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Abstract

We use a structural dynamic stochastic general equilibrium model to investigate

how initial data releases of key macroeconomic aggregates are related to final revised

versions and how identified aggregate shocks influence data revisions. The analysis

sheds light on how well preliminary data approximate final data and on how policy

makers might condition their view of the preliminary data when formulating policy

actions. The results suggest that monetary policy shocks and multifactor productivity

shocks lead to predictable revisions to the initial release data on output growth and

inflation.
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1 Introduction

Much of the data used by policymakers to assess economic conditions and evaluate alterna-

tive policy actions is subject to ongoing revision. Data are often still being revised months

or years after policy decisions are made. What is the relationship between the early release

data, which are unrevised or lightly revised, and the final release data that ultimately re-

veal a clearer picture of the economy? Do initial release and final release data respond in

systematically different ways to identified economic shocks? We investigate this issue using

a structural DSGE model framework that links early release data to state variables derived

from fully revised data.

Consider the case of the quarterly GDP series released by the Bureau of Economic

Analysis. There are three monthly releases of a given quarter’s output, followed by three

annual revisions and a sequence of benchmark revisions that occur approximately every five

years thereafter. Some series, such as the unemployment rate and CPI inflation are largely

unrevised, but this is more the exception than the norm. We can view the early estimates

of economic variables like GDP as forecasts of a true measure of GDP that will be revealed

as more source data are finalized. For the most part, though, the benchmark structural

models that are used to assess the stance of monetary policy and alternative policy actions

do not take explicit account of the data revision process. Rather, the models are largely

constructed and estimated under the assumption that data are not revised and that the

observations in hand are good measures of the underlying economic conditions, even at the

tail end of the sample.

Kishor and Koenig (2012) highlight an asymmetric treatment of the data in the use of

models estimated using data that contain early observations that are heavily revised and

late observations that are lightly revised (or not revised at all). That estimation typically

ignores the fact that data toward the end of the sample have undergone little or no revision

while data at the beginning of the sample are heavily revised. This raises a concern that

the data-generating process for the earlier parts of the sample may differ from that at the

end of the sample. For example, when generating forecasts or undertaking current policy

analysis, the key end-of-sample data are lightly revised while the model parameters and

filtered history of latent variables are largely based on heavily revised data that may have

very different statistical properties.

We investigate the relationship between initial release and final release data using a

structural DSGE model that offers a clear channel from identified economic shocks to the
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dynamics of observed macroeconomic variables. We use a DSGE model to investigate data

revisions but for tractability we treat initial release data as a nonmodeled auxiliary variable

that is a function of the DSGE model’s latent state variables. The DSGE model itself is

viewed as being informative about an economic structure that characterizes final release,

fully revised data, i.e., the “truth.” The model framework allows us to identify and recover

the economic shocks that are most important in accounting for the variance of real output

growth and inflation in the revised data. We investigate how initial release data are related

to these shocks and how the dynamic responses of initial release data to economic shocks

differ from final release responses.

This paper is based on the empirical method of Schorfheide et al. (2010). That paper

uses a simple two-step estimation approach, based on an empirical model that consists

of a medium-scale DSGE model for a set of core macroeconomic variables and a set of

measurement equations or auxiliary regressions that link the state variables of the DSGE

model to noncore variables. The first step in that approach is to estimate the DSGE model

using the core variables as measurements. Based on the estimates of the DSGE model

parameters, the Kalman filter is used to get estimates of the latent state variables. The

filtered state variables are then used as regressors to estimate simple linear measurement

equations with serially correlated idiosyncratic errors.

The literature on real-time data analysis has largely focused on examining the size

of data revisions and their impact on forecasts and monetary policy. Evidence from the

real-time literature, described in Croushore (2011), suggests that such revisions may be

crucial for forecasting and policy analysis. In forecasting, data revisions may change the

estimated parameters of forecasting models, the specification of the model, and the jumping-

off point for forecasts. Policy may be formulated in error if it relies too much on data that

are measured with error and that are subject to revision. The implementation of sound

monetary policy would seem to require an examination of the significance of data revisions

and the role they play when combining structural models with latest-vintage data for current

analysis.

We do not provide an explicit structural model of how initial release data are generated.

