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Abstract

We quantify the influence of migration and housing on urban population dynamics
using a dynamic general equilibrium model of cities which incorporates a new theory
of migration motivated by patterns uncovered in a panel of US cities. Cities expe-
rience significant, near random walk productivity shocks, yet population is slow to
adjust. While city populations are dominated by net migration, we show that mea-
suring and modeling gross migration is essential to quantifying migration’s impact on
their dynamics. Housing is also a natural candidate for influencing population dynam-
ics because it is difficult to move, costly to build quickly, and is very durable. We use
our panel data along with additional micro- and macro-economic evidence to calibrate
our model. The implied dynamic responses to productivity shocks of a city’s popula-
tion, gross migration, employment, wages, home construction and house prices closely
resemble those we estimate with our panel. In the model costs of finding better cities
to live and work drive slow population adjustments in the short run. Housing plays a
very limited role. We also show that the model’s slow response of population to past
declines in productivity also account for persistent urban decline.

JEL Classification Numbers: E0, O4, R0
Keywords: Gross migration, housing, urban population dynamics, persistent urban
decline, house prices

∗An earlier draft of this paper circulated under the title “The Role of Housing in Labor Reallocation.”
We thank Marco Bassetto, Jeff Campbell, John Kennan, Erzo Luttmer, Nicolas Petrosky-Nadeau, Robert
Shimer and seminar participants at various institutions and conferences for helpful comments. The views
expressed herein are those of the authors and do not necessarily represent those of the Federal Reserve Bank
of Chicago or the Federal Reserve System.

mailto:mdavis@bus.wisc.edu
mailto:jfisher@frbchi.org
mailto:mveracierto@frbchi.org


1 Introduction

As we document in this paper, cities experience significant, random-walk-like productivity

shocks, yet population is very slow to adjust to them. This evidence suggests there are sub-

stantial barriers to geographical labor reallocation within the US. What are these barriers?

Urban population dynamics are the result of many individual decisions about whether to

leave one’s current location and if so where to move to. Hence the costs and benefits underly-

ing gross migration decisions are a natural starting point for understanding slow population

adjustment. Previous research suggests that housing may be important as well. The rea-

sons are that it is difficult to move, requires time-to-build to accommodate an increasing

population, and a large durable housing stock makes a city attractive to potential migrants.

We study how migration and housing frictions drive slow population adjustments by

developing a quantitative dynamic general equilibrium model of cities and comparing it

to panel data from 365 US cities over the period 1985-2007. Our model incorporates a

new theory of migration between cities motivated by evidence from these data. We find that

gross in-migration is linearly increasing in net migration and that in-migration rises and out-

migration falls following positive productivity shocks. These findings suggest it is important

to model the gross flows underlying net migration and that an empirically plausible model of

gross migration should embody some form of directed migration which allows in-migration to

vary systematically with net migration. Moreover, we show that the observed gross migration

is extremely informative about the costs of adjusting population through net migration.

Building on Kennan and Walker (2011) (hereafter KW), large gross flows arise in our

model from idiosyncratic shocks to workers’ tastes for their current cities over others. When

considering a move workers understand the distribution of city types but not the location of

any particular type of city. They can pay a variable cost to find a particular city type, a form

of directed migration, or pay a fixed cost to be randomly allocated. Costly directed migration

captures the myriad ways in which workers find a given type of city, including through

active recruitment by firms and cities and informal networking. Random matching accounts

for intangible factors that influence location choices such as to be near family members.

Since employing more of the existing population is a natural substitute for migration to

accommodate higher labor demand, labor supply is endogenous in our model as well.

We integrate this theory of migration and labor supply into an otherwise familiar gener-

alization of the neoclassical growth model. Each city produces a unique good using locally

supplied workers and freely mobile equipment capital, subject to idiosyncratic productivity
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shocks. These locally produced goods are imperfectly substitutable inputs into the pro-

duction of the freely tradeable final goods, consumption and equipment. Individuals enjoy

consumption and housing services in the same city they work with housing services derived

from locally produced, immobile and durable residential structures.

The model is calibrated using observations different from those we use for its validation.

Four features of the calibration are new. First, we obtain the migration technology’s pa-

rameters by matching the linear relationship between gross in-migration and net migration

and the net benefits to migration estimated by KW. Second, we calibrate the model’s pro-

ductivity process using our panel, thereby pinning down its exogenous source of persistence

and variability. Third, we obtain the substitutability of intermediate goods by matching

the empirical cross-section distribution of population, verifying that our model is consistent

with Zipf’s law.1 Finally, labor supply is calibrated to cities’ wage elasticity of employment

relative to population we estimate from our panel.

We validate the calibrated model by comparing how population, gross in- and out-

migration, employment, wages, residential investment and house prices respond to produc-

tivity shocks with estimates of the same objects based on our panel. The model does sur-

prisingly well along these dimensions and importantly it is consistent with the slow response

of population even though this evidence is not targeted in our calibration. We also find that

the model is broadly consistent with the unconditional volatility, persistence, and contem-

poraneous co-movement of the key variables, and that productivity shocks alone account for

about 60% of the variation in local population growth.

Having established the empirical relevance of our model, we use it to examine how mi-

gration and housing influence population adjustments. We find that workers’ costs of finding

new cities to live and work essentially account for the slow population adjustments we ob-

serve on their own. Housing plays a very limited role. In the absence of migration frictions,

costs of producing durable, immobile housing do lower the amplitude and increase the per-

sistence of population’s response to a productivity shock. However, if migration frictions

are already present, adding those for housing does virtually nothing to influence population

dynamics.

There is evidence of persistent urban decline in our panel with many cities experiencing

declining populations throughout the sample period. Glaeser and Gyourko (2005) argue that

housing’s immobility and durability account for persistent urban decline and they dismiss

1Zipf’s law is that in its upper tail city population is distributed exponentially with an exponent close to
one. See for example Gabaix (1999) and Eeckhout (2004).
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a role for migration (see pp. 368–369). The declining cities in our sample also experience

declining (relative) productivity, suggesting that our model might account for persistent

urban decline in addition to short run population dynamics. We find that it does, through

the slow response of population to past declines in productivity. This suggests that migration

frictions are a major factor in urban decline even though, as emphasized by Glaeser and

Gyourko (2005), rates of in-migration remain high in declining cities.

Our model builds on an extensive empirical and theoretical microeconomic literature on

migration, surveyed by Greenwood (1997) and Lucas (1997). KW is an important recent

contribution. They analyze individual migration decisions in the face of wage shocks, id-

iosyncratic location-preference shocks, and moving costs, but without housing or equilibrium

interactions. KW calculate the speed of adjustment of state populations to permanent wage

changes using their estimated model. Despite using very different methodologies we find

similarly slow population adjustments. In addition, we show how and why their microeco-

nomic estimates of moving costs based on inter-state migration can be used to calibrate a

general equilibrium model of inter-city migration.

Our model is a dynamic version of the classic Roback (1982) and Rosen (1979) static

model of cities with costless mobility. Recent contributions using this approach include

Albouy (2009) and Diamond (2012). Because it is static, the Roback-Rosen model does not

address migration or population adjustments to shocks. Van Nieuwerburgh and Weil (2010)

introduce dynamics to this framework. Their model has implications for net migration,

but not gross flows. Coen-Pirani (2010) also constructs a dynamic Roback-Rosen model,

studying gross population flows among US states in a framework similar to the one used

by Davis, Faberman, and Haltiwanger (2011) and others to study gross worker flows among

firms. Our empirical work demonstrates that gross population flows are quite dissimilar to

gross worker flows, which motivates taking a different approach to modeling migration.

This paper also contributes to the literature by introducing a city’s dynamic response to

an identified productivity shock as a model validation tool and by estimating the underlying

stochastic process for productivity.2 Model validation in the literature emphasizes uncondi-

tional cross-sectional and time-series patterns which in some cases are also used to identify

model parameters. In contrast we calibrate parameters using statistics different from those

we use to validate our model. Furthermore, while much of the literature relies on idiosyn-

2Lloyd-Ellis, Head, and Sun (2014) estimate the responses of population, residential construction and
house prices to personal income shocks identified using a panel VAR and a Choleski decomposition of the
residual variance-covariance matrix. They abstract from migration decisions and equilibrium interactions
among cities.
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cratic productivity shocks to drive variation, it does not provide evidence on the nature of

these shocks as we do.3

The recent housing boom and bust has prompted a growing literature that quantifies

how housing frictions impede geographical labor reallocation and leads to persistently high

aggregate unemployment. For example, Karahan and Rhee (2012), Lloyd-Ellis and Head

(2012) and Nenov (2012) study how house price collapses limit labor reallocation through

disincentives to migrate arising from home ownership and local search frictions. We abstract

from these factors and emphasize instead costly migration between geographically distinct

labor and housing markets. Nenov (2012) and Karahan and Rhee (2012) model gross migra-

tion, but they do not address the linear relationship between gross and net migration that

we find is essential to quantifying the speed of urban population adjustment.4

The rest of the paper is organized as follows. Section 2 describes new empirical evidence

from our panel of cities on migration and the responses of population and gross migration to

productivity shocks. After this we use two simplified versions of our quantitative model to

describe our approach to migration and the possible role for housing in slowing population

adjustments. Section 5 introduces the quantitative model and Section 6 describes how we

calibrate it. Section 7 validates the calibrated model by comparing its predictions to dynam-

ics we estimate from our panel and quantifies the influence of migration costs and housing

on short and long run urban population dynamics. The last section concludes.

2 Empirical Evidence

This section describes empirical evidence to motivate our analysis and guide our modeling

of migration. We work with an annual panel data set covering 1985 to 2007 that includes

population, net and gross migration, employment, wages, residential construction, and house

prices for 365 Metropolitan Statistical Areas (MSAs) comprising about 83% of the aggregate

population.5 We consider MSAs because they represent geographically distinct labor mar-

kets. They are defined as a region with a relatively high population density at its core and

close economic ties throughout as measured by commuting patterns. Such regions are not

3An exception is Karahan and Rhee (2012) who estimate an auto-regressive process in the level of GDP
per worker using a short panel of cities.

4There is also an empirical literature that investigates the effects of housing related financial frictions
on mobility. See for example Ferreira, Gyourko, and Tracy (2011), Modestino and Dennett (2012) and
Schulhofer-Wohl (2012). We abstract from financial frictions in this paper.

5See Davis, Fisher, and Veracierto (2011) for a detailed description of these data.
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legally incorporated as a city or town would be, nor are they legal administrative divisions

like counties or sovereign entities like states. A typical MSA is centered around a single

large city that wields substantial influence over the region, e.g. Chicago, although some

MSAs contain more than one large city with no single municipality holding a substantially

dominant position, e.g. Dallas–Fort Worth. With these caveats, for convenience we refer to

our MSAs as cities.

2.1 Gross Versus Net Migration

We use IRS data to calculate city-level net and gross migration rates because these data

have wide coverage of US cities. Due to limited sample sizes gross migration rates can only

be calculated for a small number of cities using other available data including the Current

Population Survey and the American Community Survey. State-level migration rates can be

calculated using these surveys. These data yield very similar results to those we obtain with

city-level and state-level migration rates calculated using the IRS data.6

Let ait and lit denote the number of people flowing into and out of city i in year t and

xit the population of that city at the beginning of the same year. For an individual city the

arrival (in-migration) rate is ait/xit and the leaving (out-migration) rate is lit/xit. The dif-

ference between the arrival and leaving rates is the net migration rate. Gross migration rates

fluctuate over the business cycle and have been falling over our sample period.7 To abstract

from these dynamics we subtract from each city’s gross rate in a year the corresponding

cross section average in that year and define net migration as the difference between these

measures.

Figure 1 contains plots of gross and net migration rates by population decile with the time

effects removed. Net migration is essentially unrelated to city size. This reflects Gibrat’s

law for cities, that population growth is independent of city size. However, the arrival and

leaving rates are clearly diminishing in city size. This is an interesting finding worthy of

further study, but its presence conflates cross-city variation with the within-city dynamics

we are interested in. Therefore, after removing time fixed effects, for every city we subtract

from each year’s arrival and leaving rate the time series average of the sum of the arrival

6As emphasized by Kaplan and Schulfofer-Wohl (2012) there are some drawbacks to using the IRS data:
tax filings under-represent the poor and elderly; addresses on tax forms are not necessarily home addresses;
and tax returns may be filed late.

7See Saks and Wozniak (2011) for evidence on the cyclical characteristics of migration and Karahan and
Rhee (2013), Molloy, Smith, and Wozniak (2011) and Kaplan and Schulfofer-Wohl (2012) for studies of its
trend.
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and leaving rates for that city. This removes city fixed effects in gross migration without

affecting net migration rates.

