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Abstract

This paper builds upon the composite likelihood concept of Lindsay (1988) to develop a

framework for parameter identi�cation, estimation, inference and forecasting in DSGE models

allowing for stochastic singularity. The framework consists of the following four components.

First, it provides a necessary and su¢ cient condition for parameter identi�cation, where the

identifying information is provided by the �rst and second order properties of the nonsingular

submodels. Second, it provides an MCMC based procedure for parameter estimation. Third, it

delivers con�dence sets for the structural parameters and the impulse responses that allow for

model misspeci�cation. Fourth, it generates forecasts for all the observed endogenous variables,

irrespective of the number of shocks in the model. The framework encompasses the conventional

likelihood analysis as a special case when the model is nonsingular. Importantly, it enables the

researcher to start with a basic model and then gradually incorporate more shocks and other

features, meanwhile confronting all the models with the data to assess their implications. The

methodology is illustrated using both small and medium scale DSGE models. These models

have numbers of shocks ranging between one and seven.
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1 Introduction

Economic theory allows the number of structural shocks in DSGE models to be di¤erent from the

number of observed endogenous variables. When the former is smaller than the latter, the model

becomes stochastically singular. This poses a challenge for estimation, inference and forecasting.

Several approaches have been undertaken to bridge the gap between likelihood based methods and

stochastic singularity. The �rst approach allows for measurement errors in the observables by build-

ing upon the idea of Sargent (1989); see Altug (1989), McGrattan (1994), Hall (1996), McGrattan,

Rogerson and Wright (1997) and Ireland (2004). Although this approach is widely applicable, the

actual content of these errors can be ambiguous. The second approach adds structural shocks to

the model to make it nonsingular. This alters the economic model, which may or may not re�ect

the intention of the researcher. As theory progresses, DSGE models are expected to take on the

challenge of incorporating additional endogenous variables (e.g., those from the �nancial or the

�scal sector). Therefore, allowing for a �exible link between the number of structural shocks and

endogenous variables can become even more desirable.

The third approach involves treating some of the observables as unobserved when construct-

ing the likelihood. This approach maintains the model�s structure and avoids the introduction

of measurement errors. Studies have documented that di¤erent choices of observables can have

large impacts on parameter identi�cation, estimation and forecasting, see Fernández-Villaverde

and Rubio-Ramírez (2007), Guerron-Quintana (2010) and Del Negro and Schorfheide (2013). Re-

cently, Canova, Ferroni and Matthes (2014) drew further attention to this issue. They proposed

two methods for choosing exactly k observables for a model with k structural shocks by building

on the convolution idea of Bierens (2007) and the identi�cation condition in Komunjer and Ng

(2011). However, under stochastic singularity, the decision to exclude observables often is not mo-

tivated by economic considerations, but rather because otherwise limited econometric methods are

available. Thus, it is desirable to break this rigid link, embracing that there is often no compelling

economic reason for why the number of structural shocks should necessarily determine the number

of observables used for estimation.

This paper develops a likelihood based framework for analyzing DSGE models, without requir-

ing adding measurement errors, introducing new structural shocks or excluding observables from

the estimation. It builds on the composite likelihood concept of Lindsay (1988). The composite

likelihood is a likelihood based object formed by multiplying individual component likelihoods,

each of which corresponds to a marginal or conditional event. It has found applications in diverse
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areas, particularly in spatial statistics, where the complex dependence between variables makes

implementing the full likelihood impractical. Here, the issue of complex dependencies is irrelevant.

Rather, the idea of considering component likelihoods provides a solution for handling singularity.

Speci�cally, in a model with n observables and k (k < n) shocks, the subsets that include no

more than k observables are typically nonsingular. For any such subset, one can write down the

likelihood in either the time or the frequency domain. A composite likelihood can then be formed

by multiplying some or all of these individual components. Consequently, all the observables can

enter the estimation through the component likelihoods, irrespective of the number of shocks in the

model. The researcher can still �exibly add structural shocks or measurement errors, but only when

doing so is considered desirable. The composite likelihood reduces to the conventional likelihood if

the model is stochastically nonsingular.

The framework developed here consists of the following four components. First, it provides

a necessary and su¢ cient condition for local identi�cation, where the identifying information is

provided by the �rst and second order properties of the nonsingular submodels. This condition

extends the results in Qu and Tkachenko (2012). Second, it provides an MCMC based procedure

for parameter estimation. The procedure builds on the work of Chernozhukov and Hong (2003)

and An and Schorfheide (2007). Third, it proposes methods for obtaining con�dence sets for the

structural parameters and the impulse responses using the MCMC draws and the properties of the

model. Finally, it suggests a procedure that can generate forecasts for all the observed endogenous

variables, even if the number of structural shocks is as small as one.

In practice, arriving at a satisfactory model can be a gradual process. The composite likelihood

framework enables the researcher to start with a basic model and then gradually incorporate more

shocks and other features, meanwhile confronting all the models with the data to assess their

implications. In addition, conditional on any intermediate model, di¤erent composite likelihoods

can be constructed and estimated using di¤erent sets of submodels. This can potentially reveal the

shortcomings of the model, therefore being informative about what additional shocks are desirable

to further improve it. Later in the paper, these features will be illustrated through considering

both small and medium scale DSGE models.

Speci�cally, the models considered are singular versions of two in�uential models in the litera-

ture. The �rst is a prototypical three-equation model, studied in Clarida, Gali and Gertler (2000)

and Lubik and Schorfheide (2004). The second is the model of Smets and Wouters (2007). The

resulting models have between one and seven shocks. The �ndings can be summarized as follows.

(1) Among the structural parameters, the estimates related to the steady state tend to remain
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stable across speci�cations, while those related to the productivity process and the frictions can

vary substantially. (2) The estimated e¤ect of a particular shock (e.g., the productivity shock) can

crucially depend on what other shocks are allowed in the model. (3) For the small scale models

considered, whether or not to include the monetary policy shock has little e¤ects on the estimated

responses to the productivity shock, while for the medium scale models, whether or not to include

the wage markup and risk premium shocks has little e¤ects on the estimated responses to the

productivity, investment, monetary policy and exogenous spending shocks. (4) There can exist

di¤erent parameter values that yield similar impulse responses for some shocks while very di¤erent

responses for others. This re�ects an identi�cation issues which implies that relying on matching

impulse responses to a particular shock can be insu¢ cient for determining all the parameters. (5)

Overall, the composite likelihood framework is informative not only for detecting the above similar-

ities and di¤erences, but also for pinpointing the sources (i.e., which parameters and their values)

that generate them.

In this paper, for both the theoretical analysis and the empirical illustration, the following per-

spective has been fundamental. That is, a DSGE model is an imperfect approximation to the true

data generating process with the stochastic singularity being among the potential misspeci�cations.

This perspective suggests, as with other misspeci�cations, that one should carefully assess the e¤ect

of the singularity on the model rather than assuming it away (i.e., treating some observables as un-

observed) or ruling out singular models altogether. The composite likelihood framework provides

a platform for analyzing such models with the results explicitly acknowledging misspeci�cation.

Importantly, the value of the framework is not in providing a unique estimation criterion function

that achieves highest e¢ ciency, but rather in allowing the researcher to experiment with di¤erent

combinations of component likelihoods and confronting all such choices with the data. In this re-

gard, it is related to the literature that studies dynamic general equilibrium models while explicitly

acknowledging their misspeci�cations. This includes, among others, Watson (1993), Hansen and

Sargent (1993), Diebold, Ohanian and Berkowitz (1998), Schorfheide (2000), Bierens (2007) and

Del Negro and Schorfheide (2009).

The work here is also related to the following contributions that embrace stochastic singularity:

the generalized method of moments (Hansen, 1982), the simulated method of moments (Lee and

Ingram, 1991 and Du¢ e and Singleton, 1993), the indirect inference (Smith, 1993, Gouriéroux,

Monfort and Renault, 1993, and Gallant and Tauchen, 1996). Recently, valuable e¤orts have been

made in adapting these methods to the current generation of DSGE models; see Ruge-Murcia

(2007) and Andreasen, Fernández-Villaverde and Rubio-Ramírez (2013). In contrast to this paper,
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the above methods are not likelihood based. That is, they all use criteria other than model implied

densities to link the model with the data.

The paper is structured as follows. Section 2 speci�es the model and characterizes stochastic

singularity. Section 3 introduces the composite likelihood idea to the current problem. Section

3 studies parameter identi�cation, while Section 4 discusses parameter estimation and obtains

con�dence sets. Section 5 studies the impulse response function. Section 6 considers forecasting.

Section 7 includes some empirical illustrations. The three appendices, A, B and C, contain the

proofs, a medium scale model and some details on implementation, respectively.

2 Stochastically singular DSGE models

This paper considers DSGE models that are representable as

Yt = �(�) + C(�)Xt +D(�)vt; (1)

Xt = A(�)Xt�1 +B(�)"t;

where the n-by-1 vector Yt includes the measured variables, Xt is a vector of state variables that

includes the endogenous variables, conditional expectation terms and exogenous shocks processes if

they are serially correlated, "t includes serially uncorrelated structural disturbances and vt contains

measurement errors if there are any. The vector � consists of the structural parameters. The

coe¢ cients matrices �(�); A(�); B(�); C(�); D(�) are functions of �. Throughout the paper, we

assume � takes values in a parameter space � that is a subset of a Euclidean space of dimension q.

The above representation encompasses the current generation of DSGE models, for example

Smets and Wouters (2007). For simplicity, the measurement errors are assumed to be serially

uncorrelated. Otherwise, as in Ireland (2004), a subset of equation can be appended to the system

to describe the time evolution of vt. The representation also encompasses indeterminacy after

augmenting "t and � to include the sunspot shocks and the corresponding parameters. Such an

extension follows from the Proposition 1 in Lubik and Schorfheide (2004).

The system (1) has a vector moving average representation:

Yt = �(�) +H(L; �)�t; (2)

where

H(L; �) = [C(�)(I �A(�)L)�1B(�), D(�)] ; (3)
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and

�t =

24 "t

vt

35 .
This representation is not needed for estimation, but is useful for formulating the theoretical results

on identi�cation and inference. The spectral density matrix of Yt at the frequency ! 2 [��; �] equals

f(!; �) =
1

2�
H(exp(�i!); �)�(�)H(exp(�i!); �)�;

where �(�) = Var(�t) and the superscript ��� stands for the conjugate transpose. The next

de�nition speci�es the type of stochastic singularity considered in this paper.

De�nition 1 The DSGE model (1) is stochastically singular at � = �0 if there exists a partition

of the observables Yt = [Y1;t; Y
0
2;t]

0 with Y1;t 2 R1 such that, for all t,

Y1;t =
1X
j=0

gj(�0)Yt�j ;

where fgj(�0)g1j=0 are coe¢ cients matrices with the (1,1)-th element of g0(�0) being zero.

The model is stochastically singular when some variables can be perfectly predicted from its own

past values and the current and lagged values of the other variables. Under stochastic singularity,

the covariance matrix, Var(Yt), can still be of full rank. For example, suppose Y1;t = �t�1 and

Y2;t = �t. Then, Y1;t is known from observing Y2;t�1 (therefore Yt is stochastic singular), although

the covariance matrix of Yt still has full rank. Consequently, characterizing stochastic singularity

requires more than just Var(Yt). In contrast, from a frequency domain perspective, (1) is stochastic

singular if and only if the spectral density matrix of Yt is of reduced rank at all frequencies. This

makes the spectral density a valid characterizing condition for stochastic singularity.

The next lemma relates the above de�nition to the most common cause of stochastic singularity

in DSGE models. Let dim(�) denote the dimension of a vector.

Lemma 1 If dim(vt)+dim("t)<dim(Yt), then the model (1) is stochastically singular at all � 2 �:

It is well known that the conventional time and frequency domain Gaussian likelihoods are not

well de�ned when the model is stochastically singular. Speci�cally, in the time domain, the density

of Yt given Yt�j (j = 1; 2; ::::) is not well de�ned because the resulting conditional covariance matrix

is singular (c.f., De�nition 1). Algorithmically, when implementing the Kalman �lter, the prediction

step (i.e., predicting Yt given Yt�j (j = 1; 2; ::::)) produces a singular covariance matrix, causing
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the updating step (i..e., estimating the distribution of the state vector C(�)Xt after observing Yt)

to break down. In the frequency domain, the spectral density matrix of Yt is singular. Because its

inverse enters the likelihood, the later also fails to be well de�ned.

3 The composite likelihood

The composite likelihood method was proposed by Lindsay (1988). Its precedents are the pseudo-

likelihood of Besag (1974, 1975) and the partial likelihood of Cox (1975). A major motivation and

application for this method has been geostatistics. Below, we review this method in its original

setting (using Example 3A in Lindsay, 1988) to contrast with its application in the current context.

Suppose we observe yi on a lattice of sites indexed by i (i = 1; :::; N). The observation at site i

depends on the values at its neighbors. That is, the conditional distribution of yi given the remaining

observations (denoted by y[i]) is given by (yijy[i]) � N(�w0iy; �2), where y = (y1; :::; yN ), � and �2 are
parameters, and wi is a N -by-1 vector whose j-th element equals to 1 if i and j are neighbors and

zero otherwise. The Hammersley-Cli¤ord theorem implies that the joint distribution of y is unique

and given by y � N(0; �2 (1� �W )�1); where W = [w1; :::; wN ] and �2 is a function of �2 and �.

