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Abstract

This paper studies the sources of agglomeration economies in cities. We begin
by introducing a simple dynamic spatial equilibrium model that incorporates
technology spillovers within and across industries, as well as city-size effects.
The model generates a dynamic panel-data estimation equation that allows us
to assess agglomeration economies while controlling for fixed locational funda-
mentals, time-varying city-specific shocks, and national industry-level shocks.
We implement the approach using detailed new data describing the industry
composition of English cities from 1851-1911. We find that cross-industry con-
nections can influence industry growth, through either the presence of suppliers
or local pools of demographically similar workers. Within-industry effects are
not present for most industries, but may be important in a small number of
industries. Once we separate these positive agglomeration forces, we find a
strong negative relationship between city size and city-industry growth. A
lower bound estimate of the overall strength of agglomeration forces suggests
that they are equivalent to a city-size divergence rate of 0.5-1% per year.
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1 Introduction

What are the key factors driving city growth over the long term? One of the leading

answers to this question, dating back to Marshall (1890), is that firms may benefit

from proximity to one another through agglomeration economies. While compelling,

this explanation raises further questions about the nature of these agglomeration

economies. Do firm primarily benefit from proximity to other firms in the same in-

dustry, or, as suggested by Jacobs (1969), is proximity to other related industries

more important? Or is overall city size the key factor in determining agglomeration

economies? How do these forces vary across industries? How do these benefits com-

pare to the cost of proximity arising through congestion forces? How can we separate

all of these features from the fixed locational advantages of cities? These are impor-

tant questions for our understanding of cities. Their answers also have implications

for the design of place-based policies, which can top $80 billion per year in the U.S.,

and are perhaps even more widespread used in other countries.1

Not surprisingly, there is a large body of existing research exploring the nature of

agglomeration economies. Leading work in this area can be roughly classed into one of

three approaches. One approach uses long-differences in the growth of city-industries

over time and relates them to rough measures of initial conditions in a city, such as an

industry’s share of city employment or the Herfindahl index over major city-industries

(Glaeser et al. (1992), Henderson et al. (1995)). The main concern with this line of

research is that it ignores much of the richness and heterogeneity that are likely to

characterize agglomeration economies. A more recent approach allows for a richer set

of inter-industry relationships using connection matrices based on input-output flows,

labor force similarity, or technology spillovers. These connections are then compared

to a cross-section of industry locations (Rosenthal & Strange (2001), Ellison et al.

(2010), Faggio et al. (2013)). A third approach involves comparing outcomes in similar

locations, where some locations receive a plausibly exogenous shock to the level of

local economic activity (Greenstone et al. (2010) and Hanlon (2013)). This approach

has the advantage of more cleanly identifying the causal impact of changes in local

economic activity, but is less useful for policy, since it can only be applied under

1The New York Times has constructed a database of incentives awarded by cities, coun-
ties and states to attract companies to locate in their area. The database is available at
http://www.nytimes.com/interactive/2012/12/01/us/government-incentives.html.
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special circumstances.

This study offers an alternative approach that builds on previous work, but

also seeks to address some of the remaining issues facing the literature. To be-

gin, we ground our estimation strategy in a dynamic spatial equilibrium model of

city-industry growth. While simple, our model serves both to discipline our empir-

ical exercise and to highlight potential concerns in the estimation of agglomeration

economies. The theory delivers a relationship between employment growth in in-

dustry i during a period and the local level of employment in all industries at the

beginning of the period, weighted by a vector of parameters representing the strength

of spillovers between industry pairs, the strength of spillovers across firms within

industry i, time-varying city effects, and shocks to industry growth at the national

level.

To implement this approach, we build a uniquely rich long-run dataset describing

the industrial composition of English cities over six decades. These new data, which

we digitized from original sources, cover 25 of the largest English cities (based on 1851

population) for the period 1851-1911. The data come from the Census of Population,

which was taken every decade. These data have two unique features. First, they

come from a full census, not a sample of the census, which is important in reducing

error when cutting the data by city and industry. Second, the 23 industry groups

that we are able to construct from the data cover essentially the entire private sector

economy of each city. We add to this four measures of inter-industry connections

reflecting input and output linkages and the demographic and occupational similarity

of industry workforces.

Motivated by the theory, we offer a panel-data econometric approach to estimating

agglomeration economies that builds on previous work by Henderson (1997).2 The use

of panel data offers well-known advantages over the cross-sectional or long-difference

approaches used in most of the existing literature. Following Ellison et al. (2010), we

parameterize the pattern of connections between industries using the matrices of in-

dustry connections that we have constructed. Also, to help strengthen identification,

we use the instrumental variable approach suggested by Bartik (1991).3 Specifically,

we interact lagged city-industry employment with industry employment growth in all

2See also Combes (2000) and Dekle (2002).
3The Bartik approach is commonly used in studies in this literature. One recent example is

Diamond (2012).
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other cities to generate predicted employment in industry j in a period. This predicted

employment level is then used as an instrument for actual employment in industry j.

Put another way, we take advantage of the national industry growth rate to generate

predicted industry employment levels within a city that are plausibly exogenous to

local spillovers in the current period. The Bartik instrumentation allows us to further

weaken the assumptions needed to obtain valid estimates.

Our main findings are that (1) cross-industry effects are important, and occur

largely through the presence of local suppliers and demographically similar labor

pools, (2) within-industry effects are confined to a small number of industries, (3) for

both channels, there is substantial heterogeneity across industries, (4) firm size mat-

ters, is negatively correlated with cross-industry effects, and is positively correlated

with within-industry effects, and (5) city size has a clear negative relationship to city

growth. The first four results confirm a number of findings from existing literature,

though in a very different setting. The city-size results are novel and provide an

opportunity for us to quantify the net strength of city agglomeration forces, which

has not been possible in previous work. We find that the overall strength of the

agglomeration forces is consistent with a city-size divergence rate of 0.5-1% per year.

Moreover, the strength of these agglomeration forces shows a marked decline over the

six decades that we study.

The next section presents our theoretical framework, while Section 3 describes the

data. The empirical approach is presented in Section 4. Section 5 presents the main

results, which focus on agglomeration forces within cities, while Section 6 extends the

result to study whether similar effects are operating across cities. Section 7 concludes.

2 Theory

In this section we build a simple model of city growth incorporating localized spillovers

within and across industries. The model is dynamic in discrete time. The dynamics

of the model are driven by spillovers within and across industries which depend on

industry employment and a matrix of parameters reflecting the extent to which any

industry benefits from learning generated by employment in other industries (i.e.,

learning-by-doing spillovers). These dynamic effects are external to firms, so they will

not influence the static allocation of economic activity across space that is obtained
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given a distribution of technology levels. Thus, we can begin by solving the allocation

of employment across space in any particular period. We then consider how the

allocation in one period affects the evolution of technology and thus, the allocation

of employment in the next period. The benefit of such a simple dynamic system is

that it allows the model to incorporate a rich pattern of inter-industry connections.