Figure 1: Gross and Net Migration Rates by Population Decile
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Figure 2 displays mean arrival and leaving rates against mean net migration for each net

migration decile, after removing both time and city fixed effects and adding back the corre-

sponding unconditional mean to the gross migration rates. Notice first that gross migration

is large and far exceeds the amount necessary to account for net migration. For example, in

a city with zero net migration an average of 11% of the population either arrives to or leaves

from a city during a year.

Second, the arrival rate is monotonically increasing and the leaving rate is monotonically

decreasing in net migration. This suggests it is important to model both gross migration

margins in order to understand urban population dynamics. The rising arrival rate at a func-

tion of net migration is prima facie evidence that migration involves a directed component.

Otherwise gross arrivals would be independent of net migration.

Third, and most striking, the gross migration rates fall almost exactly on the correspond-

ing regression lines.8 This finding sharply contrasts with what we observe for worker flows.

8We obtain virtually identical regression lines when we use all the data rather than first taking averages
of deciles and when we estimate using data from the first 5 years of the sample and the last five years of the
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Figure 2: Gross Migration Rates by Net Migration
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In particular, Davis, Faberman, and Haltiwanger (2006) find that hires are flat and close

to zero for negative net flows and linearly increasing in net flows otherwise; separations are

essentially the mirror image. These differences suggests models designed to explain worker

flows are not suitable for understanding population flows – we require a different theory.

Our theory of migration and calibration of the underlying parameters are tied closely to the

linearity finding.

Finally, the negative relationship between the arrival and leaving rates appears to be

inconsistent with Coen-Pirani (2010)’s finding of a positive correlation between the two

gross migration rates at the state level. The difference is not because we study cities instead

of states. It arises from our removal of city-specific fixed effects from the gross migration

rates. As suggested by Figure 1, when we do not remove these effects the gross migration

rates are strongly positively correlated.9

sample. We also find qualitatively similar results when we regress gross on net migration separately for each
city in our sample.

9Coen-Pirani (2010) removes cross-sectional variation in the occupational characteristics of states prior
to his analysis.
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2.2 Responses of Population and Gross Migration to TFP Shocks

We estimate dynamic responses of city-level variables to local productivity shocks by ex-

ploiting the first order conditions of final good producers and intermediate good in the

quantitative model described in Section 5. These conditions can be used to obtain a mea-

sure of total factor productivity (TFP) using data on wages and employment from which we

estimate a stochastic process for its growth. We estimate the dynamic response of a variable

to TFP shocks by regressing it on current and lagged values of the innovations derived from

the estimated TFP growth process.

There are N cities that each produce a distinct intermediate good used as an input into

the production of final goods. The production function for a representative firm producing

intermediate goods in city i at date t is

yit = sitn
θ
y,itk

γ
y,it, (1)

where sit is exogenous TFP for the city, ny,it is employment, ky,it is equipment, θ > 0, γ > 0,

and θ + γ ≤ 1.10 The output of the final good at date t, Yt is produced using inputs of

city-specific intermediate goods according to

Yt =

[
N∑
i=1

yχit

] 1
χ

, (2)

where χ ≤ 1.

Our measurement of city-specific TFP relies on the following definition. For any variable

vit:

v̂it ≡ ln vit −
1

N

N∑
j=1

ln vjt. (3)

Subtracting the mean value of ln vjt in each period eliminates variation due to aggregate

shocks, allowing us to focus on within-city dynamics. Under the assumption of perfectly

mobile equipment the rental rate of equipment is common to all cities. It then follows from

the first order conditions of competitive final and intermediate good producers that

∆ŝit =
1− γχ
χ

∆ŵit +
1− θχ− γχ

χ
∆n̂y,it, (4)

10The additional subscripts on employment and equipment are used later to distinguish between employ-
ment and equipment used in the production of intermediate goods and residential construction.
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where ∆ is the first difference operator and wi denotes the wage in city i. Applying the

first difference operator addresses non-stationarity over the sample period. Our quantitative

model appears non-stationary over samples of similar length, but nevertheless implies a

stationary distribution in the levels of its variables.11

Given values for χ, θ and γ and data on wages and employment equation (4) can be

used to measure ∆ŝit, the growth rate of city-specific TFP.12 Below we calibrate θ and γ

using traditional methods and find a value for χ to match the model to Zipf’s law. With

calibrated values χ = 0.9, θ = 0.66 and γ = .235 we estimate a first order auto-regression

in ∆ŝit with a statistically significant auto-correlation coefficient equal to 0.24 and standard

deviation of the error term equal to 0.015. Wooldridge (2002)’s test of the null hypothesis of

no first order serial correlation in the residuals yields a p-value of 0.28, which confirms that

this specification is a good fit for the data.

A natural concern about measuring TFP with (4) is that it ignores agglomeration. Davis,

Fisher, and Whited (2014) find statistically significant agglomeration effects in a model

where agglomeration affects TFP endogenously through an externality in output per acre

of land. It is straightforward to modify equation (4) to include agglomeration like this and

it leads to the same measurement equation for the exogenous component of TFP except

that the coefficients on wage and employment growth include the parameter governing the

magnitude of the externality. When we re-estimate the TFP process using Davis et al.

(2014)’s estimate of the externality parameter we find the serial correlation coefficient and

the innovation standard deviation are a little different, falling to 0.20 and 0.013. While we

do not include agglomeration in our model, we expect that doing so would reconcile the two

sets of estimates but have little impact on our other results.13

We now show how to use the estimated TFP process (without agglomeration) to identify

the dynamic responses of variables to exogenous local TFP shocks. Let eit denote the residual

from the estimated TFP growth auto-regression. Then, we estimate the dynamic response

11First differencing removes fixed effects if they are present in the data and so our empirical analysis is
robust to them. However, as in Gabaix (1999), our quantitative model addresses the cross-section of city
populations without appealing to fixed effects.

12We use total employment to measure ny,it. In our quantitative model total employment includes workers
in the residential construction and intermediate good sectors. Residential construction employment data are
not available, but for some cities it is for the construction sector as a whole. When we redo our empirical
analysis subtracting construction employment from the total we obtain almost identical results because
construction is a small fraction of total employment. We measure TFP in the same way in the data and the
model, with one exception pointed out below.

13Verifying this conjecture is beyond the scope of this paper. In Davis et al. (2014)’s model the externality
amplifies the response of TFP to an exogenous TFP shock and makes it more persistent.
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to a TFP shock of variable ∆x̂it as the coefficients b0, b1, . . ., b4 from the following panel

regression:

∆x̂it =
4∑
l=0

bleit−l + uit (5)

where uit is an error term which is orthogonal to the other right-hand-side variables under the

maintained hypothesis that the process for TFP growth is correctly specified. The dynamic

response of x̂it is obtained by summing the estimated coefficients appropriately. For the

gross migration rates we replace ∆x̂it with the rates themselves (transformed as described

above) in (5) and identify the dynamic responses with the estimated coefficients directly.

Figure 3: Responses of TFP and Population
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Note: Point estimates along with 2 standard error bands.

Figure 3 displays the percentage point deviation responses of TFP and population to a 1

standard deviation impulse to TFP. This plot establishes the claim made in the introduction

that TFP responds much like a random walk, rising quickly to its new long run level, and

that population responds far more slowly. Figure 4 shows that the adjustment of population

occurs along both the arrival and leaving margins, as suggested by our earlier discussion of

Figure 2. On impact the arrival rate jumps up and the leaving rate jumps down and then

both slowly return toward their long run levels. The indicated sampling uncertainty suggests

that the arrival and leaving margins are about equally important for population adjustments
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Figure 4: Responses of Arrival and Leaving Rates
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to TFP shocks. Evidently improving local prospects influence population dynamics both by

encouraging workers not to move and by attracting new workers to the city.

3 Modeling Migration

We now introduce our theory of migration by studying a simple, static model which abstracts

from housing, equipment, and labor supply. This simplified model is used to develop intu-

ition about migration choices; to describe how and why we can reproduce the relationships

depicted in Figure 2; to establish that modeling gross migration is essential to understand-

ing urban population dynamics; and to describe a simple decentralization that is helpful for

calibrating our dynamic quantitative model. The main results extend to our quantitative

model.
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3.1 A Static Model

The economy consists of a large number of geographically distinct cities with initial popu-

lation x. In each city there are firms which produce identical, freely tradeable consumption

goods with the technology snθ, where s is a city-wide TFP shock, n is labor and 0 < θ < 1.

There is a representative household with a unit continuum of members that are distributed

across city types z = (s, x) according to the measure µ. Each household member enjoys

consumption, C, and supplies a unit of labor inelastically. After the TFP shocks have been

realized, but before production takes place, the household decides how many of its mem-

bers leave each city and how many of those chosen to leave move to each city. Once these

migration decisions have been made, production and consumption take place.

The leaving decision is based on each household member receiving a location-taste shock

ψ, with measure µl, that subtracts from their utility of staying in the city in which they are

initially located. This kind of shock is used by KW in their measurement of migration costs as

well as by Karahan and Rhee (2012) and Nenov (2012). To match the empirical relationship

between gross and net migration we make a parametric assumption on the distribution of

individual location-taste shocks in a city of type z:

∫ ψ̄(l(z)/x)

−∞
ψdµl = −ψ1

l(z)

x
+
ψ2

2

(
l(z)

x

)2

where the parameters ψ1 and ψ2 are both non-negative and ψ̄ (l(z)/x) is defined by

l(z)

x
=

∫ ψ̄(l(z)/x)

−∞
dµl.

This parameterization is U-shaped starting at the origin meaning that the first workers to

leave a city are those for whom leaving raises their utility. As more people leave the remaining

inhabitants are those who have a strong preference for staying. These features are consistent

KW’s evidence that individuals who move receive substantial non-pecuniary benefits and

that non-movers would find it extremely costly if they were forced to move. For example,

many individuals move to be near family members or find it very costly to move because

they are already near family members. Subject to these shocks, the household determines

how many of its members from each city must find new cities. Household members chosen

to find new cities are called leavers.

When deciding where to send its leavers the household knows the distribution of city
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types µ but not the location of any specific type z. However, it can find a particular type

by obtaining a guided trip, a form of directed migration. We choose a functional form for

producing guided trips to match the evidence on gross and net migration. By giving up u

units of utility each household member can produce
√

2A−1/2u1/2, A > 0, guided trips to

her initial location. Therefore, to attract a(z) workers to a city of the indicated type the

household must incur a total utility cost of (A/2) (a(z)/x)2 x.

The production of guided trips encompasses the many ways in which workers find new

cities to live and work, including via informal contacts between friends and family, pro-

fessional networks, specialized firms like head-hunters, advertising that promotes cities as

desirable places to live and work, firms’ human resource departments, and via recruiting

by workers whose primary responsibility is some other productive activity. Clearly some of

these activities are part of recruiting workers within a local labor market and as such would

be included in any measurement of the vacancy costs typically assumed in models of labor

market search and matching. Our approach can be thought of as including the portion of

these activities devoted to attracting workers to a local labor market from other locations.

If a household member does not obtain a guided trip it can migrate to another city using

undirected migration. Specifically, by incurring a utility cost τ a leaver is randomly allo-

cated to another city in proportion to its initial population. Including undirected migration

captures the idea that choosing to move to a particular city is often the outcome of idiosyn-

cratic factors other than wages or housing costs that are difficult to model explicitly, such as

attractiveness of amenities and proximity to family members.14 Furthermore, it is natural

to let people move to a location without forcing them to find someone to guide them.

We characterize allocations in this economy by solving the following planning problem:

max
{C,Λ,a(z),
l(z),p(z)}

{
lnC −

∫ [
A

2

(
a (z)

x

)2

x+

(
−ψ1

l (z)

x
+
ψ2

2

(
l (z)

x

)2
)
x

]
dµ− τΛ

}
(6)

subject to

p (z) ≤ x+ a (z) + Λx− l (z) ,∀ z (7)∫
[a (z) + Λx] dµ ≤

∫
l (z) dµ (8)

14KW include both undirected and directed migration. It is undirected because to learn a location’s
permanent component of wages workers have to migrate there. It is directed because workers retain infor-
mation about locations to which they have previously migrated and include this information in their current
migration decision along with expectations about locations they have not visited already.
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C ≤
∫
sp (z)θ dµ (9)

and non-negativity constraints on the choice variables. The variable Λ is the fraction of

the household that engages in undirected migration. Since these workers are allocated to

cities in proportion to their initial populations, Λ also corresponds to the share of a city’s

initial population that migrates to that city within the period. Constraint (7) states that

population in a city is no greater than the initial population plus arrivals through guided

trips and undirected migration minus the number of workers who migrate out of the city.

