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1 Introduction

Neighborhood change is common and contentious. Of neighborhoods in 35 U.S.

metropolitan areas studied by Rosenthal (2008), more than two-thirds transitioned

to a different income quartile between 1950 and 2000. In declining areas, homeown-

ers fear deteriorating values even as entrants enjoy new opportunities; in gentrifying

areas, rising prices cause anxiety for longtime renters. And in response to shifting

neighborhood needs, policymakers often act to preserve neighborhood quality or

quicken the pace of change.

Though changes in neighborhood quality are widespread, it is less well known

that neighborhood change varies across cities. While in some cities neighborhoods

seem immune from change—leading to overall persistence in the internal structure of

the city—other cities feature quickly-changing neighborhoods and spatial patterns

of income. For example, Los Angeles has long featured a stable arrangement of high

incomes and prices along its beaches and in its foothills; between 1970 and 1980, the

average neighborhood in the Los Angeles metropolitan area moved just 9 percentile

points across the city’s income distribution. In contrast, over the same period, the

average neighborhood in the Dallas metropolitan area moved 21 percentile points.

In this paper, we examine why the geographic distribution of income is persis-

tent for some neighborhoods and cities but turns over frequently elsewhere. Our

explanation highlights the role of natural geographic features that have persistent

amenity value—for example, oceans, mountains, and lakes. We begin with the

idea that persistent natural amenities can “anchor” neighborhoods to high incomes,

even as they experience various shocks over time. A key implication is that for

cities as a whole, the presence of an especially valuable natural amenity can hold

back neighborhood tipping and suburbanization. Thus, in naturally heterogeneous

Los Angeles, the spatial distribution of income is persistent, but in flat Dallas, the

spatial distribution of income churns quickly.1

We present a dynamic model of household neighborhood choice to formalize our

thinking. Neighborhoods derive amenity value from both natural features and en-

dogenous characteristics such as safety, school quality, or shopping. High-income

households outbid low-income households for neighborhoods with greater overall

amenity value. Neighborhoods are also subject to idiosyncratic shocks to amenity

1In Appendix Figure A1, maps illustrate differences in neighborhood change in Dallas versus
Los Angeles, 1970–1980.
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value over time. We characterize conditions when these shocks can potentially re-

verse the historical spatial pattern of income.

We test and confirm several implications of our theory using a new database

of consistent-boundary neighborhoods in many U.S. metropolitan areas, spanning

census years from 1880 to 2010. We match these data to spatial information on the

location of many persistent natural features, including shorelines, mountains, lakes,

rivers, temperate climates, and floodplains.

Our first main result is that persistent natural amenities anchor neighborhoods

to high incomes over time. For example, conditional on current income, neigh-

borhoods with superior natural amenities are more likely to remain high-income

neighborhoods. Intuitively, this result confirms a simplified version of the folk wis-

dom among realtors that a beachfront home will better retain its value versus a

similar home with a mundane view.

A second main result is that cities with downtowns adjacent to strong natural

amenities, such as a coastline, experienced a less-severe suburbanization of income

in the early and mid-20th century and a more pronounced gentrification of inner-

city areas in the late 20th century. To our knowledge, our paper is the first in the

extensive literature on suburbanization to document these differences across cities in

suburbanization and gentrification patterns and relate them to differences in natural

heterogeneity.

Our third main result is that cities with dominant natural features (e.g., a coast-

line or mountain range) exhibit internal spatial distributions of income that are dy-

namically stable. In other words, neighborhood incomes tend to fluctuate less over

time in a city like Los Angeles, with its beaches, hills, and valleys, than in a city like

Dallas, which more closely resembles a flat, featureless plain. Intuitively, a shock

to a neighborhood’s amenity value—due to idiosyncratic migration, effects of pol-

icy, depreciation of fixed assets, natural disasters, etc.—has the potential to reverse

the historical distribution of income across neighborhoods. But in cities where some

neighborhoods have overwhelming natural advantages, small shocks or interventions

are unlikely to undo history.

Thus, our results relate to a central debate in economics about the roles of natural

fundamentals versus endogenous amenities in the spatial distribution of income.

In many models featuring endogenous amenities (e.g., benefits from agglomeration

economies), multiple equilibria are possible.2 Intuitively, if households and firms care

2For example, see Krugman (1991), Rauch (1993), and Arthur (1994).
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only about being near other households and firms, then they might crowd together

in any location. We characterize conditions when multiple equilibria exist—namely,

when spatial variation in natural amenity value is muted. Our results are therefore

consistent with the view that when there is sizable natural variation, fundamentals

uniquely determine the spatial distribution of income.

Our model also delivers several implications that are consistent with well-known

patterns. First, neighborhoods that have superior natural amenity value are more

likely to be, but are not necessarily, high-income neighborhoods. Second, neigh-

borhood quality is usually persistent over time. Third, there is mean reversion in

neighborhood quality.

We address several identification issues in evaluating our evidence. One im-

portant empirical challenge is that we do not directly observe the value of natural

features. For example, a natural feature can be either an amenity or a disamenity:

A river used for industrial purposes can detract from surrounding neighborhoods.

First, we focus on high-value natural amenities such as proximity to the ocean, where

we believe benefits are obvious and large relative to the value of other amenities.

A second strategy, developed from our model, is to focus on natural features that

were surrounded by high-income neighborhoods in an initial year. Intuitively, if a

stretch of river was surrounded by high incomes, we can be more confident that the

river is a positive versus negative amenity. Third, we develop a hedonic weighting

method to aggregate the amenity value from many natural features at once.

A related challenge is that the value of natural features changes over time. An

alternative view of our results is that neighborhoods with superior natural amenities

tend to increase in income because of an increasing taste for natural amenities over

time. However, this view is inconsistent with our third main result, as it predicts

that these neighborhoods experience greater changes over time in neighborhood

income. In addition, our main analysis focuses mostly on 10-year changes in the

location of income: While today’s tastes and technologies are different from the 19th

century’s, it is less likely that tastes for natural amenities have evolved significantly

over a single decade. Finally, by examining the relative likelihood that high-income

neighborhoods are proximate to natural amenities, we find no evidence that tastes

of high-income versus low-income households for natural features have fluctuated

significantly over time.

Neighborhoods in growing cities tend to experience greater fluctuations in in-

come. Our view, consistent with theories featuring the “filtering” of aging structures
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(e.g., Brueckner and Rosenthal, 2009), is that the addition of new houses to a city

acts as a negative shock to the relative value of existing homes and neighborhoods.

An alternative view is that in flat cities, the supply of housing is more elastic, and

therefore the causal link between geography and neighborhood stability is mediated

by city growth, not the value of natural amenities (see Saiz, 2010). In our empirical

work, we adjust for changes in city size by examining only changes in relative rank-

ings within a fixed group of neighborhoods in each ten-year period. In addition,

we show that our theoretical and empirical results are robust to controlling for city

growth and the age of housing.

1.1 Related Work

To our knowledge, our paper is the first in an extensive literature on neighborhood

change to document and relate variation across cities in neighborhood dynamics to

differences in natural heterogeneity. Of course, past work has recognized that cities

are not flat, featureless plains. However, geographic heterogeneity has typically been

treated as a background or control variable as researchers have emphasized other

factors in neighborhood change, such as aging homes filtering from high- to low-

income households (e.g., Brueckner and Rosenthal, 2009); spillovers among neigh-

borhoods (Aaronson, 2001; Guerreri, Hartley, and Hurst, 2010); changes in trans-

portation technology or infrastructure (LeRoy and Sonstelie, 1983; Baum-Snow,

2007); African-American migration to cities (Boustan, 2010); or a combination of

factors (Kolko, 2007). In addition, despite a deep theoretical literature and em-

pirical literature explicitly examining suburbanization and gentrification (Jackson,

1985; Mieszkowski and Mills, 1993), ours is the first to test for systematic differ-

ences across cities in these patterns. Moreover, our results also suggest that evidence

for alternative theoretical channels is often stronger when considering cities where

churning is more salient: that is, those cities that closely resemble flat, featureless

plains.

Our paper is also related to the large literature on place-based policies, such as

enterprise zones (e.g., Neumark and Kolko, 2010; Ham et al., 2011), targeted tax

credits (Freedman, 2012), or the Tennessee Valley Authority (Kline and Moretti,

2013). The results of our paper suggest that the effects of place-based policies

may be sensitive to natural heterogeneity in the areas studied. In regions that are

naturally undifferentiated, households and firms may migrate easily in response to

relatively small place-specific interventions. However, in regions where there is great
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natural heterogeneity, even large place-based interventions may not result in lasting

changes in the spatial distribution of activity.

A broad literature examines the geographic sorting of different types of house-

holds (e.g., Tiebout, 1956; Epple and Sieg, 1999). Of course, the cross-sectional

implications of variation in natural value are well known. Brueckner, Thisse, and

Zenou (1999) propose a static theory that links the spatial distribution of exogenous

amenities to the distribution of household income.3 The authors note that in their

monocentric city model, multiple equilbria can exist (with the rich living in either

the city center or the suburbs) if the exogenous amenity advantage of the center is

small. We extend this intuition to a dynamic setting. In addition to focusing on

the dynamic versus static implications of our model, our work departs from theirs

in testing these implications empirically.

Finally, our work is related to the literature in development and geography con-

cerned with persistence in the spatial distribution of income and population. In

theory, locational persistence might be caused by fundamental geographic features,

sunk and durable factors, or amenities that are endogenous to location decisions

(e.g., Davis and Weinstein, 2002; Rappaport and Sachs, 2003; Redding, Sturm, and

Wolf, 2011; Bleakley and Lin, 2012). Our work departs from this literature in focus-

ing on persistence in the within-city distribution of income, versus the distribution

of income and population across cities or other subnational regions. Moreover, our

results suggest that variation in natural features may be an important explanation

for differences in locational persistence at other spatial scales.

