = 0qr×1 where Sr is the q × qr submatrix of S

that consists of the last qr columns of S as defined in the proof of Theorem 1.

(2) If WT is a diagonal weighting matrix, F ′0WB0 has rank l.

Remarks. 1. Assumption (a) holds, for example, when applying the residual-based boot-

strap to stationary homoskedastic vector autoregressive processes.

2. Assumption (b) follows from a Taylor series expansion of the left-hand side of equations
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(7) and (8). The delta method is based on the first-order term of the stochastic expansion

on the right-hand side. The higher-order stochastic terms on the right-hand side have

also been used to develop Edgeworth expansions of the distribution of estimators (see Hall

1992). Assumption (b) holds, for example, for stationary vector autoregressive processes

with positive definite error covariance matrices and short-run exclusion restrictions. For

more primitive assumptions for the existence of asymptotic expansions of the distribution

of estimators in stationary time series models see Bao and Ullah (2007) and Bao (2007).

The precise specification of the expansions (7) and (8) changes with the specification of

the VAR model and with the choice of the maximum horizon H. The Bj matrices can be

expressed as functions of the VAR model parameters, allowing their consistent estimation

under standard assumptions. A fully worked out example of such an expansion can be

found in Inoue and Kilian (2015). For the implementation of the impulse response matching

estimator proposed in this section, no explicit derivation or estimation of the expansions

(7) and (8) is required. All we require is their existence.

3. Assumption (c) ensures that the bootstrap method can be used to estimate the limiting

covariance matrix. The existence of S is guaranteed by the Schur decomposition theorem

(Theorem 13 of Magnus and Neudecker, 1999, p.16).

4. Assumption (d) rules out cases in which the eigenvectors are discontinuous in the data,

even though eigenvalues are not (see Dufour and Valery 2015).

5. Assumption (e) ensures that the impulse response matching estimator based on the

optimal weighting matrix has a nonsingular asymptotic covariance matrix when scaled and

rotated properly.

6. Assumptions (f) and (g) are standard assumptions for classical minimum distance esti-

mators.

7. Assumption (h)(1) is for the impulse response matching estimator based on the op-

timal weighting matrix and is stronger than the identification condition in Assumption

(f). Because qr < q can be smaller than l, there may be another value of θ at which
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γ(µ)− f(θ) = f(θ0)− f(θ) 6= 0q×1 and S ′r(f(θ0)− f(θ)) = 0qr×1.

8. Assumption (h)(2) is for the impulse response matching estimator based on the diagonal

weighting matrix. When rank(B0) = q, it simplifies to the standard assumption that the

Jacobian has full rank, i.e., rank(F (θ0)) = l.

Theorem 1 (Consistency of Impulse Response Matching Estimators). Suppose that Assump-

tions (a)–(h) hold. Then

(a) θ̂opt,T = θ0 + o∗p(1) in prob-P .

(b) θ̂diag,T = θ0 + o∗∗p (1) in prob-P ∗.

Next, we derive the asymptotic distributions of the impulse response matching estimator.

Theorem 2 (Asymptotic Distributions of Impulse Response Matching Estimators). Suppose

that Assumptions (a)–(h) hold. Then

(a)

T
r+1
2 (θ̂opt,T − θ0)

d∗→ (F ′0Sr
¯̄JS′rF0)−1F ′0SrJ̄ξ in prob-P, (9)

T
r+1
2 (θ̂∗opt,T − θ̂opt,T )

d∗∗→ (F ′0Sr
¯̄JS′rF0)−1F ′0SrJ̄ξ

∗ in prob-P ∗, (10)

where r is defined in Assumption (c), ¯̄J is the qr × qr lower-right submatrix of J−1 and J̄

is the qr × q lower submatrix of J−1, and

(b)

T
1
2 (θ̂diag,T − θ0)

d∗→ (F ′0WF0)−1F ′0WB0Z in prob-P, (11)

T
1
2 (θ̂∗diag,T − θ̂diag,T )

d∗∗→ (F ′0WF0)−1F ′0WB0Z
∗ in prob-P ∗ (12)

Here the convergences in (10) and (12) are with respect to the bootstrap probability measure

conditional on the data.

Remarks. Theorem 2(a) shows that the impulse response matching estimator based on
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the optimal weighting matrix has a nonstandard convergence rate that is faster than T
1
2

and has a nonstandard asymptotic distribution, when the number of impulse responses

exceeds the number of VAR model parameters. Although the bootstrap can mimic the

convergence rate and nonstandard asymptotic distribution, θ̂opt,T has higher-order bias in

that the limiting distribution has nonzero mean if ξ involves even powers of Z. This

fact makes it necessary to employ bootstrap confidence intervals that can accommodate

these features such as Hall’s percentile interval. In contrast the impulse response matching

estimator based on the diagonal weighting matrix in Theorem 2(b) is
√
T -consistent and

asymptotically normal because Z and Z∗ are normal.

2.2 Asymptotic Distributions of the Test Statistic for Overiden-

tifying Restrictions

The results of section 2.1 not only have implications for the construction of point and

interval estimates of the structural parameters, but they also affect tests of overidentifying

restrictions. The conventional test statistic for overidentifying restrictions for testing the

null hypothesis that γ(µ) = f(θ0) is defined as

JT = (γ̂T − f(θ̂opt,T ))′Σ̂∗−1
T (γ̂T − f(θ̂opt,T )). (13)

Under standard assumptions including q ≤ k, the test statistic has an asymptotic χ2

distribution under the null hypothesis. This test has been used, for example, in Boivin and

Giannoni (2006). The bootstrap analogue of this test statistic is defined as

J∗T =
(
γ̂∗T − f(θ̂∗opt,T )− γ̂T + f(θ̂opt,T )

)′
Σ̂∗∗−1
T

(
γ̂∗T − f(θ̂∗opt,T )− γ̂T + f(θ̂opt,T )

)
, (14)
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where the term γ̂T −f(θ̂opt,T ) accomplishes the required recentering (see Hall and Horowitz

1996).

Theorem 3 (Asymptotic Distribution of the Test Statistic for Overidentifying Restrictions).

Suppose that Assumptions (a)–(g) and (h)(1) hold. Then

JT
d∗→ η′η in prob-P, (15)

J∗T
d∗∗→ η∗′η∗ in prob-P ∗, (16)

where

η = J−
1
2 ξ − J−

1
2S ′rF0(F ′0Sr

¯̄JS ′rF0)−1F ′0SrJ̄ξ,

η∗ = J−
1
2 ξ∗ − J−

1
2S ′rF0(F ′0Sr

¯̄JS ′rF0)−1F ′0SrJ̄ξ
∗.

Theorem 3 shows that the asymptotic distribution of the test statistic for overidentifying

restrictions is nonstandard if q > k, but can be mimicked by the bootstrap.

2.3 Asymptotic Distributions of Bayesian Impulse Response Match-

ing Estimators

Next, we evaluate the Bayesian impulse response matching estimator of Christiano et al.

(2011) and Christiano et al. (2013) from an asymptotic point of view. Christiano et al.

motivate their approach as building on the analysis in Kim (2002) in particular. Define the

quasi-posterior density as

p(θ) =
exp(−qT (θ))π(θ)∫

Θ
exp(−qT (θ))π(θ)dθ

(17)
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where π(θ) is the prior density and

qT (θ) =
1

2
(γ̂T − f(θ))′Σ̂∗−1

T (γ̂T − f(θ)). (18)

Under standard assumptions the quasi-posterior density converges to the asymptotic distri-

bution of the impulse response matching estimator. As in Chernozhukov and Hong (2003),

the quasi-posterior density is concentrated in a T−(r+1)/2 neighborhood around θ0, which

is characterized by the local parameter

h = T
r+1
2 (θ − θ0) + T

r+1
2 (∇2qT (θ0))−1∇qT (θ0), (19)

where ∇ denotes the gradient and ∇2 the Hessian. T
r+1
2 is used because of the convergence

rate of the impulse response matching estimator. Define the quasi-posterior density for h

as

p∗T (h) = T−
l(r+1)

2 pT

(
h

T
r+1
2

+ θ0 − (∇2qT (θ0))−1∇qT (θ0)

)
(20)

The next theorem establishes the asymptotic behavior of this quasi-posterior distribution.

Theorem 4 (Asymptotic Behavior of the Quasi-Posterior Distribution). Suppose that Assump-

tions (a)–(g) and (h)(1) hold. Then, using the notation of Chernozhykov and Hong (2003),

‖p∗T (h)− p∗∞(h)‖TVM(α) ≡
∫
HT

(1 + ‖h‖α)|p∗T (h)− p∗∞(h)|dh = o∗p(1) in prob-P, (21)

where

HT = {h ∈ <l : h = T
r+1
2 (θ − θ0)− T

r+1
2 (∇2qT (θ0))−1∇qT (θ0) for some θ ∈ Θ},

p∗∞(h) =

√
|T−(r+1)∇2qT (θ0)|

(2π)l
exp

(
− 1

2T r+1
h′∇2qT (θ0)h

)
.