Instead, we think of a government data agency as following a protocol for releasing data

in which it first makes initial releases of the data based on a small sample. Over time, the

sample grows in size, and the agency provides more precise releases of the data. Initially,

the agency is forecasting many components of the aggregate data, so its early releases are

similar to forecasts. We also compare the dynamic responses of initial release data with
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forecasts made by professional forecasters and find that they are quite similar. As the data

agency gets additional source data, the responses of its data releases to identified shocks

conform more to those implied by the estimated structural DSGE model.

The paper proceeds as follows. In section 2, we describe the medium-scale DSGE model

that we use. Section 3 describes the methods we use to estimate the model. Section 4

discusses the results of the model’s estimation and shows the relationship between data

revisions and estimated structural shocks. Section 5 interprets the results and discusses

their importance.

2 A Medium-Scale DSGE Model

We begin with a brief description of the medium-scale New Keynesian model that underlies

our empirics. The model incorporates many of the main elements that are standard in

the New Keynesian DSGE literature, including habit formation, costs of adjusting capital

investment, wage and price rigidities, and variable capital utilization. The baseline model

is similar to Smets and Wouters (2003) and Christiano et al. (2005), and the specific log-

linearized implementation is described in more detail in Schorfheide et al. (2010).

2.1 Final Goods Producers

There is a final good Yt that is produced as a composite of a continuum of intermediate

goods Yt(i) using the technology:

Yt =

[∫ 1

0

Yt(i)
1

1+λf,t di

]1+λf,t
(1)

with λf,t ∈ (0,∞) following the exogenous process:

lnλf,t = (1− ρλf ) lnλf + ρλf lnλf,t−1 + σλf ελ,t. (2)

The variable λf,t is the desired markup over marginal cost that intermediate goods producers

would like to charge. From the first-order conditions for profit maximization and the zero-

profit condition (final goods producers are perfectly competitive firms) the demand for

intermediate goods is given by:

Yt(i) =

(
Pt(i)

Pt

)− 1+λf,t
λf,t

Yt (3)
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with the composite good price given by:

Pt =

[∫ 1

0

Pt(i)
− 1
λf,t di

]−λf,t
(4)

2.2 Intermediate Goods Producers

There is a continuum of intermediate goods indexed by i. Intermediate goods are produced

using the technology:

Yt(i) = Z1−α
t Kt(i)

αLt (i)
1−α

, (5)

where Zt is an exogenous technological progress that is assumed to be nonstationary. We

define zt = ln(Zt/Zt−1) and assume that it follows the process:

(zt − γ) = ρz(zt−1 − γ) + εz,t.

Prices are assumed to be sticky and adjust following Calvo (1983). Each firm can readjust

prices optimally with probability 1− ζp in each period. Firms that are unable to reoptimize

their prices Pt(i) adjust prices mechanically according to:

Pt (i) = (πt−1)
ιp (π∗)

1−ιp (6)

where πt = Pt/Pt−1 and π∗ is the steady state inflation rate of the final good. Those

firms that reoptimize price choose a price level P̃t(i) that maximizes the expected present

discounted value profits in all states of nature in which the firm maintains that price in the

future:

maxP̃t(i) Ξpr

(
P̃t(i)−MCt

)
Yt(i)+

Et
∞∑
s=1

ζspβ
sΞpt+s

(
P̃t(i)(Π

s
l=1π

ιp
t+l−1π

1−ιp
∗ )−MCt+s

)
Yt+s

(7)

subject to

Yt+s(i) =

 P̃t(i)
(

Πs
l=1π

ιp
t+l−1π

1−ιp
∗

)
Pt+s

−
1+λf,t
λf,t

Yt+s,

where πt ≡ Pt/Pt−1, βsΞpt+s is the household’s discount factor, and MCt is the firm’s

marginal cost. Markets are assumed to be complete so all households face the same discount

factor. All firms that can readjust price face an identical problem. We will consider only a

symmetric equilibrium in which all adjusting firms choose the same price, which means that

we can drop the i index. It then follows that the aggregate price level can be expressed as

follows:

Pt =

[
(1− ζp) P̃t

− 1
λf + ζp

(
π
ιp
t−1π

1−ιp
∗ Pt−1

)− 1
λf

]−λf
.