Constraint (8) says that total arrivals can be no greater than the total number of workers who

migrate out of cities and (9) restricts consumption to be no greater than total production,

taking into account that each individual supplies a unit of labor inelastically, n(z) = p(z), ∀z.

3.2 The Importance of Both Gross Migration Margins

It is necessary to include frictions on both gross migration margins to match the evidence

depicted in Figure 2. Suppose A = 0 so that guided trips can be produced at no cost, but

that household members continue to be subject to location-taste shocks, ψ1 > 0 and ψ2 > 0.

Then it is straightforward to show

a (z)

x
= max

{
p (z)− x

x
+
ψ1

ψ2

, 0

}
;

l (z)

x
= max

{
ψ1

ψ2

,−
(
p (z)− x

x

)}
.

Observe that as long as the net population growth rate, (p(z) − x)/x, is not too negative,

the planner sets the leaving rate, l(z)/x at the point of maximum benefits, ψ1/ψ2, and

adjusts population using the arrival rate, a(z)/x, only. In this situation the leaving rate is

independent of net population adjustments, contradicting Figure 2.

Now suppose that there are no location-taste shocks, ψ1 = ψ2 = 0, but it is costly to

create guided trips, A > 0. In this case we find

l (z)

x
= max

{
−
(
p (z)− x

x
− Λ

)
, 0

}
;

a (z)

x
= max

{
p (z)− x

x
− Λ, 0

}
.

Without taste shocks the planner always goes to a corner: when net population growth is
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positive the leaving rate is set to zero, and when net population growth is negative the arrival

rate is set to zero. Clearly the relationship between gross and net migration in this situation

also contradicts Figure 2. We conclude that to be consistent with the relationship between

gross and net migration, it is necessary to include frictions on both gross migration margins.

3.3 Migration Trade-offs

Now we use the planner’s first order conditions to illustrate the trade-offs involved in allocat-

ing workers across cities. To begin we note that for the model to be consistent with Figure 2,

the number of workers leaving a city and the number arriving to the same city using guided

trips must both be strictly positive, l(z) > 0 and a (z) > 0. The reason we require l(z) > 0

is that gross out-migration is always positive in Figure 2. The reason we require a(z) > 0 is

that otherwise there would be intervals of net migration in which arrival rates are constant,

equal to Λ, which is also inconsistent with Figure 2. Therefore, unless otherwise noted, from

now on we assume that a(z) > 0 and l(z) > 0.

Combining the first order conditions for Λ and a(z) we obtain

τ =

∫
Aa (z) dµ.

This equation describes the trade-off between using guided trips and undirected migration.

The marginal cost of raising the fraction of household members engaged in undirected mi-

gration is equated to the average marginal cost of allocating those household members using

guided trips. The averaging reflects the fact that undirected migration allocates workers

in proportion to each city’s initial population. The first order conditions for a(z) and l(z)

imply that

A
a (z)

x
= ψ1 − ψ2

l (z)

x
.

Intuitively, migration out of a city increases to the point where the marginal benefits of doing

so (recall that the location-taste shocks initially imply benefits to leaving a city) are equated

with the marginal cost of attracting workers into the city.

Finally, it is helpful to consider the first order condition for population, p(z):

ξ (z) = sθp (z)θ−1 . (10)

The term ξ (z) is the Lagrange multiplier corresponding to (7) and therefore measures the
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value to the planner of an additional worker in a type-z city. Equation (10) says the shadow

value of bringing an extra worker to a city equals its marginal product of labor. Combining

(10) with the first order conditions for a(z) and l(z) we find that absent migration frictions,

A = ψ1 = ψ2 = 0, efficiency involves equating cities’ marginal products of labor so that

the value of an additional worker is equated also. This contrasts with the Roback (1982)

and Rosen (1979) model with free mobility in which equilibrium allocations are obtained by

equating the level of utility across cities. The difference arises from our assumption of perfect

consumption insurance. The same three first order conditions imply that migration frictions

drive a wedge between marginal products of labor because heterogeneous initial populations

imply differential costs of moving workers around. Nevertheless, taking into account the

net costs of migration, workers are indifferent to where they move (the quantitative model

developed below shares this property.)

3.4 Connecting Figure 2 to Population Adjustments

The planner’s first order conditions reveal how gross migration relates to net migration.

From the first order conditions for a(z) and l(z) and the population constraint, (7), it is

straightforward to show that

a (z)

x
+ Λ =

ψ1

A+ ψ2

+
A

A+ ψ2

Λ +
ψ2

A+ ψ2

(
p (z)− x

x

)
. (11)

The arrival rate is an affine function of the net migration rate (p(z)− x) /x with the linear

coefficient satisfying 0 < ψ2/(ψ2 + A) < 1. Similarly the leaving rate is given by:

l (z)

x
=

ψ1

A+ ψ2

+
A

A+ ψ2

Λ− A

A+ ψ2

(
p (z)− x

x

)
. (12)

The leaving rate is also is an affine function of the net migration rate with the linear coefficient

satisfying −1 < −A/(ψ2 +A) < 0. Equations (11) and (12) establish that gross migration in

the model can be made consistent with Figure 2. This result is the underlying reason for our

specifications of the location-taste shocks and the production of guided trips. Clearly, the

relationship between gross and net migration depicted in Figure 2 places strong restrictions

on the nature of migration frictions and will be useful in quantifying those frictions.

Modeling both gross migration margins is important for replicating Figure 2, but it also

plays a crucial role in determining the speed of population adjustments. This can be seen by
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substituting for a (z) and l (z) in the original planning problem using (11) and (12), which

simplifies it to

max
{p(z),Λ}

{
ln

(∫
sp (z)θ dµ

)
−
∫ [

Φ(Λ) +
1

2

Aψ2

A+ ψ2

(
p (z)− x

x

)2

x

]
dµ− τΛ

}

subject to: ∫
p (z) dµ =

∫
xdµ (13)

with non-negativity constraints on the choice variables and where Φ (Λ) is a quadratic func-

tion in Λ involving the underlying structural parameters ψ1, ψ2 and A. In deriving this

simplified planning problem we have used the fact that (7) and (8) reduce to (13) and that

this constraint holds with equality at the optimum. Similarly we have used (9) to substitute

for consumption in the planner’s objective function.

When the planning problem is written in this way we see that population adjustments

do not depend directly on a (z) and l (z). Nevertheless modeling these decisions is crucial

for understanding population dynamics because the coefficient that determines the speed of

population’s adjustment to shocks, Aψ2/(A+ψ2), involves parameters governing them. Also

notice that the reduced form costs of adjusting population are quadratic. This is a direct

consequence of specifying the location-taste shocks and guided trip production function to

reproduce Figure 2. In other words Figure 2 implies quadratic adjustment costs in net

population adjustments.

Finally, notice that as long as a (z) > 0 and l (z) > 0, assumed in the statement of

the simplified planning problem, population adjustments are independent of the undirected

migration decision. Undirected migration is determined by the solution to

τ =
dΦ(Λ)

dΛ
.

Therefore when arrivals are always strictly positive undirected migration plays no role in

net population adjustments. In the more general quantitative model arrivals are set to

zero in especially undesirable cities. Still, for most cases arrivals are strictly positive so

that undirected migration is essentially irrelevant for our results. This is a useful property

given that there is little evidence on the magnitude of undirected migration in the data.

Nevertheless we include it because, as noted previously, otherwise workers could only move
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by obtaining a guided trip and we think this is implausible.

3.5 One Possible Decentralization

Decentralizing the planning problem is useful for calibrating the quantitative model. The

key challenge involved is how to treat guided trips. One valid approach is to have guided

trips allocated entirely within the household through home production without any market

interactions. We view guided trips in the model as an amalgam of both market and non-

market activities and so we think a more natural approach involves both activities. We now

consider such a decentralization.

Markets are competitive. Firms in a city of type z hire labor at wage w(z) and produce

consumption goods to maximize profits. Household members initially located in a type-z

city produce am(z) guided trips to that city which they sell to prospective migrants at price

q(z). The household also home produces guided trips, denoted by ah(z). Let m(z) denote

the total number of guided trips to z-type cities purchased by household members in the

market.

The representative household solves the following optimization problem

max
{C,Λ,m(z),
am(z),ah(z),
l(z),p(z)}

{
lnC −

∫ [
A

2

(
am (z) + ah(z)

x

)2

x+

(
−ψ1

l (z)

x
+
ψ2

2

(
l (z)

x

)2
)
x

]
dµ− τΛ

}

(14)

subject to:

C +

∫
q (z)m(z)dµ =

∫
q (z) am(z)dµ+

∫
w (z) p(z)dµ+

∫
Π(z)dµ (15)

p (z) = x+m (z) + ah(z) + Λx− l (z) , ∀z (16)∫
[m (z) + ah(z) + Λx] dµ =

∫
l (z) dµ (17)

along with non-negativity constraints on the choice variables. Equation (15) is the house-

hold’s budget constraint where Π denotes profits from owning the firms. Equation (16) states

that the population of a city after migration equals the initial population plus migrants from

guided trips and undirected migration less the initial population that migrates out of the

city. Finally, equation (17) states that the household members that migrate to cities must

equal the number of household members that migrate out of cities.
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The unique competitive equilibrium is defined in the usual way. Using the market clearing

condition m(z) = am(z) and the first order conditions of the household’s problem we verify

that a competitive equilibrium only determines the total number of guided trips into a

city, am(z) + ah(z). The composition of these guided trips between market and non-market

activities is left undetermined.15

This particular decentralization makes it possible to calculate the total value of guided

trips. In particular, as long as there are some guided trips purchased in the marketplace

their total value is given by q(z)a(z), with a(z) = am(z) + ah(z) and q(z) = CAa(z)/x. We

use the total value of guided trips to calibrate our model to the estimate of average moving

costs in KW.

4 Urban Population Dynamics with Housing

We expect housing to influence urban population dynamics for the reasons discussed in

the introduction: it is costly to build quickly, durable and immobile. This section studies

a simple model to explain why these factors may be important. The model borrows the

geography and production structure from the previous section. There are three differences

with that model: individuals have a preference for housing services; to emphasize the role of

housing, the model excludes migration frictions; and to study dynamics the model introduces

infinitely lived households.

To analyze this simple model it is convenient to exploit the fact, discussed further below

in the context of the quantitative model, that the unique stationary competitive equilibrium

can be obtained as the solution to a representative city planner’s problem that maximizes

local net surplus taking economy-wide variables as given, where the economy-wide variables

are constrained to satisfy particular side conditions. Since here we are only interested in

the qualitative implications of housing we ignore the side conditions and study the city

planner’s problem assuming the economy-wide variables are exogenous. When we analyze

our quantitative model below we take into account the relevant side conditions so that the

economy-wide variables are determined endogenously.

15For details see the online technical appendix.
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Gross surplus in the representative city is given by

E0

∞∑
t=0

βt
{
stp

θ
t +H ln(

ht
pt

)pt

}

where E0 denotes the date t = 0 conditional expectations operator and 0 < β < 1 is

the household’s time discount factor. Housing services are perfectly divisible so that each

individual in the city enjoys ht/pt units of housing services where ht denotes the local housing

stock. The total utility individuals in the city derive from housing is given by H ln(ht/pt)pt,

H > 0. We assume logarithmic preferences for housing here and below because they imply

housing’s share in household expenditures is constant across cities, which is consistent with

evidence reported by Davis and Ortalo-Magné (2011). The planner must give up η > 0

units of surplus for each individual it brings to the city and employ in the production of

consumption goods.

Within this framework we consider the speed of adjustment of population to a one time

permanent change to TFP. To be concrete, suppose the city is in a steady state at t = 0

with s = s0 and then at date t = 1 it faces a one-time unanticipated permanent change in

TFP to s = s∗. We consider the adjustment of population to this unanticipated change in

TFP under three scenarios for housing.

In the first scenario the planner can rent housing services from other cities at the exoge-

nous price rh. This assumption is equivalent to assuming that housing is perfectly mobile

across cities. Equilibrium in this scenario is characterized by the first order conditions for

population and housing:

H ln(
ht
pt

)−H + stθp
θ−1
t = η; (18)

H
pt
ht

= rh. (19)

Condition (18) states that population is chosen to equate the marginal benefit of an addi-

tional individual working in the city to the cost of bringing that individual to the city, where

the former is the sum of the marginal product of the individual plus the housing services

she enjoys. The second condition equates the marginal utility of an extra unit of housing

services with its cost. Replacing housing per individual in (18) using (19) yields

H ln(
H

rh
)−H + stθp

θ−1
t = η. (20)
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The key feature of (20) is that it does not include the housing stock, ht. This means that

after the unanticipated change in TFP population jumps immediately to its new permanent

level p = p∗ found as the solution to (20) with st = s∗. So, when housing is perfectly mobile

it is irrelevant for population dynamics.