2 Theory

We present a stylized model of neighborhood change that highlights the role of natu-

ral amenities in neighborhood dynamics. Our theory predicts that natural amenities

anchor neighborhood incomes over time. Moreover, our theory also implies that nat-

ural heterogeneity can explain differences across cities in neighborhood dynamics

and persistence in the spatial distribution of income. In order to clearly illustrate

our key economic mechanism and its implications, we discuss here a simple two-

3Other theoretical papers share a similar intuition about transitions between (static) equilibria,
with Fujita and Ogawa (1982) being an early example. Krumm (1980) provides and tests a static
model with endogenous amenities and location choices. Bond and Coulson (1989) note that neigh-
borhoods are more likely to “tip” from high- to low-income (or vice versa) when housing quality is
more homogenous across neighborhoods.
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neighborhood city with uncorrelated amenity shocks. This simple model abstracts

from other important theoretical channels emphasized elsewhere in the literature,

but we do control for these omitted channels in our empirical analysis. In Appendix

A.1, we relax these assumptions and show that our theoretical predictions are robust

to settings with more than two neighborhoods and correlated amenity shocks over

time.

2.1 Model

Consider a closed city with two neighborhoods, indexed by j = b, d, a beach and

a desert. Each neighborhood has one unit measure of land, owned by absentee

landlords. There are two unit measure of workers, heterogeneous in income θ.

In each period t, workers choose neighborhoods by comparing the aggregate

amenity levels Aj,t (i.e., overall quality of life) and land rents Rj,t of the two neigh-

borhoods. Each worker consumes one unit of land in her chosen neighborhood and

receives utility Aj,t ·cj,t from the neighborhood’s amenities and numeraire consump-

tion cj,t. Note that this utility specification implies that aggregate amenities and

numeraire consumption are complements; this feature will be important for gener-

ating sorting by income across neighborhoods. Thus, a type-θ worker solves the

following problem in each period:4

max
j
Vj,t ≡ Aj,t · cj,t subject to cj,t +Rj,t = θ

= Aj,t · (θ −Rj,t).

The aggregate amenity level Aj,t is composed of both natural and man-made

amenities.

Aj,t ≡ {aj + εaj,t}+ {mt + E(w|j, t) + εmj,t}

= aj +mt + E(w|j, t) + εj,t.
(1)

Two components make up a neighborhood’s natural amenity value. A natural

amenity aj is persistent, as in proximity to a beach. (We assume that the beach

has a persistent natural advantage versus the desert, ab > ad.) Or there may be

idiosyncratic shocks to natural amenities εaj,t, as in natural disasters such as fires or

4There are no moving costs or savings; thus, maximizing the discounted sum of utilities is
equivalent to maximizing current utility in each period.
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sinkholes.

Man-made amenities include city-level trends common to all neighborhoods mt,

such as those that may result from citywide improvements in transportation in-

frastructure.5 Man-made amenities may also include endogenous amenities that

depend positively on the average income of residents that choose to live in that

neighborhood—for example, safety, school quality, or shopping. E(w|j, t) is the av-

erage income of neighborhood j residents in period t and captures these endogenous

amenities; note that we normalize aggregate amenity levels so that the endogenous

amenity level E(w|j, t) has a unit coefficient. Finally, there may be idiosyncratic

shocks to man-made amenities εmj,t, such as unexpected changes to the quality of

local governance.

The aggregate amenity shock εj,t ≡ εaj,t + εmj,t is independent and identically

distributed with a cumulative distribution function G(−∞,∞), a symmetric dis-

tribution with mean 0. In the appendix, we show that our theoretical results are

robust to correlated amenity shocks. The essential structure is that there are oc-

casionally changes in neighborhood amenity levels that are not perfectly correlated

with existing amenity levels, and shocks to neighborhoods are not always permanent.

Thus, in its basic setup, our theory resembles core static models in urban economics

and economic geography in that endogenous location choices depend on both the

fundamental and endogenous amenity values of neighborhoods. Our departure is

to include dynamic shocks to neighborhood amenity values that may occasionally

reverse the historical pattern of amenities.

2.2 Equilibrium within a Period

We characterize equilibria of the model within a period. First, we solve for workers’

neighborhood choices given neighborhoods’ aggregate amenity levels.

Recall that in utility, aggregate amenitiesAj,t and numeraire consumption cj,t are

complements. This complementarity implies that higher-income workers are willing

to pay more than lower-income workers to live in superior-amenity neighborhoods.

Thus, higher-income workers sort into better aggregate amenity neighborhoods by

5Note that any citywide trends mt cancel out when workers make neighborhood choices within
the city, and thus do not affect our theoretical results. We include mt here only to account for the
components of aggregate amenities that affect (or do not affect) our theoretical results.
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outbidding lower-income workers.6

Since each neighborhood has one unit of land and each worker consumes one unit

of land, each neighborhood accommodates one unit measure of workers. Thus, the

superior aggregate amenity neighborhood (i.e., the neighborhood featuring the best

combination of natural and man-made amenities) will have the top 50 percent of

workers in terms of their income and the other neighborhood will have the bottom

50 percent. We define ΘH to be the set of θ in the top 50 percent and ΘL to the

set of θ in the bottom 50 percent.

Lemma 1 (Sorting) In each period, high-income ΘH workers live in the superior

aggregate amenity neighborhood and low-income ΘL workers live in the inferior ag-

gregate amenity neighborhood.

This perfect sorting between income and aggregate amenities implies that there

are only two candidate equilibrium states in each period. In State 1, high-income

workers (ΘH) live in the beach and low-income workers (ΘL) live in the desert. In

State 2, high income workers (ΘH) live in the desert and low-income workers (ΘL)

live in the beach.

So far, we have characterized workers’ neighborhood choices as a function of

the distribution of aggregate amenities across neighborhoods. In turn, workers’

neighborhood choices affect aggregate amenity levels through endogenous amenities

such as school quality. Thus, in equilibrium, the neighborhood ordering by aggregate

amenity levels must be consistent with the aggregate amenity levels generated by

workers’ choices. This implies that the following condition must hold for State 1 to

be an equilibrium.

S1 : Ab,t = αb + w̄H + εb,t ≥ Ad,t = αd + w̄L + εd,t, (2)

where w̄H ≡ E(θ|θ ∈ ΘH) and w̄L ≡ E(θ|θ ∈ ΘL). Similarly, the following condition

must hold for State 2 to be an equilibrium:

S2 : Ab,t = αb + w̄L + εb,t ≤ Ad,t = αd + w̄H + εd,t. (3)

6More formally, the single crossing property holds between aggregate amenities and rents:

∂(−∂V/∂A
∂V/∂R

)/∂θ > 0.
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Together, conditions 2 and 3 show an equilibrium always exists. If αb + εb,t ≥
αd+εd,t, condition 2 is satisfied and thus S1 is an equilibrium. If αb+εb,t < αd+εd,t,

condition 3 is satisfied, and thus S2 is an equilibrium.

Conditions 2 and 3 also show that there can be multiple equilibria. As a simple

example, suppose that αb + εb,t = αd + εd,t. In this case, conditions 2 and 3 are both

satisfied, and thus both S1 and S2 are equilibria. Note that the multiple equilibria

exist because of the endogeneity of amenity values. A high income neighborhood

leads to a superior endogenous amenity level, which in turn attracts high income

workers. The existence of multiple equilibria here is analogous to a familiar result

in the context of agglomeration economies; see, e.g., Krugman (1991). Thus, we

obtain the following Proposition.

Proposition 2 (i) There exists an equilibrium in each period.

(ii) There can be multiple equilibria in each period.

Finally, rents are determined in each period so that the marginal worker (i.e.,

the median-income worker at the border between ΘH and ΘL) is indifferent between

the beach and the desert. We normalize the rent for the inferior aggregate amenity

neighborhood to be 0. An immediate result is that the ordering of neighborhoods by

equilibrium rents follows the same ordering by average incomes, since both increase

with the aggregate amenity level of a neighborhood. We use this result in our

empirical work, since for some historical years data on neighborhood incomes are

unavailable.

2.3 Equilibrium Selection and History Dependence

Over time, depending on realizations of the amenity shocks, the equilibrium state

switches back and forth between states S1 and S2. When both S1 and S2 are possible

equilibria, we allow history to determine the equilibrium outcome—the selected

equilibrium is simply the outcome from the previous period. This means that a

selected equilibrium state will remain the chosen outcome until amenity shocks rule

out the state as no longer a possible equilibrium.7

Since the current period’s selected equilibrium depends on the previous period’s

selected equilibrium, the selected equilibrium path follows a Markov chain. From

7The idea that equilibrium selection might be determined by history is an old one; see, e.g.,
Krugman (1991). Redding, Sturm, and Wolf (1991) and Bleakley and Lin (2012) provide evidence
consistent with this idea.
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conditions (2) and (3), we obtain the probability of transitioning from S1 to S2,

Pr(S2|S1), and vice versa.

Pr(S2|S1) = Pr(εd,t+1 − εb,t+1 > ab − ad + w̄H − w̄L) (4)

Pr(S1|S2) = Pr(εb,t+1 − εd,t+1 > ad − ab + w̄H − w̄L) (5)

In other words, Pr(S2|S1) and Pr(S1|S2) are the probabilities that states S1 and S2

are no longer possible equilibria in period t + 1, respectively. Further, Pr(S1|S2)

is greater than Pr(S2|S1), because ab − ad > 0 > ad − ab and both εd,t+1 − εb,t+1

and εb,t+1 − εd,t+1 follow the same probability distribution. Intuitively, because the

beach has a persistent natural advantage, similarly sized shocks are less likely to

reverse the historical equilibrium when high-income workers live at the beach.

Lemma 3 Pr(S1|S2) > Pr(S2|S1).

We write the Markov transition matrix as

M ≡

{
Pr(S1|S1) = 1− Pr(S2|S1) Pr(S1|S2)

Pr(S2|S1) Pr(S2|S2) = 1− Pr(S1|S2)

}
(6)

and define the steady state vector π as

π = Mπ (7)

where the elements of π are positive and sum to 1. The steady state vector π

is a time-invariant probability distribution over the two states, which we can also

interpret as the long-run probability distribution over the states in the city.

Any Markov chain with a regular transition matrix (defined as a matrix whose

elements are all positive for some power of the matrix) is known to converge to a

steady state. Since M is a regular Markov matrix, the probability distribution over

states converges to the steady state π. By solving equation (7), we obtain π:

π ≡

{
p∗S1

p∗S2

}
=

1

Pr(S2|S1) + Pr(S1|S2)

{
Pr(S1|S2)

Pr(S2|S1)

}
. (8)

2.4 Theoretical Implications

In our empirical analysis, we use within-city percentile rankings of neighborhoods

by average income, versus raw nominal incomes. In this way, we control for wage
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level differences across cities and over time. Moreover, neighborhood percentile

rankings also better capture changes in the relative spatial distribution of income

within cities over time.8 Therefore, we cast our theoretical implications using the

within-city percentile ranking rj of each neighborhood by average income.