In the estimation, we shut down inflation indexation by setting ιp = 0.
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2.3 Households

The objective function for household j is given by:

Et

∞∑
s=0

bt+s

[
ln(Ct+s(j)− hCt+s−1(j))− ϕt+s

1 + νl
Lt+s(j)

1+νl +
χt+s

1− νm

(
Mt+s(j)

Zt+sPt+s

)1−νm
]
,

where Ct(j) is consumption, Lt(j) is labor supply, and Mt(j) is money holdings. Household

preferences are subject to three shocks: an intertemporal shifter bt, a labor supply shock ϕt,

and a money demand shock χt. Real balances are deflated by the stochastic trend growth to

make real money demand stationary. All preference shocks are assumed to follow an AR(1)

process in logs. The household budget constraint, written in nominal terms, is given by:

Pt+sCt+s(j) + Pt+sIt+s(j) +Bt+s(j) ≤ Rt+sBt+s−1(j) +Mt+s−1(j)+

Πt+s +Wt+s(j)Lt+s(j) +Rkt+sut+s(j)K̂t+s−1(j)− Pt+sa(ut+s(j))K̂t+s−1(j),

where It(j) is investment, K̂t(j) is capital holdings, ut(j) is the rate of capital utilization,

and Bt(j) is holdings of government bonds. The gross nominal interest rate paid on gov-

ernment bonds is Rt, and Πt is the per-capita profit the household gets from owning firms.

Household labor is paid wage Wt(j), and households rent an “effective” amount of capital

to firms Kt(j) = ut(j)K̂t−1(j). In return, they receive Rkt ut(j)K̂t−1(j). Households pay

a consumption cost associated with capital utilization given by a(ut(j))K̂t−1(j). Capital

accumulation is governed by:

K̂t(j) = (1− δ)K̂t−1(j) + µt

(
1− S

(
It(j)

It−1(j)

))
It(j),

where δ is the rate of depreciation, S(·) is the cost of adjusting investment (S′ > 0, S′′ > 0),

and µt is a stochastic shock to the price of investment relative to consumption, assumed to

follow an AR(1) process in logs.

2.4 The Labor Market

The labor market has labor packers that buy labor from households, combine it, and resell it

to the intermediate goods producing firms. Labor used by the intermediate goods producers

is a composite:

Lt =

[∫ 1

0

Lt(j)
1

1+λw,t dj

]1+λw,t
The labor packers maximize profits in a perfectly competitive environment, which leads to

the labor demand:

Lt(j) =

(
Wt(j)

Wt

)− 1+λw,t
λw,t

.

5



Combining labor demand with the zero-profit condition leads to the aggregate wage expres-

sion:

Wt =

[∫ 1

0

Wt(j)
1

λw,t dj

]λw,t
.

In the estimation, we fix λw,t = λw ∈ (0,∞). Households have market power, but wage

adjustment is subject to a rigidity as in Calvo (1983). Each period, a fraction 1 − ζw of

households reoptimize their wage. For those that are unable to reoptimize, Wt(j) adjusts as

a geometric average of the steady state rate increase in wages and last period’s productivity

times last period’s inflation. For those households that can reoptimize, the problem is to

choose a wage W̃t(j) that maximizes utility in all states of nature in which the household

wage is to be held at its chosen value:

maxW̃t(j)
Et

∞∑
s=0

(ζwβ)sbt+s

[
− ϕt+s

1 + νl
Lt+s(j)

1+νl + . . .

]
subject to

Wt+s(j) =
(

Πs
l=1(π∗)

1−ιw(πt+l−1e
z∗t+l−1)ιw

)
W̃t(j)

for s = 1, . . . ,∞ as well as to the household budget constraint and the labor demand

condition. In the estimation, we shut down nominal wage indexation by setting ιw = 0.

2.5 Government Policies

The government consists of a fiscal authority and a monetary authority. The monetary

authority sets the nominal interest rate according to the feedback rule:

Rt
R

=

(
Rt−1
R

)ρR [( πt
π∗

)ψR (Yt
Y

)ψY ]1−ρR
εR,t.

The fiscal authority balances its budget by issuing short-term bonds. Government spending

is exogenous and given by:

Gt = (1− 1/gt)Yt,

where the government spending shock gt is assumed to follow an AR(1) process.