Now assume the city is endowed with h0 units of housing at t = 0 and that housing is

immobile, meaning that it cannot be rented from or to any other city. In addition, suppose

the change in TFP at t = 1 coincides with the onset of a potentially different exogenous

path of the local housing stock satisfying

lnht − lnh∗ = ρt−1
h (lnh0 − lnh∗) (21)

for t ≥ 1, 0 ≤ ρh < 1, and h∗ is the new long run level for h. Equilibrium population is

determined by (18) conditional on (21). We consider two cases for this scenerio.

First suppose that the local, immobile housing stock does not change with TFP, that is

h∗ = h0. From (18) after the change in TFP p jumps immediately to its new level given

by the value p∗ that solves this equation. The new long run level of population depends on

h0 but the speed of adjustment to p∗ is the same as when housing is perfectly mobile. In

other words the presence of local, immobile housing is not sufficient for housing to affect

population dynamics.

The second case is the new long run level of housing changes with TFP, h∗ 6= h0. We

approximate the transition of population to its new steady state in this case by log linearizing

(18) around ln p∗ and lnh∗. This yields

ln pt − ln p∗ =
H

H + s∗θ (1− θ) p∗θ−1
ρt−1
h (lnh0 − lnh∗) .

In this case the speed of convergence of population to its new steady state p∗ is directly

related to the speed of convergence of housing to its new steady state through ρh. If the

adjustment of housing is immediate, ρh = 0, then population’s adjustment is instantaneous

as in the case when h∗ = h0. If 0 < ρh < 1 then population adjusts in proportion to the

adjustment of housing.

We conclude that housing must be immobile and adjust slowly to changes in local produc-

tivity for it to affect population dynamics. It follows that a plausible quantitative analysis of

urban population dynamics in response to TFP shocks must include endogenous immobile

housing and include the possibility of its slow adjustment. Natural candidates for influenc-
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ing the speed of adjustment of housing are construction depending on local resources and

durability.

5 The Quantitative Model

This section describes the model we use to quantify gross migration and housing’s influ-

ence on urban population dynamics, integrating and extending the models of the previous

two sections. The model introduces dynamics to the gross migration decision; endogenizes

housing; and includes a labor supply decision. The latter is introduced because changes in

labor supply are a natural alternative to migration for a city to adjust to labor demand

shocks. After describing the model environment we characterize the its unique stationary

competitive equilibrium as the solution to a representative city planning problem with side

conditions.

5.1 The Environment

As before the economy consists of a continuum of geographically distinct locations called

cities that are subject to idiosyncratic TFP shocks. Cities are distinguished by their stock of

housing, h, initial population, x, and the current and lagged TFP, s and s−1. The measure

over these state variables is given by µ.16

Within cities there are three production sectors corresponding to intermediate goods,

housing services and construction. The representative firm of each sector maximizes profits

taking prices as given. Intermediate goods are distinct to a city and imperfectly substitutable

in the production of the freely tradeable final goods non-durable consumption and durable

equipment. The technologies for producing intermediate and final goods are identical to those

underlying our estimates of TFP, described in equations (1) and (2).17 Housing services are

produced by combining residential structures with land, br, according to h1−ζbζr, 0 < ζ < 1.

Following the convention that the prime symbol denotes next period’s value of a variable,

residential structures evolve as

h′ = (1− δh)h+ nαhk
ϑ
hb

1−α−ϑ
h , (22)

16Current and lagged TFP both appear in this list to accommodate the estimated TFP process described
in Section 2.2. This is discussed further below.

17Equations (1) and (2) are written in terms of the location of a city, indexed by i, but here it is convenient
to index them by the type of the city as represented by its state vector (h, x, s, s−1).
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where the factor shares are restricted to α > 0, ϑ > 0 and α + ϑ < 1, and 0 < δh < 1

denotes housing’s depreciation rate. The last term in (22) represents housing construction.

Local TFP s does not impact residential construction, reflecting our view that residential

construction productivity is not a major source of cross-city variation in TFP. Equation (22)

embodies our assumptions that residential structures are immobile, durable and costly to

build quickly. The latter follows because residential construction requires local labor and

land which have alternative uses in intermediate goods production and housing services. We

assume that equipment used in production and construction is homogenous.

There is an infinitely lived representative household that allocates its unit continuum

of members across the cities. The household faces the same migration choices described in

Section 3, but being infinitely lived it takes into account the affects of current migration

decisions on its members’ allocation across cities in future periods. In particular, it is now

bound by the constraint

x′ = p (23)

in each city where p continues to denote the post-migration population of a city. The

household’s members have logarithmic preferences for consumption and housing services in

the city in which they are located. They also face a non-trivial labor supply decision. We

assume that each period, after the migration decisions have been made, but before production

and construction take place, individual household members receive a labor disutility shock

ϕ with measure µn. Similar to our treatment of migration costs we make a parametric

assumption for the average disutility of working. Specifically, if the household decides n of

its members in a city will work for a year these costs are specified as∫ ϕ̄(n/p)

−∞
ϕdµn = φ

(
n

p

)π
,

where φ > 0, π ≥ 1 and ϕ̄ (n/p) is defined by

n

p
=

∫ ϕ̄(n/p)

0

dµn.

The parameter π governs the elasticity of a city’s labor supply with respect to the local wage.
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5.2 Stationary Competitive Equilibrium

This model has a unique stationary competitive equilibrium. Since it is a convex economy

with no distortions, the welfare theorems apply and so the equilibrium allocation can be

obtained by solving the problem of a social planner that maximizes the expected utility of

the representative household subject to the resource feasibility constraints. However, it is

more useful to characterize the equilibrium allocation as the solution to a representative

city social planner’s problem with side conditions. This approach to studying equilibrium

allocation follows Alvarez and Shimer (2011) and Alvarez and Veracierto (2012).

The city planner enters a period with the state vector z = (h, x, s, s−1). Taking as given

aggregate output of final goods, Y , the marginal utility of consumption, λ, the shadow value

of adding one individual to the city’s population exclusive of the arrival and leaving costs, λη,

the shadow value of equipment, λrk, the arrival rate of workers through undirected migration

Λ, and the transition function for TFP, Q (s′; s, s−1), the representative city planner solves

V (z) = max
{ny ,nh,ky ,kh,
h′,br,bh,p,a,l}

{
λ

1

χ
Y 1−χ [snθykγy ]χ +H ln

(
h1−ζbζr
p

)
p− φ (ny + nh)

π p1−π

−λrk (ky + kh)− λη (a+ Λx− l)

−A
2

(a
x

)2

x−

[
−ψ1

l

x
+
ψ2

2

(
l

x

)2
]
x+ β

∫
V (z′) dQ (s′; s, s−1)

}
subject to

p = x+ a+ Λx− l (24)

ny + nh ≤ p

br + bh = 1

plus (22), (23), and non-negativity constraints on the choice variables.

The planner’s objective is to maximize the expected present discounted value of net local

surplus. To see this note that the first two terms are the value of intermediate good pro-

duction and the housing services consumed in the city. The next five terms comprise the

contemporaneous costs to the planner of obtaining this surplus: the disutility of sending the

indicated number of people to work; the shadow cost of equipment used in the city; and

the disutility of net migration inclusive of guided trip production and location-taste shocks.
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The last term is the discounted continuation value given the updated state vector. Con-

straining the achievement of the city planner’s objective are the local resource constraints,

the housing and population transition equations and the non-negativity constraints on the

choice variables. Note that in the statement of the land constraint we have normalized the

local endowment of residential land to unity and used the fact that land used for current

housing services cannot be built on in the same period.18

Let λξ(z) denote the Lagrange multiplier corresponding to constraint (24) in the city

planner’s problem. This function represents the shadow value of bringing an additional

individual to a type-z city. From the first order conditions of the city planner’s problem it

is easy to show that

λξ (z) =

 A
[
a(z)
x

]
+ λη, if a (z) > 0,[

ψ1 − ψ2

(
l(z)
x

)]
+ λη, if l (z) > 0.

(25)

which takes into account the fact that a(z) = l(z) = 0 will never occur in equilibrium.

Comparing equation (25) to the first order conditions for a(z) and l(z) in the static model of

Section 3 we see that if gross migration rates are positive then the shadow value of a migrant

is related to migration costs in the same way.

The unique stationary allocation is the solution to the city planner’s problem that satis-

fies particular side conditions we now describe. To begin, let {ny, nh, ky, kh, h′, br, bh, p, a, l}
denote the optimal decision rules (which are functions of the state z) for the city planner’s

problem that takes {Y, λ, η, rk,Λ} as given and µ be the invariant distribution generated

by the optimal decision rules {h′, p} and the transition function Q. In addition define the

aggregate stock of equipment and per capita consumption:

K =

∫
(ky + kh) dµ;

C = Y − δkK,

where 0 < δk < 1 denotes equipment’s depreciation rate. Now suppose the following equa-

18In our calibration 0 < θ + γ < 1 which implies the presence of a fixed factor in the production of the
city’s intermediate good. As written the production function assumes that the supply of this fixed factor is
constant (equal to one) across cities. One interpretation of this fixed factor is that it represents commercial
land. Under this interpretation commercial land cannot be converted into residential land and vice versa.
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tions are satisfied

Y =

{∫ [
sny (z)θ ky (z)γ

]χ
dµ

} 1
χ

(26)

λ =
1

C
(27)∫

a (z) dµ+ Λ =

∫
l (z) dµ (28)

rk =
1

β
− 1 + δk (29)

λ

∫
[ξ (z)− η]xdµ− τ ≤ 0, (= 0 if Λ > 0) (30)

Then {C,K, ny, nh, ky, kh, h′, br, bh, p,Λ, a, l} is a steady state allocation.19

In the steady state the variables taken as given in the city planner’s problem solve the

side conditions given by (26)–(30). Equation (26) expresses aggregate output in terms of

intermediate good production in each city. This equation is the theoretical counterpart to

equation (2) used to estimate city-specific TFP. The marginal utility of consumption is given

by equation (27). Equation (28) states that total in-migration equals total out-migration.

Equation (29) defines the rental rate for equipment. The last side condition (30) determines

steady state undirected migration. It turns out to be identical to the first order condition

for Λ in the static model.

The function ξ (z) in (30) represents the value to the city planner of bringing an additional

individual to the city. It is central to the determination of migration in the model and can

be shown to satisfy

ξ(z) = Cφ [ny (z) + nh (z)]π (π − 1) p (z)−π + CH ln

(
h (z)ς br (z)1−ς

p (z)

)
− CH

+ β

∫ (
CA

[
a (z′)

p (z)

]2

+ Cψ2

[
l (z′)

p (z)

]2

+ Λ [ξ(z′)− η] + ξ(z′

)
dQ(s′; s, s−1)

(31)

The value of bringing an additional worker to a city comprises four terms: the benefits of

19We prove this result in the online technical appendix. We take a traditional dynamic programming
approach to solving the city planner’s problem. This is complicated substantially by the fact that there are
four state variables in the city planner’s problem, two of them endogenous. Furthermore the TFP process has
a large domain. We overcome the computational challenges of a large dimensional and high variance state
space in two main ways. First we exploit a parsimonious spline method to approximate the planner’s value
function and within-period return function. Second we take advantage of the large number of processors
contained in graphics cards. For details see the appendix below.
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obtaining a better selection of worker disutilities given the same amount of total employment

ny + nh; the benefits of the local housing services that the additional person will enjoy; the

costs of reducing housing services for everybody else; and the expected discounted value of

starting the following period with an additional person. This last term includes the benefits

of having an additional person producing guided trips to the city, the benefits of obtaining

a better selection of location-taste shocks (given the same number of individuals leaving the

city), and the benefits of attracting additional people to the city through the undirected

migration technology.

When there are no migration frictions, A = ψ1 = ψ2 = 0, equation (25) implies that the

marginal value of bringing an additional individual to a city is equated across cities just as in

the static version of the model, ξ(z) = η, ∀z (see Section 3.3). However, unlike the static case

this does not imply that wages are equated across cities. Instead, equation (31) says that

the marginal savings in worker disutility plus the marginal impact on the utility of housing

services is equated. When in addition to A = ψ1 = ψ2 = 0 housing structures are made

perfectly mobile across cities, the same condition is obtained because land remains immobile.