The income percentile ranking of a neighborhood is defined as the fraction of

neighborhoods that have the same or lower income than the neighborhood. With two

neighborhoods, this means that the income percentile ranking of the high-income

neighborhood is rH = 1 while that of the low-income neighborhood is rL = 0.5.

Our first theoretical implication is that natural amenities anchor neighborhood

income over time. For example, the beach is more likely to remain a high-income

neighborhood than the desert. If the beach becomes a low-income neighborhood, it

is more likely to return to a high-income neighborhood than the desert.

To illustrate the anchoring effect, we calculate the expected change (in steady

state) in the percentile rank of neighborhood j = b, d conditioned on its current

ranking r = rH , rL. For example, suppose that the beach is initially inhabited by

high-income workers. This happens when the city is in state 1. If the city remains

in state 1 in the next period, the income percentile ranking of the neighborhood

does not change. If the city changes into state 2, its percentile rank declines from

rH to rL. Thus, we have

E(∆r|j = b, r = rH) = −(rH − rH)P (S1|S1) + (rL − rH)P (S2|S1)

= −(rH − rL)P (S2|S1).

Table 1 summarizes steady-state expected changes in neighborhood percentile ranks,

conditioned on possible combinations of neighborhood and initial income. Because

Pr(S2|S1) is smaller than Pr(S1|S2) (Lemma 3), Table 1 implies that the high-

income beach is more likely to remain a high-income neighborhood than the high-

income desert, and the low-income beach is more likely to become a high-income

neighborhood than the low-income desert. Note, too, that there is mean reversion

in expected neighborhood change: the expected change in neighborhood income is

negative for high-income neighborhoods and positive for low-income neighborhoods.

Thus, we obtain the following Proposition:

8Our approach also allows us to abstract from cross-city variation in growth, described more
fully in the next section. In short, we rank each neighborhood among the fixed group of extant
neighborhoods in the city, in an initial year.
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Proposition 4 Natural amenities anchor neighborhood income.

(i) Conditioned on initial income percentile ranks, a superior natural amenity neigh-

borhood tends to outperform an inferior natural amenity neighborhood.

(ii) A high-income neighborhood tends to go down in income percentile rank while a

low-income neighborhood tends to go up in income percentile rank.

Our next theoretical implications are derived from comparative statics analyses,

where we vary the heterogeneity in natural amenity levels across neighborhoods

|ab − ad| within a city. In our empirical analysis, we rely on these comparative

statics to understand differences across cities in patterns of neighborhood change.

The second implication is that the relative performance of the beach versus the

desert improves as |ab − ad| increases (i.e., the greater the natural advantage of the

beach). Equations (4) and (5) imply that, as |ab−ad| increases, Pr(S2|S1) decreases

and Pr(S1|S2) increases. Thus, it follows from Table 1 that, as |ab−ad| increases, the

expected conditional change in income of the beach rises while that of the desert falls.

In other words, we expect the beach to conditionally outperform the desert even

more in cities where the beach is especially naturally advantageous. (Empirically, we

investigate this implication by comparing downtown neighborhoods in cities where

downtowns are near oceans versus downtown neighborhoods in interior cities whose

downtowns are less naturally advantageous.)

Proposition 5 The relative performance of a superior natural amenity neighbor-

hood versus that of an inferior natural amenity neighborhood improves further as

the natural amenity heterogeneity across neighborhoods increases.

Finally, our third implication is that a city’s spatial income distribution becomes

more dynamically stable (i.e., more persistent) as natural heterogeneity within the

city increases. To see this clearly, denote by V ar(rj,t) the over-time variance in

percentile income rank of a neighborhood j. In steady state, the over-time variance

of income ranking in the beach can be written as

V ar(rj,t|j = b) = {p∗S1
(rH)2 + (1− p∗S1

)(rL)2} − {p∗S1
rH + (1− p∗S1

)rL}2

= (1− p∗S1
) · p∗S1

· (rH − rL)2.

Since the average income of the desert takes exactly the opposite value to that

of the desert, the over-time variance of income ranking in the desert is equal to that
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of the beach. Thus, average over-time income ranking variance for the city can be

written as

E(V ar(rj,t|j)) = (1− p∗S1
)p∗S1

· (rH − rL)2.

This average variance is maximized when p∗S1
= 0.5 and decreases monotonically

as p∗S1
moves away from 0.5. Equations (4), (5), and (8) imply that, conditional on

w̄H − w̄L, p∗S1
increases from 0.5 with |ab− ad|. Therefore, E(V ar(w̄j,t|j)) decreases

with |ab − ad|. Intuitively, the city’s spatial distribution of income experiences the

least persistence over time when there is no natural heterogeneity within the city

(i.e., the city is in a flat, featureless plain). As the beach’s natural advantage

increases, the likelihood of churning between states declines, leading to stability and

persistence in the spatial distribution of income.

Proposition 6 Conditioned on income dispersion w̄H − w̄L, the expected over-time

variance of neighborhood income for the city E(V ar(rj,t|j)) decreases with the dif-

ferences in natural advantages |ab − ad|.

2.5 Full Model

In Appendix A.1, we show that our theoretical results are robust in a full model

relaxing several assumptions of the simple model presented here. Instead of two

neighborhoods, the city has J ∈ N neighborhoods, and the aggregate amenity shock

εj,t follows an AR(1) process such that εj,t+1 = ρεj,t + νt, where νt is independent

and identically distributed. We also extend the equilibrium selection rule in Section

2.3: when multiple equilibria are possible, we choose the one that is closest to the

selected equilibrium in the previous period, in terms of Euclidean distance in the

vector of average incomes across neighborhoods. We analytically prove Lemma 1

and Proposition 2. We use numerical methods to demonstrate that Propositions 4,

5, and 6 hold widely when the aggregate amenity shock follows a stationary process

(i.e., ρ < 1). Note that stationarity is not restrictive, because an overall trend in

aggregate amenity level can be captured by mt in equation 1.

3 Empirics

We confirm the testable implications of our theory using a novel database of consistent-

boundary neighborhoods in U.S. metropolitan areas, 1880–2010. Section 3.1 and Ap-

pendix A.2 discuss the construction of our database and its key features. Section 3.2

14



tests Proposition 4 that natural amenities anchor neighborhoods to high incomes,

and it also describes our responses to several identification challenges, including the

unknown and changing amenity value of natural features. Section 3.3 shows that,

consistent with Proposition 5, downtown neighborhoods in coastal cities were less

susceptible than interior cities to the suburbanization of income in the middle 20th

century. Finally, Section 3.4 tests Proposition 6 that naturally heterogeneous cities

feature more persistent spatial distributions of income.

3.1 Data

3.1.1 Census Data and Geographic Normalizations

We construct a panel database of consistent-boundary neighborhoods in many U.S.

metropolitan areas from 1880 to 2010. We use census tracts as neighborhoods, as

tracts are relatively fine geographic units and data are available at the tract level

over our sample period, even in historical census years. Since census tract boundaries

change from one decade to the next, we normalize historical data to 2010 census

tract boundaries.9 For each census tract, we collect information about household

income, population, and housing from decennial censuses between 1880 and 2000

and the American Community Surveys between 2006 and 2010.10

An important limitation is that our panel is unbalanced. Cities expand and add

neighborhoods over time, and new cities and neighborhoods emerge as the census

adds tract coverage of more cities in later years. In addition, our ability to match

census households to neighborhoods is limited by the availability of maps showing

the spatial location of historical census tracts or enumeration districts. Table 2 shows

the number of metropolitan areas and neighborhoods (i.e., census tracts) available

in each year. Overall, we have observations of 60,757 neighborhoods across 308

metropolitan areas and 12 census years from 1880 to 2010. However, the number of

observations used in our empirical analysis varies across tests with data availability.11

The data are most complete for later census years, especially after 1960, and we do

not have any data for census years 1890 and 1900.

9In 2010, our average sample neighborhood is 28 square kilometers and contains 4,300 people.
10Because of small annual sample sizes and privacy concerns, the ACS data represent five-year

averages of residents and houses located in each tract. For convenience, we refer to these data as
coming from the year 2010, though they really represent an average over 2006–2010.

11Small boundary normalization errors account for the small number of tracts in 2000 that do
not appear in 2010, but these tract fragments are ultimately dropped in our regressions.
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We assign each neighborhood to a single metropolitan area, using the Office of

Management and Budget’s definitions of core-based statistical areas (CBSAs) from

December 2009. We refer to each metropolitan area as a “city.” (We address changes

in metropolitan area boundaries over time by dropping the nonurbanized areas in

each period within present-day boundaries, as described in the Appendix. Thus,

neighborhoods are unlikely to appear in our panel until they are urbanized and part

of the metropolitan economy.) When relevant, we aggregate CBSAs to consolidated

statistical areas. For example, we combine the Los Angeles-Long Beach-Santa Ana

CBSA with the Oxnard-Thousand Oaks-Ventura and Riverside-San Bernardino-

Ontario CBSAs.

Finally, we spatially match neighborhoods to a variety of persistent natural

geographic features. While there are innumerable natural features that might have

amenity value, our work features a long list of highly visible and important physical

attributes. For each neighborhood, we separately calculate the (i) distance from the

tract centroid to the nearest coastline (i.e., the Atlantic or Pacific Ocean, the Gulf

of Mexico, or a Great Lake), (ii) the nearest (non-Great) lake, and (iii) the nearest

major river. We also calculate (iv) the average slope, (v) the flood-hazard risk, and

(vi) the 1971–2000 average annual precipitation, (vii) July maximum temperature,

and (viii) January minimum temperature. The Appendix describes sources for these

data.

3.1.2 Tract Percentile Ranks and Other Variables

Because we are interested in the performance of neighborhood income relative to

other neighborhoods within the same city, we rank tracts within each metropolitan

area and census year. We use neighborhoods’ percentile rank ri,t, a variable bounded

by 0 and 1. Thus, in 2010, both Malibu (within the Los Angeles metropolitan area)

and the Upper East Side (within the New York metropolitan area) have values of

ri,2010 near 1. In this way, we also control for differences in wage levels across cities

and years.