Remarks. 1. Theorem 4 shows that the quasi-posterior is concentrated around the impulse

response matching estimator θ̂T and will be locally asymptotically normal. Heuristically,
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this follows from a quadratic expansion of qT (θ) around θ̂T in a neighborhood of θ̂T :

qT (θ) ≈ qT (θ̂T ) +
1

2
(θ − θ̂T )′∇2qT (θ̂T )(θ − θ̂T ), (22)

where the linear term is zero due to the first-order condition for θ̂T . Because qT (θ̂T ) is

constant in θ, the quasi-posterior is approximately proportional to

exp

(
−1

2
(θ − θ̂T )′∇2qT (θ̂T )(θ − θ̂T )

)
, (23)

provided π(θ0) > 0, which implies a normal density with mean θ̂T and covariance matrix

[∇2qT (θ̂T )]−1.

2. This result means that the posterior distribution in equation (23) is different from

the asymptotic distribution of the impulse response matching estimator in equation (11).

Hence, Markov Chain Monte Carlo draws, which are designed to characterize the quasi-

posterior distribution, cannot be used to estimate asymptotic standard errors and confi-

dence intervals when q > k . Under Assumption (h)(1), a necessary condition for estimating

the asymptotic standard errors from the quasi-posterior is that q ≤ k.

3. Whether q > k or q ≤ k, a consistent estimate of the asymptotic standard error under the

diagonal weighting matrix may be obtained using the sandwich formular of Chernozhukov

and Hong (2003, p. 307). Specifically, the asymptotic covariance may be estimated as

(F ′0WTF0)
−1
F ′0WT Σ̂∗TWTF0 (F ′0WTF0)

−1
,

where F0 is the Jacobian of the impulse response evaluated at θ0 and may be estimated by

numerical differentiation, WT is the diagonal weighting matrix, and Σ̂∗T is an estimate of

the inverse of the optimal weighting matrix.

4. It can be shown that the same problem arises when Assumption (h)(1) is replaced by

Assumption (h)(2). In that case, the quasi-posterior again is normal, but different from

equation (11), so we cannot rely on the standard errors of the quasi-posterior for asymptotic
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inference, but must evaluate the sandwich formula in Chernozhukov and Hong (2003).

2.4 Inference When Identification is Not Strong

A common problem in applied work is that some parameters of the DSGE model may not

be strongly identified. In the GMM context, this problem was first discussed in Stock and

Wright (2000). While several methods of inference have been developed that are robust

to weak identification problems in DSGE models, none of these methods are designed for

impulse response matching estimators (e.g., Guerron-Quintana, Inoue and Kilian 2013;

Dufour, Khalaf and Kichian 2013; Qu 2014; Andrews and Mikusheva 2015).

Below we derive the asymptotic distribution of the Wald test statistic without assuming

the identifiability of θ0. Our results apply whether q > k or q ≤ k.

Proposition (Asymptotic Distributions of the Wald Test Statistic of the Structural Impulse

Responses).

Suppose that Assumptions (a)–(g) hold. Under H0 : γ(µ) = f(θ0) for some θ0 ∈ Θ,

where θ0 need not be unique,

WT
d∗→ ξ′J−1ξ in prob-P, (24)

W∗T
d∗∗→ ξ∗′J−1ξ∗ in prob-P ∗, (25)

where

WT = (γ̂T − f(θ0)′Σ∗−1
T (γ̂T − f(θ0)),

W∗T = (γ̂∗T − γ̂T )′Σ∗∗−1
T (γ̂∗T − γ̂T ),

Σ∗T =
1

B

B∑
j=1

(
γ̂
∗(j)
T − ¯̂γ

∗
T

)(
γ̂
∗(j)
T − ¯̂γ

∗
T

)′
,

Σ
∗∗(j)
T =

1

B

B∑
k=1

(
γ̂
∗∗(j,k)
T − ¯̂γ

(j)∗∗
T

)(
γ̂
∗∗(j,k)
T − ¯̂γ

(j)∗∗
T

)′
,
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with γ̂
∗∗(j,k)
T = γ(X̄

∗∗(j,k)
T ) denoting the kth bootstrap draw of the structural impulse re-

sponse based on the jth bootstrap estimate and ¯̂γ
∗∗(j)
T = (1/B)

∑B
k=1 γ̂

∗∗(j)
T .

This proposition follows from Theorem 2 in Inoue and Kilian (2015) by replacing γ0 = γ(µ)

with f(θ0). Because the asymptotic distribution does not depend on the strength of the

identification of θ0 and can be approximated by the bootstrap, one can invert the Wald

statistic to obtain a 100(1 − ς)% asymptotic confidence set for θ0 that is robust to weak

identification,

{θ ∈ Θ : WT (θ) ≤ W∗1−ς}, (26)

where W∗1−ς is the 100(1− ς) percentile of the bootstrap distribution of W∗T (θ). Pointwise

confidence intervals for the individual elements of the structural parameter vector θ may

be obtained by the projection method (see, e.g., Dufour and Taamouti 2005, Chaudhuri

and Zivot 2011; Guerron-Quintana, Inoue and Kilian 2013).

3 Monte Carlo Simulation Experiments

For this section, we focus on a small-scale New Keynesian model that often serves as an

illustrative example in the literature. This model consists of a Phillips curve, a Taylor rule,

an investment-savings relationship, and the exogenous driving processes zt and ξt:

πt = κxt + βE(πt+1|It−1), (27)

Rt = ρrRt−1 + (1− ρr)φππt + (1− ρr)φxxt + ξt, (28)

xt = E(xt+1|It−1)− σ (E(Rt|It−1)− E(πt+1|It−1)− zt) , (29)

zt = ρzzt−1 + σzεzt , (30)

ξt = σrεrt , (31)

where xt, πt and Rt denote the output gap, inflation rate, and interest rate, respectively.

Note that this model has more variables than shocks. The structural shocks εzt and εrt are
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assumed to be distributed NID (0, 1). The model parameters are the discount factor β,

the intertemporal elasticity of substitution 1/σ, the probability α of not adjusting prices

for a given firm, the elasticity of substitution across varieties of goods, θ, the parameter

ω controlling disutility of labor supply; φπ and φx capture the central bank’s reaction to

changes in inflation and the output gap, respectively, and κ = (1−α)(1−αβ)
α

ω+σ
σ(ω+θ)

.

While this model is similar to the model used in Guerron-Quintana et al. (2013), there

is one crucial difference. In this model, inflation and real output do not react contempo-

raneously to the monetary policy shock, ξt, but they do respond contemporaneously to

a shock to the investment-savings relationship, zt. These restrictions are required for us

to be able to identify the structural shocks of interest in the VAR model based on short-

run identifying restrictions. Given this informational constraint, household and firms form

expectations based on the information set It−1.

Given the computational cost of evaluating higher-dimensional models, we focus on the

estimation of one parameter only in the simulation study. For expository purposes, we

concentrate on the problem of estimating the probability of not adjusting prices, α, by

matching the impulse responses of inflation and of the interest rate with the remaining

parameters set to their population values in estimation. The population parameters in the

data generating process are σ = 1, α = 0.75, β = 0.99, φπ = 1.5, φx = 0.125, ω = 1,

ρr = 0.75, ρz = 0.90, θ = 6, σz = 0.30, σr = 0.20. It can be shown that the parameter α is

strongly identified.

This DSGE model may equivalently be expressed in the state-space representation

xt = Axt−1 +Bεt, (32)

yt = Cxt, (33)

where xt is a vector of state variables, εt is a vector that consists of the technology shock

and the monetary policy shock, and yt is a vector that consists of inflation and the interest

rate. A, B and C are matrices of suitable dimensions. Substitution of xt in equation (33)
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yields the structural moving average representation of yt in terms of current and lagged

structural shocks εt. This moving average representation is invertible because, given our

population parameter values, the eigenvalues of A are strictly less than unity in modulus,

so Fernandez-Villaverde, Rubio-Ramirez, Sargent and Watson’s (2007) condition for the

existence of an infinite-order VAR representation is satisfied. This structural VAR(∞)

model for yt in turn may be approximated by a finite-order structural VAR model (see

Inoue and Kilian 2002). Because the structural impact multiplier matrix of the VAR

model, CB, is lower triangular given the informational constraints discussed earlier, we

can recover the two structural shocks εzt and εrt by applying a lower triangular Cholesky

decomposition to the residual covariance matrix with the diagonals of the decomposition

normalized to be positive.

