
Signals from the Government:
Policy Uncertainty and the Transmission of Fiscal Shocks∗

Giovanni Ricco† Giovanni Callegari‡ Jacopo Cimadomo§

May 2014

Abstract

In this paper, we investigate the influence of fiscal policy uncertainty in the propagation
of government spending shocks in the US economy. We propose a new index to measure
fiscal policy uncertainty which relies on the dispersion of government spending forecasts as
presented in the Survey of Professional Forecasters (SPF). This new index is solely focused
on the uncertainty surrounding federal spending and is immune from the influence of general
macroeconomic uncertainty by as much as is possible. Our results indicate that, in times
of elevated fiscal policy uncertainty, the output response to policy announcements about
future government spending growth is muted. Instead, periods of low policy uncertainty are
characterised by a positive and persistent output response to fiscal announcements. Our
analysis also shows that the stronger effects of fiscal policy in less uncertain times is mainly
the result of agents’ tendency to increase investment decisions in these periods, in line with
the prediction of the option value theory in Bernanke (1983).
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1 Introduction

Policy communication in the public sector is a delicate task. When communicating their inten-

tions, fiscal policy makers face political, institutional and regulatory constraints that significantly

complicate their job. Moreover, fiscal policy ramifies into a multiplicity of instruments, which

makes particularly difficult for the policy-makers to send unambiguous signals to the rest of the

economy.

In such a complex environment, the decision-making process can easily generate an elevated

degree of uncertainty among economic agents, with respect to both the main policy objectives

and the specific measures that fiscal authorities intend to adopt to achieve them. Moreover,

governments can engage in strategic uncertainty whenever their policy and political objectives

are in conflict, and they are unwilling to commit to a specific course of action. In this context,

signals about future fiscal policies can have different economic consequences depending on the

level of signal precision and on the credibility of policymakers.1

Until the recent financial crisis, signalling and fiscal policy uncertainty were of limited relev-

ance in policy discussions. Since the onset of the financial crisis in 2008, however, policy makers

have faced a new and challenging economic context. This has re-launched fiscal policy as a sta-

bilisation tool and, contemporaneously, highlighted the importance of policy communication for

an effective transmission of the policy impulses.

The turbulent political environment has also contributed to increase policy uncertainty during

the crisis. Notably, in the US, the emergence of a strong anti-governmental opposition within

the Congress, the expiration of specific policy provisions, and a frequently revised debt-limit

have created an environment for protracted political conflicts that culminated with the “Fiscal

Cliff” debate in 2012 (see, e.g. Ilzetzki and Pinder (2012)) and the Federal Shutdown in 2013.

In Europe, the sovereign debt crisis and the subsequent strengthening of the consolidation plans

were not always accompanied by a detailed definition of the required fiscal measures. Moreover,

the enhanced role of the European Commission in the supervision of member states’ budgetary

policies introduced a new layer to the decision process that sometimes resulted in conflicting

policy signals.

Despite the increased importance of fiscal policy communication in times of crisis, the literat-
1The analysis of the relationship between signaling and uncertainty begins with Spence (1973). More recently,

central banks have recognised the importance of the active managing of expectations on monetary policy in
reducing uncertainty, and enhancing policy effectiveness (see for example the literature on forward guidance,
e.g., Eggertsson and Woodford (2003), Campbell et al. (2012), Werning (2011), Del Negro et al. (2012)). As
noted also in Baeriswyl and Cornand (2010) and Bachmann and Sims (2012), for respectively monetary and fiscal
interventions, policy signalling may change private sector views about future fundamentals or policies, providing
more leeway to policy makers.
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ure on the role of fiscal policy uncertainty is still limited.2 However, since the work of Baker et al.

(2012), which proposed a new index of economic policy uncertainty for the US, the economic

literature examining the empirical effects of policy uncertainty has rapidly expanded.3

In this paper, we make two main contributions to the existing literature. First, we construct

a new index of fiscal policy uncertainty. This index is based on the dispersion of government

spending forecasts as reported in the Survey of Professional Forecasters (SPF). The idea under-

pinning our policy index is that a precise signal on the outlook of federal spending can coalesce

private sector expectations on the future realizations of this variable, hence reducing uncertainty

and disagreement among forecasters. Symmetrically, higher than average disagreement about fu-

ture government spending reveals poor signalling from the government about the future stance of

fiscal policies. Compared to the index proposed by Baker et al. (2012), our index is more specific

to the type of shock under analysis (the federal spending shock). It is also more clearly connected

to changes in the variance of economic agents’ due to policy signalling. Moreover, it explicitly

removes any influence of general macroeconomic uncertainty, to which the Baker et al. (2012) is

exposed because it is, by construction, (linearly) uncorrelated with macroeconomic uncertainty.

This should help to provide a more precise quantification of the policy signal’s precision from

budgetary authorities.

Second, we explore how fiscal spending shocks propagate, conditional on the level of fiscal

policy uncertainty. In particular, we test whether fiscal policy announcements are more effective

in stimulating GDP in an environment characterised by low or high uncertainty about present

and future public spending policies.

Our paper is related to Bachmann and Sims (2012), although we focus on the signal sent by

fiscal policy authorities (and thus on fiscal policy uncertainty) rather than on confidence, which
2The literature on the economic impact of uncertainty dates back to the early 1970s, with the analysis of

the role of uncertainty on private savings and investment decisions (see, Leland (1968), Kimball (1990), Carroll
(1997)). The study of investment decisions in uncertain times is centred on Bernanke (1983) which showed that
during uncertain times, firms might have an incentive to wait until the uncertainty is resolved, even in presence
of investment project with a positive net present value. In recent years, Bloom (2009) proposed a new modeling
framework to analyse the impact of second-moment shocks in the presence of non-convex capital and labour
adjustment costs, and showing that uncertainty shocks can generate short and sharp recessions, immediately
followed by sudden recoveries.

3Papers using the Baker et al. (2012) index, or alternative measures, generally find large adverse effects of policy
uncertainty onto macroeconomic activity (see, among others, Bachmann et al. (2013), Benati (2013), Carriero
et al. (2013), Mumtaz and Surico (2013), Caggiano et al. (2013)). Building on the SVAR methodology, Davig and
Foerster (2013) find that increased policy uncertainty related to the US “Fiscal Cliff” tends to depress investment
and employment. Fernandez-Villaverde et al. (2012) study the impact of fiscal policy uncertainty in a DSGE
model with stochastic volatility. They show that an increases in volatility can have a sizeable adverse impact on
the economy, especially when the volatility affects the capital tax process. Bi et al. (2013) explore the effects of
uncertainty on the timing and composition of consolidation plans in a non-linear New-Keynesian model. They
conclude that the uncertainty on the composition (tax- or spending-based) of a consolidation can significantly
alter the response of economic agents and the success of the plan in eventually reducing debt. For additional
references on policy uncertainty see www.policyuncertainty.com.
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is more a measure of the degree of agent optimism towards future economic developments.4

Our empirical analysis is structured in two steps. First, following Ramey (2011), we identify

fiscal spending shocks using an expectational time series derived from the US SPF’s data. How-

ever, unlike Ramey (2011), we identify the spending shocks by looking at the individual revision

of forecasts, as published in the SPF, that can be thought of as proxies for fiscal news shocks.

In particular, we focus on the revisions in forecaster expectations at both one and three quarter

horizons. This expectational identification of fiscal shocks helps to align the econometrician in-

formation set with the real-time information flow received by the agents, thus eliminating the

problem of fiscal foresight as defined by Leeper et al. (2013) (see Ricco (2013)).5

Second, based on Bayesian techniques, we estimate an Expectational Threshold VAR (E-

TVAR) model in which the proxies for fiscal news shocks are included together with the fiscal

policy uncertainty index, SPF expectations on GDP, GDP, federal spending and the Barro-

Redlick marginal tax rate. The uncertainty index is the threshold variable, and the threshold

level is estimated endogenously within the model. We also study the effects of fiscal shocks on

the federal fund rates, private consumption and investment. The use of a TVAR model allows

us to derive some stylized facts about the propagation of fiscal shocks, conditional on the level

of uncertainty surrounding fiscal policy communication.