Assuming �2 is known and equals 1, the log likelihood equals (up to a constant) �(�)��y0Wy=2 with

�(�) = (1=2) log det (1� �W ). Maximizing the likelihood involves evaluating �(�) and computing
its derivative with respect to �, both of which can lead to computational di¢ culties because N

is typically large. To bypass this di¢ culty, Besag (1974) suggested considering the sum of the

conditional log likelihoods:

`(�) =
NX
i=1

log f(yijy[i]; �): (4)

Taking the �rst order derivative delivers y0Wy � �y0W 2y=2 = 0, which is now straightforward to

evaluate. Hjort and Omre (1994) suggested considering the pairwise log likelihood:

`(�) =
N�1X
i=1

NX
r=i+1

log f (yi; yrjdir; �) ; (5)

where dsr is some measure for the relationship between the two sites. Both (4) and (5) are members

of the composite likelihood family. The general principle for the latter was laid out in Lindsay

(1988): one starts with a set of conditional (e.g., (4)) or marginal (e.g., (5)) events for which

one can write the log likelihood; then one constructs the composite log likelihood as the sum of

the component log likelihoods. The composite likelihood has found applications in diverse areas

featuring complex dependencies between variables. This includes: spatial data, genetics/genomics
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data, image data and longitudinal data. Reviews with more applications can be found in Varin,

Reid and Firth (2011). Recently, Engle, Shephard and Sheppard (2007) introduced the method

to estimate the time varying covariances of a portfolio with a vast number of assets. There, the

component likelihoods are as in (5), involving pairs of assets in the portfolio.

We now bring the idea to analyze singular DSGE models. Let Ys;t be a subvector of Yt in (1),

i.e., Ys;t = PsYt with Ps being a selection matrix. Then, Ys;t satis�es

Ys;t = Ps�(�) + PsC(�)Xt + PsD(�)vt;

Xt = A(�)Xt�1 +B(�)"t:

Its vector moving average representation is

Ys;t = Ps�(�) + PsH(L; �)�t: (6)

Its spectral density at ! 2 [��; �] equals

fs(!; �) =
1

2�
PsH(exp(�i!); �)�(�)H(exp(�i!); �)�P �s = Psf(!; �)P

�
s : (7)

The relationship (6) can be called a submodel because it is consistent with the full model (1) but

involves only a subset of its restrictions. The vector of observables for this submodel is Ys;t, a subset

of Yt. The next de�nition de�nes a (maximal) nonsingular submodel.

De�nition 2 The submodel (6) is called a nonsingular submodel if it is stochastically nonsingular

for all � 2 �. It is a maximal nonsingular submodel if, in addition, augmenting Ys;t with any
variable from Yt will always make the resulting submodel stochastically singular for some � 2 �:

The likelihood functions for the nonsingular submodels are simple to obtain. In the time

domain, the Gaussian likelihoods can be obtained using the standard Kalman �ltering algorithm.

In the frequency domain, the inverses of the spectral densities of the nonsingular submodels can be

obtained directly from (7). The computational details are included in the appendix.

The motivation for applying the composite likelihood concept to DSGE models is di¤erent from

the geostatistics setting and can be stated as follows. First, the nonsingular submodels (6) are con-

sistent with the full model, all possessing well de�ned likelihood functions. The Hammersley-Cli¤ord

theorem is easily applicable. This special feature provides the opportunity for constructing compo-

nent likelihoods and subsequently the composite likelihood. Second, DSGE models are imperfect

approximations to the data generating process. Stochastic singularity is typically a misspeci�ca-

tion. It is therefore desirable to match only the nonsingular relationships (i.e., those implied by
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(6)) with the data. This makes the composite likelihood not a shortcut to circumvent singularity,

but a desirable method to relate misspeci�ed models to the data.

Speci�cally, let Y1;t; :::; YS;t be some subvectors of Yt that are stochastically nonsingular, each

satisfying (6) for some Ps with S being some positive integer. Denote their corresponding log

likelihood functions by

`s(�) (s = 1; :::; S):

We propose to construct the composite log likelihood as:

`(�) =

SX
s=1

`s(�): (8)

The above construction has two features. First, it allows for arbitrary relationships between

the numbers of observables and structural shocks. Therefore, it is feasible to keep all the observed

endogenous variables for estimation even if the model has only one shock. Second, if the original

full model is already nonsingular, then `s(�) = `(�) and we obtain the conventional log likelihood.

This implies the framework encompasses the conventional likelihood analysis as a special case.

Remark 1 As is clear from Lindsay�s (1988) general principle, we will arrive at di¤erent composite

likelihood functions depending on the events (here the submodels) that we consider. There are two

potential perspectives for approaching this issue. The �rst is to treat it as an e¢ ciency issue.

That is, we assume that the model is correctly speci�ed and choose submodels to maximize the

asymptotic e¢ ciency. However, this is irrelevant here because misspeci�cations are clearly present.

The second option is to treat it as a speci�cation issue. That is, we decide on what the model

is intended to capture and then choose the submodels accordingly. This option is what we will

implement. Consequently, the value of the composite likelihood framework developed here is not

in delivering a unique criterion function that achieves the highest e¢ ciency, but in providing a

platform that allows for �exible choices of criterion functions, and in letting all such choices speak

to the data. In that regard, it can be related to the generalized method of moments. There, a wide

range of unconditional moment restrictions can arise within a very simple model. The practice of

choosing which moments to use is usually guided by what the model is intended to capture. It rarely

involves only the consideration of estimation e¢ ciency.

Remark 2 In the empirical illustrations, for each singular model we will always start the analysis

with the following speci�cation. We choose the �rst subset, Y1;t, to correspond to a maximal non-

singular submodel. This implies that we subject the model to capturing the joint dynamic properties
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of this vector. Then, we set Y2;t; :::; YS;t to be singleton subsets such that their union includes all

the remaining variables in Yt. This implies that we also subject the model to capturing the marginal

behaviors of these variables. These two considerations are natural from a modeling perspective,

and are also feasible under stochastic singularity. On the technical side, under this speci�cation

the composite likelihood function equals one when integrated over the values of the observables.

This makes the interpretation of the prior�s e¤ects across di¤erent models more straightforward.

Starting with this speci�cation, we will also experiment with alternative speci�cations and examine

the di¤erences. Note that the results on identi�cation, inference and forecasting apply to general

speci�cations that include the above as a special case.

3.1 Illustrations

We consider two simple examples. More complex models are considered in Section 8.

Illustrative example 1. This example allows us to provide analytical results in a simple setting.

It also shows that loss of identi�cation can occur when excluding variables from the estimation.

Let xt and ct be a household�s income and consumption respectively. The researcher postulates

the following model, in which the income follows an AR(1) process and the consumption is a �xed

proportion of the income:

xt = �xt�1 + et, ct = 
xt: (9)

Suppose this model is misspeci�ed in the sense that the actual relationship is given by the �rst

equation in the preceding display and ct = 
xt + vt, where vt is a transitory �uctuation in the

consumption. Suppose j�j < 1 and et � i:i:d:N(0; �2). The goal is to estimate �; 
 and �.
For this model increasing the number of shocks is a natural option. We emphasize that in

more general situations this can be debatable. King and Watson (2012, p. 124) commented on an

important feature of the Smets and Wouters�(2007) model in a di¤erent context: "As a medium-

scale DSGE model, the Smets and Wouters framework model contained predictions for a substantial

number of macroeconomic variables (about 40)." There, quite a few variables are related to each

other through equalities. Although Smets and Wouters chose seven variables of major interest as

observables, investigating the model�s implications for other variables can also be valuable. It is

hardly convincing to state that one should always increase the number of shocks when additional

variables are measured and brought to estimate the model.

Because the model-implied covariance matrix of (xt; ct) is singular, the density of (xt; ct) does

not exist and the conventional full information maximum likelihood is not applicable. A common
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practice in the DSGE literature is to use only one variable for estimation. Speci�cally, dropping

the variable ct leaves: xt = �xt�1 + et. This identi�es (�; �) but not 
. Dropping the variable xt

leaves: ct = �ct�1+
et. This identi�es (�; 
�) but does not separately identify 
 and �. Therefore,

in both cases, we fail to identify some of the structural parameters.

The model has two nonsingular submodels that correspond to fxtg and fctg. Further,

For xt : `1(�; 
; �) = � T

2
log �2 � 1

2�2

TX
t=1

(xt � �xt�1)2 ;

For ct : `2(�; 
; �) = �
T

2
log �2 � T

2
log 
2 � 1

2
2�2

TX
t=1

(ct � �ct�1)2 :

The parameters �; � are identi�ed from `1(�; 
; �) while 
 is further identi�ed from `2(�; 
; �).

Therefore, all the structural parameters are identi�ed from considering the composite likelihood.

The maximizer of the composite likelihood satis�es the following relationship:

�̂ =

 
TX
t=1

x2t�1 +
1


̂2

TX
t=1

c2t�1

!�1 TX
t=1

xtxt�1 +
1


̂2

TX
t=1

ctct�1

!
;

�̂2 =
1

T

TX
t=1

(xt � �̂xt�1)2 ; 
̂2 =

PT
t=1 (ct � �̂ct�1)

2PT
t=1 (xt � �̂xt�1)

2
:

The formula for �̂ mirrors the OLS estimator obtained by weighting the information from the two

equations with their error variances; �̂2 equals the sample residual variance of the �rst equation;


̂2 equals the ratio of two residual variances.

Interestingly, as the speci�cation error becomes smaller (i.e., the variance of vt approaches 0),


̂2 will approach its true value 
 for any sample size, and �̂ and �̂2 will reduce to the conventional

MLE under a known 
. (Note that xt = �xt�1+ et and ct = �ct�1+
et coincide when the variance

of vt equals 0, therefore using one is equivalent to using both.). Thus, in this simple model, the

composite likelihood delivers an intuitive estimator that coincides with the ideal estimator under

correct model speci�cation.

Illustrative example 2. This example illustrates how to algorithmically compute the composite

likelihood, by considering singular versions of the prototypical DSGE model considered in Clarida,

Gali and Gertler (2000) and Lubik and Schorfheide (2004). The same procedure can be applied to

medium scale DSGE models such as that of Smets and Wouters (2007).
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The original model in Lubik and Schorfheide (2004) is

yt = Etyt+1 � �(rt � Et�t+1) + gt; (10)

�t = �Et�t+1 + �(yt � zt);

rt = �rrt�1 + (1� �r) 1�t + (1� �r) 2(yt � zt) + "rt;

gt = �ggt�1 + "gt;

zt = �zzt�1 + "zt;

where yt; �t and rt denote the log deviations of output, in�ation and nominal interest rate from their

steady states, gt is the exogenous spending and zt captures shifts of the marginal costs of production.

The structural shocks are serially uncorrelated and satisfy "rt � N(0; �2r); "gt � N(0; �2g); "zt �
N(0; �2z). Among the three shocks, "gt and "zt are correlated with correlation coe¢ cient �gz. The

data contains observations on the levels of output, in�ation and interest rate, which are related to

the log deviations via

Yt =

0BBB@
0

��

�� + r�

1CCCA+
0BBB@

yt

4�t

4rt

1CCCA ; (11)

where the output variable is pre-�ltered and therefore has mean zero, �� and r� are annualized

steady-state in�ation and real interest rates in percentages and � = (1 + r�=100)�1=4. The vector

of structural parameters is

� = (� ; �;  1;  2; �r; �g; �z; �r; �g; �z; �gz; �
�; r�)0:

We label this model as the three shocks model.

Here, and also in empirical applications, we consider two singular versions of the three shocks

model. The �rst is a one shock model, a¤ected by "zt only. The second is a two shocks model,

a¤ected by "gt and "zt. We purposely nest these two models under the nonsingular model to show

how the model solution and estimation can be implemented in a uni�ed manner.

The solutions to the three models are related in a simple way. Consider �rst the three shocks

model. The system (10) can be written as (Sims, 2002):

�0(�)Xt = �1(�)Xt�1 +	(�)"t +�(�)�t; (12)

where Xt = (rt; yt; �t; gt; zt; Et(�t+1); Et(yt+1))
0, �t = (�t � Et�1(�t); yt � Et�1(yt))0 and "t =

("rt; "gt; "zt; )
0. The coe¢ cients matrices �0(�);�1(�);	(�) and �(�) are known functions of �.

11



Under determinacy, the model�s solution can be represented as

Yt = �(�) + C(�)Xt; (13)

Xt = A(�)Xt�1 +B(�)"t;

where A(�) and B(�) are again known functions of structural parameters, C(�) is a selection matrix

that selects the �rst three elements of Xt, and �(�) is given in (11).

The solutions to the two singular models can still be represented as (13) after modifying the

shocks accordingly. In the one shock model, "t needs to be replaced by (0; 0; "zt)0; in the two shocks

model, by (0; "gt; "zt)0. Let i = 1; 2; 3 be the index for the model with i shocks and de�ne

M1 =

26664
0 0 0

0 0 0

0 0 1

37775 ;M2 =

26664
0 0 0

0 1 0

0 0 1

37775 ;M3 =

26664
1 0 0

0 1 0

0 0 1

37775 :
Then, in a uni�ed manner, the solutions to the three models can be written as: Yt = �(�) +

C(�)Xt, Xt = A(�)Xt�1 + B(�)Mi"t. The vector moving average representation equals Yt =

�(�) + C(�) [I �A(�)L]�1B(�)Mi"t:

Now consider estimation. Suppose we wish to construct the component likelihood corresponding

to the �rst element of Yt. Then, de�ne Ps = [1 0 0] and consider

PsYt = Ps�(�) + PsC(�)Xt;

Xt = A(�)Xt�1 +B(�)Mi"t:

Its likelihood can be easily obtained in the time domain by Kalman �ltering and in the frequency

domain by computing its spectral density and periodograms (c.f. Appendix C). Other component

likelihoods can be computed in the same way by simply changing Ps accordingly.

In the empirical illustrations, we will use the three singleton subsets fytg ; f�tg ; frtg to form
the composite likelihood for the one shock model. For the two shocks model, we will start with the

following speci�cation: fyt; rtg and f�tg, but will also consider the following alternative: fyt; �tg
and frtg. We �nd the subset frt; �tg to be nearly singular to the extent that the Kalman �ltering
algorithm frequently reports degenerate covariance matrices. This pair is therefore not considered

when implementing the composite likelihood. It will emerge that the parameter estimates and

impulse responses from the latter two alternative speci�cations are both similar.
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4 Identi�cation

Suppose the distribution of Yt is given by the full system (1) with � = �0. This section considers

the issue of distinguishing �0 from alternative parameter values using the information provided by

the nonsingular submodels. Note that here identi�cation is considered as a property of the model.