Finally, when land is also made mobile, then the marginal savings in work disutility and the

marginal utility of housing services are each equated across cities.

6 Calibration

We now calibrate the steady state competitive equilibrium to U.S. data.20 Our calibration

has two important characteristics. First, the city-specific TFP process is chosen to match

our estimates presented in Section 2.2 thereby pinning down the model’s exogenous source

of persistence and volatility. Second, the calibration targets for the remaining parameters

involve features of the data that are not primary to our study. So, for instance, we do not

choose parameters to fit our estimated response of population to a TFP shock. The model’s

response of population to a TFP shock is the consequence of the estimated TFP process and

the remaining parameters that are chosen to fit other features of the data.

In addition to specifying the stochastic process for TFP we need to find values for 16

parameters:

θ, γ, α, ϑ, δk, δh, β,H, ζ, π, φ, ψ1, ψ2, A, τ, χ.

These include the factor shares in production and construction, depreciation rates for equip-

20Except where noted the aggregate data used to calibrate our model is obtained from Haver Analytics.
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ment and structures, the discount factor, the housing coefficient in preferences, land’s share

in housing services, and the parameters governing labor supply, migration, and intermediate

goods’ substitutability in final goods production.

We calibrate these parameters conditional on a given quantity of undirected migration

Λ determined by τ . For larger values of τ undirected migration is relatively small so that

a(z) > 0, ∀ z. In these cases the behavior of the model is invariant to the specific value of τ .

For smaller values of τ undirected migration is large and a(z) = 0 for some z. In these cases

the behavior of the model is affected. It turns out that even for seemingly large steady state

Λ corner solutions for a(z) are either non-existent or extremely rare. We set our baseline so

that the undirected arrival rate is 3.8%, roughly 70% of all moves.21

The baseline calibration for the assumed value of τ is summarized in Table 1. There we

indicate for each parameter the proximate calibration target, the actual value for the target

we obtain in the baseline calibration, and the resulting parameter value. In the remainder

of this section we discuss the calculations underlying Table 1. We begin with the novel

aspects of our calibration which involve the parameters governing migration, the city-level

TFP process, the elasticity of substitution of city-specific intermediate goods in final good

production, and labor supply.

6.1 Migration Parameters

Section 3.4 establishes that the migration parameters A, ψ1 and ψ2 are central to determin-

ing the speed of population’s adjustment to TFP shocks in the model. Fortunately there

is evidence at hand that makes assigning values to these parameters straightforward. First,

conditional on a value for A reproducing reproducing Figure 2 pins down ψ1 and ψ2. To re-

produce Figure 2 we set the constant and slope coefficients in equation (11) to their empirical

counterparts displayed in Figure 2.22 In particular

ψ1

A+ ψ2

+
A

A+ ψ2

Λ = 5.5;

ψ2

A+ ψ2

= 0.57.

21The specific value is τ = 1. For this value the baseline calibration has 0.3% of city-year observations
involving zero arrivals.

22The constant term for arrivals in Figure 2 is the sample average gross migration rate, but gross migration
is declining over our sample. Our measure of migration costs depends on this choice and so in principle our
findings do as well. We examined the implications of calibrating to the average gross migration rate at the
start and end of our sample and found that our results are substantively the same.
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To identify A we take advantage of KW’s estimate of the average net cost of migration

for those who move. Specifically, we match the statistic defined as the average net cost of

migration of those who move divided by average wages where we take the latter from KW as

well.23 It is straightforward to replicate their concept of moving costs in our model. In KW,

net moving costs sum two components of the utility flow of an individual in the period of a

move. One component called “deterministic moving costs” is a function of the distance of

the move, whether the move is to a location previously visited or not, the age of the mover,

and the size of the destination location. The second component is the difference between

idiosyncratic benefits in the current and destination location. We interpret guided trips in

our model as representing the first component and the location-taste shocks the second one.

Consequently we measure average moving costs of individuals who move as

∫
q(z)a(z) dµ+ CτΛ∫

a(z) dµ+ Λ
+

C
∫ (
−ψ1

l(z)
x

+ ψ2

(
l(z)
x

)2
)
xdµ∫

l(z)dµ
.

Average wages are simply ∫
w(z) [ny(z) + nh(z)] dµ∫

[ny(z) + nh(z)] dµ
,

where wages in a type-z city, w(z), equal the marginal product of labor.

There are two potential drawbacks to using KW’s estimate of moving costs. First, KW

identify moving costs using individual-level data. Since individual behavior is not observable

in our model we cannot replicate their estimation strategy. Still, our model implies a value

for KW’s moving cost statistic so it is natural to take advantage of their estimates. Of

more concern is the fact that KW estimate moving costs using data on the frequency of

inter-state moves, while our quantitative model describes inter-city moves. Inter-city moves

are more frequent than moves between states. Consequently it is possible that KW would

have estimated a different value for moving costs had they had data on all inter-city moves,

in which case we would be calibrating our model to the wrong value. This suggests it is

important to quantify any bias in KW’s estimate arising from their focus on inter-state

moves only. We do this using a calibrated variant of their model which suggests any bias

is likely to be small. Details of how we arrive at this conclusion are in the appendix below.

23Using KW’s estimates, average net moving costs of those who move divided by average wages equal -1.9.
This value equals the ratio -$80,768/$42,850. The numerator is the entry in the row and columns titled
‘Total’ in Table V and the denominator is the wage income of the median AFQT scorer aged 30 in 1989
reported in Table III. The negative value of the estimate indicates that individuals receive benefits to induce
them to move.
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We conclude that using KW’s estimate is valid in our context.

6.2 TFP and Substitutability of City-specific Goods

The calibration of the substitution parameter χ and the stochastic process for TFP are in-

terconnected because χ is used to measure TFP. When we measure TFP using the procedure

described in Section 2.2 its growth rate is well-represented as a stationary AR(1) process

which is non-stationary in levels and therefore inconsistent with a steady state. To overcome

this we assume a reflecting barrier process for TFP:

ln st+1 = max {g + (1 + ρ) ln st − ρ ln st−1 + εt+1, ln smin} . (32)

where εt+1 ∼ N(0, σ2), g < 0 and ρ > 0. With this process TFP growth is approximately

AR(1), while its level is stationary due to having a negative drift and being reflected at the

barrier ln smin (which we normalize to zero).24

The case ρ = 0 was used by Gabaix (1999) to explain the cross section distribution of

cities by population. In this case the invariant distribution has an exponential upper tail

given by

Pr [st > b] =
d

bω

for scalars d and b. A striking characteristic of cities is that when s measures a city’s

population one typically finds that ω ' 1. Equivalently a regression of log rank on log level

of city populations yields a coefficient close to -1. This property is called Zipf’s law and so we

refer to ω as the Zipf coefficient. The case ρ > 0, which applies when TFP growth is serially

correlated, has not been studied before. Simulations suggest this case behaves similarly to

the ρ = 0 case in that it has an invariant distribution with an exponential-like upper tail.

We verify below that a version of Zipf’s law holds for TFP and so using the reflecting barrier

process with ρ > 0 seems justified.

Our calibration of χ and (32) proceeds as follows. For a given χ (and θ and γ which

are calibrated independently as discussed below) we measure TFP in the data following the

procedure in Section 2.2, obtain its Zipf coefficient, and estimate an AR(1) in its growth

rate. We then find the g, ρ and σ to match the Zipf coefficient and the serial correlation and

innovation variance of the estimated AR(1) using data simulated from our model and based

24Coen-Pirani (2010) considers a stationary AR(2) process for the level of TFP, calibrating it to match
serial correlation in net state-to-state worker flows.
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on these parameters calculate the model’s population Zipf coefficient. The calibrated value

of χ is the one that generates a population Zipf coefficient that is as close as possible to the

one we find in the data, 1.0. The best fit is at χ = 0.9 with a population Zipf coefficient

equal to 1.3. The corresponding values of g, ρ and σ are in Table 1.

Figure 5: Zipf’s Laws for Population and TFP
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Figure 5 demonstrates the model’s success at replicating the two Zipf’s laws by plotting

log rank versus log level for population and TFP with empirical and simulated data.25 Log

level of TFP is calculated using (4) without the first difference operator. The scales in the

plots differ because we use the cumulative distribution functions to measure rank in the model

and TFP’s domain is narrower in the model because of the computational cost of matching

the data.26 Notice that TFP’s Zipf coefficient is larger than population’s in the data. This

feature arises naturally in the model because population tends to be allocated away from

lower toward higher TFP cities. Equivalently, the long run response of population to a

25The left plot is constructed using the top 200 cities by population in 1990. The right plot excludes the
lower 5% of cities to be comparable and also the top 5% because of the technical necessity of limiting the
upper bound of the TFP domain which introduces bunching at the top end of the population distribution.

26The narrower domain does not matter for our calibration. For example, the migration parameters are
based on Figure 2 and KW’s estimate of migration costs. In the model the former does not depend on the
level of TFP and the latter depends on the distribution of TFP growth which is essentially independent
of the domain. Our quantitative analysis is based on growth rates and so is similarly independent of the
underlying domain.
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TFP shock is larger than that of TFP. Luttmer (2007) finds a similar relationship between

employment and TFP in an equilibrium model of firm size.

6.3 Labor Supply

The labor disutility parameters are calibrated to match statistics involving employment to

population ratios. The multiplicative parameter φ is chosen to match the ratio of aggregate

civilian employment to population obtained from Census Bureau data. The curvature pa-

rameter π is chosen using the first order condition for labor supply in a city. In the model’s

decentralization the representative household chooses labor supply to equate the disutility

of putting an additional household member to work in a city with that city’s wage. This

implies:

(1− π) (∆n̂it −∆p̂it) + ∆ŵit = 0,

where n is the sum of ny and nh and the “delta” and “hat” notation is described in Section

2.2. Using the methods described in Section 2.2, we estimate the dynamic responses of ∆n̂it,

∆p̂it and ∆ŵit to a local TFP shock and calibrate π so that this equation holds in the period

of a shock. Note that this procedure does not force the model to match these variables’

individual impulse responses even in the period of a shock.

6.4 Remaining Parameters

Our strategy for calibrating the remaining parameters borrows from studies based on the

neo-classical growth model. Several calibration targets involve GDP and we measure this in

the model as

GDP = Y + I, (33)

where Y is output of non-construction final goods and I is residential investment. Residential

investment is measured as the value in contemporaneous consumption units of the total

additions to local housing in a year. Specifically,

I =

∫ [
β

∫
qh(z

′)dQ(s′; s, s−1)

]
nh(z)αkh(z)ϑbh(z)1−α−ϑdµ
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where qh denotes the price of residential structures. This price is obtained as the solution to

the following no arbitrage condition

qh (z) = rh (z) + (1− δh) β
∫
qh (z′) dQ(s′; s, s−1)

where the rental price of residential structures, rh, equals the marginal product of structures

in the provision of housing services. The National Income and Product Accounts (NIPA)

measure of private residential investment is the empirical counterpart to I. Our empirical

measure of Y is the sum of personal consumption expenditures less housing services, equip-

ment investment and private business inventory investment. Because our model does not

include non-residential structures investment, government expenditures and net exports we

exclude these from our empirical concept of GDP.

Our measurement of model GDP and wages excludes the value of guided trip services,

which might be problematic. For example, workers produce guided trips and in principle

they should be compensated for this. Using the decentralization discussed in Section 3.5,

we calculate the total value of guided trips in our baseline calibration to be 1.8% of model

GDP. Recall that we interpret guided trips as encompassing many market and non-market

activities. Some of these activities appear in the national accounts as business services

and therefore count as intermediate inputs that do not end up directly in measured GDP.

Others do not appear anywhere in the national accounts because they are essentially home

production or are impossible to measure. Fortunately, given its small size including the total

value of guided trips in our model-based measures of GDP and wages does not change our

baseline calibration.

Measuring employment also is complicated by the fact that all household members par-

ticipate in generating guided trips. We count those agents engaged in intermediate good

production, ny, and residential construction, nh, as employed and measure their wages by

their marginal products excluding the value of guided trips. The non-employed who also

produce guided trips are assumed to be engaged in home production and so are not included

in our accounting of employment. In Table 1 the labor share parameters are chosen to match

total labor compensation as a share of GDP (the target is borrowed from traditional real

business cycle studies) and our estimate of the share of residential construction employment

in total private non farm employment.27

27We estimate residential construction employment by multiplying total construction employment by the
average over our sample period of the nominal share of residential investment expenditures in total structures
investment expenditures.
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We fix the discount rate so the model’s real interest rate is 4%. Combined with this target

the equipment-output ratio in the non-construction sector, Ky/Y , identifies equipments’s

share in that sector’s production. Our empirical measure of equipment for this calculation

is the Bureau of Economic Analysis’ (BEA) measure of the stock of equipment capital.