We use average household income to rank tracts within each metropolitan area,

except in historical census years 1880–1940 when income data are not available. For

1910–1940, we use median housing rents to rank tracts. In 1880, lacking both data

on income or prices, we use an imputed occupational income score. Recall that our

theory predicts that neighborhood rents follow the same ordering as neighborhood

incomes and that the percentile rank of a neighborhood in terms of rent is the same
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as that in terms of income. In unreported robustness checks, we have verified that

our results are robust to using housing rents or household incomes, when both are

available, or using the literacy rate in 1880.

We also calculate a number of metropolitan area statistics based on these tract

data, including log levels and changes in (i) population, (ii) land area, (iii) total

housing units and the housing age distribution, and various other characteristics.

Appendix Table A1 reports summary statistics.

3.2 The Anchoring Effect

We test Proposition 4 that superior natural amenities anchor neighborhoods to

high incomes over time. Recall that the Proposition predicts that (i) conditional on

current income, a superior natural amenity neighborhood tends to outperform an

inferior natural amenity neighborhood and (ii) high-income neighborhoods tend to

go down in average income while low-income neighborhoods tend to go up.

To test this proposition, consider the following neighborhood-level regression:

∆ri,t = β0 + β11(natural amenityi) + β2ri,t + εi,t (9)

where ∆ri,t is the change in neighborhood i’s percentile rank from t to t + 1,

1(natural amenityi) is an indicator for superior natural amenity neighborhood,

and ri,t is initial percentile rank in t.12 Below, we explain how we identify superior

natural amenity neighborhoods. We include the initial rank as a regressor since our

theory suggests that in steady state, it is conditional on initial rank that neigh-

borhoods with superior natural amenities tend to increase in income versus other

neighborhoods. This term also allows us to test for mean reversion—the second part

of Proposition 4. Thus, Proposition 4 predicts that β1 > 0 and β2 < 0.

One concern with this specification, derived from the model, is that the model

abstracts away from many features that may affect neighborhood dynamics. Some of

12We calculate the change in percentile rank ∆ri,t for each tract by subtracting its current rank
ri,t from next period’s rank ri,t+1. Obviously, this change can only be calculated for tracts that exist
in both the current period and the next period. Therefore, tracts that are added to the metropolitan
area are not included in this calculation. Rank changes are based only on the metropolitan area
footprint in the initial year, and they represent ranks calculated only among extant tracts in the
initial year. (See the Appendix for further discussion.) For example, Levittown, New York, was
a neighborhood that appeared for the first time in 1960. In computing rank changes among New
York metropolitan area neighborhoods between 1950 and 1960, Levittown is excluded from both
groups of 1950 and 1960 neighborhoods. This is one way in which our empirical analysis abstracts
from differences in city growth rates. (Later, we also condition on city growth in our regressions.)
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these features may be correlated with neighborhoods’ natural value. For example,

proximity to the ocean may be correlated with proximity to the central business

district (CBD), since many cities and their downtowns were founded near significant

natural features such as harbors. Since proximity to a central business district affects

changes in income (c.f. Brueckner and Rosenthal, 2009), estimation of equation (9)

will be contaminated by omitted-variables bias.

In order to control for these factors, we control for a number of additional neigh-

borhood and city characteristics:

∆ri,t = β0 + β11(natural amenityi) + β2 ln ri,t + X′i,tβ3 + εi,t. (10)

Here, X′i,t is a vector that could contain many tract characteristics. In order to

control for the effect of downtown proximity and the internal structure of the city,

we control for initial tract log population density, or, alternatively, distance to the

CBD.13 We also include average housing age to control for the housing filtering

process and metropolitan area level changes in population and land area to control

for city size growth. We cluster the standard errors at the metropolitan area level.

Next, we identify superior natural amenity neighborhoods with three different

strategies. Our first strategy is to assign 1(natural amenityi) = 1 if neighborhood i

is within 1 kilometer from a particular natural feature. Our natural features include

(separately) oceans or Great Lakes, other lakes, and major rivers. (We vary the 1-

kilometer distance threshold as robustness tests.) We also define thresholds for hilly

neighborhoods (average slope greater than 15 degrees), flood hazard (an average

annual probability of flooding less than 1 percent), and a moderate climate (not too

hot or cold, and not too rainy; see the Appendix).

A concern with this strategy is that some observable natural features can be

noxious rather than pleasant: For example, we cannot observe whether a river is

polluted and thus a disamenity. In order to alleviate this concern, our second strat-

egy is to look at natural features near top-income neighborhoods in some initial year.

Because workers can observe whether a particular natural feature is an amenity, nat-

ural features near top-ranked neighborhoods in some initial year are more likely to

be positive amenities than natural features initially surrounded by slums. Thus, if

a section of river is surrounded by neighborhoods whose average income is in the

13Data on tract distances to metropolitan area CBDs are from Fee and Hartley (2012). Because
they are missing for a handful of metropolitan areas, we do not present them in our baseline results.
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90th percentile among all of the neighborhoods in the city, the river is more likely

to be a positive amenity versus a disamenity. So in our second strategy, we assign

1(natural amenityi) = 1 if, and only if, the neighborhood is proximate to the nat-

ural feature and the neighborhood was initially in the top decile of neighborhoods

by average income. While we are still uncertain about the amenity value of natural

features, this strategy relies on the idea that conditioning features on the initial

location of incomes increases the likelihood that such features are in fact amenities.

So far, we have evaluated each feature individually. Our third approach is to

combine these features together into an index of aggregate natural value by predict-

ing rent from our various observed natural features. We regress the logarithm of

neighborhood median housing rent, reported in censuses from 1930 to 2010, against

a vector of variables indicating proximity to all of our natural features, log popula-

tion density, log distance to the CBD, log number of housing units, average housing

age, and city–year effects. Then, we predict values for housing rents based on the

estimated coefficients from this regression. Of course, this hedonic regression raises

endogeneity concerns, particularly about omitted endogenous factors such as school

quality. However, the resulting predicted values may be unbiased estimates of the

aggregate natural value of neighborhoods if omitted factors are related to the ob-

served factors in the same way. For example, if school quality is related to coastal

proximity but not hills, then the estimated coefficients on coastal proximity and

hilliness will be biased, relative to each other. However, if school quality is related

to the overall natural advantage of neighborhoods, then the estimated coefficients

on coastal proximity and hilliness will be biased in the same way, but the relative

weights will be unbiased. In this case, predicted rents may be a good indicator for

the aggregate natural value of neighborhoods.

A final and related concern is that the value of natural features may change over

time. An alternative view is that neighborhoods with superior natural amenities

may increase in income because of increasing taste for natural amenities over time.

However, this view is inconsistent with our later result, as it predicts that these

neighborhoods experience greater fluctuations over time in neighborhood income.

In addition, our regressions here focus mostly on 10-year changes in the location of

income: while today’s tastes and technologies are different from the 19th century’s,

it is less likely that tastes for natural amenities have evolved significantly over a

single decade. We also find no evidence that the tastes of high-income versus low-

income households for natural features have fluctuated significantly over time. If
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that were the case, high-income neighborhoods to be increasingly concentrated near

superior natural amenities like the coast. In Figure 1, we show that the relative

likelihood that a high-income neighborhood is within 1 kilometer of an ocean or

Great Lake coastline has remained roughly constant over the 130-year span of our

sample.

Table 3 shows results of conditional neighborhood change for neighborhoods

near and far from an ocean or Great Lake. Recall that the first part of Proposition

4 predicts that the coefficient on 1(natural amenityi) is positive. The first col-

umn shows the result from estimating the baseline equation (9): the coefficient on

1(natural amenityi) turns out to be negative, counter to our theoretical prediction.

However, once we control for the internal structure of the city using the logarithm

of neighborhood population density in column (2), the conditional effect of coastal

proximity is estimated to be positive and statistically significant. In column (3),

we also control for the logarithm of city population growth, the logarithm of land

area growth, and neighborhoods’ average housing age. These additional controls

do not change the estimated coefficients of interest. In column (4), we additionally

condition coastal areas on their proximity to top-decile neighborhoods in the initial

year. Recall that this exercise relies on the idea that this condition increases the

likelihood that such coastal areas are positive rather than negative amenities. As

column (4) shows, the coefficient estimate on proximity to the coast is even stronger,

consistent with the increased likelihood that these coastlines are positive amenities.

The estimated effect of initial income on the change in neighborhood rank is

negative, consistent with the mean reversion predicted by the second part of Propo-

sition 4.

In Table 4, we show that estimates of the conditional effect of superior natural

amenities on neighborhood change are robust to various natural features, including

our hedonic rent index that combines all of our observed natural features. In all

cases except rivers, natural features are associated with a conditional increase in

neighborhood income. (This result is consistent with the view that, on average,

U.S. rivers are disamenities.) When we condition these natural features on initial

proximity to top-decile neighborhoods, the coefficient estimate increases, consistent

with the greater likelihood that these natural features are actually amenities.

In the Appendix, we show that our results are robust to varying the time horizon

and base year. We also show that our results are robust to varying the definition of

our indicator variable thresholds.
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3.3 The Suburbanization and Gentrification of Income

Next, we test Proposition 5 that the relative performance of superior natural amenity

neighborhoods improves further as natural heterogeneity among neighborhoods in-

creases. We test this implication by comparing how downtown neighborhoods in

coastal cities performed relative to those of interior cities.

Coastal cities are cities that developed on the shores of the Atlantic or Pacific

oceans, one of the Great Lakes, or the Gulf of Mexico. Thus, their downtowns

continue to be located near these bodies of water. Interior cities tend not to be

devoid of surface water, but are typically river cities.

We maintain two assumptions throughout this test. First, coastal cities tend to

have more heterogeneity in natural amenity level across neighborhoods than interior

cities. A justification for this assumption is that oceans tend to be stronger natural

amenities than rivers; the results reported in the previous section are consistent with

this assumption. Second, the central business districts of coastal cities tend to have

developed along coastlines (i.e., areas of high natural value).

Proposition 5 suggests that neighborhoods near the central business districts of

coastal cities tended to suffer relatively less versus those of interior cities during the

suburbanization process common in many U.S. cities. Further, Proposition 5 also

suggests that the CBDs of coastal cities tended to experience faster gentrification

in the late 20th and early 21st centuries.