It may be tempting to match the structural VAR impulse response estimates with the

value of γ(α) implied by the underlying DSGE model, which has a VAR(∞) representation.

This approach is problematic because it creates a mismatch with the structural impulse

responses, which are estimated based on a finite-order approximation to this VAR(∞)

model. In practice, we therefore derive the population value of γ(α) based on the finite-

order VAR representation of the macroeconomic model with the same choice of p as in

the empirical VAR model, denoted γp(α). Let Γj = E(yty
′
t−j) denote the population

autocovariances implied by the state space representation given a structural parameter

value. Then the population parameter values of the VAR(p) model fitted to data generated
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by the model may be expressed as:

Φ
2p×2

=



Γ0 Γ1 · · · Γp−1

Γ′1 Γ0 · · · Γp−2

...
...

. . .
...

Γ′p−1 Γ′p−2 · · · Γ0



−1 

Γ′1

Γ′2
...

Γ′p


, (34)

Σ
2×2

= Γ0 −
[

Γ1 Γ2 · · · Γp

]


Γ0 Γ1 · · · Γp−1

Γ′1 Γ0 · · · Γp−2

...
...

. . .
...

Γ′p−1 Γ′p−2 · · · Γ0



−1 

Γ′1

Γ′2
...

Γ′p


. (35)

The population structural impulse responses can be calculated from the slope coefficients

Φ and the reduced-form error covariance matrix Σ.

The Monte Carlo study consists of the following steps:

1. First, we generate 500 synthetic data sets of length T for inflation and the interest

rate from the New Keynesian model evaluated at the true parameter values. We

focus on two alternative sample sizes: T = 100 and T = 232. The shorter sample

corresponds to the length of a quarterly time series starting in 1984 with the onset

of the Great Moderation. The longer sample corresponds to the period from 1950 to

2008, which represents another common situation in the empirical literature.

2. For each synthetic data set, we fit a bivariate VAR(p) model for inflation and the

interest rate and estimate the four structural impulse response functions at horizons

0, ..., H. All freely estimated elements of these impulse response functions are stacked

into a vector and denoted by γ̂T . To this end, we impose that inflation does not react

contemporaneously to the second structural shock in the VAR, which identifies this

shock as the monetary policy shock. Using the standard residual-based bootstrap for

VAR models, we bootstrap the VAR(p) model and estimate a vector of bootstrap

structural impulse responses γ̂
∗(j)
T for j = 1, ..., B, where B = 500. For each of
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the B bootstrapped VAR estimates, γ̂
∗(j)
T , the residual-based bootstrap is applied

and B vectors of bootstrap structural impulse responses, γ̂
∗∗(j,k)
T , are computed for

k = 1, 2, ..., B.

3. We estimate α, treating the other parameters as known in the estimation for compu-

tational simplicity. Define α̂T by

α̂opt,T = argminα∈A(γ̂T − γp(α))′Wopt,T (γ̂T − γp(α)), (36)

α̂diag,T = argminα∈A(γ̂T − γp(α))′Wdiag,T (γ̂T − γp(α)), (37)

where Wopt,T = [(1/B)
∑B

j=1(γ̂
∗(j)
T − ¯̂γ

∗
T )(γ̂

∗(j)
T − ¯̂γ

∗
T )′]−1 and Wdiag,T is the diagonal

matrix whose diagonal elements are given by the reciprocal of the diagonal elements

of (1/B)
∑B

j=1(γ̂
∗(j)
T − ¯̂γ

∗
T )(γ̂

∗(j)
T − ¯̂γ

∗
T )′.

4. Let α̂∗T be the bootstrap analogue of α̂T . Then

α̂
∗(j)
opt,T = argminα∈A(γ̂

∗(j)
T −γp(α)− γ̂T +γp(α̂opt,T ))′W

∗(j)
opt,T (γ̂

∗(j)
T −γp(α)− γ̂T +γp(α̂opt,T )),

(38)

α̂
∗(j)
diag,T = argminα∈A(γ̂

∗(j)
T −γp(α)−γ̂T+γp(α̂diag,T ))′W

∗(j)
diag,T (γ̂

∗(j)
T −γp(α)−γ̂T+γp(α̂diag,T )),

(39)

where W
∗(j)
opt,T = [(1/B)

∑B
k=1(γ̂

∗∗(j,k)
T − ¯̂γ

∗(j)
T )(γ̂

∗∗(j,k)
T − ¯̂γ

∗(j)
T )′]−1 and W

∗(j)
diag,T is the di-

agonal matrix whose diagonal elements are given by the reciprocal of the diagonal

elements of (1/B)
∑B

k=1(γ̂
∗∗(j,k)
T − ¯̂γ

∗(j)
T )(γ̂

∗∗(j,k)
T − ¯̂γ

∗(j)
T )′. Using these bootstrap esti-

mates we construct nominal 90% confidence intervals based on Hall’s (1992) percentile

interval to allow for the fact that the asymptotic distribution may not be normal,

depending on the choice of the weighting matrix. The coverage rates are evaluated

based on the relative frequency with which these interval estimators include α.

Our simulation evidence is necessarily tentative, but nevertheless provides some useful

insights. Table 1 summarizes the properties of the point estimator of α. Because the quality

of the VAR approximation depends on the lag order p, we report results for a range of p. We
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also consider a range of values for H to allow for situations in which the asymptotic theory

developed on this paper applies (H > p) as well as for situations in which the conventional

asymptotic theory for impulse response matching estimators applies (p ≤ H). The upper

panel of Table 1 shows that the estimator based on the optimal weighting matrix tends

to have lower bias, a lower standard deviation and a lower root MSE (RMSE) than the

estimator based on the diagonal weighting matrix.

The left panel of Table 2 reports the effective coverage probabilities of the corresponding

nominal 90% bootstrap confidence intervals for α. The confidence intervals based on the

diagonal weighting matrix tend to be more robust to the choice of p and H than the confi-

dence intervals based on the optimal weighting matrix. The latter interval lacks coverage

accuracy for large H and small T . Even the coverage rates of the interval based on the

diagonal matrix are too low for T = 100. Generally, its coverage rates are reasonably close

to their nominal levels only for T = 232. The coverage deficiencies in small samples can

be traced to approximation error in the VAR representation of the DSGE model. When

bootstrapping the state-space representation of the DSGE model directly rather than its

VAR approximation, as shown in the right panel of Table 2, high coverage accuracy is ob-

tained even for T = 100, albeit at the cost of taking a stand on the parametric structure of

the data generating process. The best results for the DSGE model bootstrap are obtained

based on the optimal weighting matrix.

When doubling the post-war sample size for expository purposes, as shown in the

bottom panel of Table 2, the differences in coverage accuracy between the VAR model

bootstrap and the DSGE model bootstrap tends to vanish. Table 2 shows that the VAR

bootstrap based on the diagonal weighting matrix delivers reasonably accurate intervals for

T = 464, as predicted by asymptotic theory. The coverage accuracy of the VAR bootstrap

based on the optimal weighting matrix also improves substantially, but remains system-

atically lower than for the VAR bootstrap based on the diagonal weighting matrix. We

conclude that the use of the diagonal weighting matrix is clearly preferred for inference.
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The baseline simulation results in Table 2 pertain to strongly identified structural DSGE

model parameters. Table 3 provides additional simulation evidence for VAR-based boot-

strap confidence intervals that allow for weak identification. They tend to be reasonably

accurate even for T = 100 and compare well to the their DSGE-model-based bootstrap

counterparts. We conclude that the accurate inference allowing for weak identfication is

possible even for realistic sample sizes.

4 Empirical Application

For the empirical application, we consider a prototypical medium-scale New Keynesian

DSGE model (see, e.g., Christiano, Eichenbaum, and Evans 2005; Smets and Wouters 2007;

Altig, Christiano, Eichenbaum and Lindé 2011; Guerron-Quintana, Inoue, and Kilian 2013).

Since this class of models has been extensively discussed in the macroeconomics literature,

we provide only a brief summary. The main features of the model are as follows: The

economy grows along a stochastic path; prices and wages are assumed to be sticky à la

Calvo; preferences display internal habit formation; investment is costly; and finally, there

are three sources of uncertainty: neutral and capital embodied technology shocks, and

monetary shocks.

4.1 Households

The economy is populated by a continuum of households. Every period households must

decide how much to consume, work, and invest. In addition, they must choose the amount

of government bonds. Agents in the economy have access to complete markets; such an

assumption is needed to eliminate wealth differentials arising from wage heterogeneity.