Our results suggest that, during periods of high fiscal policy uncertainty, fiscal interventions

have only weak effects on the economy. In these phases, authorities tend to accompany an-

nouncements about increases in spending with a reduction in marginal tax rates. Despite this

higher activism, however, output does not significantly respond to the policy news. In periods

of low uncertainty, however, the output response to the spending news shock is positive and

significantly different from zero, reaching a cumulative multiplier of about 2.45 after 8 quarters.

Our analysis also shows that the stronger stimulative effects in less uncertain times are mainly

the result of agents’ tendency to increase investment decisions, in line with the predictions of

the option value theory of Bernanke (1983). We also find that, in presence of clear policy signals

(i.e., in the low uncertainty regime), the Federal Reserve tends to be more reactive to spending

increases than in periods of high uncertainty.6

Overall, our analysis indicates that policy signalling should be seen as a potentially additional
4See also Aastveit et al. (2013) for a study on the effectiveness of monetary policy shocks under different levels

of uncertainty.
5The identification of structural fiscal shocks using news has also been proposed by Ben Zeev and Pappa

(2014), Leeper et al. (2012) and Gambetti (2012). In the field of monetary policy analysis, similar approaches
have been used by Altavilla and Giannone (2014) and Gertler and Karadi (2014).

6Other works on state-dependent multipliers include Kirchner et al. (2010), Auerbach and Gorodnichenko
(2012), Batini et al. (2012) and Cimadomo and d’Agostino (2014), which focus on business cycle phases; Afonso
et al. (2011) and Caggiano et al. (2013), which investigate the implications of financial stress. These studies tend
to point to higher multipliers during periods of recessions or high financial stress.
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policy tool which may enhance the effectiveness of fiscal stimulus. Policy authorities have several

concrete options when using this tool. For example, they can accompany the announcement of

fiscal targets with a clear indication of the measures that they intend to adopt to achieve them.

This should reduce the risk of changes in the fiscal strategy in its implementation phase, thus

decreasing uncertainty. In the same vein, a reduction in the level of fiscal policy uncertainty can

also be achieved through enhanced credibility of the policy authorities which can be reinforced via

a consistent record of fulfillment of the policy announcements with coherent actions. These policy

considerations, however, cannot be symmetrically transposed to the opposite case of negative

spending shocks (i.e., to the case of fiscal consolidations). In fact, our generalized impulse

response functions, which account for endogenous shifts across regimes, show a smaller difference

between the GDP effect of a negative spending shock under the two uncertainty regimes.7

Our paper is structured as follows. Section 2 is devoted to the construction of the Fiscal

Policy Uncertainty Index used in the paper; Section 3 comments on the identification of fiscal

shocks and we present the dataset. Section 4 illustrates our Bayesian Threshold VAR model;

Section 5 is devoted to illustrate our main results on the transmission of fiscal policy shocks

under uncertainty and Section 6 concludes.

2 A New Measure of Fiscal Policy Uncertainty

In this study, we interpret fiscal policy uncertainty as the dispersion of individual expectations

on government spending dynamics that is not induced by macroeconomic uncertainty. In this

context, fiscal policy uncertainty is thus due to the precision of signals sent by governments along

with their credibility, the stability of the political environment and other exogenous factors such

as, for example, the geopolitical situation.

From an empirical perspective, given the two-way interaction between macroeconomic uncer-

tainty and policy uncertainty, measuring the effect of policy uncertainty is not a straightforward

exercise. That is, an uncertain macroeconomic environment can make policies less predictable

and vice versa. Further, uncertainty might not have a linear relation with output, as already

highlighted by Bloom (2009).

To solve this problem, the empirical literature has taken three many approaches in computing

measures of general policy uncertainty, based on: (1) ex-post realised volatility in certain time
7Some papers find that, under specific circumstances and in particular when there are concerns regarding the

sustainability of public finances, fiscal adjustments can be expansionary (see, e.g., Alesina and Ardagna (2013)).
In these circumstances, a clearly signalled and front-loaded fiscal consolidation may induce expansionary effects,
possibly through a confidence channel that reduces the default risk and reflects the government’s commitment to
fiscal target. However, this hypothesis is not investigated in this paper, given that we focus on the US, i.e., on a
country that did not experience a very severe fiscal crisis in the post-War period.
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series; (2) news-based word frequency counting for terms that can be thought of as related to

policy uncertainty; (3) “disagreement” measures, computed as the cross-sectional variance of

experts’ point forecasts, as proxies for individual uncertainty.

With regard to fiscal policy uncertainty, the realised volatility of historical fiscal time series

is not completely adequate for our purposes. This is because uncertainty is fundamentally an

ex ante concept, related to the variance associated to a forecast before the actual outcome is

known. Hence, measures of uncertainty should be constructed using data available in real time.

Further, the relationship between ex-post realised volatility and ex-ante conditional variance of

the forecasts for fiscal variables is likely to be unstable as policy uncertainty might not necessarily

translate into an increase in the volatility of the fiscal variables. This was evident, for instance,

by the uncertainty surrounding the extension of the Bush-era tax cuts, as also reflected in the

“Fiscal Cliff” episode. Finally, an increase in the realised volatility of a fiscal variable might be

purely due to a systematic relationship of the variable itself with macroeconomic conditions and

their variability, especially in the presence of policy smoothing over the cycle, rather then to

policy uncertainty.

The index proposed by Baker et al. (2012) follows mainly the second approach and is based

on real-time data. In particular, their index is based on the weighted sum of three main com-

ponents: (i) Google-based news searches for terms likely to be related to policy uncertainty; (ii)

disagreement among economic forecasters about future spending growth and (iii) the number of

provisions in the U.S. tax code set to expire in future years. The Baker et al. (2012) index is

a natural benchmark in the literature on policy uncertainty and it is now also widely used by

policy institutions and market participants.

Despite its many advantages, the Baker et al. (2012) index is not suited for our analysis

because it is more geared to measuring general policy uncertainty rather than uncertainty related

to fiscal spending only. Indeed, the underlying components of the index are heterogenous and

indirectly related to the variability of economic agents’ expectations. In fact, the intensity of

news-search findings may be related to downside or tail risks rather than policy uncertainty as

second moment of expectations. Another issue related to the Baker et al. (2012) index is that

the first two components (news and disagreement) are not immune to the influence of general

economic uncertainty. The third component (the number of expiring revenue measures), on the

contrary, is completely policy-specific but being based on tax measures it is not directly relevant

for our work, which is focused on federal spending shocks. Finally, the weights attributed to each

component reflect the priors of the authors regarding the relative importance of each element of

the index and are assigned in a discretionary way.
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To address these issues, we focus on the component of the disagreement among forecasters

about the future federal spending developments that is orthogonal to the disagreement about

current macroeconomic conditions. This allows to tackle the issue of exogeneity (i.e., with respect

to macroeconomic uncertainty) and to develop a measure which is more likely to reflect fiscal

policy uncertainty. The resulting index has three main features: (1) it relies on real time, ex-ante

data, but it also directly connects to a measure of agents’ expectations (the SPF forecasts); (2) it

is linearly uncorrelated with the macroeconomic uncertainty; (3) it is fully non-judgmental and

could be potentially applied to a similar dataset. Moreover, it is consistent with our definition of

fiscal shocks since they are extracted from the same dataset, thus referring to the same agents’

information set. Also, because of this, it fully aligns the time horizon covered by our definition

of our fiscal news shocks to the one over which policy uncertainty is measured.