2.6 Exogenous Processes

There are seven exogenous shocks in the model. These follow the processes:

• Technology process. Let zt = ln(Zt/Zt−1) :
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(zt − γ) = ρz(zt−1 − γ) + σzεz,t

• Preference for leisure:

lnφt = (1− ρφ) lnφ+ ρφ lnφt−1 + σφεφ,t

• Money demand:

lnχt = (1− ρχ) lnχ+ ρχ lnχt−1 + σχεχ,t

• Price-markup shock:

lnλf,t = (1− ρλf ) lnλ+ ρλ lnλf,t−1 + σλελf ,t

• Capital adjustment cost (marginal efficiency of investment):

lnµt = (1− ρµ) lnµ+ ρµ lnµt−1 + σµεµ,t

• Intertemporal preference shifter:

ln bt = ρb ln bt−1 + σbεb,t

• Government spending shock:

ln gt = (1− ρg) ln g + ρg ln gt−1 + σgεg,t

• Monetary policy shock:

εR,t

2.7 Model Solution

The model’s real variables, output Yt, consumption Ct, investment It, capital Kt, effective

capital K̂t, and real wage Wt/Pt all grow at the same rate as Zt. These variables are

detrended while the nominal interest rate, inflation, and hours worked are stationary. A

steady state is constructed for the stationary representation of the model. The method of

Sims (2002) is used to construct a log-linear approximation of the model around its steady

state.
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3 Estimation

3.1 DSGE Model Estimation

Following the discussion and methodology described in Schorfheide et al. (2010) we log-

linearize the rational expectations model, which can then be expressed as a vector autore-

gressive law of motion for a vector of fundamental state variables. Calling these variables

st, the law of motion is given by:

st = Φ1(θ)st−1 + Φε(θ)εt. (8)

The coefficients of the matrices Φ1, and Φε are functions of the DSGE model parameters θ

and the vector st is given by

st = [ct, it, k̄t, Rt, wt, zt, φt, µt, bt, gt, λf,t]
′.

The variables ct, it, k̄t, Rt, and wt are endogenous state variables and the remaining elements

of st are exogenous state variables.

To estimate the DSGE model based on a sequence of observations Y T = [yt, . . . , yT ],

we construct a state-space model that links the observable variables yt to the state variables

via a system of measurement equations.

The vector of observables yt in the measurement equation comprises quarter-to-quarter

growth rates (measured in percentages) of real GDP, consumption, investment, and nominal

wages, as well as a measure of hours worked, GDP deflator inflation, and the federal funds

rate. The use of growth rates for some variables requires the set of model states to be

augmented by lagged values of output, consumption, investment, and real wages. Since

lagged consumption, investment, and real wages are elements of the vector st−1, and lagged

output, yt−1, can be expressed as a linear function of the elements of st−1, we can write

[yt−1, ct−1, it−1, wt−1]′ = Ms(θ)st−1

for a suitably chosen matrix Ms(θ) and define

ςt = [s′t, s
′
t−1M

′
s(θ)]

′. (9)

This allows us to express the set of measurement equations as

yt = A0(θ) +A1(θ)ςt. (10)

8



The state-space representation of the DSGE model comprises (8), (9), and (10).

Assuming that the innovations εt are normally distributed, the likelihood function for

the structural model, denoted by p(Y T |θ), can be evaluated with the Kalman filter, which

can also be used to generate estimates of the state vector:

ςt|t(θ) = IE[ςt|θ, Y t]. (11)

Bayesian estimation of the model combines a prior p(θ) with the likelihood function p(Y T |θ)

to obtain a joint probability density function for data and parameters. We use Markov-

Chain-Monte-Carlo (MCMC) methods as described in An and Schorfheide (2007) to imple-

ment the Bayesian inference.

We view the structural DSGE model as the data generating process for the final release

version of the data, which has undergone a thorough set of revisions and so represents the

“truth.” Operationally, we estimate the model using data that have been substantially

revised. In particular, we estimate the DSGE model parameters using the data vintage

available as of 2013Q3, but the effective sample period for the estimation runs from 1984Q1

through 2010Q4. Thus, for our sample, the 2010Q4 end point has undergone two annual

revisions and one comprehensive benchmark revision. If we were to add more recent data

to the sample in the form of extending the sample period beyond 2010Q4, we begin to add

observations that are less thoroughly revised and so less approximated by our notion of

final data. Note, though, that our data sample will continue to be revised with the BEA’s

comprehensive benchmark revisions. We take the view though that further revisions are

likely to have only minor effects on our estimated parameters and filtered states. We chose

1984Q1 as the starting point for the estimation to avoid the influence of potential regime

shifts in monetary policy surrounding the Volcker disinflation episode.