Households maximize the expected present discounted value of utility

E0

∞∑
t=0

βt

[
log(Ct − bCt−1)− A

∫ 1

0

h1+υ
j,t

1 + υ
dj

]
(40)
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subject to

PtCt + Pt
(
It + a(ut)Kt

)
/Ψt +Bt+1 = RK

t utKt +

∫ 1

0

Wj,thj,tdj +Rt−1Bt + Πt + Tt,

and

Kt+1 = (1− δ)Kt + It

(
1− S(

It
It−1

)

)
.

Here, Et is the time t expectation operator conditional on the information set of the house-

hold; preferences display internal habit formation measured by b ∈ (0, 1); and S(.) is a

function reflecting the costs associated with adjusting the investment portfolio. This func-

tion is assumed to be increasing and convex satisfying S = S = 0 and S ′′ > 0 in the steady

state. Tt corresponds to lump-sum transfers from the government to the household. Bt

is the individual demand for one-period government bonds, which pay the gross nominal

interest rate Rt. As in the related literature, it is assumed that physical capital can be

used with different intensities (see, e.g., Christiano, Eichenbaum, and Evans; 2005). Using

capital with intensity ut yields the return RK
t utKt but entails a cost a(ut), which satisfies

a(1) = 0; a′′(1) > 0; a′(1) > 0. For future reference, we define σa = a′′(1)/a′(1). Finally,

Πt corresponds to profits from producers. Ψt is an investment-specific disturbance, which,

following the literature, is assumed to grow at rate µΨ,t = log(Ψt/Ψt−1), where

µΨ,t = (1− ρψ)µψ + ρµ,ψµΨ,t−1 + σε,ψεΨ,t,

and εΨ,t is distributed NID(0, 1).

4.2 Wage Setting

Households sell differentiated labor services hj,t to a competitive firm that aggregates labor

and sells it to final firms. This labor aggregator pays Wj,t for each unit of differentiated
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labor of type j. The technology used by the aggregator is

Ht =

[∫ 1

0

h
1/λw
j,t dj

]λw
, 1 < λw.

It is straightforward to show that the relationship between the labor aggregate, Ht, and

the aggregate wage, Wt, is given by

hj,t =

[
Wj,t

Wt

]−λw/(λw−1)

Ht.

To induce wage sluggishness, it is assumed that there exists a labor union representing all

workers of type j. Each period, the union sets wages in a Calvo fashion. In particular,

with exogenous probability ξw a union does not re-optimize wages each period. In that

case, wages are set according to the rule of thumb Wj,t = π1−ιw (πt)
ιw Wj,t−1µz+ . Here, µz+

is the average growth rate of the economy, as defined below, and ιw is the degree of wage

indexation to inflation.

4.3 Firms

There is a continuum of monopolistically competitive firms indexed by i ∈ [0, 1], each

producing an intermediate good from capital services, ki,t, and labor services, Hi,t. Firms

rent capital and labor in perfectly competitive factor markets. The production function is

given by

Yi,t = kαi,t (ztHi,t)
1−α − z+

t ψ,

where ψ is a fixed cost of production. The technology shock, zt, grows at rate µz,t =

log (zt/zt−1), which is assumed to follow the process

µz,t = µz + σε,µεz,t,
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where εz,t is distributed NID(0, 1). The aggregate trend z+
t = Ψ

α/(1−α)
t zt grows at rate

µz+,t.
2

Intermediate firms must borrow the wage bill in advance. As a consequence, the cost of

hiring one unit of labor is WtRt. These firms choose prices to maximize the present value of

profits; prices are set in Calvo fashion; i.e., each period, firms optimally revise their prices

with an exogenous probability 1− ξp. If, instead, a firm does not re-optimize its price, then

the price is updated according to the rule: Pi,t = πPi,t−1. Here, π is steady-state inflation.

There is a competitive firm that produces the final good using intermediate goods

according to the technology

Yt =

[∫ 1

0

Y
1/λp
j,t dj

]λp
.

The parameter λp determines the degree of monopoly power enjoyed by intermediate pro-

ducers.

4.4 Government

As in most of the recent New Keynesian literature, we assume a cashless economy (see

Woodford 2003). The monetary authority sets the short-term interest rate according to

a Taylor rule. In particular, the central bank smoothes interest rates and responds to

deviations of actual inflation from steady-state inflation, π, and deviations of output from

its target level, Y .

Rt

R
=

(
Rt−1

R

)ρr [(πt
π

)φπ (Yt
Y

)φy]1−ρr

exp(σε,rεr,t). (41)

The term εr,t is a random shock to the systematic component of monetary policy and is

assumed to be standard normal; σε,r is the standard deviation of the monetary shock.

Following Christiano, Trabandt and Walentin (2011), Yt corresponds to de-trended GDP

such that Yt = Ct+It/Ψt+Gt
z+t

. R is the steady-state gross nominal interest rate. Finally, we

2The growth term in the fixed cost is needed for a well-defined steady state to exist about which the
model can be solved.
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assume that government spending is given by Gt = gz+
t . Here, g is a constant and the

government uses lump-sum taxes to finance its purchases.

4.5 Estimation

We estimate the model in two stages. First, a stationary VAR(2) model is used to recover

the dynamic responses of the model variables to three structural innovations: the monetary

policy, the shock to the growth of neutral productivity, and the shock to the growth rate

of investment-specific technology. The sample extends from 1951Q1 to 2008Q4. The set of

VAR variables include the growth rate of the relative price of investment, the growth rate

of the real GDP-to-hours ratio, inflation, the unemployment rate, capacity utilization, the

log of hours, the log of real GDP-to-hours ratio minus the log of real wages, the log of the

nominal consumption-to-nominal GDP ratio, the log of the nominal investment-to-nominal

GDP ratio, vacancies, the job separation rate, the job finding rate, the log of hours-to-labor

force ratio, and the fed funds rate.3

Second, the structural parameters in the model are estimated by minimizing the dis-

tance between the DSGE model’s impulse responses to the structural shocks and the cor-

responding structural VAR responses. There are three identifying assumptions imposed on

the structural VAR model. First, the only variable that the monetary policy shock affects

contemporaneously is the federal funds rate. Second, the only shocks that affect labor pro-

ductivity in the long run are the two technology shocks. Third, the only shock that affects

the price of investment relative to consumption in the long run is the innovation to the

investment-specific shock. All these identifying assumptions are satisfied in the underlying

DSGE model as well. We follow the literature in matching the responses of nine of the

fourteen model variables to each of the identified structural shocks.

As is standard in the literature, in estimating θ a subset of the structural parameters is

3For additional details on the estimation of the structural VAR, the reader may consult Altig et al.
(2011) and Christiano et al. (2011). Note that Christiano et al. (2011) treat the federal funds rate as I(0)
in their analysis.
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set to values typically imposed in the literature and treated as known: The capital share is

α = 0.25; the depreciation rate is δ = 0.025; the discount factor is β = 0.999; the steady-

state gross inflation is π = 1.0083; the government consumption to GDP ratio is 0.2; the

relative price of capital in steady state is 1; the wage indexation parameter is ιw = 1; the

wage markup is λw = 1.01; wage stickiness ξw = 0.75; the gross neutral technology growth

is µz = 1.0041; and the gross investment technology growth is µΨ = 1.0018.

We consider two alternative estimation methods. The first method corresponds to the

frequentist impulse matching approach as outlined in Rotemberg and Woodford (1997)

and Christiano, Eichenbaum, and Evans (2005). The second method corresponds to the

Bayesian impulse matching framework recently proposed by Christiano, Trabandt and

Walentin (2011). Both methods are based on the diagonal weighting matrix.

4.5.1 Results

Table 4 presents the estimates of the structural parameters based on alternative choices

of the maximum horizon of the impulse response functions. We evaluate the structural

impulse responses at horizons 0, 1, ..., H with H ∈ {15, 19}. The order condition q ≤ k,

where q is the number of impulse response parameters to be matched and k is the number

of VAR model parameters, is violated for H = 19, given that the approximating VAR

model in this example includes 14 variables and 2 lags. The order condition is satisfied for

H = 15.

The column labelled Frequentist reports the results from the impulse response matching

estimator based on the diagonal weighting matrix that performed well in the simulation

study. The first column corresponds to the point estimate for each structural parameter

and the second column shows the standard error. Given the asymptotic normality of this

estimator, it makes sense to base inference on these two summary statistics. Alternatively,

one could have reported bootstrap percentile intervals. We focus on the standard errors to

conserve space.
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The next three columns labelled Bayesian report results obtained from the quasi-

posterior distribution. The first column shows the mode, median and mean of the quasi-

posterior, respectively, as three alternative point estimates of the structural parameters,

and the second column provides the corresponding standard errors. All Bayesian results are

based on the diagonal weighting matrix and rely on the sandwich formula of Chernozhukov

and Hong (2003).