The theory focuses on localized spillovers that affect industry technology and

thereby influence industry growth rates. In this respect it is related to the endogenous

growth literature, particularly Romer (1986) and Lucas (1988). This is obviously not

the only potential agglomeration force that may lie behind our results; alternative

models may yield an estimation equation that matches the one we apply. However,

because we are interested in dynamic agglomeration, focusing on technology growth

is the natural starting point.

2.1 Allocation within a static period

We begin by describing how the model allocates population and economic activity

across geographic space within a static period, taking technology levels as given. The

economy is composed of many cities indexed by c = {1, ...C} and many industries

indexed by i = {1, ...I}. Each industry produces one type of final good so final goods

are also indexed by i. Goods and services are freely traded across locations.

Individuals are identical and, within any period, they consume an index of final

goods given by Dt. The corresponding price index is Pt. These indices take a CES

form,

Dt =

(∑
i

γitx
σ−1
σ

it

) σ
σ−1

, Pt =

(∑
i

γσitp
1−σ
it

) 1
1−σ

where xi is the quantity of good i consumed, γit is a time-varying preference parameter

that determines the importance of the different final goods to consumers, pit is the

price of final good i, and σ is the (constant) elasticity of substitution between final

goods. It follows that the overall demand for any final good is,

xit = DtP
σ
t p
−σ
it γ

σ
it. (1)
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Production is undertaken by many perfectly competitive firms in each industry,

indexed by f . Output by firm f in industry i is given by,

xicft = AictL
α
icftR

1−α
icft , (2)

where Aict is technology, Licft is labor input, and Ricft is another input which we

call resources. These resources play the role of locational fundamentals in our model.

Note that technology is not specific to any particular firm but that it is specific to

each industry-location. This represents the idea that within industry-locations, firms

are able to monitor and copy their competitors relatively easily, while information

flows more slowly across locations.

Labor can move costlessly across locations to achieve spatial equilibrium. This

is a standard assumption in urban economic models and one that seems reasonable

over the longer time horizons that we consider. The overall supply of labor to the

economics depends on an exogenous outside option wage w̄t that can be thought of

as the wage that must be offered to attract immigrants or workers from rural areas to

move to the cities. Thus, more successful cities, where technology grows more rapidly,

will experience greater population growth.

We also incorporate city-specific factors into our framework. Here we have in

mind city-wide congestion forces (e.g., housing prices), city-wide amenities, and the

quality of city institutions. We incorporate these features in a reduced-form way by

including a term λct > 0 that represents a location-specific factor that affects the

firm’s cost of employing labor. The effective wage rate paid by firms in location c is

then w̄tλct. In practice, this term will capture any fixed or time-varying city amenities

or disamenities that affect all industries in the city.

In contrast to labor, resources are fixed geographically. They are also industry-

specific, so that in equilibrium
∑
f Ricft = R̄ic, where R̄ic is fixed for each industry-

location and does not vary across time, though the level of R̄ic does vary across

locations. These fixed resources will be important for generating an initial distribution

of industries across cities in our model, and allowing multiple cities to compete in the

same industries in any period.

Firms solve:
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max
Licft,Ricft

pitAictL
α
icftR

1−α
icft − w̄tλctLicft − rictRicft.

Using the first order conditions, and summing over all firms in a city-industry, we

obtain the following expression for employment in industry i and location c4:

Lict = A
1

1−α
ict p

1
1−α
it

(
α

w̄tλct

) 1
1−α

R̄ic. (3)

This expression tells us that employment in any industry i and location c will de-

pend on technology in that industry-location, the fixed resource endowment for that

industry-location, factors that affect the industry in all locations (pit), city-specific

factors (λct), and factors that affect the economy as a whole (w̄t).

To close the static model, we need only ensure that income in the economy is

equal to expenditures. This occurs when,

DtPt +Mt = w̄t
∑
c

λct
∑
i

Lict +
∑
i

∑
c

rictR̄ic.

where Mt represents net expenditures on imports. For a closed economy model we

can set Mt to zero and then solve for the equilibrium price levels in the economy.5

Alternatively, we can consider a (small) open economy case where prices are given

and solve for Mt. We are agnostic between these two approaches.

4With constant returns to scale production technology and external spillovers, we are agnostic
about the size of individual firms in the model. We require only that there are sufficiently many
firms, and no firms are too large, so that the assumption of perfect competition between firms holds.

5To solve for the price levels in the closed economy case, we use the first order conditions from
the firm’s maximization problem and Equation 3 to obtain,

pit =

(
α

w̄t

) α
ασ−α−σ

(∑
c

A
1

1−α

ict R̄icλ
α

α−1

ct

) 1−α
ασ−α−σ

(DtP
σ
t )

α−1
ασ−α−σ γ

σ(α−1)
ασ−α−σ

it .

This equation tells us that in the closed-economy case, changes in the price level for goods produced
by industry i will depend on both shifts in the level of demand for goods produced by industry i
represented by γit, as well as changes in the overall level of technology in that industry (adjusted
for resource abundance), represented by the summation over Aict terms.
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2.2 Dynamics: Technology growth over time

Technological progress in the model occurs through localized learning-by-doing spillovers

that are external to firms. One implication is that firms are not forward looking when

making their employment decisions within any particular period. Following the ap-

proach of Glaeser et al. (1992), we write the growth rate in technology as,

ln
(
Aict+1

Aict

)
= Sict + εict, (4)

where Sict represent the amount of spillovers available to a city-industry in a period.

Some of the factors that we might consider including in this term are:

Sict = f
(

within-industry spillovers, cross-industry spillovers,

national industry technology growth, city-level aggregate spillovers
)
.

We can use Equation 4 to translate the growth in (unobservable) city-industry

technology into the growth of (observable) city-industry employment. We start with

Equation 3 for period t+ 1, take logs, plug in Equation 4, and then plug in Equation

3 again (also in logs), to obtain,

ln(Lict+1)− ln(Lict) =

(
1

1− α

)[
Sict +

[
ln(Pit+1)− ln(pit)

]
(5)

+
[

ln(λct+1)− ln(λct)
]

+
[

ln(w̄t+1)− ln(w̄t)
]

+ eict

]
.

where eict = εict+1 − εict is the error term. Note that by taking a first difference

here, the locational fundamentals term R̄ic has dropped out. We are left with an

expression relating growth in a city industry to spillovers, city-wide growth trends,

national industry growth, and an aggregate national wage term.

The last step we need is to place more structure on the spillovers term. Existing

empirical evidence provides little guidance on what form this function should take.

In the absence of empirical guidance, we choose a fairly simple approach in which
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technology growth is a linear function of log employment, so that

Sict =
∑
k

τki max(ln(Lkct), 0) + ξit + ψct (6)

where each τki ∈ (0, 1) is a parameter that determines the level of spillovers from

industry k to industry i. While admittedly arbitrary, this functional form incorporates

a number of desirable features. If there is very little employment in industry k in

location c (e.g., Lkct ≤ 1), then industry k makes no contribution to technology

growth in industry i. Similarly, if τki = 0 then industry k makes no contribution to

technology growth in industry i. The marginal benefit generated by an additional unit

of employment is also diminishing as employment rises. This functional form does rule

out complementarity between technological spillovers from different industries. While

such complementarities may exist, an exploration of these more complex interactions

is beyond the scope of the current paper.