To construct our index we follow a two step procedure:

1. We compute the time-varying cross-sectional standard deviation of the SPF forecasts (dis-

agreement), at different horizons, for real federal government spending and GDP. These,

under reasonable assumptions, can be thought of as proxies for the time-varying overall

fiscal and macroeconomic uncertainty of the agents;

2. We extract the policy uncertainty component, projecting the disagreement among fore-

casters about the future development of fiscal spending onto the disagreement about the

current macroeconomic conditions.

We theoretically justify this procedure by discussing under which assumptions the index we

obtain could be correctly thought of as an approximation of the policy uncertainty. In addition,

we provide empirical support to this procedure by matching the index obtained with the historical

narrative. We also compare our index with the fiscal component of the Baker et al. (2012) index.

2.1 Uncertainty and Disagreement in a Model of Bayesian Learning

A standard model of Bayesian learning can help in more precisely defining the concepts we use

and in clarifying the assumptions underlying our approach (see, in particular, Lahiri and Sheng

(2010)). More specifically, we want to show that, in the case of fiscal spending, changes in the

disagreement of forecasting are directly proportional to the changes of the square of uncertainty,

up to some reasonable approximation.8

8It is possible to have forecast dispersion also when agents share the same information set but use different
forecasting models or have different objective functions. However, these alternative hypotheses seem to find
limited support in the data (see, for example, Coibion and Gorodnichenko (2010)).
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Let’s assume that each forecaster i, at each quarter t, receives a public signal informative

about the future fiscal spending growth at horizon h from the policy makers

nt+h = ∆gt+h + ηt,h , ηt,h ∼ N
(

0, σ2
(η)t,h

)
. (1)

The information carried by the public signal is complemented using other sources of information,

e.g., a private signal or a signal obtained by random sampling from diffuse information publicly

available9

sit+h = ∆gt+h + ζit,h , ζit,h ∼ N
(

0, σ2
(ζ)i,t,h

)
. (2)

Without loss of generality, we can assume that the public and the private signals are independent.

Each forecaster combines the two signals, via Bayesian updating, to form conditional expectations

for gt+h:

∆ĝi,t+h = Ei
[
∆gt+h|nt+h, sit+h

]
=
σ2

(η)t,hs
i
t+h + σ2

(ζ)i,t,hnt+h

σ2
(ζ)i,t,h + σ2

(η)t,h

, (3)

with conditional variance

Ui,t,h ≡ Vari
[
∆gt+h|nt+h, sit+h

]
=

σ2
(η)t,hσ

2
(ζ)i,t,h

σ2
(ζ)i,t,h + σ2

(η)t,h

. (4)

The conditional variance of individual forecast is due to the precision of both the public signal

and of the signal sent by private or diffuse sources. To obtain a measure of uncertainty in the

aggregate economy we consider the average individual uncertainty

Ut,h ≡
1

N

N∑
i=1

Ui,t,h =
1

N

N∑
i=1

σ2
(η)t,hσ

2
(ζ)i,t,h

σ2
(ζ)i,t,h + σ2

(η)t,h

, (5)

where N is the number of forecasters.

The disagreement amongst forecasters can be defined as:

Dt,h ≡ E
[

1
N−1

∑N
i=1

(
∆ĝi,t+h − 1

N

∑N
j=1 ∆ĝj,t+h

)2
]

= Ut,h − 1
N(N−1)E

[∑N
i=1

∑N
j 6=i ∆ĝi,t+h∆ĝj,t+h

]
, (6)

where ∆ĝi,t+h is the individual forecast defined in equation (3).

The variance of the public signal may depend on the macroeconomic environment, as well as

on the credibility of the policy maker and his or her willingness to clarify the policy indication.

On the other hand, the variance of the private signal - that we think of as extracted in
9In the case of fiscal policy, it is reasonable to assume that different forecasters attribute different weights to

several diffuse sources of information.
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a judgemental way from diffused information - may depend on several features of the social

environment, viz., among others, the information system, the policy decision process and the

institutional framework. Given the relative stability of the American institutional framework,

we can assume that the variance of the private information is nearly constant over the sample

and equal across forecasters:

σ2
(ζ)i,t,h ≈ σ

2
(ζ)h +O(2) . (7)

Under this assumption, the expression for disagreement simplifies to

Dt,h ≈
σ2

(η)t,hσ
2
(ζ)h

σ2
(ζ)h + σ2

(η)t,h

− 1

σ2
(η)t,h

(
σ2

(η)t,hσ
2
(ζ)h

σ2
(ζ)h + σ2

(η)t,h

)2

, (8)

hence we find that the disagreement is approximately equal to the square of aggregate uncertainty

times the average precision of the privately gathered information

Dt,h ≈
1

σ2
(ζ)h

U2
t,h . (9)

The link between the dispersion of individual mean forecasts of inflation and the average

dispersion of corresponding density forecast distributions has been extensively debated in the

literature, mostly for the case of inflation (see, among many others, Lahiri and Sheng (2010),

Giordani and Soderlind (2003), D’Amico and Orphanides (2008), Rich and Tracy (2010), Lahiri

and Sheng (2010)).10 This issue is crucial in assessing the validity of using disagreement as

a proxy for inflation uncertainty in empirical investigations. However results have so far been

mixed.

For what concern fiscal spending, we believe our assumptions are plausible. As we will show

in Section 2.3, the fact the our index matches a historical narrative provides support for our

assumptions.

2.2 The Survey of Professional Forecasters’ Dataset

In this section, we briefly describe the Philadelphia Fed Survey of Professional Forecasters (SPF)

dataset, which underlines the construction of our index. In the SPF, professional forecasters

are asked each quarter to provide forecasted values of a set 32 macroeconomic variables, for the

present quarter and up to four quarters ahead. SPF forecasters do not know the current value
10For inflation forecasts, the SPF dataset contains both point and density forecasts. Using this data on inflation

and a methodology based on entropy measures, Rich and Tracy (2010) conclude that there is little evidence that
disagreement is a useful proxy for uncertainty. However, the SPF dataset is likely to contain a mixed of model
based and judgmental forecasts. In this respect, the interpretation of density forecasts in terms of uncertainty is
ambiguous and may not account for model uncertainty. However, unlike inflation, in the SPF real federal spending
forecasts are reported in mean only.
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of macroeconomic variables that have yet to be released, with a lag.11

The Survey does not report the number of experts involved in each forecast or the forecasting

method used. Professional forecasters are mostly private firms in the financial sector and, on

average, there are 29 respondents per period in the sample, 22 of which appear in consecutive

periods (see Figure 1).

Number of Respondents 

# 
R

es
po

nd
en

ts

 

 
 ASA/NBER SPF  Philadelphia Fed SPF  SPF Tighter Timing

1985 1990 1995 2000 2005 2010
0

10

20

30

40

50

60

Number of Resp. in Two Consecutive Quarters
Total Respondents

Figure 1: Number of Professional Forecasters per Quarter. The figure plots the number of re-
spondents in the Survey of Professional Forecasters (dashed line) and of respondents in two consecutive
quarters (solid line). Vertical dashed lines indicate changes in the Survey of Professional Forecasters
methodology. Prior to 1990:Q2 the Survey was conducted by the ASA/NBER, details of the timing of
Survey in that period have not been reported. A minor change in the timing of the deadlines occurred
beginning with the survey of 2005:Q1 when the schedule of the Survey was tightened. Grey shaded areas
indicate the NBER business cycle contraction dates. On average, in the sample, there are 29 respondents
per period, of which 22 appear in consecutive periods.