Finally, the column CTW reports the mean and standard deviation of the quasi-

posterior distributions, computed as in Christiano, Trabandt, and Walentin (2011). As we

proved earlier, the variance of the quasi-posterior cannot be used to estimate the asymp-

totic variance of the structural parameters for H = 19, but these standard deviations are

reported for comparison.

The qualitative pattern of the results is similar for all choices of H. Table 4 shows that

the point estimates are quite robust across alternative estimation methods. This result

is not surprising, because all point estimates reported in these tables are consistent. In

contrast, approximating the asymptotic standard errors of the parameter estimates based

on the standard deviation of the quasi-posterior as in CTW results in much lower standard

error estimates than using methods that are known to be asymptotically valid. The latter

estimates are higher by a factor of 3 in many cases. For example, the standard error of

the price markup for H = 15 increases from 0.08 to 0.22. Whereas the confidence interval

obtained by adding ±1.96 standard deviations of the quasi-posterior to the point estimate

reported in the CTW column does reject the null hypothesis that there is no markup (i.e.,

λp = 1), 95% confidence intervals based on the point estimates and standard errors in the

Frequentist and Bayesian columns do not. Likewise, the standard error of the consumption

habit parameter, b, increases threefold compared with the asymptotically invalid estimate

reported in the CTW column. For H = 15, it increases from 0.02 to 0.07. Similarly, the

policy reaction function parameters are estimated very imprecisely. For example, φπ is

no longer statistically significantly different from zero when conducting inference based on
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the Bayesian intervals, although it does remain significantly different from zero using the

Frequentist interval. The fact that Bayesian priors affect the results is not unexpected, given

the high dimensionality of the model. For H = 19, broadly similar results are obtained.

A parameter of particular interest is the price stickiness parameter. The length of

the price contracts is defined as 1/(1 − ξp) quarters, where ξp is the probability of not

reoptimizing prices today. There is an active literature on measuring the degree of price

rigidity at the micro level (see, e.g., Klenow and Kryvtsov (2008), Nakamura and Steinsson

(2008)). For example, Klenow and Kryvtsov (2008) provide evidence that price contracts

last, on average, about 2.3 quarters. Based on the point estimates for H = 15 in Table 4,

a researcher would have concluded that the length of a price contract is 2.94, 2.65 or 2.64,

respectively. The 95% confidence interval constructed from the information in the CTW

column ranges from 2.23 to 3.25 and includes the value of 2.3 from the micro literature.

The 95% confidence interval for the length of the price contract implied by the Frequentist

estimates ranges from 2.12 to 4.79 and includes that value as well, as do the corresponding

three 95% confidence intervals implied by the entries in the Bayesian columns of Table 3.

This pattern of results changes for H = 19. In the latter case, q > k, and the conven-

tional asymptotic theory for the CMD estimator breaks down. The results in the CTW

column of Table 4 imply a 95% confidence interval with a lower bound of 2.67 that excludes

2.3 for H = 19, whereas the three asymptotically valid intervals computed based on the en-

tries in the Bayesian columns all include the value of 2.3, suggesting that the DSGE model

estimate is consistent with the micro evidence. These estimates are all based on the same

prior and hence directly comparable. This example illustrates that the choice of estimation

method may affect one’s views of whether the macroeconomic evidence is compatible with

the length of the price spells found in the micro literature. In contrast, the corresponding

95% confidence interval based on the Frequentist method does not include 2.3 for H = 19,

again illustrating the influence of the prior on the estimates.

The results in Table 4 are based on the conventional premise in empirical work that the
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structural parameters of interest are strongly identified. The sensitivity of the results to the

prior is an indication that the structural parameters may not be strongly identified. Table

5 presents an alternative set of results that allows for the possibility that at least some

parameters are only weakly identified. These results are of particular interest for applied

work, as none of the currently available methods of inference allows for weak identification

of the structural parameters, which is a common problem in the estimation of DSGE models

in practice, including the type of DSGE model considered here. We again focus on H = 15

and H = 19, for expository purposes. Of particular interest is a comparison with the

Frequentist results in Table 4.

Table 5 shows the lower and upper endpoints of the pointwise 95% interval for each

parameter. Allowing for weak identification can affect the substantive conclusions. For

example, for both choices of H the null hypothesis that there is no markup (i.e., λp = 1)

is rejected. This result differs from the Frequentist results in Table 4, which did not allow

to reject this null hypothesis for either H. On the other hand, the results for the length

of the price contract are qualitatively consistent with Frequentist results in Table 4 that

were obtained under the premise of strong identification. Whereas the confidence interval

for H = 15 in Table 5 includes 2.3 quarters, the confidence interval for H = 19 in Table 5

does not.

5 Concluding Remarks

One of the leading methods of estimating the structural parameters of DSGE models is the

VAR-based impulse response matching estimator. The existing asymptotic theory for this

estimator does not cover situations in which the number of impulse response parameters (q)

exceeds the number of VAR model parameters (k). Such situations often arise in applied

work. We established the consistency of the impulse response matching estimator in this

situation, derived its asymptotic distribution and showed how this distribution can be

approximated by bootstrap methods that remain asymptotically valid whether q > k or
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q ≤ k. Our results provide formal guidance on how to conduct inference about structural

parameters in DSGE models. We also discussed implications of these results for tests of

overidentifying restrictions.

Our analysis shed new light on the choice of the weighting matrix. On the one hand,

we showed that the impulse response matching estimator based on the optimal weighting

matrix, while remaining consistent under our assumptions, does not have an asymptotic

normal distribution. Approximating its distribution requires suitable bootstrap methods

in practice. On the other hand, we provided a formal justification for the use of bootstrap

methods in conducting inference about impulse response matching estimators based on

the diagonal weighting matrix. The distribution of the latter estimator was shown to be

asymptotically normal, but with a nonstandard asymptotic variance. This result is impor-

tant because this estimator to date has been used without a formal asymptotic justification

having been provided for the practically relevant case of q > k. Our analysis also showed

that special care is required to ensure that Bayesian methods of inference remain valid from

an asymptotic point of view when q > k.

We compared the finite-sample accuracy of impulse response matching estimators based

on alternative weighting matrices by simulation. A Monte Carlo study based on a small-

scale New Keynesian macroeconomic model suggested that the proposed bootstrap interval

estimators based on the diagonal weighting matrix are more in finite samples than estima-

tors based on the optimal weighting matrix and more robust to the choice of the lag order

of the approximating VAR model and the horizon. The coverage accuracy in small samples

may be improved further by bootstrapping the state-space representation of the DSGE

model instead of its VAR representation, albeit at the cost of imposing more parametric

structure on the data generating process. For larger samples, these two approaches tend

to have similar coverage accuracy.

Finally, we extended the analysis to cover weakly identified DSGE model parameters.

Weak identification is a pervasive problem in medium-scale DSGE models. Although sev-

33



eral solutions to this problem have been proposed in the recent literature, none apply to

impulse response matching estimators. Thus, our analysis greatly extends the range of

applications of the impulse response matching estimator. We showed that robustness to

weak identification may be achieved by inverting the Wald test statistic of the structural

impulse responses to form a joint confidence set and by applying the projection method

to recover confidence intervals for individual structural parameters. The proposed method

remains asymptotically valid whether q > k or q ≤ k. In a simulation study it performed

well even in realistically small samples.

We illustrated the use of the various new methods proposed in this paper in prac-

tice. When estimating a prototypical medium-scale New Keynesian DSGE model based

on Christiano, Trabandt and Walentin (2011), inference based on the alternative methods

proposed in this paper generated substantively different conclusions than methods based on

the standard deviation of the quasi-posterior distribution of the structural parameters. For

example, whereas the latter method suggested that the macro evidence is inconsistent with

micro evidence on the degree of price stickiness at conventional significance levels, given

a maximum horizon of 19 quarters, we demonstrated that this result is overturned when

using asymptotically valid Bayesian methods of inference. Substantively different results

regarding the degree of price stickiness were obtained using frequentist methods, which

suggested that the macroeconomic estimates based on a maximum horizon of 19 quarters

are inconsistent with the micro evidence. The latter result was shown to be robust to

allowing for weak identification.