One feature of Equation 4 is that it will exhibit scale effects. While this may be a

concern in other types of models, it is a desirable feature in a model of agglomeration

economies, where these positive scale effects will be balanced by offsetting congestion

forces, represented by the λct terms.

Plugging Equation 6 into Equation 5, we obtain our estimation equation:

ln(Lict+1)− ln(Lict) =

(
1

1− α

)[
τii ln(Lict) +

∑
k 6=i

τki ln(Lkct)

+
[

ln(Pit+1)− ln(Pit)
]

+ ξit

+
[

ln(λct+1)− ln(λct)
]

+ ψct (7)

+
[

ln(w̄t+1)− ln(w̄t)
]]

+ eict.

This equation expresses the change in log employment in industry i and location c

in terms of (1) within-industry spillovers generated by employment in industry i, (2)

cross-industry spillovers from other industries, (3) national industry-specific factors

that affect industry i in all locations, (4) city-specific factors that affect all industries

in a location, and (5) aggregate changes in the wage (and thus national labor supply)
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that affect all industries and locations. To highlight that this expression incorporates

both within and cross-industry spillovers we have pulled the within-industry spillover

term out of the summation. These terms appear in the top row in the right-hand

side.

This expression for city-industry growth will motivate our empirical specification.

One feature that is worth noting here is that we have two factors, city-level aggregate

spillovers (ψct) and other time-varying city factors (λct), both of which vary at the

city-year level. Empirically we will not be able to separate these positive and negative

effects and so we will only be able to identify their net impact. Similarly, we cannot

separate positive and negative effects that vary at the industry-year level.

3 Data

This study brings together many different data sets and involves the construction of

several original databases. This section briefly discusses the sources and construction

of the data used in this study. Further details are available in an extensive online

appendix.

The data we study cover English cities during the period 1851-1911. It may seem

odd that we choose this historical setting in order to study agglomeration economies.

However, in addition to offering detailed data (described below), there are several

features of this setting that are helpful for our analysis. One central feature of the

historical period is the limited amount of government involvement in the economy, and

particularly for our purposes, the lack of place-based economic interventions. Also,

this period was characterized by fairly high levels of labor mobility; some authors,

such as Baines (1994) argue that internal migration was easier during this period than

it is in Britain today.6 This period was also characterized by fairly stable internal and

external trade costs, particularly after 1880.7 A final important advantage of studying

the British economy is that, even in 1851, the urban system was well-established.

6Baines writes, “Although it is notoriously difficult to measure, we can be fairly sure that internal
migration rates were high in the nineteenth century...We could also say that both the housing and
labor markets were more open than today and that migrants were less likely to be deterred by the
problems of educating children or looking after relatives.”

7Crafts & Mulatu (2006) conclude that, “falling transport costs had only weak effects on the
location of industry in the period 1870 to 1911.” Jacks et al. (2008) find a rapid fall in external
trade costs prior to 1880, with a much slower decline thereafter.
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For instance, Dittmar (2011) argues that Gibrat’s law emerged in Europe by 1800,

suggesting that the urban system was close to spatial equilibrium during this period.

This is a good fit for our model, where the economy is in spatial equilibrium each

period. In contrast, Desmet & Rappaport (2014) find that Gibrat’s law didn’t emerge

in the U.S. until the middle of the 20th century due to the entry of new locations,

which suggests that the U.S. was on a long transition path over that period and could

have been far from spatial equilibrium.

The main database used in this study was constructed from thousands of pages of

original British Census of Population summary reports. The decennial Census data

were collected by trained registrars during a relatively short time period, usually a

few days in April of each census year. As part of the census, individuals were asked

to provide one or more occupations, but the reported occupations correspond more

closely to industries than to what we think of as occupations today. 8

A unique feature of this database is that the information is drawn from a full

census. Virtually every person in the towns we study provided information on their

occupation and all of these answers are reflected in the employment counts in our

data. This contrasts with data based on census samples, which often use just 5% and

sometimes just 1% of the available data.9

The cities included in the database are those that had a population of 50,000 or

more in the 1851 census within the municipal boundaries, plus three slightly smaller

towns for which data was previously available from Hanlon (2013).10 These cities

include between 28 and 32% of the English population over the period we study. The

geographic extent of these cities does change over time as the cities grow, a feature

that we view as desirable for the purposes of our study11. Table 1 provides a list of

8In fact, in 1921 the Census office renamed what had previously been called “occupation” to be
“industry” and then introduced a new set of data on actual occupations.

9We have experimented with data based on a census sample (from the U.S.) and found that, when
cutting the data to the city-industry level, sampling error has a substantial effect on the consistency
and robustness of the results obtained even when the analysis is confined only to large cities.

10An exception to this rule was made for Wolverhampton, Staffordshire, with a population 49,985.
Also, Plymouth is excluded from our database because in early years Plymouth data includes nearby
Devonport while in later years it does not, resulting in an inconsistent series. The three towns
from Hanlon (2013), together with their 1851 populations, are Blackburn (46,536), Halifax (33,582)
and Huddersfield (30,880). This means that our database is slightly oversampling industrial cities.
London is treated as one metropolitan area in the database.

11Other studies in the same vein, such as Michaels et al. (2013), also use metropolitan boundaries
that expand over time. The alternative is working with fixed geographic units. While that may
be preferred for some types of work, given the growth that characterizes most of the cities in our
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Table 1: Cities in the primary analysis database

Population Working population Workers in analysis
City in 1851 in 1851 industries in 1851
Bath 54,240 28,302 23,731
Birmingham 232,841 112,523 95,796
Blackburn 46,536 26,281 24,248
Bolton 61,171 31,291 28,617
Bradford 103,778 58,565 54,613
Brighton 69,673 33,521 28,048
Bristol 137,328 64,824 54,613
Halifax 33,582 18,159 16,162
Huddersfield 30,880 13,984 12,092
Kingston-upon-Hull 84,690 37,390 31,109
Leeds 172,270 83,980 73,480
Leicester 60,496 31,317 28,409
Liverpool 375,955 166,184 135,068
London 2,362,236 1,096,384 908,818
Manchester 401,321 205,314 180,839
Newcastle-upon-Tyne 87,784 38,804 32,837
Norwich 68,195 34,369 29,666
Nottingham 57,407 34,104 30,995
Oldham 72,357 38,932 35,690
Portsmouth 72,096 31,571 19,047
Preston 69,542 36,998 32,601
Sheffield 135,310 58,775 50,860
Stockport 53,835 30,209 27,632
Sunderland 63,897 24,978 21,562
Wolverhampton 49,985 22,844 19,673

the cities included in the database, as well as the 1851 population of each city, the

number of workers in the city in 1851, and the number of workers in 1851 that are

working in one of the industry groups that are used in the analysis.12 A map showing

the location of these cities in England is available in the Appendix. In general, our

analysis industries cover most of the working population of the cities.

sample, using fixed geographic units would mean either that the early observations would include a
substantial portion of rural land surrounding the city, or that a substantial portion of city growth
would not be part of our sample in the later years. Either of these options is undesirable.