We have neighborhood-level data from 1880 for 12 coastal and 17 interior cities,

listed in Appendix Table =refclassify.

In Figure 2, we show a series of snapshots, one for each census decade where data

are available, of the spatial pattern of income versus distance to the city center.14

The horizontal axis measures distance from the city center, in meters, and the

vertical axis measures average household income, on a percentile rank scale. The

lines represent the results of lowess regressions, fitted separately for coastal versus

interior cities.

In 1880, both coastal and interior cities display similar declining income gradients

with distance from the city center. These patterns are consistent with the fact that

many of these cities were still recently founded as of 1880, and the best-developed

14Data on distances to city centers were graciously provided to us by Dan Hartley. Fee and
Hartley (2012) identify the latitude and longitude of city centers by taking the spatial centroid
of the group of census tracts listed in the 1982 Census of Retail Trade for the central city of the
metropolitan area. For metropolitan areas not in the 1982 Census of Retail Trade, they use the
latitude and longitude for central cities using ArcGIS’s 10.0 North American Geocoding Service.
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areas would have been clustered near downtown.

However, as early as 1930, we see a divergence in the fortunes of downtowns in

coastal versus interior cities. Downtowns in interior cities tend to decline faster than

downtowns in coastal cities, at least until 1960. Then, from 1970 onward, coastal

city downtowns tend to improve faster than interior city downtowns. Thus, our evi-

dence on suburbanization and gentrification patterns in coastal versus interior cities

is consistent with the theoretical prediction that greater within-city heterogeneity

improves the performance of superior natural amenity neighborhoods.

3.4 Persistence in the Spatial Distribution of Income

Finally, we test Proposition 6 that cities with greater variation among neighbor-

hoods in natural value tend to have more dynamically stable (i.e., persistent) spatial

distributions of income.

We begin with the following hierarchical linear model.

V ar(ri) = δm + εi (11)

δ̂m = γ0 + γ1Γm + γ2V ar(wj |j ∈ m) + Z′mγ3 + µm (12)

Here, V ar(ri) is the over-time variance of neighborhood i’s percentile ranking within

city m, δm is a city-level effect estimated in the first level and used as the depen-

dent variable in the second level. The estimated robust errors ε̂i are clustered at

the city level. Following Wooldridge (2003), the minimum distance estimator is

equivalent to estimating the second step using weighted least squares, where the

weights are 1/Âvar(δ̂m). Γm is a city-level measure of variation in natural value

among neighborhoods within city m. Finally, we control for differences across cities

in the distribution of nominal income using V ar(wj |j ∈ m), a city-level measure of

the variance in income across neighborhoods j within city m. Thus, the source of

identification of γ1 is cross-sectional variation across cities in terms of within-city

natural heterogeneity. Proposition 6 predicts that γ1 < 0.

We calculate V ar(ri), the over-time variance of neighborhood i’s percentile rank,

using the 6 observations from 1960 to 2010. We begin using 1960 as our base year

because the number of neighborhoods in the data set decreases as we go back in

time as shown in Table 2. For example, our data has 38,669 neighborhoods in 1960

but only 17,681 in 1950. In later years, the gain in the number of observed neigh-

borhoods comes at the cost of lost precision in calculating the over-time variance in
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neighborhood rank. We show later that our results are robust to the choice of base

year. For all choices of base year, we fully balance our panel—thus, for a base year

of 1960, our regressions and computations of ranks over time exclude any neigh-

borhoods or cities that do not appear in our sample in 1960. In historical census

years, we also drop any cities that are missing from subsequent years. Thus, while

we have observations of 10 cities in 1930, only nine cities appear in all of the same

nine census years between 1930 and 2010.

To measure Γm, we take three approaches. First, we use an indicator variable for

a coastal city. The ocean is arguably a dominant natural feature affecting natural

amenity levels. Thus, we expect coastal cities to have higher internal variance in

natural amenities than noncoastal cities.

Second, we use the within-city standard deviation in log neighborhood distance

to the coast. In the case of distance to an ocean or Great Lake, we take the logarithm

in order to deemphasize variation in interior cities where all neighborhoods are far

from the coast. In using logarithms, all neighborhoods in Denver have equally poor

access to the coast, while there is much greater variation among neighborhoods in

Miami.

Third, we use the within-city standard deviation in the predicted rent index,

discussed earlier. This measure has the advantage of summarizing all of our observed

natural features into a measure of natural heterogeneity.

Finally, to control for omitted factors in the model, we add other city-level co-

variates related to over-time volatility in neighborhood income in Zm. For example,

we control for differences across cities in growth rates by adding the logarithms of

city growth in population and land area.

Table 5 shows the results of estimating equation (12). Each column shows a

separate regression. We multiply the dependent variable by 100 for presentation

purposes, so the units are percentile points. Column 1 shows that, on average,

neighborhoods in coastal metropolitan areas experience smaller fluctuations in in-

come over time. The coefficient on a metropolitan indicator for proximity to the

ocean is negative and precisely estimated. The magnitude of the effect is small

but not negligible—the reduction in over-time variance is approximately 19% of

one standard deviation across neighborhoods. The coefficient on within-city income

inequality is negative, too, but it is imprecisely estimated.

An alternative explanation of our result in column 1 is that heterogeneous cities

are also land-supply constrained. That alternative view suggests that in flat cities,
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the supply of housing is more elastic, and therefore the causal link between geogra-

phy and neighborhood stability is mediated by city growth, not the value of natural

amenities (c.f. Saiz, 2010). To address this concern, we control for metropolitan

area growth in population and area. Column 2 shows the result. The estimates

do suggest that growing cities are less stable, consistent with the alternative view.

However, even conditioned on city growth, coastal cities are more stable. Thus,

we do not view our results as being spuriously caused by differences in land-supply

elasticity across cities.

In columns 3 and 4, we repeat the first two regressions but use the standard

deviation within each city in the logarithm of neighborhood distance to an ocean or

Great Lake. The coefficients on this regressor are negative and precisely estimated.

Again, neighborhoods in naturally heterogeneous cities tend to experience smaller

fluctuations in income over time.

Table 6 shows that these results are robust when we vary starting year to calcu-

late V ar(ri) and use different natural features other than the coast. Each cell reports

the estimated coefficient on the within-metropolitan area standard deviation natural

value from a separate regression, with a specification identical to Table 5, column

4. Thus, that estimate is repeated in the first row, column 5 of Table 6.

Each row shows results where the explanatory variable of interest is noted by

the row heading. Each column displays results for regressions using the base year

indicated. For example, in column 1, we rely on cross-sectional variation in 1880

across 29 cities. Note that in column 1, we use seven census years to calculate the

over-time variance in neighborhood income—these are the census years for which

we can create a balanced panel of city observations. Thus, we drop neighborhood

and city observations in years where we have incomplete coverage of cities.

Neighborhoods in rugged cities (second row) or naturally heterogeneous cities

(third row) tended to experience smaller fluctuations in income over 1960–2010

(column 5), consistent with our earlier result for coastal cities. These estimates

are negative and precisely estimated as well. Overall, all of the precisely estimated

effects are negative, and the results are especially strong when considering periods

between 1950 and 1980. The lack of precision in historical census years is consistent

with the small number of metropolitan areas observed in those years. In 1990, the

small number of over-time observations used to calculate the dependent variable

may introduce noise and bias the estimates towards zero, contributing to the lack

of precision.
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Finally, Figure 3 illustrates our main result that neighborhoods in naturally het-

erogeneous cities tended to experience smaller over-time fluctuations in income over

1960–2010. Each point represents a metropolitan area. The vertical axis measures

the metropolitan-level residual from a regression of mean variance in percentile rank

over time on controls as in Table 5, column 4. The horizontal axis measures the

within-city standard deviation in our predicted rent index; Los Angeles and the San

Francisco Bay Area (labeled San Jose) are the two most naturally heterogeneous

metropolitan areas by this index. The slope of the fitted line is the same as the es-

timate reported in Table 6, column 5. Thus, naturally heterogeneous cities exhibit

more persistent spatial distributions of income over time.

4 Conclusions

We combine new theory and a novel database of consistent-boundary neighborhoods

to study both neighborhood dynamics and differences across cities in patterns of

neighborhood change, suburbanization, and persistence. Our theory and results

highlight the role of natural amenities in neighborhood dynamics. Persistent natural

amenities anchor neighborhoods to high incomes over time, and they can affect

neighborhood dynamics citywide. Downtown neighborhoods in coastal cities were

both less susceptible to suburbanization and more responsive to gentrification versus

interior cities. Finally, cities with greater internal natural heterogeneity tend to

exhibit more persistent spatial distributions of income.

Our results are also broadly related to the literature on place-based policies. The

effects of such policies may be sensitive to underlying geographic heterogeneity in

the targeted areas; in regions with great natural heterogeneity, even large interven-

tions may not result in churning in the spatial distribution of activity, while small

interventions may cause factors to migrate in flat cities. However, we have intention-

ally said little about the welfare implications of our results, although understanding

optimal neighborhood sorting and the structure of cities is of paramount interest.