The structural model parameters are estimated using a vector of core variables yt that

comprises seven series: the growth rates of output, consumption, investment, and nominal

wages, in addition to the levels of hours worked, inflation, and the nominal interest rate.

Where appropriate, the variables enter in per-capita terms. The data series are obtained

from Haver Analytics (Haver mnemonics are in italics). Real output is computed as nom-

inal GDP (GDP) divided by the population that is 16 years and older (LN16N) and the

chained-price GDP deflator (JGDP). Consumption is defined as nominal personal consump-

tion expenditures (C) less consumption of durables (CD). The nominal series is divided by

LN16N and then deflated by JGDP. Investment is defined as CD plus nominal gross private

domestic investment (I). As with the other real series, it is deflated by population and the
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output price deflator. Quarter-to-quarter growth rates are computed as the log difference

of real per-capita variables and are multiplied by 100 to give percentages.

The hours worked series is calculated using nonfarm business sector hours of all persons

(LXNFH), dividing it by LN16N, and then scaling it to get mean quarterly average hours to

about 257. The series is then logged and multiplied by 100 so that all figures can be inter-

preted as percentage deviations from the mean. Nominal wages are the total compensation

of employees (YCOMP) divided by the product of LN16N and the measure of average hours.

Inflation is computed as the log difference of the GDP deflator converted into percentages.

The nominal interest rate is defined as the average effective federal funds rate (FFED) over

the quarter and is annualized.

The model is solved using Sims’ Gensys method and estimated using the code from

Schorfheide et al. (2010), available on Frank Schorfheide’s website.1

3.2 DSGE Model Estimates

Table 1 reports information on the prior of the DSGE model parameters and the posterior of

the parameter estimates. The choice of prior is the same as in Schorfheide et al. (2010) and

follows the “standard” prior in Del Negro and Schorfheide (2008). For details, the reader is

referred to Schorfheide et al. (2010).

Table 1 also gives means and 90 percent confidence intervals for the posterior distribution

of parameter estimates. The estimate of the average technology growth rate implies that

long-run per-capita output, consumption, and investment grow about 1.5 percent per year.

The estimates of β and π∗ imply that the long-run short-term nominal interest rate is 3.4

percent. Steady state nominal wage growth is estimated at about 4 percent per year.

The estimated monetary policy rule shows a strong reaction to inflation with ψ̂1 = 2.85

and a weak reaction to the output gap (measured as the deviation of output from its long-run

growth path) at ψ̂2 = 0.04. Estimated price stickiness is fairly high with ζ̂p = 0.85, implying

an average time between price changes of about 6.7 quarters. On the other hand, estimated

wage stickiness is low with ζ̂w = 0.28, implying an average duration of 1.4 quarters between

wage changes.

The estimates for the shock processes are shown in Table 1 part 2. The estimated

technology growth process shows little persistence (ρz = 0.2), while most remaining shocks

show high to very high persistence. For the most part, these estimates are similar to

1http://www.ssc.upenn.edu/ schorf/programs/ijf-ssk code.zip
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those in Schorfheide et al. (2010) (which estimated the model over the period 1984Q1 to

2007Q3). Figure 1 plots the estimates of the latent variables driving the model, generated

from the Kalman filter and evaluated at the posterior mean. There is significant low-

frequency movement in the labor shock, government spending shock, and more recently the

discount factor shock. The Great Recession episode shows up clearly in a dramatic increase

in φ (which leads to a reduction in hours worked) and dramatic decreases in the marginal

efficiency of investment shock µ and discount factor shock b.

The in-sample fit and forecasting properties of NKDSGE models similar to this one are

explored in several papers (e.g., Schorfheide et al. (2010), Del Negro and Schorfheide (2013),

and Del Negro et al. (2007)), so we do not undertake further evaluation of those properties

here.