No data is involved. Therefore, the issue of misspeci�cation does not play a role. The analysis is

from a local identi�cation perspective, which builds on the results in Qu and Tkachekno (2012).

We continue to denote the spectral density of Ys;t at � by fs(!; �) and its mean by �s(�).

De�nition 3 The parameter vector � is locally identi�able at �0 from the �rst and second order

properties of Ys;t (s = 1; :::; S) if there exists an open neighborhood of �0 in which �s(�1) = �s(�0)

and fs(!; �1) = fs(!; �0) for all s = 1; :::; S and all ! 2 [��; �] implies �0 = �1.

The above de�nition is formulated in the frequency domain. There is an equivalent formulation

in the time domain in terms of autocovariance functions. Suppose Ys;t has autocovariance function

�s(j; �) (j = 0;�1; :::) satisfying �s(j; �) = �s(�j; �) and that fs(!; �) is continuous in !. Then,
there is a one-to-one mapping between �s(j; �) (j = 0;�1; :::) and fs(!; �) (! 2 [��; �]), given
by �s(k; �) =

R �
�� exp(ij!)fs(!; �)d!. Therefore, �0 is locally identi�able from �s(�) and fs(!; �)

(s = 1; :::; S) if and only if it is locally identi�able from �s(�) and the complete set of autocovariances

f�s(j; �)g1j=�1. The next two assumptions impose some regularity conditions on the parameter
space and the elements of the spectral density matrix.

Assumption 1. �0 2 � � Rq with �0 being an interior point. Assume � is compact.

Assumption 2. Assume the following conditions hold for all � 2 � and ! 2 [��; �]: (i)P1
j=0 khj(�)k � C < 1 and k�(�)k � C < 1, where hj(�) (j = 0; :::;1) are de�ned in

H(L; �) =
P1
j=0 hj(�)L

j ; (ii) The elements of f(!; �) belong to Lip(�) of � > 1
2 with respect to !

1;

(ii) The elements of f�(!) are continuously di¤erentiable in � with


@ vec(f�(!))=@�0

 � C <1.

Theorem 1 Let Assumptions 1-2 hold. De�ne

GS(�) =
SX
s=1

�Z �

��

�
@ vec fs(!; �)

@�0

���@ vec fs(!; �)
@�0

�
d! +

@�s(�)
0

@�

@�s(�)

@�0

�
(14)

Assume GS(�) has a constant rank in an open neighborhood of �0. Then, � is locally identi�able at

�0 if and only if GS(�0) is nonsingular.

1Let g(!) be a scalar valued function de�ned on an interval B. We say g belongs to Lip(�) if there exists a �nite
constant M such that jg(!1)� g(!2)j �M j!1 � !2j� for all !1, !2 2 B.
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Theorem 1 follows from Theorem 2 in Qu and Tkachenko (2012). The latter provides a necessary

and su¢ cient condition for local identi�cation based on the mean and spectrum of Yt, i.e., based

on the full model. Here, the identifying information comes from the nonsingular submodels.

The dimension of GS(�) always equals the number of structural parameters. In particular,

it is invariant to the number of equations, observables and shocks in the model. This feature is

advantageous for analyzing identi�cation in models with a high number of equations or variables.

The s-th component in the summation, i.e.,Z �

��

�
@ vec fs(!; �)

@�0

���@ vec fs(!; �)
@�0

�
d! +

@�s(�)
0

@�

@�s(�)

@�0
(15)

measures the contribution from the s-th submodel to identi�cation. It is semide�nite by construc-

tion. Therefore, if local identi�cation is achieved by considering a particular Ys;t, then it is also

achieved by considering all the submodels Ys;t (s = 1; :::; S). In practice, it is informative to compare

the rank of (15) for s = 1; :::; S. This can be informative about the source of the identi�cation.

As in Qu and Tkachenko (2012), Theorem 1 can be extended in several directions. We sum-

marize three such extensions. The proofs are essentially the same as in Qu and Tkachenko (2012),

therefore omitted. First, to check local identi�cation based on the second order properties only (i.e.,

ignoring the steady state restrictions), we simply delete the term in (14) related to @�s(�)
0=@�. Sec-

ond, to consider identi�cation based on a subset of frequencies, say those corresponding to business

cycle �uctuations, we replace GS(�) by

SX
s=1

�Z �

��
W (!)

�
@ vec fs(!; �)

@�0

���@ vec fs(!; �)
@�0

�
d! +W (0)

@�s(�)
0

@�

@�s(�)

@�0

�
;

where W (!) denotes an indicator function de�ned on [��; �] that is symmetric around zero and
equals to one over a �nite number of closed intervals corresponding to the desired frequencies.

Third, to check local identi�cation of a subset of parameters say �(1) while �xing the others at �0,

we divide � as �0 = [�(1)0; �(2)0] and replace GS(�) by

SX
s=1

�Z �

��
W (!)

�
@ vec fs(!; �)

@�(1)0

���@ vec fs(!; �)
@�(1)0

�
d! +W (0)

@�s(�)
0

@�(1)
@�s(�)

@�(1)0

�
:

For all the three cases, the statement in Theorem 1 continues to hold after changing GS(�):

5 Estimation and inference

The estimation can be carried out by treating `(�) as if it was the conventional log likelihood.

Speci�cally, let �(�) be a prior density. Then, as in Chernozhukov and Hong (2003), we can

14



consider a quasi-posterior distribution with the following density function:

p(�) =
�(�) exp (`(�))R

� �(�) exp (`(�)) d�
: (16)

The estimate for �0 can be taken to be the quasi-posterior mean: �̂ =
R
� �p(�)d�. Computationally,

�̂ can be obtained using Markov Chain Monte Carlo (MCMC) methods, such as the Metropolis�

Hastings algorithm, by drawing a sequence of values (�(1); �(2); :::; �(B)) corresponding to the density

kernel �(�) exp (`(�)) and computing �̂ = B�1
PB
j=1 �

(j). We omit the details on the construction of

the Markov Chains, since they follow standard procedures. A useful reference is An and Schorfheide

(2007). We refer to the intervals obtained by sorting the MCMC draws as "MCMC Intervals".

The reason for why p(�) is a quasi-posterior is twofold. First, `(�) is a more general criterion

function than the conventional log likelihood. Second, DSGE models are only approximations to

the true data generating process. The latter becomes apparent when contrasting the model�s sin-

gularity with the data�s non-singularity. In fact, even nonsingular models can still be considerably

misspeci�ed along other dimensions. For example, their low frequency behavior can be quite dif-

ferent from the actual time series data (Schorfheide, 2013). As long as important misspeci�cations

are present, the true likelihood will be typically infeasible to obtain and a prudent interpretation

of p(�) should be as a quasi-posterior. This statement applies not only to singular models analyzed

using the composite likelihood, but also to singular models analyzed using a particular component

likelihood say `s(�), although the latter is often overlooked in practice.

The complication caused by a quasi posterior is that the MCMC Intervals need not correspond

to valid credible intervals. That is, their lengths can di¤er signi�cantly from the intervals obtained

under a correctly speci�ed model and likelihood, even asymptotically. Because the latter intervals

have correct asymptotic frequentist coverage, this implies that the MCMC Intervals are invalid

con�dence intervals when viewed from a frequentist perspective. Chernozhukov and Hong (2003)

clearly documented this feature in the context of `(�) being a general criterion function and provided

intervals that have desired asymptotic frequentist properties. Müller (2013) further studied the risk

of Bayesian inference under misspeci�ed models. His results imply that the latter intervals can have

lower asymptotic frequentist risk than the MCMC intervals.

Building upon the above literature, below we address the inference issue in two steps. In the �rst

step, we construct con�dence intervals that have the following two features. (1) It acknowledges

model misspeci�cation. (2) It achieves correct frequentist coverage rates for the pseudo true value

asymptotically. The analysis builds on Chernozhukov and Hong (2003). We refer to the resulting

intervals as "Asymptotic Intervals". In the second step, we further contrast the "Asymptotic
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Intervals" with the "MCMC intervals", by taking into account both DSGE models�identi�cation

properties and data limitations that we face. This will allow us to o¤er suggestions for practice.

We now state an assumption that speci�es the types of misspeci�cations we allow for. Then, we

will provide two results for the probability limit of the estimator and its asymptotic distribution.

Assumption MI. The observed data fYtgTt=1 are generated by a covariance stationary vector
process: Yt = �0 +

P1
j=0 h0j�t�j , where f�tg are mean zero, serially uncorrelated processes with

Var(�t) = �0 and the 3rd and 4th order cumulants being zero. Assume Yt has spectral density

f0(!), satisfying Assumption 2 with f(!; �); hj(�) and �t replaced by f0(!); h0j and �t; respectively.

Assumption 2 is about the properties of the model while Assumption MI is about the data. The

mean �0 and spectral density f0(!) can be di¤erent from �(�) and f(!; �) for all �. In particular,

the data can be stochastically nonsingular or exhibit low frequency variations di¤erent from what

are implied by the model. The requirements on the cumulants can be relaxed. Doing so will not

a¤ect the consistency result (i.e., Lemma 2) but will alter the asymptotic distribution (i.e., Theorem

2). As will be seen, the procedure for constructing the Asymptotic Intervals (i.e., Procedure A) is

valid even without these zero cumulants requirements.

Let �s;0 and fs;0(!) contain the elements of �0 and f0(!) that correspond to the s-th nonsingular

submodel. De�ne `1(�) =
PS
s=1 `s;1(�), where

`s;1(�) = � 1

4�

�Z �

��

�
log det(fs(!; �)) + tr(f

�1
s (!; �)fs;0(!))

�
d!

+
�
�s;0 � �s(�)

�0
f�1s (0; �)

�
�s;0 � �s(�)

�o
:

The next result establishes the limits of the composite likelihood and its maximizers.

Lemma 2 Let Assumptions 1,2 and MI hold. Then:

1. T�1`(�) converges uniformly almost surely to `1(�) over � 2 �.

2. Let �� denote the set of maximizers of `(�) and �0 the set of maximizers of `1(�), then with

probability one we have: lim supT!1 �� � �0:

3. Further, if `1(�) has a unique maximizer �0, then �� !a:s �0:

The proof of the lemma follows closely the arguments in Hansen and Sargent (1993, p.49-53).

In the Lemma, `(�) can be either the Gaussian likelihood in the time domain, or its approximation
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in the frequency domain. The �rst two results do not assume that the parameters are identi�ed,

while all the results hold irrespective of whether the data have Gaussian distributions.

The interpretation of �0 depends on the model speci�cation. If it is correctly speci�ed, then

the set �0 will consist of all the parameter values that satisfy fs;�(�) = fs;0(�) and �s;0 = �s(�) for

all s = 1; :::; S. If it is misspeci�ed, then such values do not exist, and �0 should be interpreted as

pseudo-true values. Further, if `1(�) has a unique maximizer, then under correct speci�cations,

because all the components of `1(�) are maximized at �0, using a particular `s(�) rather than `(�)

to implement (16) will also yield consistency provided that `s;1(�) also has a unique maximizer. In

contrast, under misspeci�cation, the maximizers of `s;1(�) can be di¤erent. Consequently, replacing

`(�) in (16) by a particular `s(�) can lead to substantially di¤erent estimates even asymptotically.

The lemma therefore reinforces the discussion in Remark 1, that if misspeci�cation is present,

then constructing the composite likelihood `(�) should be viewed as a speci�cation rather than an

e¢ ciency issue. Finally, the feature that di¤erent component likelihoods can be associated with

di¤erent pseudo-true parameter values may in itself serve as the basis for a test for misspeci�cation.

The lemma has abstracted away from the e¤ect of the prior �(�). The second and third results

continue to hold when �� is replaced by the mode of (16), provided that the prior is independent of

T and that its support includes �0 de�ned in these two results.

The next result provides the asymptotic distribution. It allows misspeci�cation but requires the

parameters to be well identi�ed. The practical implication of the latter is further discussed later.

Theorem 2 Suppose �0 is the unique minimizer of `1(�). Let �̂ denote the mean or mode computed

from (16). Then, under Assumptions 1,2 and MI, we have

p
T (�̂ � �0)!d N(0;M�1VM�1);

where M = 1
4�

PS
s=1 (M1;s +M2;s) and V = 1

4�

PS
s=1

PS
h=1 (V1;s;h + V2;s;h) with

M1;s =

Z �

��

@2

@�@�0
log det(fs(!; �0)) +

@2

@�@�0
tr
�
f�1s (!; �0)fs;0(!)

	
d!;

M2;s = 2
@�s(�0)

0

@�
f�1s (0; �0)

@�s(�0)

@�0
;

V1;s;h =

Z �

��

�
@ vec fs(!; �0)

@�0

�� �
f�1s (!; �0)
 f�1s (!; �0)

��
fs;h;0(!)
 fs;h;0(!)

�
�
f�1h (!; �0)
 f�1h (!; �0)

��@ vec fh(!; �0)
@�0

�
d! ;

V2;s;h = 2
@�s(�0)

0

@�
f�1s (0; �0)fs;h;0(!)f

�1
h (0; �0)

@�h(�0)

@�0
:
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In the above, f�1s (!; �0) is the conjugate of f�1s (!; �0) and fs;h;0(!) is the cross spectrum of the

data vectors Ys;t and Yh;t at the frequency !.

Although the result is formulated in the spectral domain, as shown in the appendix, it applies to

both the time and frequency domain composite likelihoods. The matrix M stems from the second

order derivative of the log composite likelihood, while V corresponds to the covariance of the score

function. The dependence between the submodels shows up through V1;s;h and V2;s;h with s 6= h.

Without misspeci�cation, M equals V and the asymptotic variance then reduces to M�1. With

misspeci�cation, M�1VM�1 is usually di¤erent from M�1. Therefore, the MCMC draws will need

to be adjusted to have variance M�1VM�1 in order for their quantiles to deliver asymptotically

valid con�dence intervals. Such an adjustment is given in the following procedure.