An interesting topic for future research would be to extend the impulse response match-

ing estimator to nonlinear DSGE models such as the Markov-switching DSGE model in Liu

et al. (2011). As Liu et al. (2011) emphasize, the standard approach to analyzing business

cycle fluctuations is based on medium-scale constant parameter DSGE models such as the

class of models considered in our analysis. DSGE models that allow for Markov switching

in the volatility or in other model features, in contrast, do not have a constant-coefficient
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linear representation. Such models are not covered by our analysis. In fact, there are no

results on impulse response matching estimators for Markov switching models even when

q ≤ k. There are several challenges. First, it remains to be shown whether models of this

type have a Markov switching VAR (MS-VAR) representation. For constant-coefficient

DSGE models, Fernandez-Villaverde, Rubio-Ramirez, Sargent and Watson (2007) provide

specific conditions that allow researchers to verify the existence of a linear VAR represen-

tation of the DSGE model. To our knowledge, no such representation theorem exists for

Markov switching DSGE models. Second, even if we take the existence of an MS-VAR

representation for granted, impulse responses in nonlinear models have no closed-form so-

lutions. They depend on the history of the data and the magnitude of the shocks and must

be computed by Monte Carlo integration. The absence of a closed-form solution makes it

difficult to apply the analytic tools that our current paper utilizes. Third, even assuming

that one integrates out the histories in the MS-DSGE model and its MS-VAR approxima-

tion, the impulse responses are not uniquely defined. One possible solution would be to

appropriately weight the responses obtained for different magnitudes of shocks.
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Appendix

Proof of Theorem 1. It follows from the definitions of Sj and Assumptions (b) and (c) that

ΥTS
′(γ(X̄T )− f(θ)) =



S ′0B0ZT + T
1
2S ′0(f(θ0)− f(θ))

S ′1B1(ZT ⊗ ZT ) + TS ′1(f(θ0)− f(θ))

...

S ′rBr(ZT ⊗ · · · ⊗ ZT ) + T
r+1
2 S ′r(f(θ0)− f(θ))


+ op(1), (42)

where op(1) is uniform in θ ∈ Θ due to the continuity of f(·) and the compactness of Θ.

Because of Assumptions (a)–(d) and because of the continuity of eigenvalues as a function

of matrices, we have

ΥTS
′(γ(X̄∗T )− γ(X̄T ))

d→



S ′0B0Z
∗

S ′1B1(Z∗ ⊗ Z∗)
...

S ′rBr(Z
∗ ⊗ · · · ⊗ Z∗)


= ξ∗ in prob-P. (43)

It follows from (43) and Assumptions (a)–(e) that

ΥTS
′Σ̂∗TSΥT = E∗(ξ∗ξ∗′) + o∗p(1) = J + o∗p(1) in prob-P, (44)

It follows from (42) and (44) that the objective function for θ̂opt,T is asymptotically pro-

portional to

1

T r+1
(γ̂T − f(θ))′Σ̂∗−1

T (γ̂T − f(θ))

=
1

T r+1
(γ̂T − f(θ))′SΥT

(
ΥTS

′Σ̂∗TSΥT

)−1

ΥTS
′(γ̂T − f(θ))

= (f(θ0)− f(θ))′Sr
¯̄JS ′r(f(θ0)− f(θ)) + op(1) + o∗p(1) in prob-P, (45)

36



where ¯̄J is the bottom-right qr×qr submatrix of J̄ and op(1) and o∗p(1) are uniform in θ ∈ Θ.

Let A(θ) and B(θ) denote the last two terms on the right hand side of (45). Because

sup
θ∈Θ
|A(θ) +B(θ)| ≤ sup

θ∈Θ
|A(θ)|+ sup

θ∈Θ
|B(θ)|

= op(1) + o∗p(1)

= o∗p(1) in prob-P, (46)

where the last equality follows from Lemma B.1 of Dovonon and Gonçalves (2014) (see

also Lemma 3 of Cheng and Huang, 2010). Therefore the consistency of θ̂opt,T follows from

(45), (46), Assumptions (f) and (h)(1). This completes the proof of part (a) of Theorem 1.

To prove part (b), observe that the objective function for θ̂diag,T is proportional to

(γ̂T − f(θ))′WT (γ̂T − f(θ)) = (f(θ0)− f(θ))′W (f(θ0)− f(θ)) + o∗p(1) in prob-P, (47)

because of Assumptions (a), (b), (e) and (g). The consistency of θ̂diag,T follows from (47)

and Assumptions (f) and (g).

Proof of Theorem 2. It follows from Assumption (f), the first-order conditions and the

mean value theorem that

θ̂opt,T − θ0 = (F (θ̂opt,T )′Σ̂∗−1
T F (θ̃opt,T ))−1F (θ̂opt,T )′Σ̂∗−1

T (γ̂T − f(θ0)), (48)

θ̂diag,T − θ0 = (F (θ̂diag,T )′WTF (θ̃diag,T ))−1F (θ̂T )′WT (γ̂T − f(θ0)), (49)

where θ̃opt,T and θ̃diag,T are points between θ̂opt,T and θ0 and between θ̂diag,T and θ0, respec-
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tively, implied by the mean value theorem.

It follows from (42) with θ = θ0 and Assumptions (a)–(c) that

ΥTS
′(γ(X̄T )− γ(µ))

d→



S ′0B0Z

S ′1B1(Z ⊗ Z)

...

S ′rBr(Z ⊗ · · · ⊗ Z)


≡ ξ. (50)

It follows from (44), Theorem 1(a), and Assumptions (c)–(e) that

F (θ̂opt,T )′Σ̂∗−1
T F (θ̃opt,T )

= F (θ̂opt,T )′SΥT (ΥTS
′Σ̂∗TSΥT )−1ΥTS

′F (θ̃opt,T )

= [T
1
2F ′0S0 TF

′
0S1 · · · T

r+1
2 F ′0Sr]J

−1



T
1
2S ′0F0

TS ′1F0

...

T
r+1
2 S ′rF0


+ o∗p(T

r+1) in prob-P

= T r+1F ′0Sr
¯̄JS ′rF0 + o∗p(T

r+1) in prob-P, (51)

and

F (θ̂opt,T )′Σ̂∗−1
T S ′−1Υ−1

T

= F (θ̂opt,T )′SΥT (ΥTS
′Σ̂∗TSΥT )−1

= [T
1
2F ′0S0 TF

′
0S1 · · · T

r+1
2 F ′0Sr]J

−1 + o∗p(T
r+1
2 ) in prob-P. (52)

Combining (48), (50), (51) and (52), we obtain

T
r+1
2 (θ̂opt,T − θ0)

d∗→ (F ′0Sr
¯̄JS ′rF0)−1F ′0SrJ̄ξ in prob-P.
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Repeating similar arguments we obtain

T
r+1
2 (θ̂∗opt,T − θ̂opt,T )

d∗∗→ (F ′0Sr
¯̄JS ′rF0)−1F ′0SrJ̄ξ

∗ in prob-P ∗,

which completes the proof of part (a).

Because

T
1
2 (γ̂T − f(θ0)) = B0ZT + op(1), (53)

by Assumption (b), it follows from Assumption (a), (49) and (50) that

T
1
2 (θ̂diag,T − θ0)

d∗→ (F ′0WF0)−1F ′0WB0Z in prob-P, (54)

T
1
2 (θ̂∗diag,T − θ̂diag,T )

d∗∗→ (F ′0WF0)−1F ′0WB0Z
∗ in prob-P ∗, (55)

which completes the proof of part (b).

Proof of Theorem 3. It follows from the mean value theorem, (6), and Theorem 2(a) that

Σ̂
∗− 1

2
T (γ̂T − f(θ̂opt,T ))

= (ΥTS
′Σ̂∗TSΥT )−

1
2 ΥTS

′(γ̂T − f(θ̂opt,T ))

= (ΥTS
′Σ̂∗TSΥT )−

1
2 ΥTS

′(γ̂T − f(θ0))− (ΥTS
′Σ̂∗TSΥT )−

1
2 ΥTS

′F (θ̃opt,T )(θ̂opt,T − θ0)

= J−
1
2 ξ − J−

1
2S ′rF0(F ′0Sr

¯̄JS ′rF0)−1F ′0SrJ̄ξ + o∗p(1) in prob-P, (56)

where θ̃opt,T is a point between θ̂opt,T and θ0 and A
1
2 is the matrix such that A

1
2A

1
2 = A.

Thus it follows from (56) that

JT
d∗→ η′η in prob-P. (57)

The bootstrap version of this result can be derived in a similar way.