3.3 Auxiliary Model Estimation

We now turn to the analysis of the relationship between early release data on output growth

and inflation and final release data on those variables. Loosely speaking, our strategy is to

use the estimated DSGE model and final release data to uncover a set of state variables (or

factors) that are then used as a set of regressors in a linear projection of early release data

on the factors. This is the same methodology used in Schorfheide et al. (2010) where those

authors investigated how nonmodeled variables can be forecast using a DSGE model. For us,

the nonmodeled variables are initial release and first annual revision data on output growth

and inflation. The first annual revision is interesting because it incorporates information

from annual tax returns, Social security information, and annual manufacturing survey data,

as well as other new source data. Since the DSGE model provides shock identification,

we can then investigate how shocks to monetary policy, TFP, and labor supply influence

early release data and revisions of that data to final release data. To make this paper

self-contained, we begin by reviewing the estimation strategy laid out in Schorfheide et al.

(2010).

Let xt denote a variable that is not formally included in the DSGE model but that

is of interest in that we wish to use the DSGE model to forecast or to understand the

dynamics of xt. In our case, xt will denote an observation of early release data on either

output growth or inflation, which we know will subsequently be revised to its observed final

version. We view xt as not formally modeled in the DSGE framework since the structural

model is estimated using final release data, not early release data. Conceptually, though,
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the structural model does not distinguish final release data from early release data, except

through the measurement equation. Since we do not include measurement error in the

measurement equations, the model could, in principle, fully explain the initial release data

if its statistical properties are close enough to those of the final release data. The variable

xt will be modeled as a linear function of the state variables of the DSGE model ζt. The

Kalman filter can be used in conjunction with the DSGE model and final release data to

deliver a sequence ζt|t(θ) that is obtained by using the posterior mean estimate θ̂T as a

replacement for θ.

Let ŝt denote a subset of the DSGE model state variables that are fundamental in the

sense that all other state variables in the DSGE model can be derived as a linear combination

of these fundamental states. We model the auxiliary variable xt as:

xt = α0 + ŝ′t|tα1 + ξt, ξt = ρξt−1 + ηt, ηt ∼ N (0, σ2
η). (12)

The error term ξt is idiosyncratic for each auxiliary variable that is modeled. The structure

of the auxiliary equation is much like a factor model with the factors derived from the core

variables that are used in the measurement equation of the DSGE model. Bayesian methods

are used to estimate the auxiliary regression (12).

Rewrite (12) in quasi-differenced form:

x1 = α0 + ŝ′1|1α1 + ξ1 (13)

xt = ρxt−1 + α0(1− ρ) + [ŝ′t|t − ŝ
′
t−1|t−1ρ]α1 + ηt, t = 2, . . . , T.

As in Schorfheide et al. (2010), we assume ξ1 ∼ N (0, τ2), where τ is interpreted as the prior

standard deviation of the idiosyncratic error. We set τ to be in the range of 15 percent to

20 percent of the sample variance of xt.

Since our variables xt (early release data on output growth and inflation) are presumably

closely related to their DSGE modeled counterparts (final release data on output growth

and inflation), we can use information from the structural model to set the priors for the

auxiliary regression parameters. As in Schorfheide et al. (2010), the prior takes the form:

α ∼ N (µα,0, Vα,0), ρ ∼ U(−1, 1), ση ∼ IG(ν, τ), (14)

where N (µ, V ) denotes a normal distribution with mean µ and covariance matrix V , U(a, b)

is a uniform distribution on the interval (a, b), and IG(ν, s) denotes the Inverse Gamma

distribution with density pIG(σ|ν, s) ∝ σ−(ν+1)e−νs
2/2σ2

. We will use the same τ to char-

acterize the standard deviation of ξ1 and the prior for ση.
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The prior mean µα,0 is chosen based on the DSGE model-implied factor loadings for its

counterpart. For example, take the case of xt being initial release real GDP growth. The

DSGE model estimated using final release real GDP gives a set of α’s such that observed

final release real GDP growth is an exact linear combination of the fundamental states

(recall that the measurement equation does not include measurement error). We use the

model-implied loadings on the fundamental states as our prior mean for the projection of

initial release real GDP growth on the fundamental states. We undertake a similar exercise

for initial release inflation. For the covariance matrix our prior is given by a diagonal matrix

with elements:

diag(Vα,0) =

[
λ0,

λ1
ω1
, . . . ,

λ1
ωJ

]
. (15)

The parameters λ0 and λ1 are hyperparameters that determine the degree of shrinkage for

the intercept α0 and the loadings α1 of the state variables. The diagonal elements of Vα,0

are scaled by ω−1j , j = 1, . . . , J , where ωj denotes the DSGE model’s implied variance of

the j’th element of ŝt|t (evaluated at the posterior mean of θ). Draws from the posterior

distribution are obtained using the Gibbs sampler described in Schorfheide et al. (2010).