Procedure A for computing the Asymptotic Intervals: First, compute
p
T (�(j) � �̂) with

�̂ being the quasi posterior mean or mode of (16). Use their sample covariance as an estimator for

M�1 and denote it by M̂�1. Next, compute
PS
s=1 @`s;t(�̂)=@� (t = 1; :::; T ). Use their (long-run)

sample covariance as an estimator for V and denote it by V̂ . Then, obtain M̂1=2 and V̂ 1=2 using

the singular value decomposition and compute

e�(j) = �̂ + M̂�1V̂ 1=2M̂1=2(�(j) � �̂):

Finally, use the quantiles of e�(j) to form con�dence intervals.

Some misspeci�cations can cause
PS
s=1 @`s;t(�0)=@� to be serially correlated. This is why a

long run covariance estimator is potentially needed for V . In practice, it is informative to regressPS
s=1 @`s;t(�̂)=@� on the lagged values to examine whether such dependencies are present. The

standard sample covariance matrix can be used if the latter are considered to be small.

This concludes the �rst step. Now, we further contrast the Asymptotic Intervals with the

MCMC Intervals (see page 15 for how the latter intervals are de�ned). As discussed above, the

Asymptotic Intervals are interpretable under misspeci�cation, but are based on approximating
p
T (�̂ � �0) with a multivariate normal distribution. The justi�cation for the latter often involves

the model�s parameters being well identi�ed and the sample size being not too small. In contrast,

the MCMC Intervals are interpretable with any sample sizes without requiring statements about

identi�cation, but require the assumption that the model is well speci�ed. While in other contexts

one concern, say misspeci�cation, can clearly dominate the other, in the current context the two

concerns are both substantively important. This suggests that the two types of intervals can

be viewed as complementary. Based on the above consideration, we recommend to report both
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intervals, and interpret them taking into account their respective strengths and limitations. This

will be implemented in the empirical illustrations. We note that the above recommendation can

be related to that in Moon and Schorfheide (2012), who analyzed the di¤erences between Bayesian

and frequentist con�dence sets in models with partially identi�ed parameters. They recommended

reporting the estimates of the identi�ed set and the conditional prior along with the Bayesian

credible sets. Although the issues studied are di¤erent, the motivations for the recommendations

can both be stated as providing a full disclosure of the results when the Bayesian and Frequentist

perspectives can potentially arrive at substantially di¤erent conclusions.

6 Impulse response functions

Impulse responses play a central role for assessing the implications of a DSGE model. Below we

�rst discuss how to compute them and measure the associated uncertainty, and then comment on

their interpretation in the presence of stochastic singularity.

The computation follows from the vector moving average representation of the full model. For

simplicity, suppose there are no measurement errors. Then we have:

Yt = �(�) + C(�)(I �A(�)L)�1B(�)"t: (17)

The impulse responses at the horizon k are then given by IR (k; �) = C(�)A(�)kB(�)�1=2 (�). Let

ej be the j-th column of an identity matrix. Then, the response of the j-th variable to the l-th

orthogonal shock equals

e0jIR (k; �) el (18)

The inference on (18) can be carried out in three steps using the MCMC draws �(i):

� Step 1. Compute e0jIR(k; �̂)el, where �̂ denotes the mean (or the median) of �(i).

� Step 2. Compute e0jIR(k; �(i))el.

� Step 3. Sort the resulting values. Use their relevant percentiles to form an interval.

This procedure leads to pointwise MCMC Intervals for the impulse responses. We can construct

Asymptotic Intervals simply by replacing �(i) with e�(i) in Steps 2 and 3. We will report both intervals
in the empirical applications.

Consistent with the view elsewhere in this paper, here the impulse responses are interpreted as

a summarizing measure for a potentially misspeci�ed model. In other words, the impulse response
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function is treated as a deterministic function of the model�s structural parameters. Such a view is

compatible with stochastic singularity and also provides internal consistency for comparing impulse

responses across models. In contrast, if we equalized Yt in (17) with the actual observed time series,

then the analysis would make no sense, because under singularity there would exist no "t to make

(17) hold. The inconsistency associated with the latter view has also been discussed in Ingram,

Kocherlakota and Savin (1994), who then suggested that one should consider only nonsingular

models. Here, we hold the view that the impulse response analysis can still be meaningfully applied

to singular models, but only after explicitly acknowledging the models as approximations.

7 Forecasting

For nonsingular models, one- and muti-step ahead forecasts can be obtained by utilizing the fol-

lowing relationship (see, e.g., An and Schorfheide, 2007)

p(YT+1jY1:T ) =
Z
p(YT+1jY1:T ; �)p(�jY1:T )d�; (19)

where Y1:T denotes the observed sample, p(�jY1:T ) denotes the posterior distribution of � given Y1:T ,
and p(�jY1:T ; �) is the conditional density of YT+1 given Y1:T and � which can be evaluated using
the Kalman �lter. Consequently, the left hand side distribution can be generated by �rst sampling

from the posterior distribution of � and then drawing from the multivariate normal distribution

implied by p(YT+1jY1:T ; �). However, the same algorithm is no longer applicable in the presence

of singularity. In practice, the forecasting typically proceeds either by introducing measurement

errors or by treating some observables as unobserved. The latter approach ignores the information

from some observed time series and also only yields forecasts for a subset of the observables.

The composite likelihood framework o¤ers an opportunity for obtaining forecasts for all the

observed endogenous variables. This can be done by exploiting a relationship that is analogous to

(19). Speci�cally, we consider

pS(YT+1jY1:T ) =
Z
pS(YT+1jY1:T ; �)pS(�jY1:T )d�; (20)

where pS(�jY1:T ) equals p(�) in (16) and

pS(YT+1jY1:T ; �) _
SQ
s=1

ps(Ys;T+1jYs;1:T ; �): (21)

On the right hand side of (21), ps(�jYs;1:T ; �) denotes the conditional density of Ys;T+1 corresponding
to the s-th submodel, which can be evaluated using the standard Kalman �ltering algorithm. Using

(20) in place of (19) leads to the following forecasting procedure (Let �(i) (i = 1; :::; B) denote the

MCMC draws from (16)):
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� Step 1. Sample from pS(�jY1:T ; �(i)) de�ned in (21) for i = 1; :::; B: Denote the values by Y (i)T+1.

� Step 2. Compute ŶT+1 = B�1
PB
i=1 Y

(i)
T+1 and use ŶT+1 as the point forecast for YT+1:

� Step 3. If muti-step forecasts are needed, then let Y1:(T+1) = [Y 0T ; Ŷ 0T+1]0 and repeat Steps 1
and 2 with T replaced by T + 1. Continue this step until the desired horizon is reached.

In the procedure, Step 1 needs to be tailored depending on whether the subsets Ys;t are disjoint

(i.e., whether Ys1;t\ Ys2;t are empty for all s1 6= s2). If they are all disjoint, then sampling from

pS(�jY1:T ; �(i)) is equivalent to sampling separately from ps(Ys;T+1jYs;1:T ; �(i)) for s = 1; :::; S. Con-
sequently, Step 1 consists only of sampling from multivariate normal distributions. If some subsets

are overlapping (e.g., Ys1;t\ Ys2;t is not empty for some s1 6= s2); then the sampling needs to account

for such dependencies and a Metropolis step is in general needed. This can be achieved by �rst

obtaining a draw, say Y �T+1; from a proposal distribution and then deciding whether or not to keep

it by evaluating pS(Y �T+1jYs;1:T ; �). Here, a natural proposal distribution is the multivariate normal
distribution, with the conditional mean and variance set to those implied by an estimated �nite

order vector autoregression for Yt (t = 1; :::; T ). Importantly, irrespective of whether the subsets

are disjoint, pS(�jY1:T ) is always obtained using all the S submodels in the composite likelihood.
A key feature of the above procedure is that it allows us to obtain forecasts for all the observed

endogenous variables irrespective of the number of the structural shocks. This provides an oppor-

tunity for comparing forecasting performance between di¤erent singular models, as well as between

singular and nonsingular models. Such information can then be used to shed light on what aspects

of the model need to be further improved.

8 Empirical illustrations

This section applies the composite likelihood framework to analyze both small and medium scale

DSGE models. The models considered are singular versions of two in�uential models in the litera-

ture. The �rst is a prototypical three-equation model, studied in Clarida, Gali and Gertler (2000)

and Lubik and Schorfheide (2004). It is designed to model the behavior of the output, in�ation

and nominal interest rate and is often considered as a starting point for building more elaborate

models. The second is the model of Smets and Wouters (2007). This model features a rich array

of shocks and frictions and has become the workhorse model in both academia and central banks.

We take the perspective of a modeler, who starts with simple models with few shocks and

then gradually incorporates more shocks to examine the similarities and di¤erences. For each
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singular model, we �rst study the parameter estimates and then the impulse responses. Because

the identi�cation analysis can be conducted in the same way as in Qu and Tkachenko (2012,

Section 3), such studies are omitted here. The analysis, besides illustrating the composite likelihood

framework, also sheds lights on the following two issues. (1) What behavioral and policy parameters

are sensitive to singularity? (2) How does the e¤ect of a particular shock depend on the inclusion

of other shocks? As will be seen, after conditioning on the structure of the model, some structural

parameters and shock processes can have substantively di¤erent estimates depending on what other

shocks are allowed in the system. The experimentation will also reveal important model features

that remain essentially invariant across the di¤erent speci�cations.

8.1 Small scale singular models

We relate the analysis to that of Lubik and Schorfheide (2004). The two singular models are

speci�ed as follows. The �rst model is a¤ected only by the productivity shock "zt; while the second

is a¤ected also by the exogenous spending shock "gt. The sample consists of quarterly observations

over 1982:IV-1997:IV. This corresponds to the determinant monetary policy regime considered in

Lubik and Schorfheide (2004). We do not study the indeterminate regime, although the framework

permits such an analysis. The same priors are used for both models. They are given in Table 1

in Lubik and Schorfheide (2004), and are also reported here in the �rst four columns in Table 1.

The table (the last four columns) also reports the results for the original three shocks model. This

provides a useful point of reference for interpreting the estimates of the singular models.

8.1.1 The one shock model

The following subsets are used to form the composite likelihood: fytg ; f�t; g and frtg. Conse-
quently, we subject the model to the marginal behavior of these three processes.

Parameter estimates. The results (i.e., the mean, mode, 90% MCMC and Asymptotic In-

tervals) are reported in Panel (a) in Table 1. The estimates show two notable di¤erences when

compared with the nonsingular model. First, the in�ation weight parameter ( 1) is small. The

mean and mode are at 1.36 and 1.23 respectively, compared with 2.20 and 2.15 in the nonsingular

model. Because the remaining policy parameters are similar, the former estimate implies a more

dovish attitude towards in�ation than the latter. Second, the standard deviation of the productiv-

ity shock (�z) is high. The mean and mode are at 0.90 and 0.89, relative to 0.64 and 0.61 in the

nonsingular model. The other parameter values are relatively close across the two models.
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The two parameters  1 and �z are important for the economy�s response to a one standard

deviation shock in productivity. A lower  1 leads to a deeper decline in the aggregate price level,

which can potentially dampen the increase in the output. At the same time, a higher �z leads to

more pronounced responses in all the three variables. We now report impulse response functions

to further quantify the above e¤ects.

Impulse responses. Panel (A) in Figure 1 shows the responses to a one standard deviation

shock in productivity for horizons up to 20 quarters. In each sub�gure, the solid line corresponds

to the responses computed using the posterior mean. The two dashed lines correspond to 90%

Asymptotic Intervals, while the shaded area corresponds to 90% MCMC Intervals. We also include

in Panel (C) the responses in the nonsingular model for the purpose of comparison.

The three responses are all stronger than in the nonsingular model. This shows that the e¤ect

of a high �z dominates that of a low  1. Between the two intervals, the Asymptotic Intervals

are consistently wider. There, the large values in the responses are typically associated with the

simultaneous occurrence of a low  1 and a high � and �z. Such instances are more frequent in the

output of Procedure A than among the MCMC draws.

In summary, the results show that leaving out the exogenous spending and monetary policy

shocks can a¤ect signi�cantly the assessment of the productivity shock on the three variables. It

also pinpoints that the standard deviation of the productivity shock is the main source of such a

di¤erence. Next, we incorporate the exogenous spending shock into the analysis.

8.1.2 The two shocks model

The following subsets are used to form the composite likelihood: fyt; rtg and f�tg. Consequently,
we subject the model to the joint dynamics of the output and the interest rate process and the

marginal behavior of the in�ation rate process.

Parameter estimates. The values are reported in Panel (b) in Table 1. Interestingly, the value

of �z and the associated intervals are now very close to the nonsingular model. The value of  1

is also higher and close to the latter. The point estimates for �gz are noticeably lower , however

the di¤erence can be interpreted as moderate because of the high uncertainty associated with this

parameter. The remaining parameter values are all similar to those in the nonsingular model.

Impulse responses. The results are reported in Panel (B) in Figure 1. There, the point estimates

and the associated intervals are all similar to the nonsingular model. Therefore, leaving out the
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monetary policy shock alone has had little e¤ects on the assessment of the technology shock on

the three variables. Between the two intervals, the Asymptotic Intervals are consistently wider for

the output response case. There, the persistent strong responses are typically associated with high

values of �z, which are more frequent within Procedure A than among the MCMC draws.

Alternative speci�cations. We consider two alternative speci�cations of the composite likeli-

hood. First, we construct it using the following subsets: fyt; �tg and frtg. In this speci�cation, the
mode is located at (in the same ordering as in Table 1): f1:71; 0:21; 0:83; 3:48; 2:77; 0:34; 1:71; 0:80,
0:89;�0:16; 0:18; 0:66g. The MCMC Intervals are: [1:28; 2:19]; [0:24; 0:29]; [0:76; 0:89], [3:02; 3:98],
[1:87; 3:72]; [0:21,0:57],[1:49,2:20], [0:77; 0:85], [0:70; 0:99]; [�0:40; 0:44]; [0:15; 0:23]; [0:58; 0:86]. Next,
we construct it using the following subsets: fyt; �tg and fyt; rtg. Now the mode is at f1:85; 0:21; 0:82,
3:43; 2:72; 0:46; 1:69; 0:84; 0:91; 0:02,0:16,0:57g. The MCMC Intervals are: [1:26; 2:51], [0:12; 0:50],

[0:75; 0:87], [2:83; 4:09], [1:52; 3:70], [0:29; 0:72], [1:13; 2:48], [0:79; 0:89], [0:83; 0:95], [�0:24; 0:42],
[0:13; 0:20], [0:52; 0:70]. The above values are close to that in Panel (b) in Table 1, except that in

the �rst alternative speci�cation the interval for  2 is much narrower. The posterior means and the

Asymptotic Intervals are also similar to the respective values reported in Table 1. In addition, the

impulse responses to the productivity shock, as well as and their Asymptotic and MCMC intervals,

are all close to those in Panel (B) in Figure 1. The details are omitted here.