Proof of Theorem 4. We follow the steps in the proof of Theorem 1 in Chernozhukov and
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Hong (2003) by showing that

∫
HT

‖h‖α|p∗T (h)− p∗∞(h)|dh = o∗p(1) in prob-P, (58)

for every α ≥ 0, from which Theorem 4 immediately follows. It is convenient to write the

localized quasi-posterior as

p∗T (h) = pT

(
θ0 +

h

T
r+1
2

− (∇2qT (θ0))−1∇qT (θ0)

)

=
π
(
θ0 + h

T
r+1
2

− (∇2qT (θ0))−1∇qT (θ0)
)

exp
(
−qT (θ0 + h

T
r+1
2

− (∇2qT (θ0))−1∇qT (θ0))
)

∫
HT

π
(
θ0 + h

T
r+1
2

− (∇2qT (θ0))−1∇qT (θ0)
)

exp
(
−qT (θ0 + h

T
r+1
2

− (∇2qT (θ0))−1∇qT (θ0))
)
dh

=
π
(
θ0 + h

T
r+1
2

− (∇2qT (θ0))−1∇qT (θ0)
)

exp(ω(h))∫
HT

π
(
θ0 + h

T
r+1
2

− (∇2qT (θ0))−1∇qT (θ0)
)

exp(ω(h))dh
, (59)

where

ω(h) = −qT
(
θ0 +

h

T
r+1
2

− (∇2qT (θ0))−1∇qT (θ0)

)
+qT (θ0)+

1

2
∇qT (θ0)′

(
∇2qT (θ0)

)−1∇qT (θ0).

To prove (58), we first show that

∫
HT

‖h‖α
∣∣∣∣π(θ0 +

h

T
r+1
2

− (∇2qT (θ0))−1∇qT (θ0)

)
exp(ω(h))

−π(θ0) exp

(
−1

2
h′F ′0Sr

¯̄JS ′rF0h

)∣∣∣∣ dh = o∗p(1) in prob-P.(60)

Using the second-order Taylor series approximation, ω(h) can be written as

ω(h) = −∇qT (θ0)′
(

h

T
r+1
2

− (∇2qT (θ0))−1∇qT (θ0)

)
−1

2

(
h

T
r+1
2

− (∇2qT (θ0))−1∇qT (θ0)

)′
∇2qT (θ0)

(
h

T
r+1
2

− (∇2qT (θ0))−1∇qT (θ0)

)
−1

2
∇qT (θ0)′∇2qT (θ0)]−1∇qT (θ0) +RT

(
h

T
r+1
2

− (∇2qT (θ0))−1∇qT (θ0)

)
= − 1

2T r+1
h′∇2qT (θ0)h+RT

(
h

T
r+1
2

− (∇2qT (θ0))−1∇qT (θ0)

)
, (61)

40



where RT (·) is the remainder term. Note that the integral in (60) can be written as the

sum of three integrals over (i) {h ∈ HT : ‖h‖ ≤ M}, (ii) {h ∈ HT : M ≤ ‖h‖ ≤ δT r+1}

and (iii) {h ∈ HT : ‖h‖ ≥ δT r+1}. We evaluate each of the three integrals in turn.

Start with the integral over set (i). It follows from the continuity of π(·), the smoothness

of f(·), (51) and (52) that

sup
‖h‖≤M

∣∣∣∣π(θ0 +
h

T
r+1
2

− (∇2qT (θ0))−1∇qT (θ0)

)
− π(θ0)

∣∣∣∣ p→ 0, (62)

sup
‖h‖≤M

∣∣∣∣RT

(
h

T
r+1
2

− (∇2qT (θ0))−1∇qT (θ0)

)∣∣∣∣ p→ 0, (63)

from which it follows that

sup
‖h‖≤M

‖h‖α
∣∣∣∣π(θ0 +

h

T
r+1
2

− (∇2qT (θ0))−1∇qT (θ0)

)
exp(ω(h))− π(θ0) exp

(
−1

2
h′∇2qT (θ0)h

)∣∣∣∣
= o∗p(1) in prob-P. (64)

Hence, we have that for every 0 < M <∞ and every ε > 0,

lim inf
T

P∗

(∫
h∈HT :‖h‖≤M

‖h‖α
∣∣∣∣π(θ0 +

h

T
r+1
2

− (∇2qT (θ0))−1∇qT (θ0)

)
exp(ω(h))

−π(θ0) exp

(
−1

2
h′F ′0Sr

¯̄JS ′rF0h

)∣∣∣∣)
≥ 1− ε. (65)

Thus the integral over set (i) is op(1).

Next consider the integral over set (ii). Note that

∫
M<‖h‖<δT

r+1
2

∣∣∣∣π(θ0) exp

(
−1

2
h′F ′0Sr

¯̄JS ′rF0h))

)∣∣∣∣ dh (66)

can be made arbitrarily small by choosing sufficiently large M . Using the quadratic ap-
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proximation of ω(h), (61), we can write

exp(ω(h)) ≤ exp

(
−1

2
h′∇2qT (θ0)h+

∣∣∣∣RT

(
h

T
r+1
2

− (∇2qT (θ0))−1∇qT (θ0)

)∣∣∣∣) (67)

Because f is twice continuously differentiable, Assumption 4(iv)(a) of Chernozhukov and

Hong (2003) is satisfied. Thus, for every ε > 0, there are some δ > 0 and M > 0 such that

lim inf P∗

 sup

M≤‖h‖≤δT
r+1
2

∣∣∣∣RT ( h

T
r+1
2
− (∇2qT (θ0))−1∇qT (θ0)

)∣∣∣∣
‖h− T

r+1
2 (∇2qT (θ0))−1∇qT (θ0)‖2

≤ 1

4
maxeig(∇2qT (θ0))

 ≥ 1−ε.

(68)

Because (∇2qT (θ0))−1∇qT (θ0) = Op(1), it follows from (67) and (68) that there is C such

that

lim inf
T

P∗

(
exp(ω(h)) ≤ C exp

(
−1

4
h′∇2qT (θ0)h

))
≥ 1− ε. (69)

Combining these results, it follows that

lim inf
T

P∗

(∫
h∈HT :M<‖h‖<δT

r+1
2

‖h‖α
∣∣∣∣π(θ0 +

h

T
r+1
2

− (∇2qT (θ0))−1∇qT (θ0)

)
exp(ω(h))dh < ε

∣∣∣∣
)
≥ 1−ε

(70)

from which we obtain

lim inf
T

P∗

(∫
h∈HT :M<‖h‖<δT

r+1
2

‖h‖α
∣∣∣∣π(θ0 +

h

T
r+1
2

− (∇2qT (θ0))−1∇qT (θ0)) exp(ω(h))

−π(θ0) exp

(
−1

2
h′∇2qT (θ0)h

)∣∣∣∣)
≥ 1− ε. (71)

Thus, the integral over set (ii) is also asymptotically negligible.

Third, consider the integral over set (iii). As in the second integral,

∫
‖h‖≥δT

r+1
2

∣∣∣∣π(θ0) exp

(
−1

2
h′F ′0Sr

¯̄JS ′rF0h))

)∣∣∣∣ dh (72)
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goes to zero on set (iii). Note that

∫
h∈HT :‖h‖≥δT

r+1
2

‖h‖α exp(ω(h))π

(
θ0 +

h

T
r+1
2

− (∇2qT (θ0))−1∇qT (θ0)

)
= o∗p(1) in prob-P

(73)

is bounded by

T
(r+1)α

2
+1

∫
‖θ−θ0+(∇2qT (θ0))−1∇qT (θ0)‖≥δ

‖θ − θ0 + (∇2qT (θ0))−1∇qT (θ0)‖απ(θ)

× exp

(
qT (θ0)− qT (θ)− 1

2
∇qT (θ0)′(∇2qT (θ0))−1∇qT (θ0)

)
dθ. (74)

Since

(∇2qT (θ0))−1∇qT (θ0) = o∗p(1) in prob-P, (75)

(74) is in turn bounded by

C exp

(
−1

2
∇qT (θ0)′(∇2qT (θ0))−1∇qT (θ0)

)
T 1+

α(r+1)
2

∫
‖θ−θ0‖≥δ

(1+‖θ‖α)π(θ) exp(qT (θ0)−qT (θ))dθ.

(76)

for some C > 0. It follows from equation (45) that there is ε > 0 such that

lim inf
T→∞

P∗

(
sup

‖θ−θ0‖≥δ/2
exp(qT (θ0)− qT (θ)) ≤ exp(−Tε)

)
= 1. (77)

Hence with probability approaching one (76) is bounded by

C exp

(
−1

2
∇qT (θ0)′(∇2qT (θ0))−1∇qT (θ0)

)
T 1+

α(r+1)
2 exp(−Tε)

∫
Θ

‖θ‖απ(θ)dθ

= o∗p(1) in prob-P. (78)
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Thus we have

lim inf
T

P∗

{∫
h∈HT :‖h‖≥δT

‖h‖α exp(ω(h))π

(
θ0 +

h

T
r+1
2

− (∇2qT (θ0))−1∇qT (θ0)

)
− exp

(
−1

2
h′F ′0Sr

¯̄JS ′rF0h)

)
π(θ0)

∣∣∣∣ dh < ε

)
≥ 1− ε (79)

In other words, the integral over set (iii) also converges in probability to zero.