12Much of the remaining working population is employed by the government or in agricultural
work. For example, in Portsmouth, the large gap between working population and workers in the
analysis industries is due to the fact that this was a major base for the Royal Navy.
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The occupations listed in the census reports closely correspond to industries, an

important feature for our purposes. Examples from 1851 include “Banker”, “Glass

Manufacture” or “Cotton manufacture”. The database does include a few occupa-

tions that do not directly correspond to industries, such as “Labourer”, “Mechanic”,

or “Gentleman”, but these are a relatively small share of the population. These

categories are not included in the analysis.

A major challenge faced in using these data is that the occupational categories

listed in the census reports varied over time. To deal with this issue we combined

multiple industries in order to construct consistent industry groupings over the study

period. Individual categories in the years were combined into industry groups based

on (1) the census’ occupation classes, and (2) the name of the occupation. This

process generates 27 consistent private sector occupation categories. Of these, 23 can

be matched to the connections matrices used in the analysis. Table 2 describes the

industries included in the database.

Table 2: Industries in the primary analysis database with 1851 employment

Manufacturing Services and Professional
Chemicals & drugs 17,814 Professionals* 42,689
Dress 320,613 Clerks* 27,108
Instruments & jewelry* 31,462 General services 464,996
Earthenware & bricks 18,247 Merchant, agent, accountant, etc. 30,492
Leather & hair goods 26,214 Messenger, porter, etc. 71,645
Metal & Machines 161,615 Shopkeeper, salesmen, etc. 26,570
Oil, soap, etc. 12,063
Paper and publishing 41,805 Transportation services
Shipbuilding 13,962 Railway transport 9,878
Textiles 308,984 Road transport 34,771
Vehicles 8,609 Sea & canal transport 63,569
Wood & furniture 68,587

Others industries Food, etc.
Building 134,643 Food processing 111,316
Mining 22,920 Spiritous drinks, etc. 7,892
Water & gas services 3,847 Tobacconists* 3,224

Industries marked with a * are available in the database but are not used in the baseline analysis
because they cannot be linked to categories in the 1907 British input-output table.
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The second necessary piece of data for our analysis is a set of matrices measur-

ing the pattern of connections between industries. These measures should reflect

the channels through which ideas may flow between industries. Existing literature

provides some guidance here. Marshall (1890) suggested that firms may benefit from

connections operating through input-output flows, the sharing of labor pools, or other

types of technology spillovers. The use of input-output connections is supported by

recent literature showing that firms share information with their customers or sup-

pliers. For example, Javorcik (2004) and Kugler (2006) provide evidence that the

presence of foreign firms (FDI) affects the productivity of upstream and downstream

domestic firms. To reflect this channel, we use an input-output table constructed

by Thomas (1987) based on the 1907 British Census of Production (Britain’s first

industrial census). This matrix is divided into 41 industry groups. We construct

two variables: IOinij, which gives the share of industry i’s intermediate inputs that

are sourced from industry j, and IOoutij which gives the share of industry i’s sales

of intermediate goods that are purchased by industry j. The main drawback in us-

ing these matrices is that they are for intermediate goods; they will not capture the

pattern of capital goods flows.

Another channel for knowledge flow is the movement of workers, who may carry

ideas between industries. Research by Poole (2013) and Balsvik (2011), using data

from Brazil and Norway, respectively, has highlighted this channel of knowledge flow.

To reflect this channel, we construct two different measures of the similarity of the

workforces used by different industries. The first measure is based on the demographic

characteristics of workers (their age and gender) from the 1851 Census. These features

had an important influence on the types of jobs a worker could hold during the period

we study.13 For any two industries, our demographic-based measure of labor force

similarity, EMPij, is constructed by dividing workers in each industry into these

four available bins (male/female and over20/under20) and calculating the correlation

in shares across the industries. A second measure of labor-force similarity, based

on the occupations found in each industry, is more similar to the measures used in

previous studies. The 1921 Census provides a matrix of employment by occupation

and industry. For any two industries, our occupation-based measure of labor force

similarity, OCCij, is the correlation between the two industries in the employment

13For example, textile industries employed substantial amounts of female and child labor, while
metal and heavy machinery industry jobs were almost exclusively reserved for adult males.
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share in each occupation.

Finally, we collect data on a variety of other industry and city characteristics. The

1851 Census of Population was particularly detailed, and provides information on firm

sizes in each industry at the national level. From the 1907 input-output table, we have

measures of the share of industry output that is sold directly to households, as well

as the share exported abroad. Finally, we collect data on the distance between cities

(as the crow flies) from Google Maps, which we will use when considering cross-city

effects in Section 6.

4 Empirical approach

The starting point for our analysis is based on Equation 7, which represents the growth

rate of a city-industry as a function of the learning spillovers as well as time-varying

city-specific and national industry-specific factors. Rewriting this as a regression

equation we have,

4 ln(Lict+1) = τ̃ii ln(Lict) +
∑
k 6=i

τ̃ki ln(Lkct) + θct + φit + eict (8)

where 4 is the first difference operator, τ̃ii and τ̃ki include the coefficient
(

1
1−α

)
, θct is

a full set of city-year effects and φit is a full set of industry-year effects. The first term

on the right hand side represents within-industry spillovers, while the second term

represents cross-industry spillovers. We purposely omitted the last term of Equation

7, namely 4 ln(w̄t+1), because although it could be estimated as a year-specific con-

stant, it would be collinear with both the (summation of) industry-year and city-year

effects. Moreover, in any given year we also need to drop one of the city or industry

dummies in order to avoid collinearity. We chose to drop in all specifications the

industry-year dummies associated with the “General services” sector.

One issue with Equation 8 is that there are too many parameters for us to credibly

estimate given the available data. In order to reduce the number of parameters, we

need to put additional structure on the spillover terms. We parametrize the connec-

tions between industries using the available input-output and labor force similarity

matrices:
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τ̃ki = β1IOinki + β2IOoutki + β3EMPki + β4OCCki ∀ i, k

Substituting this into 8 we obtain:

4 ln(Lict+1) = τ̃ii ln(Lict) + β1
∑
k 6=i

IOinki ln(Lkct) + β2
∑
k 6=i

IOoutki ln(Lkct)

+ β3
∑
k 6=i

EMPki ln(Lkct) + β4
∑
k 6=i

OCCki ln(Lkct) + θct + φit + eict (9)

Instead of a large number of parameters measuring spillovers across industry, Equa-

tion 9 now contains only four parameters multiplying four (weighted) summations of

log employment. Summary statistics for the summed cross-industry spillover terms

are available in Appendix Table 11.