Recent studies have suggested that the degree of neighborhood sorting may be re-

lated to outcomes such as intergenerational income mobility (e.g., Chetty et al.,

2013). In future work, it would be useful to better understand the importance of

natural heterogeneity for place-based policies and outcomes.
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A. Share of neighborhoods within 1km of coast
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B. Relative likelihood that high-income neighborhood is within 1km of coast
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Figure 1: Stability in the likelihood that a high-income neighborhood is near coast

Panel A shows, by census year, the share of all neighborhoods within 1km of an ocean or Great Lake (dashed)
and the share of high-income neighborhoods (top decile by average household income) within 1km of an
ocean or Great Lake. Panel B shows, by census year, the relative likelihood that a high-income neighborhood
is within 1km of an ocean or Great Lake (i.e., the ratio of the two series shown in Panel A).
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Figure 3: Neighborhoods in naturally heterogeneous cities experience smaller over-
time fluctuations in income

The vertical axis measures the metropolitan-level residual from a regression of mean neighborhood 1960–
2010 variance in percentile rank by income on within-metropolitan variance in neighborhood income and
log changes in metropolitan population and land area over the same period (i.e., the same controls and
weights as in Table 5, column 4). The horizontal axis measures the within-metropolitan variance (standard
deviation) in natural value, using estimated hedonic weights as described in the text. The slope of the fitted
line corresponds to the estimate in Table 6, column (5).
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Table 1: Expected income change conditioned on initial income and natural feature

Initial percentile rank Beach Desert

rH (rL − rH)Pr(S2|S1) (rL − rH)Pr(S1|S2)

rL (rH − rL)Pr(S1|S2) (rH − rL)Pr(S2|S1)
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Table 2: Number of neighborhood and metropolitan observations by census year

Year Metropolitan areas Neighborhoods

2010 308 60,757
2000 308 60,766
1990 308 60,299
1980 259 56,176
1970 229 49,888
1960 135 38,669
1950 51 17,681
1940 43 11,527
1930 10 1,962
1920 2 2,505
1910 1 1,748
1880 29 3,071
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Table 3: Conditioned on current income, coastal neighborhoods increase in income
versus other neighborhoods

(1) (2) (3) (4)†

1(Ocean or Gr. L. -0.009b 0.023c 0.024c 0.049c

within 1km) (0.003) (0.003) (0.004) (0.004)

Current %ile rank -0.162c -0.192c -0.180c -0.188c

by income (ri,t) (0.005) (0.004) (0.008) (0.007)

Neighborhood log -0.027c -0.027c -0.027c

population density (0.002) (0.002) (0.002)

Metro log change -0.104c -0.090c

in population (0.015) (0.015)

Metro log change 0.017c 0.031c

in land area (0.006) (0.007)

Extra controls‡ Yes Yes

Neighborhoods 298,778 298,778 282,581 282,581
R2 0.081 0.175 0.172 0.174

Each column displays estimates from a separate regression. Dependent variable is change in percentile
rank by income (∆ri,t); mean 0, standard deviation 0.16. Standard errors, clustered on metropolitan
area, in parentheses; b—p<0.05, c—p<0.01. Regressions use observations of 61,047 neighborhoods in 308
metropolitan areas, 1880–2010. †—Explanatory variable in column (4) is indicator for an Ocean or Great
Lake within 1km and neighborhood is in top income decile. ‡—Unreported control variable in (3) and (4)
is mean housing unit age in years, which is unavailable for some neighborhoods and census years.
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Table 4: Conditional effect of natural amenity on neighborhood change

(1) (2) (3) (4) (5) (6) (7)

Ocean Moderate Low High hedonic
or Gr. L. Lake River Hills and dry flood risk natural value

Indicator for natural feature 0.024c 0.017b -0.007b 0.012 0.027c 0.006 0.029c

(0.004) (0.007) (0.003) (0.008) (0.007) (0.004) (0.002)

Indicator for natural feature 0.049c 0.041c 0.026c 0.043c 0.050c 0.036c 0.052c

and top decile by income† (0.004) (0.012) (0.004) (0.006) (0.011) (0.003) (0.003)

Each cell displays estimates from a separate regression. Dependent variable is change in percentile rank
by income (∆ri,t); mean 0, standard deviation 0.16. Standard errors, clustered on metropolitan area, in
parentheses; b—p<0.05, c—p<0.01. Explanatory variable is indicator for proximity within 1km in columns
(1)–(3), average slope greater than 15 degrees in column (4), mean January minimum temperature between
0 and 18 degrees Celsius and mean July maximum temperature between 10 and 30 degrees Celsius and
mean annual precipitation less than 800mm in column (5), mean annual flood probability less than 1% in
column (6), and above-average natural value estimated using hedonic weights as described in the text in
column (7). Regressions use 282,581 observations of 61,047 neighborhoods in 308 metros, 1880–2010, except
column (6), which uses 238,455 observations of 49,780 neighborhoods in 261 metros with valid floodplain
data. †—Explanatory variable in second row is indicator for natural amenity and neighborhood is in top
income decile.
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Table 5: Effect of within-metropolitan heterogeneity in proximity to oceans and
Great Lakes on over-time neighborhood fluctuations in income

[µ] [(σ)] (1) (2) (3) (4)

Metro indicator for [0.33] -0.424b -0.430b

proximity to coast (0.191) (0.181)

Within-metro s.d. in log [0.42] -0.327b -0.334b

nbhd. distance to coast [(0.57)] (0.144) (0.139)

Within-metro s.d. in [1.91] -0.157 -0.159
nbhd. income ($1,000s) [(0.43)] (0.162) (0.162)

Metro log change in [0.94] 1.106c 1.100c

population, 1960–2010 [(0.78)] (0.221) (0.220)

Metro log change in [1.61] -0.539c -0.544c

land area, 1960–2010 [(1.15)] (0.113) (0.115)

R2 0.070 0.481 0.071 0.483

Each column displays estimates from the second level of separate two-level regressions. First-level OLS re-
gressions (unreported) use 38,293 neighborhood observations in census year 1960 to estimate 135 metropoli-
tan area means and cluster-robust standard errors. Dependent variable is over-time variance in percentile
rank ×100, 1960–2010; mean 2.13, standard deviation 2.69 in balanced panel of 38,293 neighborhoods over
six census years. Second-level WLS regressions use 135 metropolitan areas. Dependent variable is estimated
metropolitan area means from first level and weights are inverse estimated variance from first level. Robust
standard errors in parentheses; b—p<0.05, c—p<0.01.
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Table 6: Effect of within-metropolitan natural heterogeneity on over-time neighbor-
hood fluctuations in income

(1) (2) (3) (4) (5) (6) (7) (8)

Base year: 1880 1930 1940 1950 1960 1970 1980 1990

[µ] [4.7] [3.0] [2.6] [2.2] [2.3] [2.0] [1.4] [1.3]
[(σ)] [(0.94)] [(0.82)] [(0.64)] [(0.79)] [(0.89)] [(0.82)] [(0.65)] [(0.61)]

Within-metro s.d. in log [0.42] -0.024 0.475 -0.141 -0.079 -0.334b -0.177c 0.007 0.062
nbhd. distance to coast [(0.62)] (0.334) (0.576) (0.203) (0.166) (0.139) (0.061) (0.041) (0.039)

Within-metro s.d. in [0.40] 1.08 1.39 -0.600 -1.19a -1.97c -1.14c -0.372c -0.220
nbhd. average slope [(0.22)] (0.873) (2.40) (0.453) (0.649) (0.414) (0.267) (0.122) (0.137)

Within-metro s.d. in [0.08] 6.92 1.21 -4.06 -7.64b -9.03c -5.93c -1.73c -0.424
nbhd. natural value [(0.03)] (5.77) (13.2) (2.83) (3.34) (1.80) (0.821) (0.565) (0.716)

Metropolitan areas 29 9 43 51 135 227 277 308
Neighborhoods 3,002 1,935 11,352 17,420 38,293 49,660 55,911 60,063

Census years† 7 9 7 7 6 5 4 3

Each cell displays estimates from the second level of separate two-level regressions. Regression specifications
are analogous to Table 5, column (4). First-level OLS regressions (unreported) use neighborhood obser-
vations in base year to estimate metropolitan area means and robust standard errors. Dependent variable
is over-time variance in percentile rank ×100, between base year and 2010; metropolitan-level means and
standard deviations in first row. Second-level WLS regressions use metropolitan areas. Dependent variable
is estimated metropolitan area means from first level and weights are inverse estimated variance from first
level. Robust standard errors in parentheses; a—p<0.10, b—p<0.05, c—p<0.01. Metropolitan-level means
and standard deviations (in census year 2010) of explanatory variables in first column. †—For each base
year, we balance our neighborhood panel to calculate over-time variances. Thus, historical base years have
fewer than expected time periods, since we drop years with missing data.

38



A Appendix

A.1 Full Model

This section presents the full model which allows a city to have more than two
neighborhoods and the amenity shocks εj,t to be correlated over time. The full
model differs from the simple model presented in section 2.1 in the following ways.
First, the city has J ∈ N neighborhoods and J unit measure of workers. Second, the
aggregate amenity shock εj,t follows an AR(1) process: εj,t+1 = ρεj,t + νt where νt is
independent and identically distributed. Third, we extend the equilibrium selection
rule in Section 2.3 as follows. When there are multiple equilibria, we choose the
one that is closest to the selected equilibrium in the previous period, in terms of
the Euclidean distance in the vector of average incomes (i.e., endogenous amenities)
across neighborhoods.

A.1.1 Equilibrium Within a Period

Lemma 1, which states that higher income workers sort into superior aggregate
amenity neighborhoods, holds with the full model, because it is driven solely by
workers’ preferences.

In order to precisely describe the sorting with J neighborhoods, we introduce
new notation. First, we partition the set of worker incomes [θ, θ̄] into J intervals
{Θ1,Θ2, ...,ΘJ} so that each group has a unit measure of workers; Θ1 is the top
income group, and ΘJ is the bottom group. θ̂i,i+1 denotes workers who divide group

i from group i+1; i.e., ΘJ ≡ [θ, θ̂J−1,J ], ΘJ−1 ≡ [θ̂J−1,J , θ̂J−2,J−1], ..., Θ1 ≡ [θ̂1,2, θ̄].
Second, we define a neighborhood rank function rt : J → J such that rt (j) is the
rank of neighborhood j in terms of aggregate amenities in period t. For example,
suppose that neighborhood 1 is the third best neighborhood in terms of aggregate
amenities in period 2. Then we have r2 (1) = 3. Note that its inverse function r−1

maps back to neighborhood index numbers, given aggregate amenity rankings. For
example, suppose that the second best neighborhood in period 3 is neighborhood 4.
Then we have r−1

3 (2) = 4.
Since each Θj group of workers consumes one unit size of land and each neigh-

borhood has one unit size land, each Θj group of workers occupies one and only
one neighborhood. Further, since higher-skill workers select into better aggregate
amenity neighborhoods, each group Θj occupies neighborhood r−1

t (j) in each period
t.

We characterized workers’ location choices as a function of the distribution of
aggregate amenities across neighborhoods. In turn, workers’ location choices have
to generate a distribution of aggregate amenities across neighborhoods that is con-
sistent with their location choices. In other words,

ar−1
t (j) + E(w|θ ∈ Θj) + εr−1

t (j) ≥ ar−1
t (j+1) + E(w|θ ∈ Θj+1) + εr−1

t (j+1). (13)
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Proposition 2, which states that an equilibrium exists in each period and there
can be multiple equilibria, holds with the full model. First, an equilibrium always
exists because condition (13) is satisfied if higher income workers choose to live
in neighborhoods with greater exogenous amenities: aj + εj,t. Second, there can
be multiple equilibria because condition (13) is satisfied for any matching pattern
between income groups and neighborhoods if exogenous amenities (i.e., αj +εj,t) are
identical across all neighborhoods.