Equipment’s depreciation rate is identified using the investment to GDP ratio, where we

measure investment using the NIPA estimate of equipment investment. Equipment’s share

in residential construction is identified by the ratio of capital employed in the residential

construction sector, Kh, to GDP where the empirical counterpart to capital in this ratio is

the BEA measure of equipment employed in residential construction. The depreciation rate

of residential structures is identified using the residential investment to GDP ratio.28

We identify the housing service parameters as follows. First the housing coefficient H is

chosen to match the residential capital to GDP ratio, where the measurement of residential

capital is consistent with our measure of residential investment described above. Land’s

share in housing services, ζ, is chosen to match the estimate of land’s share of the total value

of housing in Davis and Heathcote (2007). To measure this object in the model we need the

price of land, qb. We obtain this variable as the solution to the no-arbitrage condition

qb (z) = rb (z) + β

∫
qb (z′) dQ(s′; s, s−1),

where rb denotes the rental price of land which equals the marginal product of land in the

provision of housing services. Land’s share of the economy-wide value of housing is then

given by
∫
qbbrdµ/

[∫
qhhdµ+

∫
qbbrdµ

]
.

7 Quantitative Analysis

We now consider the model’s empirical predictions. First, we confirm that the model ac-

counts for population’s slow adjustment and that this success comes with generally accurate

predictions for gross migration and the behavior of local labor and housing markets. Next,

we study the model’s predictions for unconditional dynamics and find the model is similarly

successful at accounting for the data even though TFP shocks are the only source of city level

fluctuations in the model. So, despite choosing parameters to match evidence not directly

28The depreciation rate for residential structures obtained this way is close to the mean value of the (current
cost) depreciation-stock ratio for residential structures obtained from the BEA publication “Fixed Assets
and Consumer Durable Goods,” once output and population growth are taken into account. Calibrating to
this alternative depreciation rate has virtually no impact on our quantitative findings.
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related to the dynamics of interest our model nonetheless excels in replicating them.

After establishing the empirical credibility of our framework, we investigate how migra-

tion and housing influence slow population adjustments. We find that costly directed migra-

tion through the model’s guided trip technology is the principle source of slow population

adjustments. We interpret this finding as demonstrating that the myriad ways individu-

als get informed about desirable locations to live and work represent significant barriers to

rapid population (and worker) reallocation. The fact that we identify the model’s migration

parameters without consideration of within-city dynamic responses to TFP shocks lends

substantial credibility to this interpretation. Interestingly, we find that housing plays only

a small role slowing population adjustments once migration costs are taken into account.

Finally, we investigate the implications of our model’s successful accounting of slow short

run population adjustments for persistent urban decline. There are many cities in our

data that experience declining population throughout the sample period. These cities also

experience declining TFP suggesting our model might account for the persistence of urban

decline. To investigate this possibility, we study the average experience of the 15 cities

with the largest population declines. Simulating our model using the empirical path of TFP

for these cities shows that our model accounts for essentially all of the average population

decline. This finding suggests that costly migration, in particular the costs of finding new

locations to live and work, is a major factor determining the persistence of urban decline.

7.1 Model Validation with Conditional Correlations

Comparisons of model and empirical impulse response functions is a model validation tool

common in macroeconomics, see for example Christiano, Eichenbaum, and Evans (2005).

Its key advantage over studying unconditional statistics, is that in principle it is robust

to the presence of other shocks. We estimate the responses to TFP shocks of population,

gross migration, employment, wages, residential investment and house prices in both the

model and the data using the identical procedure described in Section 2.2, basing our model

responses on the simulation of a large panel of cities over a long time period. TFP in the

model is measured as we do in the data.

Figure 6 displays model and estimated responses of population to a one standard devi-

ation positive innovation to TFP. Here and for similar figures below the vertical lines with

hash marks indicate plus and minus 2 standard error bands for the estimates.29 Figure 6

29These standard errors do not take into account the sampling uncertainty in our estimates of the under-
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Figure 6: Responses of Population
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Figure 7: Responses of Arrival and Leaving Rates
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demonstrates that the model’s population response is statistically and economically close to

the one for the data; our model accounts for the slow response of city populations to local

TFP shocks. It may appear that the model’s slow population response is inconsistent with

population’s variance exceeding that for TFP as indicated by Figure 5. The model is able

to account for the unconditional population distribution with a slow conditional response of

population to a TFP shock because ultimately the long run response of population exceeds

that for TFP.

Figure 7 shows this accounting for slow population adjustments involves replicating quite

closely the dynamic responses of the arrival and leaving rates.30 Crucially the model is

consistent with the negative conditional correlation between the gross migration rates. The

intuition for this finding is simple. Having multiple margins to respond to the increase in

productivity, the city planner takes advantage of all of them. It can raise employment per

person and bring more workers to the city. For the latter it can cut back on the fraction of

the initial population that leaves for other cities, that is reduce the leaving rate, and attract

more workers to the city with more guided trips. The goodness-of-fit is weaker for gross

migration than it is for population, for example both responses are more persistent than in

the data and the arrival rate’s initial response is a little too strong. Nevertheless given its

simplicity the model does surprisingly well.

Figure 8 shows the dynamic responses of employment, wages, residential investment and

house prices. We define house prices, qsf , as the total value of structures and land used to

produce housing services per unit of housing services provided:

qsf (z) =
qh (z)h (z) + qb (z) bn(z)

h(z)1−ςbr(z)ς
.

The price qsf corresponds to the price of housing per square foot under the assumption that

every square foot of built housing yields the same quantity of housing services.

The labor market responses are a very good fit. Observe that the employment response in

the model, as in the data, is stronger than the population response. That is, the employment

to population ratio rises after a positive TFP shock indicating that the labor supply margin

is indeed exploited in both the data and the model. The qualitative responses of construction

and housing also are consistent with the data. These findings derive from a higher population

30The difference between the model’s migration rates in the the first period do not correspond exactly to
the response of population which in principle it should according to equation (24). The discrepancy is due
to using logarithmic first differences to approximate the net rate of population growth.
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Figure 8: Responses of Labor and Housing Markets
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desiring additional housing and that local factor inputs with alternative uses are used in

construction thereby creating an imperfectly elastic supply of new housing. The model is

less successful accounting for the quantitative responses of housing. Residential investment

misses the hump shape in the data and the house price response is too fast. However in

both cases the order of magnitude of the responses are about right. One explanation for

housing’s discrepancy with the data is that our model does not include search frictions in

the local housing market. Lloyd-Ellis et al. (2014) demonstrate that search frictions show

promise in generating serially correlated responses of construction and house price growth

to productivity shocks.

7.2 The Model’s Predictions for Unconditional Dynamics

A city’s response to TFP shocks is in principle robust to the presence of other shocks and

is therefore informative about model validity even with such shocks. However it is likely

that there are shocks to local taxes, amenities and intermediate good demand and so it is

worth knowing the extent to which TFP shocks alone account for unconditional moments

of the data. Tables 2 and 3 display unconditional standard deviations, contemporaneous

correlations, and serial correlations of the same variables discussed above in the model and

39



in our data. Except for population, standard deviations are expressed relative to population

and the contemporaneous correlations are all with population. The statistics are based on

the levels of the gross migration rates and on growth rates for the other variables. All

variables have been transformed as described in Section 2 prior to the analysis.

Table 2: Volatility and Co-movement Within Cities

Standard
Deviation Correlations

Variable Data Model Data Model
Population 1.33 0.87 – –
Arrival Rate 0.68 0.53 0.59 1.00
Leaving Rate 0.57 0.48 -0.43 -1.00
Employment 1.58 1.23 0.56 0.93
Wages 1.23 1.81 0.16 0.32
Res. Investment 19.7 4.27 0.14 0.40
House Prices 3.77 2.32 0.29 0.47

Note: The statistics are based levels of the gross migra-
tion rates and on the growth rates of the other variables.
The latter variables have been transformed as described
in Section 2.2 prior to calculating growth rates. Standard
deviations of all variables except population are expressed
relative to the standard deviation for population. Corre-
lations are with population.

The first thing to notice from Table 2 is that TFP shocks generate about two thirds

of the overall variation in population – they are a quantitatively important source of local

variation. The model is strikingly successful at replicating the qualitative pattern of relative

volatilities and only somewhat less successful quantitatively. Gross migration is less volatile

than population and the labor and housing market variables are all more volatile than

population, just as in the data. The relative volatility among the variables other than

population also mostly match the data. Only the labor market variables miss, with wages

a little too volatile compared to employment. The model is consistent with residential

construction being the most volatile variable, but it fluctuates much less in the model than

in the data. House prices in the model are more than twice as volatile as population, but not

quite as volatile as in the data. The high volatility of house prices is a direct consequence of

local land and labor that have alternative uses being factor inputs in construction.

Table 2 shows that the model is qualitatively consistent with all the correlations with

population growth. The largest discrepancies involve the arrival and leaving rates being per-
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Table 3: Serial Correlation Within Cities

Lag

Variable 1 2 3 4
Population

Data 0.81 0.74 0.67 0.63
Model 0.93 0.87 0.81 0.75

Arrival Rate
Data 0.81 0.69 0.56 0.45
Model 0.93 0.87 0.81 0.75

Leaving Rate
Data 0.80 0.76 0.70 0.63
Model 0.93 0.87 0.81 0.75

Employment
Data 0.52 0.29 0.21 0.15
Model 0.73 0.63 0.58 0.54

Wages
Data 0.15 0.04 0.05 0.07
Model 0.20 0.02 -0.02 -0.02

Res. Investment
Data 0.12 0.10 -0.02 -0.11
Model -0.09 0.02 0.04 0.04

House Prices
Data 0.73 0.31 -0.06 -0.25
Model 0.07 0.06 0.05 0.05

Note: The variables are have been transformed as de-
scribed in Section 2.2 prior to calculating the statistics.
The gross migration rates are levels and all other vari-
ables are growth rates.

fectly positively and negatively correlated with population growth. Including a mechanism

to reproduce KW’s finding that out-migration is relatively high for recent in-migrants could

move the model in the direction of the data.31

From Table 3 we see that population, gross migration, employment and wages all display

similar persistence to that in the data, although the model’s variables are more persistent.

Construction in the model and data are similarly random-walk like, although this feature

of the unconditional moments clearly is due to the effects of other shocks given the serially

correlated growth rate of construction in response to TFP shocks we find in the data. House

prices display the greatest differences with house price growth displaying substantial serial

31See Coen-Pirani (2010) for one such mechanism.
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correlation in the data while in the model house prices are more like a random-walk.

7.3 The Source of Slow Population Adjustments

We now address the sources of slow population adjustments in our model. Figure 9 displays

impulse responses to TFP shocks implied by several different versions of the model. The

different versions consist of perturbations relative to the baseline, calibrated version of the

model, holding parameters not involved in the perturbation fixed at their baseline values.

These perturbations are as follows:

• The “Free Guided Trips” case sets A = 0. This case is identical to assuming all the

migration parameters are set to zero, because when guided trips are free the city-

planner sets the leaving rate in each city to the constant value that minimizes leaving

costs and adjusts population by changing the arrival rate at zero cost. So in this case

only the housing frictions are operative.

• “No Location-Taste Shocks” is the case where ψ1 = ψ2 = 0 so that costly guided trips

are the only migration friction.

• “Mobile Housing” corresponds to the case discussed in Section 4 in which housing can

be rented at a fixed price from any city; housing is perfectly mobile. In this case a

city’s dynamics are not influenced by the durability or the size of the local housing

stock nor the city’s ability to produce houses to accommodate new workers.

• “Full Flexibility” combines all the perturbations so there are no mobility costs and

housing is perfectly mobile.

The left plot in Figure 9 displays the levels of the responses and the right one shows

the responses after first dividing them by the value attained in the last (fifth) period of the

response to more clearly show the speed of adjustment. Figure 9 shows that in the Full

Flexibility case the population dynamics essentially follow the path of TFP with roughly

90% of the long run (five year) adjustment occurring after 2 years compared to 85% for TFP

(see Figure 3) – absent migration and housing frictions the model has essentially no internal

mechanism to propagate TFP shocks.

The No Location-Taste Shocks and Mobile Housing cases are very close to the baseline,

with the latter being almost the same. In other words removing from the model costly out-

migration or immobile housing, leaving costly guided trips as the only model friction, leaves
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the population response essentially as slow as it is in the baseline economy and hence the

data. In the Free Guided Trip case the population response is closer to the full-flexibility

case and does not take the model all the way to the data. In the Free Guided Trip case

the only friction is that housing is immobile, suggesting some role for housing in slowing

population adjustments.