There are two issues to address at this point. First, there could be a measure-

ment error in Lict. Since this variable appears both on the left and right hand side,

this would mechanically generate an attenuation bias in our within-industry spillover

estimates. Moreover, since Lict is correlated with the other explanatory variables,

such measurement error would also bias the remaining estimates. We deal with mea-

surement error in Lict on the right hand side by instrumenting it with what we will

call henceforth a Bartik instrument, following an approach similar to Bartik (1991).14

Under the assumption that the measurement error in any given city-industry pair is

iid across cities and time, our instrument is LBartict = Lict−1 × gi−ct, where Lict−1 is

the lag of Lict and gi−ct is the decennial growth rate in industry i computed using

employment levels in all cities except city c.

Second, we are also concerned that there may be omitted variables that affect both

the level of employment in industry j and the growth in employment in industry i.

Such variables could potentially bias our estimated coefficients on both the cross-

industry and (when j = i) the within-industry spillovers. For instance, if there is

some factor not included in our model which causes growth in two industries i and

14This approach is inspired in part by Combes et al. (2011), who discuss the possibility of applying
Bartik instrumentation to the study of agglomeration economies.
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k 6= i in the same city, a naive estimation would impute such growth to the spillover

effect from k to i, thus biasing the estimated spillover upward. The Bartik approach

can also help us deal with these concerns. Now, for the cross-industry case, the

summation terms in Equation 9 such as
∑
k 6=i IOinki ln(Lkct) are instrumented with∑

k 6=i IOinki ln(LBartkct ), where LBartkct is computed as described above.

Finally, note that we would run into the type of endogeneity studied by Arellano

& Bond (1991) if we had time-invariant city-industry effects. We do not have such

effects because in the model itself these were captured by the term R̄ic and were

differenced out when we derived our estimating equation.

The estimation is performed using OLS or, when using the Bartik instruments,

two-stage least squares. Correlated errors are a concern in these regressions. Specif-

ically, we are concerned about serial correlation, which Bertrand et al. (2004) argue

can be a serious concern in panel data regressions, though this is perhaps less of a

concern for us given the relatively small time dimension in our data. A second concern

is that industries within the same city are likely to have correlated errors. A third

concern, highlighted by Conley (1999) and more recently by Barrios et al. (2012),

is spatial correlation occurring across cities. Here the greatest concern is that error

terms may be correlated within the same industry across cities (though the results

presented in section 6 suggest that cross-city effects are modest).

To deal with all of these concerns we use multi-dimensional clustered standard

errors following work by Cameron et al. (2011) and Thompson (2011). We cluster

by (1) city-industry, which allows for serial correlation; (2) city-year, which allows

correlated errors across industries in the same city and year; and (3) industry-year,

which allows for spatial correlation across cities within the same industry and year.

This method relies on asymptotic results based on the dimension with the fewest

number of clusters. In our case this is 23 industries × 6 years = 138, which should

be large enough to avoid serious small-sample concerns.

To simplify the exposition, we will hereafter collectively refer to the set of regres-

sors ln(Lict), i = 1...I as the within variables. Similarly, with a small abuse of

notation the term
∑
k 6=i IOinki ln(Lkct) is referred to as IOin, and so on for IOout,

EMP , and OCC. Finally, we will collectively refer to the latter terms as the between

regressors since they are the parametrized counterpart of the spillovers across indus-

tries.

16



5 Main results

Our main regression results are based on the specification described in Equation 9.

Regressions based on this specification generate results that can tell us about cross-

industry spillovers, within-industry spillovers, and city-wide factors. In the following

subsections, we will discuss results related to each of these in turn, but it is important

to keep in mind that these results are coming out of regressions in which all of these

factors are present. We begin by considering the pattern of spillovers across industries.

5.1 Cross-industry spillovers

Our estimation strategy involves using four measures for the pattern of cross-industry

spillovers: forward input-output linkages, backward input-output linkages, and labor

force similarity. We begin our analysis, in Table 3 by looking at results that include

only one of these proxies at a time. Columns 1-3 include only the forward input-output

linkages; Columns 1 presents OLS results; Column 2 presents results with Bartik

instrumentation on the within terms; and Column 3 uses Bartik instrumentation for

both the within and between terms. A similar pattern is used for backward input-

output linkages in Columns 4-6, the demographic-based labor force similarity measure

in Columns 7-9, and the occupation-based labor force similarity measure in Columns

10-12.

These results show strong positive spillovers through forward input-output con-

nections, suggesting that local suppliers play an important role in industry growth.

The importance of local suppliers to industry growth is perhaps the clearest and most

robust result emerging from our analysis. In terms of magnitude, the coefficients in

Table 3 suggest that a one standard deviation increase in local employment in IO-

weighted supplier industries would result in an increase in city-industry growth of

18.6-22.5 percent. There is weaker evidence of positive effects operating through the

labor force similarity channel based on demographic connections, and negative effects

operating through the occupation-based labor force similarity channel. One explana-

tion for this is that industries may benefit from broad labor pools of demographically

similar worker, but that competition for workers in more narrowly defined occupa-

tions may act as a drag on growth. There is little evidence that the presence of local

buyers has a positive effect on industry growth. A comparison across columns for
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each spillover measure shows that the IV results do not differ from the OLS results

in a statistically significant way, suggesting that any measurement error or omitted

variables concerns addressed by instruments are not generating substantial bias in

the OLS results.
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Table 3: OLS and IC regressions including only one spillover path at a time

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
lhs lhs lhs lhs lhs lhs lhs lhs lhs lhs lhs lhs

IOin 0.0685*** 0.0556*** 0.0568***
(0.0152) (0.0143) (0.0150)

IOout 0.0052 -0.0062 -0.0082
(0.0144) (0.0146) (0.0145)

EMP 0.0022 0.0033** 0.0030*
(0.0017) (0.0015) (0.0016)

OCC -0.0053** -0.0037* -0.0038*
(0.0022) (0.0020) (0.0020)

Obs 3,300 2,746 2,746 3,300 2,746 2,746 3,300 2,746 2,746 3,300 2,746 2,746
Estimation ols 2sls 2sls ols 2sls 2sls ols 2sls 2sls ols 2sls 2sls
FE1 Ind*Year Ind*Year Ind*Year Ind*Year Ind*Year Ind*Year Ind*Year Ind*Year Ind*Year Ind*Year Ind*Year Ind*Year
FE2 City*Year City*Year City*Year City*Year City*Year City*Year City*Year City*Year City*Year City*Year City*Year City*Year
Instruments none Bartik Bartik none Bartik Bartik none Bartik Bartik none Bartik Bartik
Instrumented none wtn wtn-btn none wtn wtn-btn none wtn wtn-btn none wtn wtn-btn

Multi-level clustered standard errors by city-industry, city-year, and industry-year. Regressors within and fixed effects included
in all regressions but not displayed. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. Note that the number of observations
falls for the instrumented regressions because the instruments require a lagged employment term. Thus, data from 1851 are not
available for these regressions. Acronyms: wtn = within, btn = between.
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Table 4 considers all four channels simultaneously. Columns 1 presents OLS re-

sults, in Column 2 we instrument the within terms, in Column 3 we use instruments

for both the within and between terms. The results are similar to those from Table

3, though the negative coefficient on the IOout term becomes statistically significant

and the positive coefficient on the EMP term strengthened. We interpret the negative

coefficients on the IOout term with some caution because the correlation between the

IOin and IOout matrices makes this term sensitive to the inclusion of the IOin term.