Now we characterize how rents are determined in each period. We normalize
rent for the least favored neighborhood to be 0, i.e.

Rr−1
t (J) = 0.

For the other neighborhoods, equilibrium rent Rr−1
t (j) is recursively determined so

that θ̂j,j+1 workers (i.e., workers who divide Θj and Θj+1) are indifferent between
neighborhood r−1

t (j) and r−1
t (j + 1).

Ar−1
t (j) · (θ̂j,j+1 −Rr−1(j),t) = Ar−1

t (j+1) · (θ̂j,j+1 −Rr−1
t (j+1))

This equation recursively pins down rent for each neighborhood. Note that neigh-
borhood rents follow the same order as average incomes, as with the simple model.

A.1.2 Equilibrium Selection and History Dependence

When there are multiple equilibria, we choose the one that is closest to the selected
equilibrium in the previous period, in terms of the Euclidean distance in the vector
of average incomes (i.e., endogenous amenities) across neighborhoods.

Partly because the number of possible location-choice patterns increases dra-
matically with that of neighborhoods (i.e., J ! with J neighborhoods), we cannot
analytically prove Propositions 4, 5, and 6 with the full model. Instead, we use
numerical methods to demonstrate that the results are robust with more than two
neighborhoods and serially correlated amenity shocks.

For various combinations of parameters, we calculate the equilibrium path for
100,000 periods and test whether the Propositions hold. The following list of pa-
rameters are used in the simulations. For the number of neighborhoods J , we use 3,
5, and 7 neighborhoods. For the natural amenity distribution across neighborhoods,
we use ξ × (1, 2, ..., J) and vary ξ to be 1, 3, 5, and 10. Note that the variance in
natural amenity levels increases as ξ increases. For the average income distributions
across neighborhoods, we use ψ × (1, 2, ..., J) and vary ψ to be 1, 3, 5, and 10. For
amenity shocks, we assume that εj,t follows an AR(1) process εj,t = ρεj,t−1 + νj,t,
where νj,t follows a Normal distribution (0, σ2). We vary ρ to be 0, 0.2, 0.6, 0.9,
0.95, 0.98, 0.99, and 1, and vary σ to be 1,3,5, and 10. ρ determines how much
the amenity shocks are correlated over time. Note that the amenity shocks are sta-
tionary if ρ is less than 1. σ determines how volatile the shocks are. This grid of
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parameters generates 1,536 unique combinations of parameters.
We begin with Proposition 4. For each combination of all parameters with

ρ < 1 (1,344 combinations in total), we obtain a number J × 100, 000 of simulated
neighborhood level data. For each combination with ρ < 1, we regress change in
percentile rank income of a neighborhood on its percentile rank natural amenity
level and its current period percentile rank income. This is the base specification
we use in our empirical analysis.

Proposition 4.(i) implies that the coefficient on natural amenity should be pos-
itive. Our simulation results confirm this prediction with nonstationary amenity
shocks. With ρ ≤ 0.98, the coefficients were weakly positive for all 1,152 combi-
nations. With ρ = 0.99, only four parameter combinations out of 192 show small
negative values. The small number of negative outcomes seem to be driven by
numerical errors, as it becomes close to nonstationary unit-root process. With a
unit-root process (i.e. ρ = 1), our predictions do not hold. 128 out of 192 cases
show negative values.

Proposition 4.(ii) predicts that the coefficient on current percentile rank should
be negative. Our simulation results confirm this prediction. The coefficient esti-
mates are weakly negative for all parameter combinations.

Now we test Proposition 5. The effect of superior natural amenities is captured
by the coefficient on percentile rank natural amenity level in the previous regressions
used to test Proposition 4. We test if the coefficients tend to increase with ξ. We
calculate the mean value of the coefficient estimates for each ξ=1, 3, 5, 10. Each ξ
group has 384 parameter sets. The results show that the mean coefficient increase
monotonically with ξ.

Finally, we test Proposition 6. We calculate E(V ar(w̄j,t|j)) for each parameter
set. The Proposition implies that E(V ar(w̄j,t|j)) decreases with ξ, and our simu-
lation results show that E(V ar(w̄j,t|j)) indeed decreases with a stationary amenity
shock (i.e., ρ < 1).

A.2 Data

A.2.1 Census Data and Boundary Normalization

We use 2010 census tract data from the American Community Survey (ACS) 5-year
summary file, via the National Historical Geographic Information System (NHGIS)
(Minnesota Population Center, 2011). These data cover the entire geographic extent
of the U.S., though we focus on metropolitan (core-based statistical) areas only. The
ACS is the annual replacement for the decennial long-form data, and it includes
much of the detailed information on population and housing (e.g., income) that is
no longer reported in the decennial census. However, the ACS has one important
limitation. Because of small annual sample sizes and privacy concerns, these data
represent five-year averages of residents and houses located in each tract. Thus,
though we refer to these data as coming from the year 2010 throughout the paper,
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they really represent an average over 2006–2010. Finally, since these data already
follow 2010 census tract boundaries, no normalization is required.

Census data for 1970–2000 are from the Geolytics Neighborhood Change Database
(NCDB) (Tatian, 2003). These data are already normalized to 2000 (n.b., not 2010)
census tract boundaries. The NCDB methodology compares maps of 2000 census
tract and block boundaries to earlier years. Then, 1990 census block information
(each tract is composed of many blocks) is used to determine the proportion of people
in each historic tract that should be assigned to each overlapping 2000 tract. These
proportions are then used as weights to normalize the data to 2000 boundaries.15

To normalize the NCDB data to 2010 census tract boundaries, we use the Longi-
tudinal Tract Database (LTDB) (Logan, Xu, and Stults, 2012). The LTDB uses the
same block-weighting methodology as the NCDB. Thus, our analysis uses weights
defined by 2000 census block populations to normalize all of the Geolytics data from
1970–2000 to 2010 census tract boundaries. It is important to note that in 1980 and
earlier, the entire geographic extent of the U.S. was not completely organized into
tracts, and missing data problems are more severe for earlier years. However, since
we focus mostly on metropolitan areas, data quality is quite good as early as 1970.
(We also drop tract observations in years when their respective metropolitan area
is incompletely tracted. See more on sample selection below.)

For census years 1910–1960, we use decennial census information from the NHGIS.
The 1940, 1950, and 1960 NHGIS extracts are collectively known as the Bogue files
(2000a, 2000b, and 2000c), and they are also available from the Inter-University
Consortium for Political and Social Research. These files contain tract information
for selected cities and metropolitan areas. The 1910, 1920, and 1930 NHGIS extracts
are known as the Beveridge files. Note that data availability is sparse, especially
before 1950. Even for cities that are completely tracted, sometimes the data do not
contain complete information on population, housing, or income. (For example, in
1910, tract information on household income is only available for New York City;
in 1920, such information is only available for New York City and Chicago. Ten
metropolitan areas have valid data in 1930, and 43 metropolitan areas have valid
data in 1940.) We normalize these data to 2010 census tract boundaries ourselves
using NHGIS map layers. For each decade, we compare historical tract boundaries
to 2010 census tract boundaries. Since sub-tract or block information on population
is unavailable for these historical years, we are unable to exactly follow the NCDB
and LTDB methodologies of constructing weights using block populations. Instead,
we normalize using a simple apportionment based on land area.

Finally, we draw 1880 census information from the Integrated Public Use Mi-

15We make a small adjustment to the 1980 Geolytics NCDB. The 1980 census prized identi-
fication of “places” (e.g., towns, villages, boroughs) over tracts when confidentiality restrictions
were binding. The NCDB propagates this censoring in their normalization procedure, even if the
proportion of households in the tract with suppressed income data is negligible. We restore this
income information from the original 1980 census as long as the proportion of censored households
in a census tract is less than 20 percent.
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crodata Series (IPUMS) (Ruggles et al., 2010). We use both the 100 percent census
and the 10 percent population sample; the 10 percent sample includes information
on literacy while the 100 percent census does not. The IPUMS includes data on
each person’s place of residence, via the enumeration district variable. Enumeration
districts were areas assigned to census enumerators to gather data, and they are
comparable in population size to modern-day census tracts. (In fact, on average,
they are slightly smaller than modern-day census tracts.) We use enumeration dis-
tricts to normalize the historical 1880 data to 2010 census tract boundaries. First,
we obtain maps on historical enumeration district boundaries from the Urban Tran-
sition Historical GIS Project (UTHGIS) (Logan et al., 2011). Maps are available
for 32 present-day metropolitan areas (totaling 29 consolidated metropolitan areas).
Second, using the same procedure as for 1910–1960, we compare historical enumer-
ation district boundaries to 2010 census tract boundaries. We apportion to 2010
census tract boundaries using land area.

A.2.2 Natural Amenity Data

We spatially match our consistent-boundary neighborhoods to a number of natural
and persistent geographic features.

Water features—coastlines, lakes, and rivers. We use data on water features from
the National Oceanic and Atmospheric Administration’s Coastal Geospatial Data
Project. These data consist of high-resolution maps covering (i) coastlines (including
the Atlantic, Pacific, Gulf of Mexico, and Great Lakes), (ii) other lakes, and (iii)
major rivers. For each 2010 census tract, we separately calculate the distance to
each of the nearest water features (ocean, lake, river) from the centroid of the tract.

Elevation and slope. We use the elevation map included in the ESRI 8 package.
These data have a 90-meter resolution. In ArcGIS, we use the slope geoprocessing
tool to generate a slope map. Then, we use the zonal statistics tool to calculate
average slope in each 2010 census tract.

Floodplains. The Federal Emergency Management Agency (FEMA) publishes Na-
tional Flood Hazard Layer (NFHL) maps covering much of the U.S. The NFHL
shows areas subject to FEMA’s flood zone designations. We assign to tracts ei-
ther a high-risk or low-risk indicator. High risk means that an area has at least
a 1 percent annual chance of flooding (a 26 percent chance of flooding over a 30-
year period), as determined by FEMA. Note that flood maps are unavailable for
some metropolitan areas. In our data, 261 metropolitan areas have valid flood zone
information.