For real federal government consumption expenditures and gross investment, the main quant-

ity of interest of this work, individual responses of professional forecasters have been collected

from 1981Q3 to 2012Q4.12 As is customary, we convert level forecasts to forecasted growth

rates because the base year changes several times within the sample. Figure 2 reports the me-

dian expected growth rate of federal spending for the current quarter and for the four quarters
11As reported in the SPF documentation notes:

The survey’s timing is geared to the release of the Bureau of Economic Analysis’ advance report of the
national income and product accounts. This report is released at the end of the first month of each
quarter. It contains the first estimate of GDP (and components) for the previous quarter. We send
our survey questionnaires after this report is released to the public. Indeed, our survey questionnaires
report recent historical values of the data from the BEA’s advance report and the most recent
reports of other government statistical agencies. Thus, in submitting their projections, our panelists’
information sets include the data reported in the advance report. Our survey questionnaires are sent
to the panelists on the day of the advance report. For the surveys we conducted after the 1990:Q2
survey, we have set the deadlines for responses at late in the second to third week of the middle
month of each quarter.

12From 1969Q2 to 1981Q2, only forecasts of nominal federal defence spending were collected. This series has
been discontinued thereafter.
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ahead, together with forecasters’ disagreement up to one standard deviation. As a measure of

disagreement, we use the dispersion of forecasts on real federal spending as reported by the SPF,

measured as the cross-sectional variance of the point estimates of individual forecasters.
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Figure 2: Government Spending Expected Growth rates – Fan Chart. The figure plots the SPF
median expected growth rate for the current quarter and for the four future quarters, together with
forecasters’ disagreement up to one standard deviation. Grey shaded areas indicate the NBER Business
Cycle contraction dates. Vertical lines indicate the dates of the announcement of important fiscal and
geopolitical events (teal), presidential elections (black), and the Ramey-Shapiro war dates (red).

2.3 Accounting for the Impact of General Macroeconomic Uncertainty

The uncertainty about fiscal variables can be thought of as a function of fiscal factors, macroe-

conomic uncertainty and other ‘exogenous’ components, e.g., the volatility of the geopolitical

environment:

Ut = f(σMacro
t , σExogenous

t , σPolicyFactors
t ) '

' α+ βσMacro
t + γσExogenous

t + δσPolicyFactors
t +O(2). (10)

In order to isolate the component of fiscal uncertainty due to policy factors, one cannot re-

gress the proxy for uncertainty about fiscal variables (i.e., the forecasters’ disagreement of fiscal
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spending) onto a proxy for macroeconomic uncertainty and other factors. In fact, in doing this

one would neglect the contemporaneous reverse causality between fiscal policy uncertainty and

macroeconomic uncertainty.

We thus address this issue by assuming that uncertainty about future fiscal policies de-

pends only on current macroeconomic uncertainty, and not on future macroeconomic conditions.

Therefore, we regress the disagreement of the forecasts on real government spending for the

four quarters ahead, measured as the log of the cross-sectional standard deviation, on the log-

disagreement of the forecasts on current GDP, its lags, and a constant.

We also assume that the overall volatility of the other ’exogenous’ components has been

roughly constant over the period of study.13 Our fiscal policy uncertainty index is thus obtained

by exponentiating and standardising the regression residuals. By construction, these residuals

are linearly uncorrelated with the current macroeconomic uncertainty.14
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Figure 3: Policy Uncertainty Index - Time series of the fiscal policy uncertainty index based on the
dispersion of SPF forecasts (red) and fiscal component of the policy uncertainty index of Baker et al.
(2012) (black). Grey shaded areas indicate the NBER business cycle contraction dates. Vertical lines
indicate the dates of the announcement of important fiscal and geopolitical events (teal), presidential
elections (black), and the Ramey-Shapiro war dates (red). The thick red dashed line indicate the TVAR
endogenous threshold.

Our policy uncertainty index is reported in Figure 3. It appears to well track the main

events surrounding the management of fiscal policy in the US since the 1980s. The first peak

coincides with the announcement of the “Star Wars” programme by President Reagan in 1983Q1.

The index then rises in coincidence with the 1984 presidential elections and the following fiscal

activism President Reagan’s second term. The next spike in uncertainty is related to the fall of
13It might also be argued that a panel of professional forecasters is not representative of the economic agents.

However, Carroll (2003) provides evidence that private agents, firms and households, update their forecast towards
the views of professional forecasters.

14As a robustness check, we have also added the dispersion of the forecasts on current unemployment to the
regressors. Results (not shown, available upon request) are broadly unchanged.
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the Berlin wall. In the 1990s, the index reveals the uncertainty linked to the two presidential

elections, the change from a Republican to a Democratic administration, the “federal shutdown”

in 1995 and the war in Kosovo. In the 2000s, the first relevant moments of uncertainty are the

war in Afghanistan and the Bush tax cuts of 2001 and 2003, followed by the Gulf war, Iraqi

surge in the middle of the 2000s, the 2008 and 2009 stimulus acts and finally the “Debt Ceiling

Crisis” in 2011.

Figure 3 plots on the right axis the fiscal component of the Baker et al. (2012) index. The

linear correlation between the two indices is relatively low, i.e., around 0.3. However the two

indices seem generally to agree on the narrative of the main event generating policy uncertainty.

3 Fiscal Shocks Identification

Following Perotti (2011) and Gambetti (2012), we identify fiscal shocks using SPF forecast re-

visions of federal government consumption and investment forecasts, which can be thought of

as fiscal news, as in Ricco (2013). This procedure overcomes the problem of fiscal foresight

(see Leeper et al. (2013), Forni and Gambetti (2010), Leeper et al. (2012), Leeper et al. (2013)

and Ben Zeev and Pappa (2014)), because it aligns the economic agents’ and the econometri-

cian information sets. It also allows the analyst to associate the shock with the time of the

announcement, rather than with the time of the actual implementation of the shock.

In particular, given that the SPF includes projections for the present quarter and up to four

quarters ahead, we can actually examine the macroeconomic impact of policy news related to

different time horizons. Formally, this can be seen through the following decomposition of the

forecast error in a nowcast error and a flow of fiscal news, updating agents’ information set It

over time:

∆gt − E∗t−h∆gt︸ ︷︷ ︸
forecast error

h periods ahead

= (∆gt − E∗t∆gt)︸ ︷︷ ︸
nowcast error

6∈ It

+ (E∗t∆gt − E∗t−1∆gt)︸ ︷︷ ︸
nowcast revision

(news at t) ∈ It

+ . . .

· · ·+ (E∗t−h+1∆gt − E∗t−h∆gt)︸ ︷︷ ︸
forecast revision

(news at t-h+1) ∈ It−h+1

. (11)

The first term on the right-hand side corresponds to the nowcast errors, which can be thought

of as proxies for agents’ misexpectations (as in Ricco (2013)) that can only be revealed at a later

date (a minimum of one quarter later). The other components, nowcast and forecast revisions,

can be seen as proxies for the fiscal news shocks, related to current and future realisations of fiscal

13



spending, received by the agents and incorporated in their expectations (see Gambetti (2012)

and Ricco (2013)).

Because of the different timing, the two news shocks are expected to generate a different

economic impact and be subject to the influence of policy uncertainty to a different extent. Our

main objects of interest are the news shocks related to future changes in government spending.

In fact, given the more extended time lag between news and the actual implementation of the

policy change, the macroeconomic effects of these shocks are likely to be more subject to the

impact of policy uncertainty than the nowcast revision.

Using individual forecaster’s expectation revisions as well as the procedure described in Ricco

(2013), we define two measures of fiscal news shocks in the aggregate economy related to the

revision of expectations of the growth rate of the government spending in the current quarter:

Nt(0) ≡ Meani
(
N i
t (0)

)
= Meani

(
E∗it ∆gt − E∗it−1∆gt

)
, (12)

and in the future 3 quarters:

Nt(1, 3) ≡
3∑

h=1

Nt(h) =
3∑

h=1

Meani
(
N i
t (h)

)
=

q∑
h=1

Meani
(
E∗it ∆gt+h − E∗it−1∆gt+h

)
, (13)

where i is the index of individual forecasters. Figure 4 plots the mean implied SPF news on

the current quarter and for future quarters, together with forecasters’ disagreement up to one

standard deviation. In the empirical analysis that follows, we use these two shocks, respectively

labelled as nowcast revision (equation 12) and forecast revision (equation 13).