In the Appendix, we investigate the robustness of these results to dropping in-

dividual industries or individual cities from the analysis database. These exercises

show that the results change very little when individual cities are dropped. However,

dropping individual industries can have much larger effects. In particular, while the

importance of local suppliers is robust to dropping individual industries, the results on

the IOout and EMP terms are highly sensitive to the set of industries included in the

analysis. Thus, we find that industries represent the key dimension for heterogeneity

in our data.

Table 4: Results with all cross-industry spillover channels

(1) (2) (3)
IOin 0.0653*** 0.0563*** 0.0623***

(0.0169) (0.0166) (0.0179)
IOout -0.0156 -0.0273** -0.0294**

(0.0116) (0.0123) (0.0119)
EMP 0.0025 0.0044*** 0.0036***

(0.0016) (0.0012) (0.0013)
OCC -0.0035 -0.0037* -0.0029

(0.0024) (0.0021) (0.0021)
Observations 3,300 2,746 2,746
Estimation ols 2sls 2sls
FE1 Ind*Year Ind*Year Ind*Year
FE2 City*Year City*Year City*Year
Instruments none Bartik Bartik
Instrumented none wtn wtn-btn

Multi-level clustered standard errors by city-industry, city-year, and industry-year. Regressors
within and fixed effects included in all regressions but not displayed. Significance levels: ***
p<0.01, ** p<0.05, * p<0.1. Note that the number of observations falls for the instrumented
regressions in columns 3-6 because the instruments require a lagged employment term. Thus, data
from 1851 are not available for these regressions. Acronyms: wtn = within, btn = between.
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The results above reveal average patterns across all industries. We can further

unpack these effects by estimating industry-specific coefficients for each of the spillover

channels. Specifically, we replace β1, β2, β3, and β4 in Equation 9, with industry-

specific coefficients βi1, β
i
2, β

i
3, and βi4. The estimated industry-specific coefficients are

presented in the Appendix. We can compare these industry-specific cross-industry

spillover coefficients to available information on industry characteristics, in order

to identify the features of industries where each type of cross-industry spillover is

important.

We focus on several industry characteristics for which data are available: firm

size in each industry, the share of output exported, and the share of output sold to

households. In each case we run a simple univariate regression where the dependent

variable is the estimated industry-specific cross-industry spillover coefficient and the

independent variable is one of the industry characteristics.15 These results can provide

suggestive evidence about the characteristics of industries that benefit from different

types of cross-industry spillovers.

Table 5 describes the results. In rows 1-2, we see evidence that small firm size in

an industry is associated with more cross-industry spillover benefits. Row 3 provides

some evidence that industries that export abroad benefit less from localized cross-

industry spillovers. Row 4 suggests that there is a weak positive relationship between

the cross-industry spillover benefits received by an industry and the share of industry

output sold directly to households.

15Univariate regressions are used because we are working with a relatively small number of obser-
vations.
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Table 5: Features of industries that benefit from each type of cross-industry spillover

Coefficients from univariate regressions
DV: Estimated industry-specific

cross-industry spillover coefficients
Industry Spillovers channel:
features: IO-in IO-out EMP OCC
Average firm size -0.839*** -0.546 -0.0640** -0.137*

(0.292) (1.502) (0.0291) (0.0724)

Median worker’s firm size -0.112*** -0.118 -0.00707* -0.0111
(0.0322) (0.175) (0.00346) (0.00892)

Share of industry output -0.209** -0.270 -0.0243** -0.0296
exported abroad (0.0982) (0.457) (0.0101) (0.0264)

Share of industry output 0.0816* -0.150 0.00870* 0.0145
sold to households (0.0410) (0.214) (0.00430) (0.0113)

Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. The dependent variables are
the estimated cross-industry spillover coefficients for each industry and each spillover channel.
Additional details are available in the Appendix. Firm size data comes from the 1851 Census
of Population. The share of industry output exported or sold to households is from the 1907
Input-Output matrix.

5.2 Within-industry spillovers

Our analysis can also help us understand the strength of within-industry spillovers.16

These spillovers are reflected in the ln(Lict) term in Equation 8, which is an instru-

mented variable. Figure 1 presents the within-industry coefficients and 95% con-

fidence intervals for regression specifications corresponding to Columns 3 of Table

4, where the Bartik instruments are used for both the within and between terms.

These results suggest that within-industry effects are often negative, consistent with

competition for scarce local inputs or other within-industry congestion forces. In a

small number of industries, such as shipbuilding and textiles, we observe positive

within-industry effects. These industries are characterized by increasing returns and

strong patterns of geographic concentration. Within-industry agglomeration benefits,

it would appear, are more the exception than the rule.

16In a static context these are often referred to as localization economies.
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Figure 1: Strength of within-industry effects by industry

Results are based on regression in column 3 of Table 4. Multi-level clustered standard errors by

city-industry, city-year, and industry-year. These regressions include a full set of city-year and

industry-year terms, and both the within and between terms are instrumented using the Bartik

approach.

In Table 6 we consider some of the industry characteristics that may be related

to the range of different within-industry spillover estimates we observe. Columns

1-2 focus on the role of firm size using two different measures. We observe a strong

positive relationship between firm size in an industry and the strength of within-

industry spillovers.17 The third and fourth columns look at the buyers served by each

industry. The relationship between within-industry spillovers and the importance

of exports is positive but not statistically significant. Within-industry spillovers are

associated with a lower share of industry output going directly to households.

17More data on firm size by industry are available in the Appendix.
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Table 6: Correlates of within-industry spillovers

DV: Estimated industry-specific
within-industry spillover coefficients

Average firm size 0.592**
(0.264)

Median worker’s firm size 0.0713**
(0.0307)

Exports share of industry output 0.140
(0.0862)

Households share of industry output -0.0902**
(0.0388)

Observations 19 19 22 22 19
R-squared 0.229 0.241 0.117 0.212 0.217

Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. The number of observations
varies because the explanatory variables are drawn from different sources and are not available for
all industries. The within coefficients come from the specification used in column 3 of Table 4.
Firm size data comes from the 1851 Census of Population. The export’s and household’s share of
industry output come from the input-output table.