Temperature and precipitation. We match tracts to temperature and rainfall data
available from the PRISM Climate Group at Oregon State University. These data
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are 1971-2000 averages, collected at thousands of weather monitoring stations and
processed at a spatial resolution of 30-arcseconds for the entire spatial extent of the
U.S., of annual precipitation, July maximum temperature, and January minimum
temperature.

A.2.3 Sample Selection

We drop tracts in Alaska, Hawaii, and Puerto Rico. We exclude tracts with zero
land area (these are typically “at sea” populations, i.e., personnel on ships) or zero
population (e.g., airports or zones otherwise reserved for nonresidential uses).

We do not consider tracts outside of metropolitan areas defined in 2009. One
problem with nonmetropolitan tracts it that many of them are not available before
1990, the first year that the U.S. was fully organized into census tracts. Another
problem with rural tracts is the difficulty in grouping these tracts into units that
share common labor, housing, product, and input markets. (One exception are
the core-based statistical areas called micropolitan areas. However, many of these
micropolitan areas feature a very small number of tracts, making them unsuitable for
our analysis. The very small number of tracts means that the entry of even one new
neighborhood can elicit a volatile response in within-micropolitan area rankings.)

We drop tracts in particular years that are clearly nonurban. This restriction is
more salient in historical years, when tracts or enumeration districts on the urban
fringe were not subject to urban land uses. We classify tracts as nonurban if (i) the
entire tract population is classified by the census as “rural” or (ii) population den-
sity is less than 32 people per square mile, or 1 person per 20 acres. (Lowering this
threshold to 1 person per 40–160 acres affects the number of excluded tracts mini-
mally. Population densities of less than 32 people per square mile are already well
short of standard definitions of urban population densities.) We reason that while
these tracts are within counties that contain urban uses, at the time of observation
they are likely to be outside of metropolitan areas and urban household location
decisions. In this way, we also address concerns about changing metropolitan area
boundaries over time.

We exclude tracts where our normalization procedure is likely to be poor. In
some cases, especially for early census years and tracts on the urban fringe, historical
tracts cover only a portion of 2010 census tract areas. This is more likely to be the
case when historical city boundaries were much smaller than present-day extents.
When historical tracts cover less than 50 percent of the land area of the present-day
tract, we exclude these data from our analysis.

We also eliminate tract observations that disappear from one year to the next.
This problem is partly mechanical; we cannot compute income changes for a tract
that does not appear in the next period. It also is mostly limited to the transition
between the 1880 UTHGIS data and the subsequent NHGIS data. The reason this
problem arises is because the UTHGIS maps, which we use for our normalization
procedure, typically cover entire counties, whereas the NHGIS data and maps used
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in the early 20th century are confined mostly to city boundaries. Thus, many
of the UTHGIS tracts outside city boundaries are dropped anyway because they
are nonurban (see above), but, to avoid the problem of contracting metropolitan
boundaries, we exclude the remaining earlier tracts that do not appear in subsequent
years.

A consequence of the unbalanced nature of the data is that forward lags vary
by metropolitan area and year. For example, after 1880, it is only 30 years until
our next observation of New York neighborhoods (in 1910), but it is 70 years until
our next observation of Omaha neighborhoods (in 1950). Out of 1,684 metropoli-
tan area-year groups in our data, 1,342 follow the standard 10-year gap between
census year observations. As a result, the actual number of neighborhoods used in
regressions varies according to whether the specification requires balancing across
two subsequent census years or balancing over a large number of years. In addition,
some variables, such as flood hazard or average housing unit age, are unavailable in
some years, further affecting sample selection.

A.2.4 Summary Statistics

Figure A2 shows the evolution of several New York neighborhoods over our sam-
ple period. Recall that each neighborhood corresponds to data normalized to
2010 census tract boundaries. The solid lines show the relative rankings of three
neighborhoods—tracts corresponding to the Upper East Side, East Harlem, and
Tribeca. (Levittown was unpopulated in 1880 and a corresponding solid line does
not appear in the figure.) An interesting feature of this graph is variation in income
dynamics across neighborhoods. For example, the Upper East Side has remained
a high-income neighborhood throughout our sample period. East Harlem, which
was a relatively high-income neighborhood in 1880, experienced decline and has
been a low-income neighborhood since 1910. Tribeca saw a large increase in average
household income in the 1980s.

The dotted lines show the relative rankings of these three neighborhoods after
1960 and also the relative ranking of a fourth neighborhood, Levittown, which first
appeared in that census year. In comparing the solid to the dotted lines, note that
we have changed the universe used to compute neighborhood ranks from 1880 to
1960 neighborhoods, but the dynamic patterns for the extant three neighborhoods
remain qualitatively similar.

In our sample, most neighborhoods experience changes in percentile rank that
are close to zero—that is, neighborhood income ranks are largely persistent over
time, especially over the ten-year changes that are predominant in our sample. Few
neighborhoods experience dramatic increases or declines in rank. The distribution
of percentile rank changes has a mean zero and standard deviation of 0.164.

Finally, in Figure A3, we show a pattern of mean reversion in our sample
data. The graph shows the results from a local polynomial regression of change in
tract percentile rank on initial tract percentile rank. High-income neighborhoods—
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neighborhoods with initial percentile ranks greater than 0.5—tend to decline in rank
over the subsequent period. Low-income neighborhoods tend to improve in rank.
One feature of interest is that despite using nonlinear techniques, the pattern of
mean reversion is close to linear in initial rank. Later, we condition on initial rank
linearly in our regressions.

A.2.5 Robustness Checks

In Appendix Figure A4, we show that the effect of proximity to an ocean or Great
Lake is consistent for definitions of proximity from 100 meters to 10 kilometers.
The gray line connects regression estimates from 100 separate regressions of neigh-
borhood change on proximity, varying the proximity indicator. (As we move to
the right along the horizontal axis, each regression classifies more neighborhoods as
being “close” to the natural amenity and fewer neighborhoods as being “far” from
the natural amenity.) The black line displays regression estimates when we use only
natural features near top-income neighborhoods, as in Table 3, column 4. (The
intersection of these lines with the vertical dotted line are the estimates from our
baseline estimates using a 1-kilometer definition, shown in Table 3.) Recall that we
expect these features to be more likely to be positive, versus negative, amenities. As
expected, the results using this variable are always stronger than the results using
oceans and Great Lakes unconditioned on income.

Figure A4 also shows the same results for lakes, rivers, and hills. These results
show consistent patterns. The important feature of this figure is that it shows
that conditioning rivers on their proximity to high-income neighborhoods improves
the estimated effect of (positive-amenity) rivers on neighborhood change. This is
consistent with the view that, on average, rivers in our sample are a disamenity for
households.

Our results are also robust to varying the time horizon over which we calculate
rank changes (i.e., differences of 10, 20, 30 or more years) or estimating our regres-
sions for each year separately, as shown in Appendix Figure A5. In this figure, each
point shows the estimated conditional effect from a separate regression that varies
the base year t and the time horizon ∆t. The vertical axis measures the estimated
conditional effect of superior natural amenities conditioned on initial proximity to
high-income neighborhoods (as in Table 3, column 4). The dependent variable is the
change in percentile rank by income from t to t+ ∆t. The initial year t used in the
regression can be read by tracing the line segment back to the beginning year, and
the outcome year t + ∆t is measured on the horizontal axis. With few exceptions,
the estimated conditional effects are positive and precisely estimated.
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Figure A2: New York metropolitan area rankings over time, selected neighborhoods
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Figure A3: Mean reversion in neighborhood percentile rank
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Figure A4: Robustness to indicator variable thresholds

These graphs show the conditional effect of natural features on neighborhood change for varying indicator
definitions of proximity to natural features.
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Figure A5: Robustness to year selection and time horizon

Each point shows results from a separate regression, that varies the base year t and the time horizon ∆t. The
vertical axis measures the estimated conditional effect of indicator for natural amenity and neighborhood is
in top income decile. The dependent variable is change in percentile rank by income from t (the beginning
year of its corresponding line segment) to t+ ∆t (the year corresponding to the horizontal coordinate of the
point). Circled points are significant at p < 0.05.
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Table A1: Summary statistics

Neighborhoods µ (σ)
∆r, Ten-year change in percentile rank 0.00 (0.16)
Var(ri[m])× 100, Variance in 1960–2010 percentile rank 2.13 (2.69)

Population, 2010 4,283 (1,912)
Land area (km2) 27.5 (73.5)
Persons per square km, 1880 5,940 (12,406)
Persons per square km, 1960 2,901 (6,159)
Persons per square km, 2010 2,335 (4,807)
Housing units, 2010 1,796 (786.5)
Mean age of housing units (years), 2010 37.3 (14.1)
Distance from centroid to city center (km), 2010 29.9 (27.2)

Share of 2010 neighborhoods
... with centroid within 1km of ocean or Great Lake 0.092
... with centroid within 1km of lake (ex. Great Lakes) 0.012
... with centroid within 1km of major river 0.210
... with average slope greater than 15 degrees 0.069
... with moderate temperatures* 0.091
... with less than 800mm average annual precipitation 0.063
... with less than 1% average annual flood risk† 0.454

Metropolitan areas

Var(rm)× 100, Mean variance in 1960–2010 percentile rank 2.3 (0.89)

*–Average January minimum temperatures between 0 and 18 degrees Celsius and average July maximum
temperatures between 10 and 30 degrees Celsius. †–Flood information available for 49,517 neighborhoods.
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Table A2: Coastal and interior cities

Coastal Cities Interior Cities

Boston, MA Albany, NY
Buffalo, NY Atlanta, GA

Charleston, SC Cincinnati, OH
Chicago, IL Columbus, OH

Cleveland, OH Hartford, CT
Detroit, MI Indianapolis, IN

Milwaukee, WI Kansas City, MO
Mobile, AL Louisville, KY

New Orleans, LA Memphis, TN
New York, NY Minneapolis, MN
Rochester, NY Nashville, TN

San Francisco, CA Omaha, NE
Philadelphia, PA
Richmond, VA
Pittsburgh, PA
St. Louis, MO

Washington, DC

These are the principal cities for consolidated metropolitan areas that have available data on neighborhood
income in the census years shown in Figure 2.
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