In order to identify fiscal news shocks, we assume that discretionary fiscal policy does not

respond to macroeconomic variables within one quarter and that the SPF time series for fiscal

variables are meaningful proxy variables for the aggregate agents’ expectations about govern-

ment spending. As a consequence, innovations to SPF-implied fiscal news can be related to

fiscal changes implemented on different horizons. We assume that the values of the main mac-

roeconomic variables are fully revealed to the agents, but only with a lag. We also assume that

forecasted future government spending incorporates the discretionary policy response to the

expected values for output, as well as expectations about government spending in the present

quarter. Finally, we assume that there are no shocks to future realisations of output not affecting

its current realisation (e.g. technology or demand shocks) that are foreseen by the policymakers

and to which the government can react.15

These assumptions allow for a recursive identification of the fiscal shocks in which the fiscal
15See Caldara and Kamps (2012) for a discussion of the identification of fiscal shocks in structural VAR models.
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Figure 4: Government Spending News – Fan Chart. The figure plots the mean implied SPF news
on the current quarter and for future quarters, together with forecast disagreement up to one standard
deviation. Grey shaded areas indicate the NBER Business Cycle contraction dates. Vertical lines indicate
the dates of the announcement of important fiscal and geopolitical events (teal), presidential elections
(black), and the Ramey-Shapiro war dates (red).

variables are ordered as follow

(
Nt(0) E∗tGDPt Nt(1, 3) E∗tGDPt+1year Y ′t

)′ (14)

and Yt is a vector containing the macroeconomic variables of interest.

Our baseline model includes our SPF implied fiscal news, (median) SPF forecast of GDP

growth for the current quarter and four quarters ahead, the policy uncertainty index, federal gov-

ernment spending, the Barro-Redlick marginal tax rate, and real GDP. Nondurable consumption,

non-residential fixed investment and the Federal Funds rate are added using a marginal approach.

We employ quarterly data from 1981Q3 to 2012Q4.
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4 A Bayesian Threshold VAR

The starting point of our analysis is a standard Vector-Autoregressive (VAR) model defined as:

yt = C +A(L)yt−1 + εt , (15)

where εt is a n-dimensional Gaussian white noise with covariance matrix Σε, yt is a n × 1

vector of endogenous variable. The lag matrix polynomial A(L) and the matrices C and are

specified as matrices of suitable dimensions containing the model’s unknown parameters. In

the baseline model, yt contains a measure of the fiscal news across different horizons, the fiscal

policy uncertainty index, as well as government spending, GDP, nondurable consumption, non

residential fixed investment (all in real per capita log-levels) and the federal funds rate.

In order to study the effect of policy uncertainty in the transmission of fiscal shocks, we

compare results from the VAR model with those obtained when specifying a Threshold Vector-

Autoregressive (TVAR) model with two endogenous regimes.16 In the TVAR model, regimes are

defined with respect to the level of our fiscal policy uncertainty index (high and low uncertainty).

A threshold VAR is well suited to provide stylised facts about the signalling effects of fiscal policy

and to capture differences in regimes with high and low levels of uncertainty. Moreover, the

explicit inclusion of regime shifts after the spending shock allows us to account for the possible

dependency of the propagation mechanism to the size and the sign of the shock itself.

Following Tsay (1998), a two-regime TVAR model can be defined as

yt = Θ(γ − τt−d)
(
C l +Al(L)yt−1 + εlt

)
+ Θ(τt−d − γ)

(
Ch +Ah(L)yt−1 + εht

)
, (16)

where Θ(x) is an Heaviside step function, i.e. a discontinuous function whose value is zero for

negative argument and one for a positive argument. The TVAR model allows for the possibility

of two regimes (high and low uncertainty), with different dynamic coefficients {Ci, Aij}i={l,h} and

variance of the shocks {Σi
ε}i={l,h}. Regimes are determined by the level of a threshold variable τt

with respect to an unobserved threshold level γ. In our case, the delay parameter d is assumed

to be known and equal to one. This in order to study the role of the uncertainty regime in place

when the shock hit the economy.

The baseline VAR and the TVAR are estimated with 3 lags. However, results are virtually

unchanged whether 2 or 4 lags are included. Longer lag polynomials are not advisable due to

the relatively short length of the time series.
16It is possible to define TVAR models with an arbitrary number of regimes. However, for our study, a

parsimonious specification guarantees a more precise estimation of the parameters and a clearer interpretation of
results.
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4.1 Bayesian Priors

We adopt conjugate prior distributions for VAR coefficients belonging to the Normal-Inverse-

Wishart family. This family of priors is commonly used in the BVAR literature due to the

advantage that the posterior distribution can be analytically computed. For the conditional

prior of the VAR coefficients, we adopt two prior densities commonly used in the macroeconomic

literature for the estimation of BVARs in levels: the Minnesota prior, introduced in Litterman

(1979) and the sum-of-coefficients prior proposed in Doan et al. (1983). The adoption of these two

priors is based, respectively, on (i) the assumption that each variable follows either a random walk

process, possibly with drift, or a white noise process, and (ii) on the assumption of the presence

of a cointegration relationship between the macroeconomic variables.17 The adoption of these

priors has been shown to improve the forecasting performance of VAR models by effectively

reducing the estimation error while introducing only relatively small biases in the parameters

estimates (e.g. Sims and Zha (1996); De Mol et al. (2008); Banbura et al. (2010)).

In selecting the value of the hyperparameters of our priors for our VAR model, we adopt

the Bayesian method proposed in Giannone et al. (2012). From a purely Bayesian perspective,

the informativeness of the prior distribution is one of the many unknown parameters of the

model. Therefore, it can be inferred by maximising the conditional posterior distribution of the

observed data. This method can be thought of as a procedure maximising the one-step-ahead

out-of-sample forecasting ability of the model.

For the TVAR, we adopt natural conjugate priors parameters, generalising the priors for the

VAR, and imposing identical priors in the two regimes. The prior tightness is set equal to the

values selected for the VAR case for the sake of comparability. Details on the Bayesian priors

adopted are provided in Appendix A.

4.2 Estimation of the Model

The TVAR model specified in eq. (16) can be estimated by maximum likelihood. It is con-

venient to first concentrate on {Ci, Aij ,Σi
ε}i={l,h}, i.e., to hold γ (and d) fixed and estimate the

constrained MLE for {Ci, Aij ,Σi
ε}i={l,h}. In fact, conditional on the threshold value γ, the model

is linear in the parameters {Ci, Aij ,Σi
ε}i={l,h}. Since {εit}i={l,h} are assumed to be Gaussian,

and the Bayesian priors are conjugate prior distributions, the Maximum Likelihood estimat-

ors can be obtained by using least squares. The threshold parameter can be estimated, using
17Loosely speaking, the objective of these additional priors is to reduce the importance of the deterministic

component implied by VARs that are estimated conditional on the initial observations (see Sims (1996)).
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non-informative flat priors, as

γ̂ = arg max logL(γ) = arg min log |Σ̂ε(γ)| , (17)

where L is the Gaussian likelihood (see Hansen and Seo (2002)). The criterion function in eq.

(17), with flat priors, is not smooth and is not well suited for standard optimisation routines.

However, given the low dimensionality of the problem, we can perform a grid search over a

conveniently defined one dimensional space Γ ≡ [γ, γ], covering the sample range of the threshold

variable.18

The algorithm can be summarised as:

1. Form a conveniently defined grid Γ ≡ [γ, γ].

2. For each value of γ ∈ Γ, estimate {Ĉi(γ), Âij(γ), Σ̂i
ε(γ)}i={l,h}, conditional on the Bayesian

priors for the variance and the coefficients.