Therefore, depending on what other shocks are included in the model, the parameter estimates

and impulse responses to the productivity shock can be similar or substantially di¤erent. We now

further study such issues in the context of medium scale models.

8.2 Medium scale singular models

The Smets and Wouters (2007, henceforth SW) model consists of seven observed endogenous vari-

ables: output (yt), consumption (ct), investment (it), wage (wt), hours (lt), in�ation (�t) and

nominal interest rate (rt). It features seven shocks: total factor productivity (�at ), exogenous

spending (�gt ), monetary policy (�
r
t ), investment speci�c technology (�

i
t), price markup (�

p
t ), wage

markup (�wt ) and risk premium (�bt). The model is therefore exactly nonsingular. To facilitate

the discussion, we include the log linearized equations of the original model in Appendix B and

an annotated list of the parameters in Table 2. We also include in the table the posterior means,

modes and 90% intervals of the model�s parameters as reported in Tables 1A and 1B in SW.

Below, we consider three singular versions of this model. The �rst model consists of four shocks:

�at ; �
g
t ; �

r
t and �

i
t. This is a natural starting point, because the �rst three shocks are common building
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blocks for even small scale models and the fourth is important for linking the dynamics of the �nal

goods sector with that of the labor market. The second model includes �pt as an additional shock.

The third model incorporates also �wt . These shocks, when included, follow the same speci�cations

as in the original model. The same prior distributions and parameter bounds are used throughout

the analysis. The only exception is the price indexation parameter (�p), whose lower bound is

further reduced from 0.5 to 0.1, such that the latter is not binding when computing the posterior

modes. As in the original study, the following parameters are kept �xed �; �w; gy; �p; �w. The sample

consists of quarterly observations from 1965.I to 2004.IV, the same as in the original analysis.

8.2.1 The four shocks model

The following nonsingular subsets are used to form the composite likelihood: fyt; �t; rt; itg ; fctg ; fwtg
and fltg. Using fyt; �t; rt; itg as the maximum nonsingular subset follows from two considerations.

First, capturing the joint behavior of output, in�ation and nominal interest rate is a key require-

ment for even small scale models. The medium scale model considered here has a more �exible

structure, therefore is naturally positioned for such a task when endowed with three basic shocks

�at , �
g
t and �

r
t . Second, the allowance for the investment shock (�

i
t) permits incorporating the in-

vestment series into the subset. Meanwhile, the three subsets, fctg ; fwtg and fltg, ensure that the
parameter estimates will also be disciplined by the marginal behaviors of these three processes.

The results are reported in Table 3 and Figures 2-29. Below, we �rst discuss the parameter

estimates and then the impulse responses. These results will be contrasted with those reported in

SW. This will help to disentangle model features that have di¤erent sensitivities to the singularity.

Parameter estimates. As a preview, out of the 28 parameters, 21 of them have their con�dence

intervals (i.e., the unions of the MCMC Interval and the Asymptotic Interval) overlap with those

in SW reported in Table 2. Among the remaining seven parameters (�p; �a; �; �; r�; �r; �g), some

parameters (i.e., �p; �a; �) take on quite di¤erent values relative to SW. To discuss the above �ndings

in more detail, we start with the steady state parameters, and then turn to the exogenous shocks

parameters and the behavior parameters, and �nally the parameters in the monetary policy reaction

function. All the values we refer to are the posterior means unless stated otherwise.

The model�s steady state values are similar to those in SW. The trend growth rate (
) equals

0.38, smaller than but close to the original estimate of 0.43. The steady-state in�ation rate (4��)

equals 2.9 percent on an annual basis, close to the original estimate of 3.1 percent. The annual

discount rate (400(��1 � 1)) is about 0.48 percent, close to the original estimate of 0.65 percent.
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The implied mean steady-state nominal and real interest rates are, respectively, about 5.9% and

2.9% on an annual basis, close to 6.0% and 3.0% in the original model. Finally, the steady state

of the hours worked (�l) equals -0.65. This value is not far from the original estimate of 0.53 given

the series�high variability. The outcome of the above comparison re�ects one bene�t of keeping all

variables in the estimation: if some observables (such as lt) are not used in the analysis, then some

steady state parameters (such as �l) can become unidenti�ed.

Among the exogenous shock processes, as in SW, the productivity and exogenous spending

processes are estimated to be persistent while the investment and the monetary policy shock

processes are not. Further, for the productivity shock process, the AR(1) and the standard devia-

tion parameter (�a and �a) are estimated to be 0.99 and 0.55, higher than the original estimates

of 0.95 and 0.45. Importantly, when �a = 0:99, the half life of a shock equals 68 quarters, much

higher than the 14 quarters implied by �a = 0:95. The exogenous spending process has an AR(1)

coe¢ cient (�g) of 0.90 and a standard deviation parameter (�g) of 0.54, compared with 0.97 and

0.53 in SW. Finally, the AR(1) coe¢ cients for the investment (�i) and monetary policy (�r) shock

processes are very close to those in SW (i.e., 0.75 and 0.15 compared with 0.71 and 0.15), while

the standard deviation parameters (�i and �r) are both estimated to be mildly higher (i.e., 0.50

and 0.32 versus 0.45 and 0.24). In summary, here the most pronounced di¤erence pertains to the

productivity process. The implication is further studied below through impulse responses.

Now consider the behavioral parameters. The habit persistence parameter (�) is estimated to

be substantially smaller, being 0.37 compared with 0.71 in the original model. The price indexation

(�p) and rigidity (�p) parameters both take on small values. While the di¤erence in �p from SW is

mild, the di¤erence in �p is substantial. The latter equals 0.22 (i.e., an average price contract of 1.3

quarters) compared with 0.66 (i.e., an average price contract of 2.9 quarters) in SW. Meanwhile,

the wage indexation (�w) and rigidity (�w) parameters are both estimated to be high. The former

equals 0.85, compared with 0.58 in SW. The latter implies an average wage contract of 6.3 quarters,

compared with 3.3 quarters in SW. The remaining parameter values (�;  ; '; �c; �p; �l) are close

to their respective prior means, and are also broadly similar to the estimates in SW. In summary,

among the behavioral parameters, these governing habits and price and wage frictions are consis-

tently di¤erent that in the nonsingular model. As further demonstrated below, this translates into

markedly di¤erent responses to productivity shocks.

Next, consider the parameters from the monetary reaction function. The in�ation weight para-

meter (r�) equals 1.41, lower than 2.04 in SW. Meanwhile, the output weight parameter (ry) equals

0.17, higher than 0.08 in SW. Because the di¤erences are in opposite directions, the overall e¤ect is
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unclear and will be further studied through impulse responses. The other parameters are broadly

similar: the policy reacts fairly strongly to changes in output gap while there is a considerable

degree of interest rate smoothing.

In summary, the estimated four shocks model features a highly persistent productivity shock

process, low price rigidity, high wage rigidity and indexation, and low habit persistence. We now

turn to impulse responses to further quantity the e¤ects of such di¤erences.

Impulse responses. Figures 2 to 29 depict the responses of the seven observables to the four

shocks for horizons up to 20 quarters. Each �gure contains 4 sub�gures. The �rst three corresponds

to the singular models with 4 to 6 shocks, while the fourth corresponds to the nonsingular model.

In each sub�gure, the solid line corresponds to the impulse response function computed using the

posterior mean. The two dashed lines provide the 90% Asymptotic Intervals, while the shaded area

corresponds to the MCMC Intervals. To facilitate the comparison across di¤erent shocks, the y-axis

are speci�ed such that the same outcome variable has the same axis limits across the sub�gures.

The �rst sub�gures in Figures 2 to 29 con�rm that the productivity shock plays a prominent

role in driving business cycle �uctuations. More speci�cally, under a positive productivity shock,

the in�ation falls sharply (due to the small price inertia; see Figure 6(a)), causing the real wage

to rise sharply (due to the high wage indexation; see Figure 22(a)) and the real interest to fall

(because of the monetary policy reaction; see Figure 10(a)). On the real side of the economy, the

labor supply increases strongly piqued by the higher wage (Figure 18(a)). This leads to a sharp rise

in the output (Figure 2(a)), accompanied by a strong increase in the consumption (due to the low

habit persistence and lower real interest rate; see Figure 26(a)). Because the productivity shock

process is very persistent, its e¤ects on these variables are long lasting. The above responses are

substantially more pronounced than those in SW.

In contrast to the productivity shock, the responses to the monetary policy shock are close to

that in SW. Speci�cally, the response of in�ation is slightly stronger than in SW (Figure 7(a)).

The responses of interest rate and investment are almost identical to the latter (Figures 11(a) and

15(a)). There is initially a slight increase in the real wage growth (Figure 23(a)), as opposed to the

small decrease seen in SW. This is due to the drop in the price level and the high wage indexation.

This increase vanishes after 4 quarters. The initial responses in the output, hours worked and

consumption are all slightly stronger than in SW (Figures 3(a), 19(a) and 27(a)). Then, they

revert to levels similar to the latter. These initial di¤erences are due to the low habit persistence.

Now consider the investment shock. The responses in in�ation and interest rate are mildly
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stronger than in SW due to low price rigidity (Figures 8(a) and 12(a)). The response in real

wage growth shows a initial slight dip before reverting to positive levels comparable to those in

SW (Figure 24(a)). This initial decrease follows from the decrease in in�ation and the strong wage

indexation. The responses in output, investment, hours worked and consumption are all comparable

to that in SW (Figures 4(a), 16(a), 20(a) and 28(a)), except that the responses in the latter two

are mildly stronger due to the stronger response in interest rate and the low habit persistence.

Finally, consider the exogenous spending shock. The responses of in�ation and interest rate are

mildly stronger due to the low price rigidity (Figure 9(a) and 13(a)). The wage growth shows a

slight decline at short horizons due to the strong wage indexation (Figure 25(a)). The responses of

output, investment, hours worked and consumption are close to that in SW (Figures 5(a), 17(a),

21(a) and 29(a)), except that they exhibit a faster reversion to zero due to the smaller AR(1)

coe¢ cient of this shock process.

Therefore, while the responses to the monetary shock are similar to that in SW, the responses to

the productivity shock are substantially di¤erent. At the core of this di¤erence is the price rigidity

parameter. It is estimated to a small value in order to account for the highly volatile in�ation seen

in the data. This results in unusually strong responses of in�ation to productivity shocks, which

further lead to very strong responses of labor hours and consequently the output.

For some further comparison, we have also estimated the model using only the variables

yt; �t; rt and it. The mode is located at (the parameters are in the same order as in Table

3): f0:24; 0:40; 5:75; 1:28; 0:83; 1:26; 0:48; 0:83; 0:10; 0:43; 2:27; 1:00; 0:19, 0:20, 0:80, 0:99, 0:92, 0:64,
0:19, 0:43; 0:52; 0:50; 0:56; 0:26; 0:37; 0:17; 0:62; 0:00g. We note the following. First, the in�ation
weight parameter (r�) is substantively smaller than in the second column of Table 3. It is esti-

mated at 1.00, which equals the lower bound for this parameter. In fact, when this bound is further

relaxed, its value further decreases to hit the boundary between determinacy and indeterminacy.

In addition, an examination of the MCMC draws shows that the resulting values are distributed

tightly near 1.00. These values, along with the values of the other policy parameters, imply a mon-

etary policy that is more tolerant of in�ation and an economy that can potentially exhibit multiple

equilibria. Second, the price rigidity parameter implies an average price contract of 1:8 quarters.

Although it is higher than the 1:3 quarters implied by the second column of Table 3, it is still

substantially below the 2:9 quarters reported in SW. Third, the parameter estimates related to the

productivity process are similar to that in the second column of Table 3. Fourth, when evaluated at

the posterior mode, the model implies that the variables ct; wt and lt have the following variances:

0.09, 0.56 and 0.09, while the sample variances computed directly from the data equal 0.49, 0.38
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and 0.31, respectively. The substantial di¤erences in ct and lt re�ect the e¤ects of excluding these

observables from the estimation. In contrast, when evaluated at the values in the second column of

Table 3, the respective values now equal 0.61, 0.51 and 0.20, respectively. In addition, the variances

of yt; �t; rt; it in the three cases are: 5.06, 0.75, 3.84, 0.67; 5.08, 0.76, 8.45, 0.68; 5.66, 1.15, 4.15,

0.57. In summary, this exercise shows that treating some observables as unobserved can lead not

only to a qualitatively very di¤erent model, but also a notably di¤erent �t to the data.

8.2.2 The �ve shocks model

We incorporate the price markup (�pt ) shock as additional exogenous shock process. This shock

plays two roles. First, it constitutes an additional source for business cycle �uctuations. Second,

it breaks the rigid link between in�ation and price rigidity, permitting large and frequent changes

in the former to be compatible with a high level in the latter (c.f. the Phillips curve (B.3)).

Consequently, the model allows for a more �exible scope for modeling the responses of in�ation,

and consequently hours worked and output, to productivity shocks.

The following nonsingular subsets are used to form the composite likelihood: fyt; �t; rt; it; ltg ; fctg
and fwtg. The incorporation of lt into the nonsingular subset exploits the above increased �exibility,
while the sets fctg and fwtg continue to use their marginal behaviors to discipline the estimates.