Despite this last result, we still conclude that costly guided trips are the main source of

slow population adjustments. The discrepancy of Free Guided Trips with Full Flexibility

arises from a property of adjustment costs highlighted by Abel and Eberly (1994). The first

adjustment cost introduced to an otherwise frictionless model always has a relatively large

impact on dynamics. So, introducing immobile housing into an otherwise frictionless model

has seemingly large effects. However immobile housing on its own is not sufficient to deliver

the amplitude and persistence of the population response in the data. Yet, the population

dynamics with migration costs and mobile housing, the Mobile Housing case, are essentially

the same as the baseline. This suggests that the prime driver of slow population adjustment

in the model is the costly guided trip technology.

Figure 9: Impact of Model Features on Population Adjustment
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The finding of slow population adjustment driven mostly by costly migration confirms

and reinforces results in KW. Using the parameters of a migration choice problem estimated
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with data on the frequency of inter-state moves taken from the National Longitudinal Survey

of Youth, KW calculate optimizing responses of individuals in all states to a one-time per-

manent change in wages of one particular state (they consider changes in California, Illinois

and New York). From these choices they obtain a matrix of transition probabilities which

they simulate to trace out the response of population in the state to the permanent change

in wages. Strikingly we find roughly the same five year elasticity of population with respect

to the wage, about .5.32 KW find that about 30% of the five period response occurs in the

first period (see their Figure 1), whereas we find a response closer to 20%.

These similarities are quite striking given the very different methodologies used to gen-

erate the responses. The slower initial response we obtain is consistent with the fact that

in our analysis wages take a few periods to reach their long run level due to the nature of

the TFP process we estimate and our identification takes into account feedback to future

migration from lower wages induced by greater net in-migration. The fact that our model

includes housing does not appear to be an important source of the difference. Overall our

results establish that KW’s findings are robust to the presence of housing and equilibrium

interactions as well as considering migration between cities instead of states.

7.4 Migration and Urban Decline

There are many cities which experience declining populations (relative to the aggregate)

over the sample period 1985-2007. This is evidence of the persistent urban decline studied

by Glaeser and Gyourko (2005). Interestingly, the cities with declining populations also

have TFP declining for most of the sample. Our model’s ability to reproduce the short

run response of population to TFP shocks then suggests it might account for population

dynamics over the long run and in particular persistent urban decline. We now discuss

a simple experiment that demonstrates that indeed our calibrated model does account for

persistent urban decline.

We focus on the 15 cities of the 365 total that experience the greatest population declines

in our sample. The corresponding TFP paths are fed into the model from the common initial

condition that takes the mid-point of our TFP grid and assumes TFP stays at that level for

a long time. We use the first 12 years of our sample, 1985 to 1997, to simulate unique initial

conditions for each city based on each city’s empirical TFP path. This procedure builds in

32KW consider a 10% increase in wages and find that population is 5% higher after five years. We find a
1.1% response of population to a 2% (roughly) permanent increase in the wage.
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Figure 10: Persistent Urban Decline
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the possibility that past declines in TFP show through into future population declines. For

each city we calculate the predicted path for log population starting in 1998, average over

these paths and compare the result to the same object constructed using the data.33

Figure 10 shows the average log paths for TFP and population for the data and the model.

TFP falls by .06 from 1998-2007 and population falls by twice as much.34 Strikingly, the

model’s predicted path for population lies very close to its empirical counterpart. Obviously

the fit is not as perfect for the individual cities, but the general impression is similar. There

are two key factors driving the model’s success: persistent declines in TFP taken from the

data and the slow response of population to past declines in TFP predicted by the model.

The impact of past TFP declines on current population is demonstrated by the faster rate

of population decline relative to TFP – in the short run population’s response to a TFP

innovation is much smaller than TFP’s, but over longer horizons it responds by much more.

Since the dominant source of slow population adjustment in the model is the cost of

finding new cities to live and work, we conclude that these costs are integral to our model’s

33For this experiment we (incorrectly) equate our empirical measure of TFP to model TFP, s. We do this
for computational tractability but the small differences involved should not affect our conclusions.

34The much larger drop in population is a reflection of the forces driving our model’s reproduction of Zipf’s
law discussed above.

45



explanation of persistent urban decline. Durable and immobile housing is not important at

all in the sense that migration frictions essentially account for slow population adjustments

on their own. This contrasts with Glaeser and Gyourko (2005) who argue that durable and

immobile housing explains persistent urban decline.35 These authors do not integrate costly

migration into their empirical analysis. We consider both housing and migration costs in a

unified framework, but housing turns out to be unimportant.

8 Conclusion

This paper documents that population adjusts slowly to near random-walk TFP shocks and

proposes an explanation for why: the incentive to reallocate population after a TFP shock

is limited by costs of finding new cities to live and work. We show that these same costs

can also account for the persistence of urban decline. The framework that delivers these

results is not arbitrary, but is dictated by the nature of the relationship between gross and

net population flows in cities that we uncover in our panel of 365 cities from 1985 to 2007

and microeconomic estimates of migration costs from KW.

Our model has left out interesting features that are undoubtedly important for under-

standing the full range of adjustment to shocks within and across cities. Chief among these

omissions are search frictions in local labor and housing markets. We think it would be

interesting to add these features to our framework. Doing so would help disentangle the

contributions to labor reallocation of traditional search from the migration frictions we in-

troduce. For example, the local housing and labor search frictions considered by Karahan

and Rhee (2012) and others might play a role similar to the migration frictions in our frame-

work. Nevertheless it remains to be determined whether these local frictions can account

for the empirical relationship between gross and net migration and the slow response of

population to TFP shocks that we uncover in this paper.

35They show that irreversible housing in cities with declining populations has several empirical predictions
which they verify in the data. Our model does not share these predictions since the irreversibility constraint
is never binding. It is never binding because of the relatively small variance of TFP innovations compared to
the depreciation rate for housing. This constraint appears not to bind in the panel as new building permits
are always strictly positive. It presumably binds for neighborhoods within a city and this may play a role in
explaining Glaeser and Gyourko (2005)’s findings.

46



References

Abel, A. B. and J. C. Eberly (1994). A unified model of investment under uncertainty.
American Economic Review 84 (1), 1369–1384.

Albouy, D. (2009). The unequal geographic burden of federal taxation. Journal of Political
Economy 117, 635–667.

Alvarez, F. and R. Shimer (2011). Search and rest unemployment. Econometrica 79 (1),
75–122.

Alvarez, F. and M. Veracierto (2012). Fixed-term employment contracts in an equilibrium
search model. Journal of Economic Theory .

Christiano, L., M. Eichenbaum, and C. Evans (2005). Nominal rigidities and the dynamic
effects of a shock to monetary policy. Journal of Political Economy 113 (1), 1–45.

Coen-Pirani, D. (2010). Understanding gross worker flows across us states. Journal of
Monetary Economics 57, 769–784.

Davis, M., J. Fisher, and M. Veracierto (2011). The role of housing in labor reallocation.
Revision to Chicago Fed working paper no. 2010-18.

Davis, M., J. Fisher, and T. Whited (2014). Macroeconomic implications of agglomeration.
Econometrica 82 (2), 731–764.

Davis, M. and J. Heathcote (2007). The price and quantity of residential land in the United
States. Journal of Monetary Economics 54 (8), 2595–2620.

Davis, M. and F. Ortalo-Magné (2011). Household expenditures, wages, rents. Review of
Economic Dynamics 14 (2), 248–261.

Davis, S., J. Faberman, and J. Haltiwanger (2006). The flow approach to labor markets:
New data sources and micro-macro links. Journal of Economic Perspectives 20 (3).

Davis, S., J. Faberman, and J. Haltiwanger (2011). Labor market flows in the cross section
and over time. Journal of Monetary Economics 59, 1–18.

Diamond, R. (2012). The determinants and welfare implications of us workers’ diverging
location choices by skill: 1980–2000. Harvard University working paper.

Eeckhout, J. (2004). Gibrat’s law for (all) cities. American Economic Review 94 (5), 1429–
1451.

Ferreira, F., J. Gyourko, and J. Tracy (2011). Housing busts and household mobility: An
update. NBER Working Paper No. 17405.

Gabaix, X. (1999). Zipf’s law for cities: An explanation. Quarterly Journal of Eco-
nomics 114 (3), 739–767.

47



Glaeser, E. L. and J. Gyourko (2005). Urban decline and durable housing. Journal of
Political Economy 113 (2), 345–375.

Greenwood, M. (1997). Internal migration in developed countries. In M. Rosenzweig and
O. Stark (Eds.), Handbook of Population and Family Economics, Volume 1B. North Hol-
land.

Kaplan, G. and S. Schulfofer-Wohl (2012). Understanding the long-run decline in interstate
migration.

Karahan, F. and S. Rhee (2012). Geographical reallocation and unemployment during the
great recession: The role of the housing bust. University of Pennsylvania working paper.

Karahan, F. and S. Rhee (2013). Population aging, migration spillovers, and the decline in
interstate migration. Univeristy of Pennsylvania manuscript.

Kennan, J. (2008). Average switching costs in dynamic logit models. University of Wisconsin-
Madison manuscript.

Kennan, J. and J. R. Walker (2011). The effect of expected income on indivisual migration
decisions. Econometrica 79 (1), 211–251.

Lloyd-Ellis, H. and A. Head (2012). Housing liquidity, mobility, and the labour market.
Review of Economic Studies .

Lloyd-Ellis, H., A. Head, and H. Sun (2014). Search, liquidity, and the dynamics of house
prices and construction. American Economic Review 104 (4), 1172–1210.

Lucas, R. (1997). Internal migration in developing countries. In M. Rosenzweig and O. Stark
(Eds.), Handbook of Population and Family Economics, Volume 1B. North Holland.

Luttmer, E. (2007). Selection, growth, and the size distribution of firms. Quarterly Journal
of Economics 122 (3), 1103–1144.

Lyche, T. and K. Morken (2011). Spline methods. Department of Informatics, Centre of
Mathematics for Applications, University of Oslo, manuscript.

Modestino, A. and J. Dennett (2012). Are american homeowners locked into their houses?
the impact of housing market conditions on state-to-state migration. Federal Reserve Bank
of Boston Working Paper No. 12-1.

Molloy, R., C. L. Smith, and A. Wozniak (2011). Internal migration in the united states.
Journal of Economic Perspectives 25 (2), 1–42.

Nenov, P. (2012). Regional mismatch and labor reallocation in an equilibrium model of
migration. Norwegian Business School working paper.

Roback, J. (1982). Wages, rents, and the quality of life. Journal of Political Economy 90 (6),
1257–1278.

48



Rosen, S. (1979). Wagebased indexes of urban quality of life. In P. N. Miezkowski and M. R.
Straszheim (Eds.), Current Issues in Urban Economics, pp. 74–104. Baltimore, MD: Johns
Hopkins University Press.

Saks, R. E. and A. Wozniak (2011). Labor reallocation over the business cycle: New evidence
from internal migration. Journal of Labor Economics 29 (4), 697–739.

Schulhofer-Wohl, S. (2012). Negative equity does not reduce homeowners’ mobility. NBER
Working Paper No. 16701.

Shoenberg, I. (1967). On spline functions. In O. Shisha (Ed.), Proceedings of a symposium
held at Wright-Patterson Air Force Base, pp. 255–291. New York: Academic Press.

Van Nieuwerburgh, S. and P.-O. Weil (2010). Why has house price dispersion gone up?
Review of Economic Studies 77, 1567–1606.

Wooldridge, J. M. (2002). Econometric Analysis of Cross Section and Panel Data. Cam-
bridge, MA: MIT Press.

49



Appendix

This appendix describes how we calculate gross migration flows using IRS data; how we
assess the bias in using migration costs based on inter-state migration in a model of inter-
city migration; and the methods used to solve the quantitative model.

A Calculating Gross Migration Flows with IRS Data

We construct data on gross MSA-level population inflows and outflows using county-county
migration data based on tax records that is constructed by the Internal Revenue Service
(IRS). These data are available annually from 1990 onwards on the IRS web site and are
available from 1983 through through 1992 at the Inter-University Consortium for Political
and Social Research (ICPSR) web site. The data are annual and cover the “filing year”
period, not calendar year. For example, the data for 2007 approximately refer to migration
over the period April, 2007 to April, 2008.