5.3 City-wide effects

Next, we want to look for effects operating at the city level. In particular, we are

interested in the effect of city size on city-industry growth. City size may reduce city

growth through congestion forces, but may also increase city-industry growth if there

are substantial agglomeration benefits from being in a large city apart from the other

agglomeration forces that we study.18

We begin by focusing on the effect of city size on actual city growth. The blue

triangle symbols in Figure 2 describe, for each decade starting in 1861, the relation-

ship between the actual growth rate of city working population and the log of city

population at the beginning of the decade. The slopes of the fitted lines for these

series fluctuate close to zero, suggesting that on average Gibrat’s law holds for the

cities in our data.

The red squares in Figure 2 describe the relationship between our estimated city-

year fixed effects (θct) and the log of initial population in each decade. In essence,

these describe the relationship between city size and city growth after controlling for

18Such aggregate city-size agglomeration forces play a role in existing theories, such as Davis &
Dingel (2012), though Davis & Dingel specify a model in which the aggregate city-size agglomeration
force will have heterogeneous effects across industries.
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national industry growth trends and the agglomeration forces generated by within and

cross-industry spillovers. We can see that in all years, the fitted lines on these series

slope downward more steeply than the slopes on the fitted lines for actual city growth.

This suggests that, once we control for other factors, city size is negatively related

to city growth, consistent with the idea that there are city-size congestion forces.

The difference between two slopes of the two sets of fitted lines can be interpreted as

the aggregate effect of the various agglomeration forces in our model averaged across

cities. Put simply, if we can add up the strength of the convergence force in any

period and compare it to the actual pattern of city growth, then the difference must

be equal to the strength of the agglomeration forces.

The strength of these effects can be quantified in terms of the implied convergence

rate following the approach of Barro & Sala-i Martin (1992). To do so, we run the

following regressions:

θct = a0 + a1 log(WORKpopct) + εct (10)

GrowthWORKpopct = b0 + b1 log(WORKpopct) + εct (11)

where θct is the estimated city-period fixed effect for the decade from t to t + 1,

GrowthWORKpopct is the actual growth rate of the city from t to t + 1, and

WORKpopct is the working population of the city in year t. These regressions are

run separately for each decade from 1861 to 1911. Convergence rates can be calcu-

lated using the estimated a1 and b1 coefficients. The results are presented in Table

7. The right-hand column describes the difference between the rate of convergence

observed for actual city size and the expected rate of convergence implied by our

city-size results. This difference must reflect the average impact of the agglomeration

forces captured by our estimation. These results suggest that the strength of city

agglomeration forces, in terms of the implied divergence rate, ranged from 0.5-1% per

year and showed a downward trend over the period we study.
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Figure 2: The effect of city size on city growth

These graphs show scatter plots of actual city growth over a decade compared to the log of city
population at the beginning of the decade (blue triangles) and of the city-year fixed effects over
the same decade, also compared to the log of city population at the beginning of the decade (red
squares). The two fitted lines reflect the linear relationship between each of these and overall city
size. The difference between the slope of the fitted lines reflects the strength of the agglomeration
forces in the economy.

There are some caveats to keep in mind when assessing these results. These

estimates of the strength of agglomeration forces are likely to be lower bounds for

26



Table 7: Measuring the aggregate strength of the agglomeration forces

Column 2 presents the a1 coefficients from estimating Equation 10 for each decade (cross-sectional
regressions). Column 3 presents the convergence rates implied by these coefficients. Column 4
presents the b1 coefficients from estimating Equation 11 and column 5 presents the convergence
rates implied by these coefficients. Column 5 gives the difference between the two convergence rates,
which represents the aggregate strength of the divergence force represented by the agglomeration
economies.

several reasons. First, there are likely to be agglomeration forces not captured by

our estimation. These omitted agglomeration forces may be partially reflected in

the city-year fixed effects, which would lead us to understate the strength of the

agglomeration forces. Second, some congestion forces may be captured by terms in

our estimation other than the city-year fixed effects. Specifically, we have provided

evidence that many of the within-industry spillover terms are negative. Since these

will not be included in the convergence forces represented in Table 7, they will lead

us to understate the strength of the agglomeration forces.

6 Cross-city effects

In this section, we extend our analysis to consider the possibility that city-industry

growth may be influenced not just by factors within the city, but also through the

influence of other nearby cities. We consider two potential channels for this cross-city

effects. First, industries may benefit from proximity to consumers in nearby cities.

This market potential effect has been suggested by Hanson (2005), who finds that

regional demand linkages play an important role in generating spatial agglomeration

using modern U.S. data. Second, industries may benefit from spillovers from other
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industries in nearby towns, through any of the channels that we have identified.

There is substantial variation in the proximity of cities in our database to other

nearby cities (see the Appendix for a map). Some cities, particularly those in Lan-

cashire, west Yorkshire, and the North Midlands, are located in close proximity to a

number of other nearby cities. Others, such as Norwich, Hull, and Portsmouth are

located a relatively long distance from other cities.

We begin our analysis by collecting data on the distance (as a crow flies) between

each of the cities in our database, which we call distanceij. Using these, we construct

a measure for the remoteness of one city from another dij = exp(−distanceij).19 Our

measures of market potential for each city is then,

MPct =
∑
j 6=c

POPjt ∗ dcj.

where POPjt is the population of city j. This differs slightly from Hanson’s approach,

which uses income in a city instead of population, due to the fact that income at the

city level is not available for the period we study.

We also want to measure the potential for cross-industry spillovers occurring across

cities. We measure proximity to an industry i in other cities as the distance weighted

sum of log employment in that industry across all other cities. Our full regression

specification, including both cross-city market potential and spillover effects, is then,

4 ln(Lict+1) = τ̃ii ln(Lict)

+ β1
∑
k 6=i

IOinki ln(Lkct) + β2
∑
k 6=i

IOoutki ln(Lkct)

+ β3
∑
k 6=i

EMPki ln(Lkct) + β4
∑
k 6=i

OCCki ln(Lkct)

+ β5

∑
k 6=i

IOinki
∑
j 6=c

djc ∗ ln(Lkjt)

+ β6

∑
k 6=i

IOoutki
∑
j 6=c

djc ∗ ln(Lkjt)


+ β7

∑
k 6=i

EMPki
∑
j 6=c

djc ∗ ln(Lkjt)

+ β8

∑
k 6=i

OCCki
∑
j 6=c

djc ∗ ln(Lkjt)


+ β9MPct + log(WORKpopct + θc + φit + εict.

19This distance weighting measure is motivated by Hanson (2005). We have also explored using
dij = 1/distanceij as the distance weighting measure and this delivers similar results.

28



One difference between this and our baseline specification is that we now include

city fixed effects (θc) in place of city-year effects because city-year effects would be

perfectly correlated with the market potential measure. To help deal with city-size

effects, we also include the log of WORKpopct, the working population of city c in

period t. To simplify the exposition and in analogy with the previous section, we will

refer to the cross-city term
∑
k 6=i IOinki

∑
j 6=c djc ∗ ln(Lkjt) as IOin ∗ d, and similarly

for the other cross-city terms IOout ∗ d, EMP ∗ d, and OCC ∗ d.