Parameter estimates. The results are summarized in Table 3 (Columns 6 to 9). The values

can be contrasted with both the four shocks and the nonsingular model. First, the price rigidity

(�p) is now higher and close to that in SW. Second, the persistence of productivity shock process

is lower and closer to that in SW, with the half life of a shock reduced to 34 quarters. Third, the

in�ation weight (r�) and the output weight parameter (ry) are both close to SW. In fact, out of

the 31 parameters, all except 2 of them (� and �) now have con�dence intervals overlap with those

in SW. These three parameters remain close to their respective values in the four shocks model.

Impulse responses. The results are reported in the second sub�gures in Figures 2-29. Under a

positive shock in productivity, the decrease in in�ation is now much smaller than the four shocks

model (Figure 6(b)). The magnitude is now close to SW. The increase in real wage is also smaller

than the four shocks model (Figure 22(b)). It is still mildly more pronounced that in SW because

the productivity process remains more persistent. Note that because the in�ation response is much

reduced, the high level of wage indexation is no longer quantitatively important for determining

the real wage. Consequently, the response in hours worked is much less pronounced than in the

29



four shocks model and now similar to that in SW (Figure 18(b)). Overall, the responses of the

seven variables to productivity shocks are no longer substantially di¤erent from those in SW.

Responses to the monetary policy shock continue to be close to SW. Speci�cally, the in�ation

response is now almost identical to that in SW due to the increased price rigidity (Figure 7(b)).

As a result, the initial small increase in the real wage seen in the four shocks model is no longer

present (Figure 23(b)). The responses of hours worked, output and consumption are close to, but

slightly stronger than, those in SW due to the low habit persistence (Figures 19(b), 3(b), 27(b)).

Responses to the investment and exogenous spending shocks are now close to those in SW. As

in the monetary policy shock case, the in�ation responses are now almost identical to that in SW

due to the increased price rigidity (Figures 8(b), 9(b)). The initial small increases in the real wage

are no longer present (Figures 24(b), 25(b)). The initial responses in hours worked, output and

consumption are only slightly stronger that those in SW (Figures 20(b), 21(b), 4(b), 5(b), 28(b),

29(b)). The di¤erence follows from the low habit persistence.

In summary, the addition of the price markup shock leads to a signi�cant increase in the price

rigidity and decrease in the persistence of the productivity process. These two factors both lead to

milder responses to productivity shocks, while also bring the responses to the other shocks closer

to those in SW. These responses are no longer substantially di¤erent from those in the latter.

8.2.3 The six shocks model

We incorporate the wage markup shock (�wt ) as an additional shock process. The following subsets

are used to form the composite likelihood: fyt; �t; rt; it; lt; wtg and fctg.

Parameter estimates. The estimation results are summarized in the last four columns in Table

3. The values move further toward those in SW. The wage indexation parameter (�w) is now at

a value close to that in SW. Out of the 34 parameters, all except 2 (� and �) have con�dence

intervals overlap with those in SW.

Impulse responses. The results are reported in the third sub�gures in Figures 2-29. The re-

sponses are overall similar to those in the �ve shocks model. Therefore, adding the new shock has

not a¤ected the assessment of the four basic shocks. These responses are also close to that in SW,

except that the initial responses in hours worked, output and consumption are slightly di¤erent

due to the low habit persistence.

In this section, we have considered both small and medium scale models with the number of

shocks ranging between 1 and 7. We have confronted all these models with the data. Some �ndings
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are as follows. (1) Among the structural parameters, those governing the steady state tend to remain

stable across speci�cations, while those related to the productivity process and the frictions can vary

substantially. (2) The estimated e¤ects of a particular shock can crucially depend on what other

shocks are permitted in the model. (3) Meanwhile, for the small scale models considered, whether

or not to include the monetary policy shock has little e¤ects on the estimated responses to the

productivity shock, while for the medium scale models, whether or not to include the wage markup

and risk premium shocks has little e¤ects on the estimated responses to the productivity, monetary

policy, investment and exogenous spending shocks. (4) There can exist di¤erent parameter values

that yield similar impulse responses for some shocks while very di¤erent responses for others. This

re�ects an identi�cation issues, implying that relying on matching impulse responses to a particular

shock can be insu¢ cient for determining all the parameters. (5) Overall, the composite likelihood

framework is informative not only for detecting the above similarities and di¤erences, but also for

pinpointing the sources (i.e., the parameters and their values) that generate them.

9 Conclusion

This paper has developed a uni�ed econometric framework for analyzing both singular and nonsin-

gular DSGE models. The value of this framework is not in providing a unique criterion function

that achieves the highest e¢ ciency, but in providing a platform that allows for �exible choices of

criterion functions, and in letting all such choices speak to the data. The framework naturally

allows for carrying out analyses related to parameter identi�cation, estimation, inference and fore-

casting. Applications to both small and medium scales model show that it can be informative

about revealing the similarities and di¤erences between di¤erent models and also for pinpointing

the sources that generate them.

The framework can be further developed along several dimensions. First, although the paper

has focused on linearized models, extensions to nonlinear models can be possible. This is because

for the latter one can still de�ne nonsingular submodels, and use them to form the composite

likelihood. Second, in some situations, one may have di¤erent measurements for the same variable

(say GDP or hours worked) and wish to use all of them to discipline the estimates. The current

framework can be applicable. That is, one can construct component likelihoods using separately

these measurements and then form an overall criterion function. Finally, on the application side,

the paper has not considered forecasting comparisons due to the space constraint. This merits a

further study as the results can shed further lights on the usefulness of singular models.
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Appendix A. Proofs
Proof of Lemma 1. Consider the matrix polynomial H(z; �) and treat it as a function of a scalar
z with jzj > 1. Because its row dimension exceeds the column dimension, there exists a sequence
of elementary row operations (i.e., left multiplying H(z; �) by elementary matrices that depend on
nonnegative powers of z) to reduce its last row to zeros. Call the last row of the product of these
elementary matrices T (z; �). Then: T (z; �)Yt = T (z; �)H(z; �)�t = 0 for all t. This in term implies
T (L; �)Yt = 0. The result follows because T (L; �) depends only on nonnegative powers of L.
Proof of Theorem 1. The result follows from Theorems 1 and 2 in Qu and Tkachenko (2012).
Here we still include the complete details for the matter of completeness.

We �rst simplify the representation for GS(�). De�ne the following correspondence:

fs(!; �) ! fs(!; �)
R with fs(!; �)

R =

24 Re(fs(!; �)) Im(fs(!; �))

� Im(fs(!; �)) Re(fs(!; �))

35 ; (A.1)

where Re(�) and Im(�) denote the real and the imaginary part of a complex matrix, i.e., if C = A+Bi,
then Re(C) = A and Im(C) = B. Let Rs(!; �) = vec(fs(!; �)R), then�

@ vec fs(!; �)

@�0

���@ vec fs(!; �)
@�0

�
=
1

2

�
@Rs(!; �)

@�0

�0�@Rs(!; �)
@�0

�
:

In addition, let

�Rs(!; �) =

24 Rs(!; �)

1p
�
�s(�)

35 :
Then, GS(�) can be equivalently represented as

GS(�) =
1

2

SX
s=1

(Z �

��

�
@ �Rs(!; �0)

@�0

�0�
@ �Rs(!; �0)

@�0

�
d!

)
:

This representation is useful because the elements of the function �Rs(!; �) are all real valued. This
allows us adopt the arguments in Theorem 1 in Rothenberg (1971) to prove the result.

Suppose �0 is not locally identi�ed. Then, there exists a sequence of vectors f�kg1k=1 approach-
ing �0 such that for every k:

�Rs(!; �0) = �Rs(!; �k) for all ! 2 [��; �] and all s = 1; :::; S:

For an arbitrary ! 2 [��; �], s 2 f1; :::Sg and j 2 f1; :::;dim(�)g, by the mean value theorem and
the di¤erentiability of fs(!; �) and �s(�) in �, we have

0 = �Rs;j(!; �k)� �Rs;j(!; �0) =
@ �Rs;j(!;e�(s; j; !))

@�0
(�k � �0);

where the subscript j denotes the j-th element of the vector and e�(s; j; !) lies between �k and �0
and in general depends on all the three arguments. Let dk = (�k � �0)= k�k � �0k, then

@ �Rs;j(!;e�(s; j; !))
@�0

dk = 0 for every k.
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The sequence fdkg is an in�nite sequence on the unit sphere. Therefore it has a convergent subse-
quence with a limit d (note that d does not depend on s, j or !). Without loss of generality, we
assume fdkg itself is the convergent subsequence. As �k ! �0, dk approaches d and we have

lim
k!1

@ �Rs;j(!;e�(s; j; !))
@�0

dk =
@ �Rs;j(!; �0)

@�0
d = 0;

where the convergence holds because f(!; �) is continuously di¤erentiable in �. Because this holds
for an arbitrary j, it holds for the full vector �Rs(!; �0), implying [@ �Rs(!; �0)=@�0]d = 0, which fur-
ther implies d0[@ �Rs(!; �0)=@�0]0[@ �Rs(!; �0)=@�0]d = 0. Because the above result holds for arbitrary
! and s, it also holds when integrating over ! 2 [��; �] and summing over s 2 f1; :::Sg, leading to

d0
SX
s=1

(Z �

��

�
@ �Rs(!; �0)

@�0

�0�
@ �Rs(!; �0)

@�0

�
d!

)
d = 0:

Because d 6= 0, GS(�0) is singular.
To show the converse, suppose that GS(�) has constant rank � < q in a neighborhood of �0

denoted by �(�0). Then, consider the characteristic vector c(�) associated with one of the zero roots
of GS(�). Because

SX
s=1

(Z �

��

�
@ �Rs(!; �)

@�0

�0�
@ �Rs(!; �)

@�0

�
d!

)
� c(�) = 0

we have
SX
s=1

Z �

��

�
@ �Rs(!; �)

@�0
c(�)

�0�
@ �Rs(!; �)

@�0
c(�)

�
d! = 0:

Since the integrand is continuous in ! and always non-negative, we must have�
@ �Rs(!; �)

@�0
c(�)

�0�
@ �Rs(!; �)

@�0
c(�)

�
= 0

for all ! 2 [��; �], all � 2 �(�0) and all s 2 f1; :::Sg. Consequently,

@ �Rs(!; �)

@�0
c(�) = 0 (A.2)

for all ! 2 [��; �], all � 2 �(�0) and all s 2 f1; :::Sg. Because GS(�) is continuous and has constant
rank in �(�0), the vector c(�) is continuous in �(�0). Consider the curve � de�ned by the function
�(v) which solves for 0� v � �v the di¤erential equation: @�(v)=@v = c(�) with �(0) = �0. Then,

@ �Rs(!; �(v))

@v
=
@ �Rs(!; �(v))

@�(v)0
@�(v)

@v
=
@ �Rs(!; �(v))

@�(v)0
c(�) = 0

for all ! 2 [��; �], 0 � v � �v and all s 2 f1; :::Sg, where the last equality uses (A.2). Thus,
�Rs(!; �) is constant on the curve � for all s 2 f1; :::Sg. This implies that along the curve we have
observational equivalence. This completes the proof.
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Proof of Lemma 2. First consider the frequency domain formulation as in (C.2). The arguments
in Lemma 1 in Hannan (1973) implies:

T�1
T�1X
j=1

tr
�
f�1s (!j ; �)Is;T (!j)

	 a:s! 1

2�

Z �

��
tr
�
f�1s (!; �)fs;0(!)

	
d!;

T�1tr
�
f�1s (0; �)Is;T (0; �)

	 a:s! 1

2�

�
�s;0 � �s(�)

�0
f�1s (0; �)

�
�s;0 � �s(�)

�
:

Note that the key step in Hannan�s proof is in uniformly approximating f�1s (!; �) with a Cesaro sum
of its Fourier series, which holds also for multivariate series provided that the smallest eigenvalues
of f�1s (!; �) are strictly bounded away from 0 for all ! 2 [��; �]. Using these two results, Lemma
2.1 then follows because T�1

PT�1
j=1 log det(fs(!j ; �)) ! 1

2�

R �
�� log det(fs(!; �))d!. For the time

domain likelihood, Lemma 2.1 follows from Hansen and Sargent (1993, p.49-52). The remaining
two results in the Lemma follow from the arguments in Hansen and Sargent (1993, p.53).
Proof of Theorem 2. We �rst analyze the frequency domain likelihood and then verify that the
time domain estimation yields the same asymptotic distribution. Because the e¤ect of the prior
vanishes asymptotically, it can be omitted from the derivations. Let �̂T denote the mode. We have

T�1=2
@`(�̂T )

@�
= 0; (A.3)

while the pseudo-true value �0 satis�es

T 1=2
@`1 (�0)

@�
= 0: (A.4)

Consider a Taylor expansion of (A.3) around �0 :

@` (�0)

@�
+
@2`(��)

@�@�0
(�̂T � �0) = 0;

where �� lies between �̂T and �0. Rearrange terms and apply (A.4):

T 1=2(�̂T � �0) =
�
� 1
T

@2`(��)

@�@�0

��1�
T�1=2

@` (�0)

@�
� T 1=2@`1 (�0)

@�

�
:

On the right hand side, the term inside the brackets converges to M de�ned in the theorem, while
the term in the parentheses equals

1

2T 1=2

SX
s=1

8<:
T�1X
j=0

�
@vecfs(!j ; �0)

@�0

�� �
f�1s (!j ; �0)

0 
 f�1s (!j ; �0)
�
vec (Is;T (!j)� fs;0(!j)) (I)

+
1

�

TX
j=1

@�s(�0)
0

@�
f�1s (0; �0)

�
Ys;t��s;0

�9=;+ op (1) : (II)

Term (I) satis�es a CLT with limT!1 E (vec fIs;T (!j)� fs;0(!j)g vec fIh;T (!j)� fh;0(!j)g�) =
fs;h;0(!j)

0 
 fs;h;0(!j). This leads to V1;s;h de�ned in the theorem. Term (II) also satis�es a CLT
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with limT!1 E(Ys;t��s;0)(Yh;t��s;0)0 = 2�fs;h;0(0). This leads to V2;s;h de�ned in the theorem.
The covariance of Terms (I) and (II) is zero because of Assumption MI.