3. Find the value γ̂ in Γ that minimizes log |Σ̂ε(γ)|.

4. Set {Ĉi, Âij , Σ̂i
ε}i={l,h} = {Ĉi(γ̂), Âij(γ̂), Σ̂i

ε(γ̂)}i={l,h}, and {ε̂it}i={l,h} = {ε̂it(γ̂)}i={l,h}

4.3 Within-regime IRFs and Inter-regimes GIRFs

In non-linear models the response of the system to disturbances depends on the initial state,

size and sign of the shock. In our TVAR model, the shock can trigger switches between regimes

thereby generating more complex dynamic responses to shocks than the linear mode. Because of

this, the response of the model to exogenous shocks becomes dependent on the initial conditions

and is no longer linear.

We study two sets of dynamic responses to disturbances: impulse responses when the economy

is assumed to remain in one regime forever (within-regime IRFs), and impulse responses when

the switching variable is allowed to respond to shocks (inter-regime IRFs). While the former

set can be computed as standard IRFs by employing the estimated VAR coefficients for a given

regime, the latter must be studied using generalised impulse response functions (GIRFs) as in

Pesaran and Shin (1998).

For a TVAR(p), the GIRFs are defined as the change in conditional expectation of yt+i for

i = 1, . . . , h

GIRFy(h, ωt−1, εt) = E [yt+h|ωt−1, εt]− E [yt+h|ωt−1] , (18)
18The grid is trimmed symmetrically in order to ensure a sufficient number of data points for the estimation in

both regimes. Given the limited span of the time series, we adopt a 20% trimming level.
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due an exogenous shock εt and given initial conditions ωrt−1 = {yt−1, . . . , yt−1−p}. Details on the

GIRFs computation are provided in Appendix B.

4.4 Testing for Non-linearities

In assessing the presence of non-linearities, we limit ourself to testing the hypothesis of a two-

regime threshold VAR versus the null hypothesis of linear VAR model. These models are nested

given that a linear VAR can be thought of as a two-regime TVAR satisfying the restrictions

H0 : {Ch, Ahj ,Σh
ε} = {C l, Alj ,Σl

ε}. We adopt the Lagrange Multiplier (LM) test proposed in

Davies (1987) and generalised to a multivariate setting with heteroscedasticity in Hansen and

Seo (2002). The test is constructed as follows:

1. Estimate the model under the null hypothesis of linearity and compute the LM statistic

(see Hansen and Seo (2002)).

2. Estimate the model under the alternative for each possible threshold value γ ∈ Γ, allowing

for heteroscedasticity in the errors, and compute the LM statistic as function of γ.

3. Define the test statistic as

SupLM = supγ∈Γ LM(γ) . (19)

4. The distribution of SupLM under the null hypothesis can be calculated using bootstrap

simulation methods. The bootstrap calculates the sampling distribution of the test SupLM

using the model, the residuals, and the parameter estimates obtained under the null.

• Random draws are made from the residual vectors.

• Given fixed initial conditions and the draws for the residuals, simulated time series

are created by recursion, applying the linear model.

• The SupLM is obtained for each simulated sample.

5. The bootstrap p-value is obtained as the percentage of simulated statistics which exceed

the actual statistics.

Figure 5 shows the results of the Hansen SupLm test for our baseline model.19 The reported

p-values are essentially zero, confirming that our Bayesian-TVAR model performs better than

the linear VAR benchmark based on the same specification.
19Results are essentially equivalent for all the specifications adopted.
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Figure 5: Hansen Test

5 Policy Uncertainty and the Transmission of Fiscal Shocks

Figure 6 reports the impulse responses generated by the TVAR described in equation 16. The

responses in these two figures are calculated assuming that there is no-change in the uncertainty

regime (as, for example, in Auerbach and Gorodnichenko (2012)), thus maintaining their linear

nature and their independence from the specific initial conditions.

The blue line for the low-uncertainty (L-U) regime and red line for the high-uncertainty (H-U)

regime indicate the responses of the endogenous variables to an innovation in the 3-quarter ahead

forecast spending revisions, formalised in equation 13, with the fan describing the evolution of the

68% confidence bands. As stated above, the innovations to the 3-quarter ahead forecast revisions

are the main shock of interest. This is because the more extended time lag makes them more

subject to the impact of uncertainty.20 This set of results are relative to our baseline specification

described in section 3, where the marginal tax rate is also included in order to provide a full

picture of the behaviour of the main discretionary fiscal policy tools after the spending shock.

In analysing the results of our Bayesian-TVAR, a useful benchmark is the set of IRFs from the

linear VAR with no differentiations from the two uncertainty regimes, as reported by the black

lines in Figure 6. The responses to a linear VAR are broadly in line with those of Gambetti

(2012) and Ricco (2013). They show that a positive innovation to forecast revisions tends to

have a positive and persistent effect on GDP, which can also be ascribed to the accompanying

drop in marginal tax rates.

The analysis of the TVAR results, however, reveals two very different transmission mech-
20This is especially due to what Leeper et al. (2013) define as ‘inside lag’, i.e., the time lag between the

announcement and the passing of the law. The forecast revisions are also of particular interest because their time
horizon is likely to include the shocks relative to budgetary news (usually impacting a period of one year, i.e., 4
quarters).
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Figure 6: Within-regime impulse responses - Impact of forecast revisions. The shock corresponds
to a one standard deviation change in the revision of the spending forecasts three quarters ahead. The
responses are generated under the assumption of constant uncertainty regime. Blue line and fans are
relative to the low-uncertainty regime, while the red lines and fans are relative to the high uncertainty
regime. Black solid and dotted lines indicate the responses estimated in the linear VAR. Sample: 1981Q3-
2012Q4.

anisms within the two regimes. While the response of spending to the policy announcement is

very similar in the two regimes, in the L-U regime the marginal tax rate response is no longer

significative. In the H-U regime, however, the fiscal expansion is also strengthened by a decisive

reductions of the marginal tax rate. This additional policy action indicates a stronger activism

of the fiscal authorities during period of L-U, as also confirmed by the relatively larger size of

the spending news (right panel of the top row in Figure 6).

The GDP response reveals the full extent of the differing impact of the spending shock in the

two regimes on the economy. Despite the smaller fiscal impulse generated in the L-U regime, the

21



GDP response is always significant in the L-U regime and higher than in the H-U regime, for at

least three quarters following the shock. We also compute the cumulative multipliers: as in the

related literature, they are equal to the ratio between the sum of the GDP impulse responses up

to the selected horizon (8th quarter in this paper), and the corresponding sum of the responses

for federal spending (see also Ilzetzki et al. (2013)). The cumulative multiplier in the L-U regime

is 2.45 whereas the one in the H-U regime is 0.49. The stronger GDP response in the L-U regime

is also reflected in the impact response of 3-quarter ahead forecasted GDP, thus confirming that

a fiscal shock is more able to affect economic expectations in the L-U than in the H-U regime.

Figure 7 provides some evidence of the channels through which the different uncertainty

regime triggers a different propagation mechanism. While the response of consumption is es-

sentially the same in the two regimes, the response of investment in the L-U regime is always

significant and higher than the response in the H-U regime that, on the contrary, is never sig-

nificantly different from zero. The higher effect on investment in less uncertain times can be

attributed to agents’ tendency to increase investment decisions in these periods, in line with the

prediction of the option value theory in Bernanke (1983).

Figure 7: Within-regime impulse responses - Impact of forecast revisions. The shock corresponds
to one standard deviation change in the revision of the spending forecasts three quarters ahead. The
responses of investments, total consumption and the federal funds rate are generated by adding the
variables to our baseline specification. Black solid and dotted lines indicate the responses estimated in
the linear VAR. Sample: 1981Q3-2012Q4.