Equation (60) follows from (65), (71) and (79). It follows from (60) with α = 0 that

∫
HT

DTdh ≡ π

(
θ0 +

h

T
r+1
2

− (∇2qT (θ0))−1∇qT (θ0)

)
exp(ω(h))dh

=

∫
HT

π(θ0) exp

(
− 1

2T 2
h′∇2qT (θ0)h

)
dh+ o∗p(1) in prob-P

=

∫
HT

π(θ0) exp

(
−1

2
h′F ′0Sr

¯̄JS ′rF0h

)
dh+ o∗p(1) in prob-P

=

∫
<p
π(θ0) exp

(
−1

2
h′F ′0Sr

¯̄JS ′rF0h

)
dh+ o∗p(1) in prob-P

= π(θ0)(2π)
l
2

∣∣∣F ′0Sr ¯̄JS ′rF0

∣∣∣− 1
2

+ o∗p(1) in prob-P. (80)

Thus it follows from (60) and (80) that

∫
HT

‖h‖α|p∗T (h)− p∗∞(h)|dh

=
1

DT

∫
HT

‖h‖α
∣∣∣∣π(θ0 +

h

T
r+1
2

− (∇2qT (θ0))−1∇qT (θ0)

)
exp(ω(h))

−DT

(
|F ′0Sr ¯̄JS ′rF0|

(2π)l

) 1
2

exp

(
−1

2
h′F ′0Sr

¯̄JS ′rF0h

)∣∣∣∣∣∣ dh
= o∗p(1) in prob-P, (81)

from which (58) follows. This completes the proof of Theorem 4.

Proof of the Proposition. The proof follows from results in Inoue and Kilian (2015), but is
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included here for completeness. Recall the definition of Sj and S. It follows from (50) that

the limiting covariance matrix of ΥTS
′(γ(X̄T )− γ(µ)) is

J = E





S ′0B0Z

S ′1Bj1(Z ⊗ ...⊗ Z)

...

S ′rBjr(Z ⊗ · · · ⊗ Z)





S ′0B0Z

S ′1Bj1(Z ⊗ ...⊗ Z)

...

S ′rBjr(Z ⊗ · · · ⊗ Z)



′
. (82)

Similarly, the limiting covariance matrix of ΥTS
′(γ(X̄∗T ) − γ(X̄T )) is also (82). The first

part of the Proposition follows from Theorem 1, (43), and (50). The proof of the second

part is analogous.
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Table 1: Bias, Standard Deviation and RMSE of the Parameter a in the Small-Scale New
Keynesian Model

Diagonal Weighting Matrix Optimal Weighting Matrix
Mean Standard RMSE Mean Standard RMSE

T p H Bias Deviation Bias Deviation
100 2 2 0.0042 0.0150 0.0155 0.0022 0.0115 0.0117
100 2 4 0.0062 0.0176 0.0186 0.0021 0.0116 0.0118
100 2 8 0.0097 0.0206 0.0227 0.0031 0.0121 0.0125
100 4 2 0.0064 0.0151 0.0164 0.0042 0.0119 0.0126
100 4 4 0.0081 0.0171 0.0189 0.0044 0.0119 0.0126
100 4 8 0.0113 0.0198 0.0228 0.0046 0.0123 0.0131
100 6 2 0.0085 0.0155 0.0177 0.0061 0.0122 0.0136
100 6 4 0.0102 0.0173 0.0200 0.0060 0.0122 0.0136
100 6 8 0.0128 0.0197 0.0235 0.0064 0.0125 0.0140
232 2 2 0.0022 0.0103 0.0105 0.0012 0.0073 0.0074
232 2 4 0.0030 0.0122 0.0126 0.0011 0.0073 0.0074
232 2 8 0.0043 0.0145 0.0151 0.0015 0.0076 0.0078
232 4 2 0.0029 0.0100 0.0104 0.0020 0.0075 0.0078
232 4 4 0.0034 0.0115 0.0120 0.0021 0.0074 0.0077
232 4 8 0.0045 0.0137 0.0144 0.0021 0.0075 0.0078
232 6 2 0.0038 0.0100 0.0107 0.0028 0.0076 0.0081
232 6 4 0.0044 0.0113 0.0121 0.0028 0.0076 0.0081
232 6 8 0.0053 0.0132 0.0143 0.0028 0.0077 0.0081

Notes: T denotes the sample size, p the VAR lag order, and H the maximum horizon of
the impulse response functions. a is the probability of a firm not adjusting its price.
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Table 2: Effective Coverage Probabilities of 90% Confidence Intervals for the Parameter a
in the Small-Scale New Keynesian Model

VAR Bootstrap DSGE Bootstrap
T p H Diagonal Optimal Diagonal Optimal
100 2 2 84.4 83.6 89.0 90.2
100 2 4 82.0 68.4 88.8 90.2
100 2 8 76.8 57.0 86.6 88.8
100 4 2 84.2 81.6 87.8 89.6
100 4 4 83.2 77.8 86.8 88.6
100 4 8 81.0 58.4 86.0 87.8
100 6 2 80.8 78.4 86.6 88.8
100 6 4 78.8 74.2 85.8 87.8
100 6 8 73.2 58.8 84.6 86.8
232 2 2 86.4 84.6 87.2 89.6
232 2 4 85.8 75.8 87.8 91.2
232 2 8 87.0 67.6 86.4 90.2
232 4 2 86.2 87.6 88.0 88.6
232 4 4 85.6 87.0 87.0 88.8
232 4 8 87.0 74.8 86.2 89.4
232 6 2 88.0 86.2 89.0 89.0
232 6 4 85.6 87.8 87.0 90.2
232 6 8 87.0 81.6 86.8 87.4
464 2 2 88.6 89.2 91.8 88.8
464 2 4 90.6 85.0 91.0 88.8
464 2 8 89.6 77.6 91.2 88.2
464 4 2 88.8 89.0 91.2 90.4
464 4 4 89.2 86.0 90.4 89.8
464 4 8 88.6 82.4 91.8 89.6
464 6 2 87.2 86.2 90.6 90.4
464 6 4 89.8 86.4 90.6 89.4
464 6 8 87.6 83.6 91.4 90.2

Notes: T denotes the sample size, p the VAR lag order, and H the maximum horizon of
the impulse response functions. a is the probability of a firm not adjusting its price.
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Table 3: Effective Coverage Probabilities of 90% Confidence Intervals for the Parameter a
in the Small-Scale New Keynesian Model

T p H VAR Bootstrap DSGE Bootstrap
100 2 2 90.2 92.6
100 2 4 87.2 92.4
100 2 8 85.6 91.6
100 4 2 91.0 91.8
100 4 4 91.4 92.0
100 4 8 88.6 92.4
100 6 2 96.4 93.4
100 6 4 95.2 92.0
100 6 8 94.2 91.0
232 2 2 92.2 90.6
232 2 4 91.6 91.8
232 2 8 90.0 91.8
232 4 2 91.8 91.4
232 4 4 92.0 90.4
232 4 8 90.0 91.8
232 6 2 93.0 90.0
232 6 4 92.8 89.0
232 6 8 92.8 91.2

Notes: T denotes the sample size, p the VAR lag order, and H the maximum horizon of
the impulse response functions. a is the probability of a firm not adjusting its price.
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Table 5: 95% Confidence Intervals for Medium-Scale DSGE Model Allowing for Weak
Identification

H = 15 H = 19
Price Stickiness ξp 0.460 0.726 0.579 0.796
Std. Monetary Policy Shock σε,r 0.380 0.664 0.385 0.690
Std. Neutral Tech. Shock σε,µ 0.182 0.299 0.211 0.374
Autocorr. Invest. Tech. Shock ρµ,ψ 0.330 0.764 0.437 0.792
Std. Invest. Tech. Shock σε,ψ 0.108 0.231 0.101 0.239
Taylor Rule: Interest Smoothing ρr 0.840 0.922 0.841 0.921
Taylor Rule: Inflation φπ 1.210 1.912 1.241 1.915
Taylor Rule: Output Gap φy 0.018 0.262 0.063 0.425
Investment Adjustment Costs S” 6.902 26.245 4.327 18.819
Consumption Habit b 0.702 0.815 0.681 0.811
Capacity Adjustment Costs σa 0.078 0.683 0.155 0.632
Price Markup λp 1.017 1.502 1.015 1.464
Inverse Labor Supply Elasticity υ 0.056 0.227 0.027 0.162

Notes: H denotes the maximum horizon of the impulse response functions.
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