Next, we consider the time domain formulation. Because T 1=2(�̂T ��0) = Op(1), we can restrict
our analysis to the following compact set

�
� : T 1=2 k� � �0k �M

	
, where for any � > 0, M can be

chosen such that �̂T falls into the set with probability at least 1� � in large samples.
Up to some constant, the time domain Gaussian log likelihood that corresponds to the submodel

s can also be represented as (see Hannan, 1973 and Hansen and Sargent, 1993)

`s(�) = �
1

2
log detG�1s (�)� 1

2
[Ys � �s(�)]0G�1s (�) [Ys � �s(�)] ;

where Ys is a matrix whose t-th row is given by Y 0s;t and �s(�) and Gs (�) correspond to the mean
and covariance matrix of Ys implied by the model. This representation di¤ers from (C.1) in the
handling of the initial condition, whose e¤ects vanish asymptotically.

Below, we show that the �rst order condition in the time domain is asymptotically equivalent
to that in the frequency domain. The derivative of `s(�) with respect to the k-th element of �
multiplied by T�1=2 equals

1

2T 1=2
@ log detG�1s (�)

@�k
� 1

2T 1=2
[Ys � �s(�)]0

@G�1s (�)

@�k
[Ys � �s(�)]

+T�1=2
@�s(�)

0

@�k
G�1s (�) [Ys � �s(�)]

= (A) + (B) + (C):

We now analyze (A), (B) and (C) separately.
The analysis of Term (B) uses the results in Brockwell and Davis (1991, p.392-393) but applied

to multivariate processes. First, de�ne qs;m(!; �) to be the m-th order Fourier series approximation
to f�1s (!; �). With m = O(T 1=5), the approximation error satis�es



qs;m(!; �)� f�1s (!; �)


 +

@qs;m(!; �)=@�k � @f�1s (!; �)=@�k



 = O(T�3=5) uniformly over ! and �. This implies

T�1=2
T�1X
j=0

Is;T (!j)

�
@f�1s (!; �)

@�k
� @qs;m(!; �)

@�k

�
= op (1) :

Next, view (4�2)�1qs;m(!; �) as a spectral density and let eH�1
s (�) be the covariance matrix of the

resulting VMA(m) process. Similar to Displays (10.8.17) and (10.8.45) in Brockwell and Davis
(1991, p.392-393), we have

T�1=2 [Ys � �s(�)]0
 
@G�1s (�)

@�k
� @ eH�1

s (�)

@�k

!
[Ys � �s(�)] = op (1) :

Then, applying the relationship between qs;m(!; �) and eH�1
s (�), we have

T�1=2 [Ys � �s(�)]0
@ eH�1

s (�)

@�k
[Ys � �s(�)]� T�1=2

T�1X
j=0

Is;T (!j)
@qs;m(!; �)

@�k
= op (1) :
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The results in the above three displays hold uniformly over the compact set de�ned above. Com-
bining them, we have

(B) = � 1

2T 1=2

T�1X
j=0

Is;T (!j)
@f�1s (!; �)

@�k
+ op (1) : (A.5)

For Term (A), note that

(A) =
1

2T 1=2
tr

�
Gs (�)

@G�1s (�)

@�k

�
=

1

2T 1=2
trE

�
[Ys(�)� �s(�)] [Ys(�)� �s(�)]0

@G�1s (�)

@�k

�
=

1

2T 1=2
trE

�
[Ys(�)� �s(�)]0

@G�1s (�)

@�k
[Ys(�)� �s(�)]

�
;

where Ys(�) denote a random vector with mean �s(�) and covarianceGs (�). Applying the argument
for proving (B) and then take the expectation, we have

(A) =
1

2T 1=2

T�1X
j=0

E tr
�
Is;T (!j)

@f�1s (!j ; �)

@�k

�
+o (1) =

1

2T 1=2

T�1X
j=0

tr

�
fs(!j ; �)

@f�1s (!j ; �)

@�k

�
+o (1) :

(A.6)
Finally, applying the same argument used for (B) to Term (C), we have

(C) =
1

�T 1=2

TX
j=1

@�s(�)
0

@�k
f�1s (0; �) (Ys � �s(�)) + o (1) : (A.7)

Combining the leading terms of (A.6), (A.5) and (A.7), we arrive at the �rst order derivative of
the frequency domain likelihood (C.2) with respect to �k. This completes the proof.
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Appendix B. The Smets and Wouters (2007) Model
The model has seven observable endogenous variables and seven shocks. Below is an outline

of the log linearized system. Its singular versions, as explained in the main text, are obtained by
removing a subset or all of the following three shocks: the risk premium shock, the price market
shock and the wage mark up shock.
The aggregate resource constraint: It satis�es

yt = cyct + iyit + zyzt + "
g
t :

Output (yt) is composed of consumption (ct), investment (it), capital utilization costs as a function
of the capital utilization rate (zt), and exogenous spending ("

g
t ). The latter follows an AR(1) model

with an i.i.d. Normal error term (�gt ); and is also a¤ected by the productivity shock (�
a
t ) as follows:

"gt = �g"
g
t�1 + �ga�

a
t + �

g
t :

The coe¢ cients cy; iy and zy are functions of the steady state spending-output ratio (gy), steady
state output growth (
 = 1 + �
=100), capital depreciation (�), household discount factor (�);
intertemporal elasticity of substitution (�c), �xed costs in production (�p), and share of capital
in production (�): iy = (
 � 1 + �)ky; cy = 1 � gy � iy; and zy = Rk�ky. Here, ky is the steady
state capital-output ratio, and Rk� is the steady state rental rate of capital: ky = �p (L�=k�)

��1 =

�p
�
((1� �)=�)

�
Rk�=w�

����1
with w� =

�
��(1� �)(1��)=[�p

�
Rk�
��
]
�1=(1��)

, and Rk� = ��1
�c �
(1� �):
Households: The consumption Euler equation is

ct = c1ct�1 + (1� c1)Etct+1 + c2(lt � Etlt+1)� c3(rt � Et�t+1)� "bt : (B.1)

where lt is hours worked, rt is the nominal interest rate, and �t is in�ation. The disturbance "bt
follows

"bt = �b"
b
t�1 + �

b
t :

The relationship of the coe¢ cients in (B.1) to the habit persistence (�), steady state labor market
mark-up (�w), and other structural parameters highlighted above is:

c1 =
�=


1 + �=

; c2 =

(�c � 1)
�
wh�L�=c�

�
�c (1 + �=
)

; c3 =
1� �=


(1 + �=
)�c
; where wh�L�=c� =

1

�w

1� �
�

Rk�ky
1

cy

with Rk� and ky de�ned as above and cy = 1� gy � (
 � 1 + �)ky:
The dynamics of households�investment are given by

it = i1it�1 + (1� i1)Eti+1 + i2qt + "it;

where "it is a disturbance to the investment speci�c technology process, given by

"it = �i"
i
t�1 + �

i
t:
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The coe¢ cients satisfy i1 = 1=(1+�
(1��c)) and i2 = 1=[
�
1 + �
(1��c)

�

2'], where ' is the steady

state elasticity of the capital adjustment cost function. The corresponding arbitrage equation for
the value of capital is given by

qt = q1Etqt+1 + (1� q1)Etrkt+1 � (rt � Et�t+1)�
1

c3
"bt , (B.2)

with q1 = �
��c (1� �) = (1� �)=(Rk� + 1� �):
Final and intermediate goods market: The aggregate production function is

yt = �p (�k
s
t + (1� �) lt + "at ) ;

where � captures the share of capital in production, and the parameter �p is one plus the �xed
costs in production. Total factor productivity follows the AR(1) process

"at = �a"
a
t�1 + �

a
t :

The current capital service usage (kst ) is a function of capital installed in the previous period (kt�1)
and the degree of capital utilization (zt): kst = kt�1 + zt: Furthermore, the capital utilization is
a positive fraction of the rental rate of capital (rkt ): zt = z1r

k
t ; where z1 = (1 �  )= ;and  is a

positive function of the elasticity of the capital utilization adjustment cost function and normalized
to be between zero and one. The accumulation of installed capital (kt) satis�es

kt = k1kt�1 + (1� k1) it + k2"it;

where "it is the investment speci�c technology process as de�ned before, and k1 and k2 satisfy
k1 = (1� �)=
 and k2 = (1� k1)

�
1 + �
(1��c)

�

2':

The price mark-up satis�es �pt = � (kst � lt) + "at � wt, where wt is the real wage. The New
Keynesian Phillips curve is

�t = �1�t�1 + �2Et�t+1 � �3�pt + "
p
t ; (B.3)

where "pt is a disturbance to the price mark-up, following the ARMA(1,1) process given by

"pt = �p"
p
t�1 + �

p
t � �p�

p
t�1:

The MA(1) term is intended to pick up some of the high frequency �uctuations in prices. The
Phillips curve coe¢ cients depend on price indexation (�p) and stickiness (�p), the curvature of the
goods market Kimball aggregator (�p), and other structural parameters:

�1 =
�p

1 + �
(1��c)�p
; �2 =

�
(1��c)

1 + �
(1��c)�p
; �3 =

1

1 + �
(1��c)�p

�
1� �
(1��c)�p

� �
1� �p

�
�p
��
�p � 1

�
�p + 1

� :

Cost minimization by �rms implies that the rental rate of capital satis�es rkt = � (kst � lt) + wt:
Labor market: The wage mark-up is

�wt = wt �
�
�llt +

1=

1� �=
 (ct � (�=
)ct�1)
�
;
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where �l is the elasticity of labor supply. Real wage wt adjusts slowly according to

wt = w1wt�1 + (1� w1) (Etwt+1 + Et�t+1)� w2�t + w3�t�1 � w4�wt + "wt ;

where the coe¢ cients are functions of wage indexation (�w) and stickiness (�w) parameters, and
the curvature of the labor market Kimball aggregator (�w):

w1 =
1

1 + �
(1��c)
; w2 =

1 + �
(1��c)�w
1 + �
(1��c)

; w3 =
�w

1 + �
(1��c)
;

w4 =
1

1 + �
(1��c)

�
1� �
(1��c)�w

�
(1� �w)

�w ((�w � 1) �w + 1)
:

The wage mark-up disturbance follows an ARMA(1,1) process:

"wt = �w"
w
t�1 + �

w
t � �w�wt�1:

Monetary policy: The empirical monetary policy reaction function is

rt = �rt�1 + (1� �) (r��t + ry (yt � y�t )) + r�y((yt � y�t )�
�
yt�1 � y�t�1

�
) + "rt :

The monetary shock "rt follows an AR(1) process:

"rt = �r"
r
t�1 + �

r
t :

The variable y�t stands for the time-varying optimal output level that is the result of a �exible
price-wage economy. Since the equations for the �exible price-wage economy are essentially the
same as above, but with the variables �pt and �

w
t set to zero, we omit the details.

B-3



Appendix C. Some details on implementation
This appendix shows how to compute the Gaussian likelihood for a nonsingular submodel in

both the time and the frequency domain. The material is not new; it is included to facilitate the
methods�implementation in practice.
The time domain Gaussian likelihood for a nonsingular submodel. The model is

Ys;t = Ps�(�) + PsC(�)Xt + PsD(�)vt; Xt = A(�)Xt�1 +B(�)"t;

where "t � i:i:d:N(0; Q); vt � i:i:d:N(0;H) and E ("tv0t) = V:

Initialization. Suppose the initial condition satis�es X0j0 � N(0; P0j0), where P0j0 is a symmetric
positive de�nite matrix.
Prediction. Obtain the optimal forecast of Xt and its mean squared forecast error (MSE) using the
information available at t� 1:

Xtjt�1 = A(�)Xt�1jt�1

Ptjt�1 = A(�)Pt�1jt�1A(�)
0 +B(�)QB(�)0;

The corresponding prediction error for Ys;t and its MSE then equal

�t = Ys;t � Ps�(�)� PsC(�)Xtjt�1;
Ft = Ps

�
C(�)Ptjt�1C(�)

0 +D(�)HD(�)0 + C(�)B(�)V D(�)0 +D(�)V 0B(�)0C(�)0
�
P 0s:

Updating. Upon observing Yt, compute the optimal estimator for the state and its MSE as

Xtjt = Xtjt�1 +
�
Ptjt�1C(�)

0 +B(�)V D(�)0
�
P 0sF

�1
t �t

Ptjt = Ptjt�1 �
�
Ptjt�1C(�)

0 +B(�)V D(�)0
�
P 0sF

�1
t Ps

�
C(�)Ptjt�1 +D(�)V

0B(�)0
�
:

After implementing the predication and updating steps sequentially for t = 1; 2; :::; T; we obtain
the log likelihood:

ls (�) = �
nT

2
ln (2�)� 1

2

TX
t=1

log det(Ft)�
1

2

TX
t=1

�0tF
�1
t �t: (C.1)

The frequency domain Gaussian likelihood for a nonsingular submodel. Let !j denote
the Fourier frequencies, i.e., !j = 2�j=T (j = 1; 2; :::; T � 1). The discrete Fourier transforms
and periodograms of Ys;t at such frequencies are: ws;T (!j) = (2�T )�1=2

PT
t=1 Ys;t exp (�i!jt) and

Is;T (!j) = ws;T (!j)ws;T (!j)
�. At the zero frequency, let ws;T (0; �) = (2�T )�1=2

PT
t=1 (Ys;t � Ps�(�))

and Is;T (0; �) = ws;T (0; �)ws;T (0; �)
�. The spectral density matrix satis�es

fs(!; �) = (2�)
�1PsH(exp(�i!); �)�(�)H(exp(�i!); �)�P �s :

An approximate log-likelihood for � up a constant is then given by (see Hansen and Sargent, 1993)

�1
2

T�1X
j=1

�
log det (fs(!j ; �)) + tr

�
f�1s (!j ; �)Is;T (!j)

	�
(C.2)

�1
2

�
log det (fs(0; �)) + tr

�
f�1s (0; �)Is;T (0; �)