Although not as decisively as in the case of investment, also the response of the Fed funds

rate is also stronger in the L-U than in the H-U case, at least for the first three quarters.21 This

response, which tends to partially offset the impact of the spending shock on GDP, is consistent

with the response on expected GDP and the higher ability of fiscal authorities to influence agents’

expectation in periods of low policy uncertainty.

Finally, the analysis of the Generalized Impulse Response Functions (GIRFs) can help us

understand how the impact on GDP changes with a different size and sign of the shocks, once
21See also Coenen et al. (2012) for a discussion of how the monetary policy stance may affect the size of fiscal

multipliers.
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Figure 8: Inter-regime impulse responses - Impact of forecast revisions. The figure reports the
GIRFs of a spending shock on GDP from four different shocks, detailed along the y-axis. These responses
are estimated in the context of our baseline 8-variable TVAR. The other responses are not reported here
to facilitate the reading, but are available on request. Sample: 1981Q3-2012Q4.

we account for the possibility of endogenous regime shifts after the fiscal spending shock (which

are neglected in the within-regime analysis presented in Figure 7). Figure 8 includes the GIRFs

generated by four different shocks: a small positive fiscal shock of half standard deviation along

with its symmetric negative shock (first two panels) and a large fiscal shock of 1.5 standard de-

viations along with its symmetric negative shock (last two panels). Unsurprisingly, the inclusion

of possible regime shifts reduces the difference of the IRFs across the two regimes, though in a

rather limited way, especially for small and positive shocks. In the case of negative spending

shocks, however, the difference between the two IRFs is less significant, as confirmed by the

largely overlapping impulse-response functions. In addition, the impulse responses in the case of

negative shocks tends to revert to zero after an initial negative effect, thus revealing that fiscal

retrenchments tend to have positive medium-run effects on output following an initial contrac-

tion. In summary, the evidence presented by the GIRFs suggests caution in transposing the

conclusion inferred in the case of the spending stimulus to the case of spending consolidations

given the non-linearities in the GDP effect. Finally, Table 1 reports the regime switching prob-

abilities between the two regimes. It appears that - in the two years following the shock - there

is a probability of around 70% that the L-U regime switches to the H-U regime, and vice versa.

Table 1: Regime Crossing Probabilities from GIRFs. The probabilities of regime switching are
computed using the GIRFs algorithm and evaluating the frequency of switching.

Crossing Probabilities from GIRFs

Low Uncertainty High Uncertainty
0.5 σ -0.5 σ 1.5 σ -1.5 σ 0.5 σ -0.5 σ 1.5 σ -1.5 σ
0.68 0.70 0.66 0.72 0.72 0.73 0.72 0.74
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Figure 9: Within-regime impulse responses - Impact of nowcast revisions. The shock corresponds
to one standard deviation change in the revision of the spending forecasts for the current quarter. The
responses are generated under the assumption of constant uncertainty regime. Blue line and fans are
relative to the low-uncertainty regime, while the red line and fan are relative to the high uncertainty
regime. Black solid and dotted lines indicate the responses estimated in the linear VAR. Sample: 1981Q3-
2012Q4.

All in all, the evidence reported in Figures 6 and 7 highlights relevant differences between

the responses under the two regimes and with the estimates produced by the linear VAR. This

confirms the importance of taking the degree of policy uncertainty into account when analysing

the transmission mechanism of spending shocks. In particular, despite a reduction in the marginal

tax rates usually accompanying the spending shock in the L-U regime, the GDP response in the

short-term is stronger than in the H-U regime. The stronger GDP response is mainly driven by

an increase in investment and partially offset by the response of monetary authorities. These

responses tend to align well with the option-value theory first proposed by Bernanke (1983), while
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providing further evidence that it is only in a low uncertainty regime that a fiscal announcement

has the credibility required to influence agents’ expectations.

5.1 Additional results

In order to give a complete overview of the results implied by our econometric model, Figure 9

shows the responses to a one standard deviation innovation on the nowcast revision, as defined

in eq. (11).

The pattern of the responses in the two regimes is consistent with what has been observed

for news shocks relative to future changes in spending. Even though the point estimate of

the L-U regime for GDP is generally outside the bands of the H-U regime, unsurprisingly, the

responses do not show a strongly significant difference across regimes. The unresponsiveness of

nowcast revision shocks to the uncertainty regimes can be rationalized by noting that uncertainty

influences the propagation of fiscal shocks mainly through the investment channel (see Figure 7).

The enacting of the measure inside the quarter provides little scope for reallocating productive

investments in order to expand capacity and accommodate the fiscal expansion.

6 Conclusions

This paper offers new insights into the US economy’s fiscal transmission mechanism. In partic-

ular, we study the role of fiscal policy uncertainty in the propagation of government spending

shocks. We contribute to the existing literature in two main directions. First, we propose a new

index focused solely on spending policy which is directly related to the dispersion of economic

agents’ expectations. Using the US Survey of Professional Forecasters (SPF) dataset, this new

index is based on the dispersion of forecasts about future spending growth. The main idea is

that disagreement about future government spending is indicative of poor signalling from the

government about the future stance of fiscal policies. Our fiscal policy uncertainty index is as

much as possible immune from general macroeconomic uncertainty influence. This has not been

accounted for in previous attempts to measure policy uncertainty. Second, we provide stylized

facts about the role of fiscal policy signalling and uncertainty in the propagation of government

spending shocks on output and other macroeconomic variables.

Our results suggest that, during periods of high fiscal policy uncertainty, fiscal interventions

are less stimulative. In these phases, fiscal authorities tend to accompany announcements about

future spending growth with reductions in marginal tax rates. However, despite this higher

activism, output does not respond to the policy news. At the same time, under low uncertainty,

the output response to the spending news is positive and significantly different from zero, reaching
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a cumulative multiplier of about 2.45 after 8 quarters.

These results cannot be fully transposed to the case of negative fiscal shocks, i.e., to fiscal

consolidations. In fact, our Generalized Impulse Response analysis shows that, following a neg-

ative spending shocks, the difference between the two IRFs in the two regimes is less significant

than in the case of a positive fiscal shock. In addition, the output response in the case of neg-

ative shocks tends to revert to zero, after an initial negative effect, thus revealing that fiscal

retrenchments tend to have neutral medium-run effects on GDP, following an initial contraction.

With respect to positive fiscal shocks, we show that the strong stimulative effects in less

uncertain times is essentially the result of agents’ tendency to increase investment decisions, in

line with the prediction of the option value theory of Bernanke (1983). We also find that, in

presence of clear policy signals (i.e., in the low uncertainty regime), the Federal Reserve tends

to be more reactive to spending increases than in periods of high uncertainty.

Overall, these results indicate that fiscal communication can be used as a forward guidance

tool. In other words, by committing to a future path of policies, fiscal authorities tend to generate

stronger effects on the economy.
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A Bayesian Priors for VAR and TVAR Models

In our empirical model, we adopt Bayesian conjugate prior distributions for VAR coefficients

belonging to the Normal-Inverse-Wishart family

Σε ∼ IW (Ψ, d) , (20)

β|Σε ∼ N (b,Σε ⊗ Ω) , (21)

where β ≡ vec([C,A1, . . . , A4]′), and the elements Ψ, d, b and Ω embed prior assumptions on the

variance and mean of the VAR parameters. These are typically functions of lower dimensional

vectors of hyperparameters. This family of priors is commonly used in the BVAR literature

because the posterior distribution can be analytically computed.

As for the conditional prior of β, we adopt two prior densities used in the existing literature

for the estimation of BVARs in levels: the Minnesota prior, introduced in Litterman (1979), and

the sum-of-coefficients prior proposed in Doan et al. (1983).