The results generated using this specification are shown in Table 8. The first thing

to take away from this table is that our baseline results are essentially unchanged

when we include the additional cross-city terms. The city employment term in the

fifth column reflects the negative growth impact of city size. The coefficients on the

market potential measure are always positive and statistically significant at at least

the 90% confidence level. This shows that a city’s market access contributes positively

to city-industry growth. The results provide little evidence that cross-city spillovers

matter through any of the channels that we measure.
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Table 8: Regression results with cross-city variables

(1) (2) (3)
IOin 0.0577*** 0.0674*** 0.0636***

(0.0163) (0.0168) (0.0165)
IOout -0.0315*** -0.0310*** -0.0325***

(0.0109) (0.0110) (0.0108)
EMP 0.0039*** 0.0034*** 0.0036***

(0.0012) (0.0013) (0.0012)
OCC -0.0033 -0.0032 -0.0032

(0.0021) (0.0023) (0.0022)
City employment -0.0134*** -0.0129*** -0.0133***

(0.0042) (0.0042) (0.0043)
MP 0.2559* 0.4204**

(0.1440) (0.1974)
IOin*d 0.0028 -0.0012

(0.0018) (0.0023)
IOout*d -0.0007 -0.0001

(0.0008) (0.0009)
EMP*d 0.0002 0.0002*

(0.0001) (0.0001)
OCC*d 0.0000 -0.0002

(0.0001) (0.0002)
Observations 2,746 2,746 2,746
FE1 Ind*Year Ind*Year Ind*Year
FE2 City City City
instruments Bartik Bartik Bartik
instrumented wtn-btn wtn-btn wtn-btn

Multi-dimensional clustered standard errors by city-industry, city-year, and industry-year. Regres-
sors within and fixed effects included in all regressions but not displayed. Significance levels: ***
p<0.01, ** p<0.05, * p<0.1. Acronyms: wtn = within, btn = between.

7 Conclusion

In the introduction, we raised a number of questions about the nature of localized

agglomeration forces. The main contribution of this study is to provide a theoretically

grounded empirical approach that can be used to address these questions and the

detailed city-industry panel data needed to implement it.

We can now provide some tentative answers for the period we study. First, we find

evidence that cross-industry agglomeration economies appear more important than

within-industry agglomeration forces. Within-industry effects are generally negative,
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but may be positive in a small number of industries such as textiles and shipbuilding.20

This suggests that industries clusters, which have attracted substantial attention, are

more the exception than the rule. Second, our results suggest that industries grow

more rapidly when the co-locate with their suppliers or with other industries that use

demographically similar workforces. This result is in line with arguments made by

Jacobs (1969), as well as recent empirical findings.21 Third, we provide evidence that

there is substantial heterogeneity in the nature and strength of agglomeration forces

across industries.22 In particular, we find that industries characterized by smaller

firm sizes are more likely to benefit from cross-industry agglomeration forces.23

Perhaps the most novel finding emerging from this study has to do with the clear

negative relationship between city size and city growth that appears once we account

for a city’s industrial composition. This suggests that Gibrat’s law is generated by a

careful balance between agglomeration and dispersion forces. A lower bound estimate

of the overall strength of the agglomeration forces captured by our approach, in terms

of the implied annual divergence rate in city size, falls between 0.5-1% and shows a

downward trend over the period we study.

20Interestingly, textiles also appears as an outlier in modern studies such as Dumais et al. (2002).
21See Glaeser & Kerr (2009), Glaeser et al. (2010), Ellison et al. (2010), and Delgado et al. (2010).
22Henderson et al. (1995) and Faggio et al. (2013) provide evidence of heterogeneity using modern

data.
23This finding is consistent with arguments made by Chinitz (1961). We do not identify the

direction of causality in this relationship.
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A Appendix

A.1 Data appendix

Table 9: Map showing the location of cities in the analysis database

35



Table 10: Industry firm size data from 1851 Census of Population

A.2 Results appendix

A.2.1 Robustness exercises

Figure 3 presents t-statistics for each cross-industry term obtained from running re-

gressions equivalent to column 3 of Table 4, where in each regression a different city is

dropped from the dataset. This allows us to assess the extent to which our results are

robust to changes in the set of cities included in the analysis. These results indicate

that our estimates are not sensitive to dropping individual cities from the analysis

database.
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Table 11: Summary statistics for the cross-industry spillover terms

Spillover measure Obs. Mean SD Min Max∑
k 6=i IOinki ln(Lkct) 2875 9.63 3.28 2.24 21.85

∑
k 6=i IOoutki ln(Lkct) 2875 9.13 6.49 0.00 42.77

∑
k 6=iEMPki ln(Lkct) 2875 123.74 52.60 -114.60 228.65

∑
k 6=iOCCki ln(Lkct)* 2750 63.04 41.10 -33.63 147.92

*The occupation-based labor force similarity matrix is not available for the Construction industry.

Figure 3: Robustness to dropping one city at a time

IOin results IOout results

EMP results OCC results
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Figure 4: Robustness to dropping one industry at a time

IOin results IOout results

EMP results OCC results

Figure 4 presents t-statistics for each cross-industry term obtained from running

regressions equivalent to column 3 of Table 4, where in each regression a different

industry is dropped from the dataset. This allows us to assess the extent to which

our results are robust to changes in the set of industries included in the analysis.

Specifically, while are IOin results are robust to dropping individual industries, we see

that the estimates on the IOout and EMP terms are highly sensitive to the inclusion

of particular industries. These results indicate that our estimates are much more

sensitive to dropping industries than they are to dropping cities. This suggests that

heterogeneity across industries is more important than heterogeneity across cities.
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A.2.2 Estimated heterogeneous cross-industry effects

Figures 5-8 present the estimated industry-specific cross-industry spillover coefficients

for each of the spillover channel measures. Regressions are run with only one chan-

nel at a time to keep the number of estimated parameters manageable. Thus, the

estimating equation for the first set of results is,

4 ln(Lict+1) = τ̃ii ln(Lict) + βi1
∑
k 6=i

IOinki ln(Lkct) + θct + φit + εict.

Results are calculated using instruments for both the within and between terms

and multidimensional clustered standard errors by city-industry, industry-year and

city-year. The coefficient estimates and 95% confidence intervals for the IOin channel

are plotted in Figure 5. These estimates provide the dependent variables for column

1 of Table 5. A similar estimating equation is used for each of the other spillover

channels. The result are shown in Figures 6-8. These estimates provide the dependent

variables for columns 2-4 of Table 5.

Figure 5: Industry-specific cross-industry spillover coefficients – IO in channel
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Figure 6: Industry-specific cross-industry spillover coefficients – IO out channel

Figure 7: Industry-specific cross-industry spillover coefficients – EMP channel

40



Figure 8: Industry-specific cross-industry spillover coefficients – OCC channel
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