	�
:
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Table 2: Parameters and estimates of the original Smets and Wouters (2007) model
Parameter interpretation Prior Posterior

Distribution Mean SD Mode Mean MCMC
� Share of capital in production Normal 0.30 0.05 0.19 0.19 [0.16,0.21]

 Elasticity of capital utilization adjustment cost Beta 0.50 0.15 0.54 0.54 [0.36,0.72]

' Investment adjustment cost Normal 4.00 1.50 5.48 5.74 [3.97,7.42]

�c Elasticity of inertemporal substitution Normal 1.50 0.38 1.39 1.38 [1.16,1.59]

� Habit persistence Beta 0.70 0.10 0.71 0.71 [0.64,0.78]

�p Fixed costs in production Normal 1.25 0.13 1.61 1.60 [1.48,1.73]

�w Wage indexation Beta 0.50 0.15 0.59 0.58 [0.38,0.78]

�w Wage stickiness Beta 0.50 0.10 0.73 0.70 [0.60,0.81]

�p Price indexation Beta 0.50 0.15 0.22 0.24 [0.10,0.38]

�p Price stickiness Beta 0.50 0.10 0.65 0.66 [0.56,0.74]

�l Labor supply elasticity Normal 2.00 0.75 1.92 1.83 [0.91,2.78]

r� Taylor rule: in�ation weight Normal 1.50 0.25 2.03 2.04 [1.74,2.33]

r�y Taylor rule: output gap change weight Normal 0.13 0.05 0.22 0.22 [0.18,0.27]

ry Taylor rule: output gap weight Normal 0.13 0.05 0.08 0.08 [0.05,0.12]

� Taylor rule: interest rate smoothing Beta 0.75 0.10 0.81 0.81 [0.77,0.85]

�a Productivity shock AR Beta 0.50 0.20 0.95 0.95 [0.94,0.97]

�b Risk premium shock AR Beta 0.50 0.20 0.18 0.22 [0.07,0.36]

�g Exogenous spending shock AR Beta 0.50 0.20 0.97 0.97 [0.96,0.99]

�i Investment shock AR Beta 0.50 0.20 0.71 0.71 [0.61,0.80]

�r Monetary policy shock AR Beta 0.50 0.20 0.12 0.15 [0.04,0.24]

�p Price mark-up shock AR Beta 0.50 0.20 0.90 0.89 [0.80,0.96]

�p Price mark-up shock MA Beta 0.50 0.20 0.74 0.69 [0.54,0.85]

�w Wage mark-up shock AR Beta 0.50 0.20 0.97 0.96 [0.94,0.99]

�w Wage mark-up shock MA Beta 0.50 0.20 0.88 0.84 [0.75,0.93]

�ga Cross-corr.: tech. and exog. spending shocks Normal 0.50 0.25 0.52 0.52 [0.37,0.66]

�a Productivity shock std. dev. IGamma 0.10 2.00 0.45 0.45 [0.41,0.50]

�b Risk premium shock std. dev. IGamma 0.10 2.00 0.24 0.23 [0.19,0.27]

�g Exogenous spending shock std. dev. IGamma 0.10 2.00 0.52 0.53 [0.48,0.58]

�i Investment shock std. dev. IGamma 0.10 2.00 0.45 0.45 [0.37,0.53]

�r Monetary policy shock std. dev. IGamma 0.10 2.00 0.24 0.24 [0.22,0.27]

�p Price mark-up shock std. dev. IGamma 0.10 2.00 0.14 0.14 [0.11,0.16]

�w Wage mark-up shock std. dev. IGamma 0.10 2.00 0.24 0.24 [0.20,0.28]


 Trend growth: real GDP, In�., Wages Normal 0.40 0.10 0.43 0.43 [0.40,0.45]

r Discount rate Gamma 0.25 0.10 0.16 0.16 [0.07,0.26]

� Steady state in�ation rate Gamma 0.62 0.10 0.81 0.78 [0.61,0.96]

l Steady state hours worked Normal 0.00 2.00 -0.1 0.53 [-1.3,2.32]

Note. The prior distributions are taken from Smets and Wouters�(2007) Dynare code. MCMC stands for 90% intervals obtained

using the quantiles of the MCMC draws. The discount rate r = 100(��1 � 1). The following �ve parameters are kept �xed:
capital depreciation rate (� = 0:025); steady state labor market mark-up (�w = 1:50); steady state exogenous spending-output

ratio (gy = 0:18), curvatures of Kimball goods and labor market aggregators (�p = �w = 10).



Table 3: Estimation results for medium scale models

The four shocks model The �ve shocks model The six shocks model

Mode Mean MCMC Asymptotic Mode Mean MCMC Asymptotic Mode Mean MCMC Asymptotic

� 0.25 0.25 [0.21,0.29] [0.21,0.29] 0.28 0.28 [0.25,0.32] [0.25,0.32] 0.28 0.28 [0.25,0.31] [0.24,0.32]

 0.41 0.45 [0.24,0.67] [0.30,0.59] 0.43 0.48 [0.31,0.64] [0.28,0.65] 0.43 0.44 [0.29,0.61] [0.28,0.62]

' 5.65 5.74 [3.96,7.70] [4.91,6.55] 5.10 5.29 [3.60,7.18] [4.03,6.55] 5.04 5.20 [3.54,7.02] [3.94,6.57]

�c 1.62 1.60 [1.31,1.91] [1.32,1.91] 1.73 1.70 [1.35,2.11] [1.27,2.12] 1.79 1.74 [1.42,2.11] [1.45,2.04]

� 0.34 0.37 [0.29,0.45] [0.25,0.49] 0.29 0.31 [0.24,0.39] [0.24,0.38] 0.32 0.34 [0.26,0.40] [0.27,0.40]

�p 1.32 1.34 [1.20,1.49] [1.21,1.48] 1.47 1.49 [1.36,1.63] [1.40,1.59] 1.58 1.59 [1.47,1.72] [1.50,1.69]

�w 0.87 0.85 [0.74,0.94] [0.77,0.92] 0.86 0.83 [0.71,0.93] [0.76,0.90] 0.58 0.56 [0.35,0.76] [0.42,0.71]

�w 0.86 0.84 [0.76,0.89] [0.72,0.95] 0.60 0.60 [0.44,0.73] [0.38,0.79] 0.78 0.76 [0.67,0.84] [0.62,0.87]

�p 0.12 0.13 [0.05,0.23] [0.06,0.22] 0.21 0.22 [0.10,0.37] [0.14,0.31] 0.24 0.27 [0.13,0.43] [0.13,0.42]

�p 0.23 0.22 [0.14,0.31] [0.15,0.28] 0.71 0.70 [0.61,0.80] [0.61,0.80] 0.66 0.65 [0.57,0.73] [0.55,0.74]

�l 2.66 2.38 [1.27,3.49] [1.03,3.57] 2.15 2.11 [1.27,3.06] [1.24,3.00] 2.71 2.68 [1.78,3.64] [2.11,3.27]

r� 1.39 1.41 [1.20,1.64] [1.15,1.69] 2.08 2.07 [1.79,2.35] [1.88,2.26] 2.00 2.00 [1.73,2.28] [1.83,2.16]

r�y 0.23 0.23 [0.16,0.29] [0.16,0.30] 0.24 0.25 [0.20,0.30] [0.20,0.30] 0.26 0.26 [0.21,0.31] [0.21,0.31]

ry 0.18 0.17 [0.09,0.24] [0.07,0.26] 0.11 0.12 [0.08,0.17] [0.06,0.19] 0.12 0.12 [0.07,0.18] [0.04,0.21]

� 0.75 0.73 [0.67,0.79] [0.66,0.80] 0.77 0.77 [0.71,0.81] [0.70,0.82] 0.79 0.79 [0.74,0.83] [0.74,0.83]

�a 0.99 0.99 [0.98,0.99] [0.98,0.99] 0.98 0.98 [0.96,0.99] [0.95,0.99] 0.98 0.98 [0.96,0.99] [0.94,0.99]

�b � � � � � � � � � � � �

�g 0.90 0.90 [0.86,0.94] [0.86,0.94] 0.92 0.92 [0.87,0.95] [0.86,0.97] 0.91 0.91 [0.86,0.95] [0.83,0.99]

�i 0.74 0.75 [0.67,0.82] [0.66,0.84] 0.64 0.65 [0.55,0.74] [0.54,0.75] 0.64 0.64 [0.55,0.73] [0.55,0.73]

�r 0.13 0.15 [0.05,0.27] [0.03,0.29] 0.09 0.12 [0.04,0.22] [0.04,0.21] 0.08 0.10 [0.03,0.18] [0.04,0.17]

�p � � � � 0.97 0.97 [0.94,0.99] [0.93,0.99] 0.86 0.85 [0.75,0.93] [0.75,0.93]

�p � � � � 0.81 0.78 [0.63,0.89] [0.62,0.91] 0.70 0.66 [0.45,0.82] [0.44,0.82]

�w � � � � � � � � 0.98 0.96 [0.91,0.99] [0.82,0.99]

�w � � � � � � � � 0.92 0.87 [0.77,0.94] [0.64,0.99]

�ga 0.48 0.46 [0.30,0.63] [0.30,0.63] 0.40 0.42 [0.24,0.59] [0.24,0.60] 0.41 0.44 [0.25,0.63] [0.24,0.67]

�a 0.53 0.55 [0.47,0.64] [0.45,0.65] 0.50 0.50 [0.45,0.56] [0.44,0.56] 0.47 0.47 [0.42,0.53] [0.41,0.55]

�b � � � � � � � � � � � �

�g 0.53 0.54 [0.48,0.62] [0.48,0.61] 0.57 0.59 [0.51,0.70] [0.50,0.70] 0.56 0.59 [0.51,0.67] [0.51,0.67]

�i 0.49 0.50 [0.42,0.57] [0.39,0.61] 0.56 0.57 [0.49,0.67] [0.43,0.73] 0.57 0.58 [0.49,0.67] [0.44,0.73]

�r 0.31 0.32 [0.28,0.36] [0.27,0.37] 0.29 0.30 [0.27,0.34] [0.25,0.36] 0.29 0.30 [0.27,0.33] [0.24,0.36]

�p � � � � 0.15 0.15 [0.12,0.18] [0.11,0.19] 0.14 0.14 [0.11,0.17] [0.11,0.17]

�w � � � � � � � � 0.25 0.25 [0.21,0.28] [0.18,0.30]


 0.37 0.38 [0.33,0.42] [0.33,0.42] 0.40 0.40 [0.36,0.44] [0.34,0.46] 0.35 0.36 [0.32,0.39] [0.31,0.40]

r 0.10 0.12 [0.06,0.20] [0.09,0.16] 0.11 0.14 [0.07,0.22] [0.11,0.16] 0.12 0.14 [0.07,0.24] [0.11,0.18]

� 0.70 0.72 [0.55,0.90] [0.64,0.81] 0.65 0.67 [0.51,0.84] [0.63,0.71] 0.66 0.69 [0.52,0.86] [0.60,0.80]

l -0.66 -0.65 [-1.8,0.46] [-1.9,0.57] 0.52 0.38 [0.85,1.77] [-0.83,1.57] 0.69 0.42 [-0.97,1.91] [-0.93,1.67]

Note. The prior distributions are the same as in Table 2. MCMC: 90% intervals obtained using the quantiles of the MCMC draws. Asymptotic:

90% intervals obtained using Procedure A. The discount rate r = 100(��1 � 1). The estimates are based on 200,000 draws.



Figure 1. Responses to productivity shocks in small scale models

(A) The one shock model

(B) The two shocks model

(C) The three shocks model
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Note. Solid line: impulse response at the posterior mean. Shaded area: intervals formed using the MCMC

draws. Dashed lines: intervals formed using Procedure A. Y-axis: percent. X-axis: horizon. The interest

and inflation rates are annualized.



Figure 2. Response of output to a productivity shock
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Figure 3. Response of output to a monetary policy shock
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Note. See Figure 1. The variables are not annualized.



Figure 4. Response of output to an investment shock
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Figure 5. Response of output to an exogenous spending shock
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Note. See Figure 1. The variables are not annualized.



Figure 6. Response of inflation to a productivity shock
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Figure 7. Response of inflation to a monetary policy shock
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Note. See Figure 1. The variables are not annualized.



Figure 8. Response of inflation to an investment shock
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Figure 9. Response of inflation to an exogenous spending shock
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Note. See Figure 1. The variables are not annualized.



Figure 10. Response of interest rate to a productivity shock

5 10 15 20

-0
.2

-0
.1

0.0
0.1

0.2
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Figure 11. Response of interest rate to a monetary policy shock
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Note. See Figure 1. The variables are not annualized.



Figure 12. Response of interest rate to an investment shock
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Figure 13. Response of interest rate to an exogenous spending shock
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Note. See Figure 1. The variables are not annualized.



Figure 14. Response of investment to a productivity shock
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Figure 15. Response of investment to a monetary policy shock
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Note. See Figure 1. The variables are not annualized.



Figure 16. Response of investment to an investment shock
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Figure 17. Response of investment to an exogenous spending shock
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Note. See Figure 1. The variables are not annualized.



Figure 18. Response of hours worked to a productivity shock
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Figure 19. Response of hours worked to a monetary policy shock
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Note. See Figure 1. The variables are not annualized.



Figure 20. Response of hours worked to an investment shock
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Figure 21. Response of hours worked to an exogenous spending shock
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Note. See Figure 1. The variables are not annualized.



Figure 22. Response of wage to a productivity shock
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Figure 23. Response of wage to a monetary policy shock
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Note. See Figure 1. The variables are not annualized.



Figure 24. Response of wage to an investment shock
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Figure 25. Response of wage to an exogenous spending shock
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Note. See Figure 1. The variables are not annualized.



Figure 26. Response of consumption to a productivity shock
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Figure 27. Response of consumption to a monetary policy shock
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Note. See Figure 1. The variables are not annualized.



Figure 28. Response of consumption to an investment shock
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Figure 29. Response of consumption to an exogenous spending shock
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Note. See Figure 1. The variables are not annualized.
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