• Minnesota prior: This prior is based on the assumption that each variable follows a

random walk process, possibly with drift. This is quite a parsimonious though reasonable

approximation of the behaviour of economic variables. Following Kadiyala and Karlsson

(1997), we set the degrees of freedom of the Inverse-Normal-Wishart distribution to d =

n+ 2 which is the minimum value that guarantees the existence of the prior mean of Σε.22

Moreover, we assume Ψ is a diagonal matrix with n×1 elements ψ along the diagonal. The

coefficients A1, . . . , A4 are assumed to be a priori independent. Under these assumptions,

the following first and second moments analytically characterise this prior:

E[(Ak)i,j ] =


δi

0

j = i, k = 1

otherwise
(22)

V [(Ak)i,j ] =


λ2

k2

ϑλ
2

k2
ψi

ψj/(d−n−2)

j = i

otherwise.
(23)

These can be cast in the form of (21). The coefficients δi that were originally set by

Litterman were δi = 1 reflects the belief that all the variables of interest follow a random

walk. However, it is possible to set the priors in a manner that incorporates the specific

characteristics of the variables. We set δi = 0 for variables that, in our prior beliefs, follow
22The prior mean of Σε is equal to Ψ/(d− n− 1)
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a white noise process and δi = 1 for those variables that, in our prior beliefs, follow a

random walk process. We assume a diffuse prior on the intercept. The factor 1/k2 is the

rate at which prior variance decreases with increasing lag length. The coefficient ϑ weights

the lags of the other variables with respect to the variable’s own lags. We set ϑ = 1. The

hyperparameter λ controls the overall tightness of the prior distribution around the random

walk or white noise process. A setting of λ =∞ corresponds to the ordinary least squares

estimates. For λ = 0, the posterior equals the prior and the data does not influence the

estimates.

The Minnesota prior can be implemented using Theil mixed estimations with a set of Td

artificial observations – i.e., dummy observations

yd =



diag(δ1ψ1, ...., δnψn)/λ

0n(p−1)×n

....................................

diag(ψ1, ....., ψn)

....................................

01×n


, xd =



Jp ⊗ diag(ψ1, ....., ψn)/λ 0np×1

.................................... .........

0n×np 0p×1

.................................... .........

01×np ε


,

where Jp = diag(1, 2, ..., p).23 In this setting, the first block of dummies in the matrices

imposes priors on the autoregressive coefficients, the second block implements priors for

the covariance matrix and the third block reflects the uninformative prior for the intercept

(ε is a very small number).

• Sum-of-coefficients prior: To further favour unit roots and cointegration and to reduce

the importance of the deterministic component implied by the estimation of the VAR

conditioning on the first observations, we adopt a refinement of the Minnesota prior known

as a sum-of-coefficients prior (Sims (1980)). Prior literature has suggested that with very

large datasets, forecasting performance can be improved by imposing additional priors

that constrain the sum of coefficients. To implement this procedure, we add the following

dummy observations to the ones for the Normal-Inverse-Wishart prior:

yd = diag(δ1µ1, ...., δnµn)/τ

xd = ((11×p)⊗ diag(δ1µ1, ...., δnµn)/τ 0n×1) .
(24)

23This amounts to specifying the parameter of the Normal-Inverse-Wishart prior as

b = (x′dxd)−1x′dyd,Ω0 = (x′dxd)−1,Ψ = (yd − xdB0)′(yd − xdB0)

.
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In this set-up, the set of parameters µ aims to capture the average level of each of the

variables. The parameter τ controls for the degree of shrinkage and as τ goes to ∞, we

approach the case of no shrinkage.

The joint setting of these priors depends on the set of hyperparameters γ ≡ {λ, τ, ψ, µ} that

control the tightness of the prior information and that are effectively additional parameters of

the model.

The adoption of these priors has been shown to improve the forecasting performance of VAR

models, effectively reducing the estimation error while introducing only relatively small biases in

the estimates of the parameters (e.g. Sims and Zha (1996); De Mol et al. (2008); Banbura et al.

(2010)). The regression model augmented with dummies can be written as a VAR(1) process

y∗ = x∗B + e∗ , (25)

where the starred variables are obtained by stacking y = (y1, . . . , yT )′, x = (x1, . . . , xT )′ for

xt = (y′t−1, . . . , y
′
t−4, 1)′, and ε = (ε1, . . . , εT ) together with the corresponding dummy variables

as y∗ = (y′ y′d)
′, x∗ = (x′ x′d)

′, e∗ = (e′ e′d)
′. The starred variables have length T∗ = T + Td in

the temporal dimension, and B is the matrix of regressors of suitable dimensions.

The resulting posteriors are:

Σε|y ∼ IW
(

Ψ̃, Td + 2 + T − k
)

(26)

β|Σε, y ∼ N
(
β̂,Σε ⊗

(
x∗
′x∗
)−1
)
, (27)

where β̂ = vec(B̂), B̂ = (x∗
′x∗)

−1x∗
′y∗ and Ψ̃ = (y∗ − x∗B̂)′(y∗ − x∗B̂). It is worth noting that

the posterior expectations of the coefficients coincide with the OLS estimates of a regression with

variables y∗ and x∗.

We adopt the pure Bayesian method proposed in Giannone et al. (2012) to select the value

of the hyperparameters of our priors. However, we make additional assumptions to reduce the

number of hyperparameters to be estimated and the uncertainty in the estimation of the VAR

coefficients. Following the empirical BVAR literature we fix the diagonal elements ψ and µ using

sample information. Although from a Bayesian perspective the parameters ψ should be set using

only prior knowledge, it is common practice to pin down their value using the variance of the

residuals from a univariate autoregressive model of order p for each of the variables. In the same

way, the sample average of each variable is chosen to set the µ parameters.

Finally, we set a very loose sum-of-coefficients prior choosing τ = 50λ. In this way, the

determination of a rather large number of hyperparameters is reduced to selecting a unique
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scalar that controls for the tightness of the prior information.

Following Giannone et al. (2012), we adopt a Gamma distribution with mode equal to 0.2 (the

value recommended by Sims and Zha (1996)) and standard deviation equal to 0.4 as hyperprior

density for λ.

B Generalised Impulse Response Functions

Generalised impulse response functions are computed by simulating the model, using the follow-

ing algorithm:

1. Random draws are made for the initial conditions (history) ωrt−1 = {yrt−1, . . . , y
r
t−1−p}.

2. Random draws with replacement are made from the estimated residuals of the asymmetric

model, {εbt+j}hj=0. The shocks are assumed to be jointly distributed, so if date the t shock

is drawn, the entire n-dimensional vector of residuals for date t is collected.

3. Given the draws for the history ωrt−1 and the residuals {εbt+j}hj=0, the evolution of yt is

simulated over h+ 1 periods using the estimated parameter of the model and allowing for

switches between regimes, obtaining a baseline path yt+k(ωrt−1, {εbt+j}hj=0) for k = 1, . . . , h.

4. Step three is repeated, substituting one of the residuals at time zero with an identified

structural shock of size ι but leaving the remaining contemporaneous residual and the

rest of the sequence of residuals unchanged. A new path for yt+k(ωrt−1, {ε
∗,b
t+j}hj=0) for

k = 1, . . . , h is generated.

5. Steps 2 to 4 are repeated R times, obtaining an empirical average over the sequence of

shocks.

6. Steps 1 to 5 are repeated B times, obtaining an empirical average over the initial conditions.

7. The GIRF are computed as the median of the difference between the simulated shocked

sequence yt+k(ωrt−1, {ε
∗,b
t+j}hj=0) and the baseline path yt+k(ωrt−1, {εbt+j}hj=0).

Coverage intervals for the GIRF are computed as follow:

1. A draw for the TVAR parameters {Ci, Aij ,Σi
ε}i={l,h} is made from the estimated posterior

distributions. New sequences of residuals are drawn.

2. Using the coefficients and errors from step 1 and initial conditions from the original dataset,

GIRFs are computed.
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3. Steps 1 to 3 are repeated Q times to generate an empirical distribution for the GIRFs, from

which the coverage intervals are selected at the desired percentage level.

In our study, we set R = 200, B = 300 and Q = 1000.
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