For each of the years, the IRS reports the migration data using two files, one for outflows
and one for inflows. These files cover the experience of each county in the United States.
Both the inflow and the outflow files report migrants in units of “returns” and in units of
“personal exemptions.” According to information from the IRS web site, the returns data
approximates the number of households and the personal exemptions data approximates the
population.36 We use the exemptions data.

We define gross inflows into an MSA as the sum of all migrants into any county in that
MSA, as long as the inflows did not originate from a county within the MSA. Analogously,
we define gross outflows from an MSA as the sum of all migrants leaving any county in that
MSA, as long as the migrants did not ultimately move to another county in the MSA. We
exclude people migrating into- and out of the United States. But otherwise, for gross inflows
the originating counties are not restricted to be part of one of the 365 MSAs, and for gross
outflows the counties receiving the migrants are not restricted to be included in one of the
365 MSAs. Over our sample period, counties inside MSAs slightly increased in population,
on-net, relative to counties outside of MSAs.

Define a as the number of new entrants to an MSA during a given year, l as the number
of people exiting the MSA during the year, and p̄ as all the people that did not move into or
out of the MSA during the year. We compute the beginning of year population x and end
of year population p as

x = p̄ + l

p = p̄ + a

Net migration is therefore p − x = a − l. Note that due to births and deaths and foreign
migration, p in any given year is typically less than x in the subsequent year.

36See http://www.irs.gov/taxstats/article/0,,id=212683,00.html for details.
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B Inter-state and Inter-city Migration Costs in the

Kennan and Walker (2011) Model

We now justify our conclusion that it is valid to apply KW’s estimate of migration costs in
our environment. The argument is based on a calibrated model that incorporates the essence
of the individual discrete choice problem studied by KW within an equilibrium setting.

There are N locations called cities. Each city i is associated with a wage that is fixed
over time, wi.

37 A person living in city i receives the wage and then receives a vector of i.i.d.
preference shocks, one for each city including the person’s current city, e = (e1, e2, . . . , eN).
After receiving the preference shocks, the person decides whether to move. The expected
value of living in city i before the shocks are realized but after the wage is paid is

Vi = E

[
max

j∈{1,...,N}

{
wi
α
− c (i, j)

α
+ ej + βVj

}]
Let s denote the state (a unique grouping of cities) containing city i and s′ the state con-
taining j. The moving cost function c (i, j) is

c(i, j) =


0, if i = j
c1, if i 6= j and s = s′

c2, if i 6= j and s 6= s′

People pay no moving costs if they do not move, and in-state moving costs c1 may be different
than out-of-state moving costs c2. Allowing c1 to be different from c2 is in the spirit of KW’s
finding that moving costs increase with distance moved.38

Following KW we assume that the preference shocks are drawn from the Type 1 Extreme
Value Distribution. Given a wage for each location wi and the parameters of the model, α,
β, c1 and c2, we compute the value functions using backwards recursion. We start with a
guess of the expected value functions for every j = 1, . . . , N . Call the current guess of the
expected value function at location j as V̂j. We then update the guess at each i = 1, . . . , N

Ṽi = log

{
N∑
j=1

[
exp

(
wi
α
− c (i, j)

α
+ βV̂j

)]}
+ ζ

where ζ is Euler’s constant and Ṽi is the updated guess. We repeat this entire process until
the expected value functions have converged, that is until V̂i is equal to Ṽi at each of the
i = 1, . . . , N cities.

We set N = 365. For each city, we set wi equal to the average wage in the corresponding

37For simplicity we abstract from idiosyncratic wage shocks included by KW. KW assume that individuals
are finitely lived and only know the permanent component of wages of their current city and any city they
have lived in previously. In an infinite horizon context individuals eventually live in every city and therefore
have knowledge of the complete wage distribution.

38See the estimate of γ1 in Table II on page 230 of their paper.
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MSA in 1990 (the year KW use to calculate average state wages) in thousands of dollars. For
states that span multiple MSAs, we set the state s as the state where most of the population
of the MSA lives in 1990.39

We assume that β = 0.96, leaving three parameters to be estimated: α, which scales
the shocks into dollar equivalents, and the two moving costs c1 and c2. We estimate these
parameters by targeting three moments: the average rate of individual migration across all
MSAs, 4.47 percent, the average rate of across-state migration, 3.0 percent, and the average
flow benefit scaled by average wage experienced by migrants, 1.9. For a worker moving
from city i to city j, the flow benefit (scaled to dollars) is α (ej − ei) − c (i, j). Our target
value of the average flow benefits of across-state movers scaled by average wage is taken
from estimates produced by KW (see footnote 23 in the main text.) We use data from the
IRS for 1990 to compute across-MSA and across-state migration rates. Our estimate of the
across-state migration rate is almost identical to the estimate reported in Table VIII, page
239 by KW of 2.9 percent.

We compute all three moments analytically. The probability agents migrate to location
j given their current location of i, γ (j, i) has the straightforward expression

γ (j, i) =
exp

(
wi
α
− c(i,j)

α
+ βVj

)
N∑
k=1

[
exp

(
wi
α
− c(i,k)

α
+ βVk

)] .
We construct the N×N matrix Γ, with individual elements γ (j, i), and determine the steady
state distribution of population across metro areas, the N-dimensional vector ρ, such that
ρ = Γρ. Given ρ, we compute the probability of any move at the steady-state population
distribution as

N∑
i=1

ρ (i)

[∑
j 6=i

γ (j, i)

]

and the probability of an across-state move as

N∑
i=1

ρ (i)

[ ∑
j 6=i,s′ 6=s

γ (j, i)

]
.

For the third moment, it can be shown that the expected increase in continuation value
from a worker choosing the optimal location as compared to an arbitrary location is a
function of the probability the worker chooses the arbitrary location. For example, for a
worker that optimally moves to location j, the expected increase in value, inclusive of flow
utility and discounted future expected value, over remaining in the current location i is
− log γ (i, i) / (1− γ (i, i)), see Kennan (2008). The expected increase in current flow payoff

39Some MSAs span multiple states and this may introduce some error because within-MSA across-state
moves that are truly within MSA will be misclassified as moves to a new labor market.
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for all moves from j to i is therefore

− log γ (i, i)

1− γ (i, i)
− β (Vj − Vi) .

The average of this second term across all moves, from i to all j 6= i, is∑
j 6=i

γ (j, i) β (Vj − Vi)∑
k 6=i

γ (k, i)
=

∑
j 6=i

γ (j, i) β (Vj − Vi)

1− γ (i, i)
.

The denominator is the probability a move occurs. Thus, conditional on moving, the average
benefit of all moves that occur relative to staying put is

∑
i

(
ρ (i)

1− γ (i, i)

)(
− log γ (i, i)−

∑
j 6=i

γ (j, i) β (Vj − Vi)

)
.

We divide this expression by average wage (appropriately scaled), evaluated at the steady
state:

∑
i

ρ (i)wi/α.

We use the Nelder-Meade algorithm to search for parameters and we match our 3 target
moments exactly. Our parameter estimates are c2 = 76.7, c2 = 116.6, and α = 17.6. For
reference, the mean wage at the steady state population distribution is 39.051 ($39,051). Our
estimates of c1 and c2 imply that in-state and out-of-state moving costs are twice and three
times average wages, respectively. These large costs generate low mobility rates in the face
of large permanent wage differentials across metro areas. However, the estimated value of α
implies that the mean and variance of the preference shocks are large. This large variance
generates shocks large enough to induce people to move given the high costs of moving.

To determine the size of the bias in the KW estimates from using across-state moves,
rather than across-MSA moves, we run 100 simulations of the model, simulating 600,000
people per MSA in each run. This generates approximately 27,000 moves to any MSA and
20,000 out of state moves for each MSA in the simulation. In each simulation run, we
compute the economy-wide average flow benefits to across-state movers scaled by average
wages. Averaged across the 100 simulations, the average benefit to across-state movers scaled
by average wage is exactly 2.0, 0.01 higher than the average simulated benefits accruing to
all movers. The bias is therefore 5%.40 We find that a bias of this size does not affect our
conclusions.

40Measured across the 100 runs, the standard deviation of the percent of the bias is 0.2%, the minimum
bias is 4.6% and the maximum bias is 5.7%.
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C Solving the Quantitative Model

While representing the solution of the economy-wide social planner’s as the solution to a
city planner’s problem plus side conditions is a huge simplification, computing the solution
to the city planner’s problem remains a nontrivial task.

The first difficulty is that the value function of the city planner’s problem has two en-
dogenous variables and two exogenous state variables. Each exogenous state variable takes
values in a finite grid but this grid cannot be too coarse if the resulting discrete process is
to represent the original AR(2) in a satisfactory way. To make the task of computing the
value function manageable we used spline approximations.

Cubic spline interpolation is usually used in these cases. A difficulty with these methods
is that they do not necessarily preserve the shape of the original function, or if they do (as
with Schumacher shape-preserving interpolation) it is somewhat difficult to compute. For
these reasons, we use a local method that does not interpolate the original function but that
approximates it while preserving shape (monotonicity and concavity). An additional benefit
is that it is extremely simple to compute (there is no need to solve a system of equations).
The method is known as the Shoenberg’s variation diminishing spline approximation. It was
first introduced by Shoenberg (1967) and is described in a variety of sources (e.g. Lyche and
Morken (2011)).

For a given continuous function f on an interval [a, b], let p be a given positive integer,
and let τ = (τ1, ..., τn+p+1) be a knot vector with n ≥ p+1, a ≤ τi ≤ b, τi ≤ τi+1, τp+1 = a and
τn+1 = b. The variation diminishing spline approximation of degree p to f is then defined as

Sp (x) =
n∑
j=1

f
(
τ ∗j
)
Bjp (x)

where τ ∗j = (τj+1 + ...+ τj+p) /p and Bjp (x) is the jth B-spline of degree p evaluated at x.
The B-splines are defined recursively as follows

Bjp (x) =
x− τj
τj+p − τj

Bj,p−1 (x) +
τj+1+p − x
τj+1+p − τj+1

Bj+1,p−1 (x)

with

Bj0 (x) =

{
1, if τj ≤ x < τj+1

0, otherwise

As already mentioned, this spline approximation preserves monotonicity and concavity
of the original function f (e.g. Lyche and Morken (2011), Section 5.2). The definition of
variation diminishing splines is easily generalized to functions of more than one variable
using tensor products (e.g. Lyche and Morken (2011), Section 7.2.1). These properties
greatly simplify the value function iterations of the city planner’s problem and they should
prove useful in a variety of other settings. In our actual computations we worked with an
approximation of degree p = 3.

An additional complication involves the return function of the city planner’s problem.
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Conditional on the current states (h, x, s, s−1) and future states (h′, x′), evaluating the one
period return function of the city planner requires solving a nonlinear system of equations
in (ny, nh, ky, kh, br, bh) allowing for the possibility that the constraint ny + nh ≤ x′ may
bind. This is not a hard task. However, doing this for every combination of (h, x, s, s−1)
and (h′, x′) considered in solving the maximization problem at each value function iteration
would slow down computations quite considerably. For this reason, we chose to construct a
cubic variation-diminishing spline approximation to the return function R (h, x, s, , s−1, h

′, x′)
once, before starting the value function iterations, and use this approximation instead. In
practice, for each value of (h, x, s, s−1) we used a different knot vector for h′ and x′ to gain
accuracy of the return function over the relevant range.

Performing the maximization over (h′, x′) for each value of (h, x, s, s−1) at each value
function iteration is a well behaved problem given the concavity of the spline approxima-
tions to the return function and the next period value function. There are different ways
of climbing such a nice hill in an efficient way. In our case, given that we could offload
computations into two Tesla C2075 graphic cards (with a total of 896 cores), we used the
massively parallel capabilities of the system to implement a very simple generalized bisec-
tion method. Essentially for each value of (h, x, s, s−1) we used a block of 16× 16 threads to
simultaneously evaluate 16 × 16 combinations of (h′, x′) over a predefined square. We then
zoom to the smallest square area surrounding the highest value and repeat. In practice, a
maximum would be found after only three or four passes.

Statistics under the invariant distribution were computed using Monte Carlo simulations.
This part of the computations was also offloaded to the graphic cards to exploit their mas-
sively parallel capabilities. To avoid costly computations similar to those encountered in
the evaluation of the return function, cubic spline approximations were used for all decision
rules.

Speeding up the solution to the city planner’s problem and Monte Carlo simulations
was crucial since finding solutions (Y,C,Λ, η) to the side conditions requires solving the city
planner’s problem and simulating its solution several times.

The source code, which is written in CUDA Fortran, is available upon request. Compiling
it requires the PGI Fortran compiler. Running it requires at least one NVIDIA graphic card
with compute capability higher than 2.0.
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