We set the degrees of freedom parameter ν of the inverted gamma prior for σn equal to

2, restrict λ0 = λ1 = λ and consider three values: 1.00, 0.10, and 1e-5. The prior mean

and posterior estimate essentially coincide when λ =1e-5, and as λ is increased, the factor

loadings α are allowed to differ to an increasing extent from the prior mean.

Note that the strategy we are taking here is very different from using initial release data

in the state-space representation measurement equation and adding a measurement error

to the system. That strategy would not use final release data to help pin down the DSGE

model parameters. Rather, the “truth” is a latent state implied by the model parameters

estimated using early release data. Our strategy is instead to use both early release and

final release data in the estimation and then to use the model to link the series.

3.3.1 Auxiliary Equation Estimates

To begin, Figure 2 shows plots of initial release data on inflation and output growth and

compares them with their final release counterparts. For inflation, final release data appear

to be much less volatile than the initial release data, especially up until 2005. For real

GDP growth, the high frequency differences between the series are less evident. Indeed, the

sample standard deviation for initial release real GDP growth (per capita) is about 0.52

compared with 0.62 for the final release data (deflated by the same population series). For
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output growth, up until about the year 2000, there is a tendency for growth rate revisions to

be positive, i.e., for growth rates computed using final release data growth rates to exceed

growth rates computed using initial release data. Since 2000, it is the opposite: There is a

tendency for final release growth rates to be somewhat less than initial release growth rates.

The auxiliary equation estimates for initial release GDP deflator inflation and real GDP

growth are presented in Tables 2 and 3. The fundamental state variables on which the early

release data are projected are consumption, investment, effective capital, nominal interest

rate, real wage, TFP growth, labor shock, marginal efficiency of investment shock, discount

factor shock, government shock, and price-markup shock. These states are sufficient to

fully explain final release output and inflation. The second column in the table is the prior

mean. Under the prior mean, the auxiliary model regressions return the observed values

for final release output growth and inflation to approximation error. The third through

fifth columns in the tables show the posterior mean estimates and 90 percent probability

coverage intervals for the estimated auxiliary models under three assumption on λ, which

governs the tightness of the prior. When λ is small, the prior is tight – as evidenced by

the column five estimates, which are very close to the prior mean estimates. As λ is moved

further away from zero, the role of the prior on the estimates is relaxed, and the estimated

factor loading can begin to differ from the prior means. Generally though, we found that

the difference in estimates and their implications between λ = 1 and λ = 0.1 were rather

small. Consequently, in the impulse response analysis in what follows we will only present

results for the case of λ = 0.1.

Consider first Table 2, which shows the auxiliary regression estimates for initial release

GDP deflator inflation under three different settings of λ. These estimates imply that

inflation revisions are predictable in response to certain shocks to the economy. Often,

statements about the predictability of revisions are made unconditionally, and the finding

tends to be a lack of predictability. We find that once we identify shocks, there is some

evidence for the predictability of revisions conditional on our knowledge of the shocks.

In Table 2, estimated loadings that differ significantly from the prior means indicate

state variables that are important in accounting for the deviation of initial release inflation

from its final release version. The loadings on three factors (the nominal one-period interest

rate Rt, TFP growth zt, and the marginal efficiency of investment µt) are all outside of or

at least very close to the bounds of the 90 percent coverage intervals. This suggests that

movements in interest rates, multifactor productivity growth, and investment productivity

can account, to some extent, for the deviation of initial release inflation from final release
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inflation. In other words, these factors help to explain revisions to the inflation data. This

is not the case for the other factors/shocks that are identified by the model.

Figure 3 plots the predicted values for initial release inflation against actual values for

initial release inflation for each of the models λ = 1, λ = 0.1, and λ = 1E-5. There is little

difference in the predicted series for λ = 1 compared with λ = 0.1, and a greater degree of

difference for λ = 1e-5. The predicted series for λ = 1 and λ = 0.1 are notably smoother

than the actual series but still appear to pick up a fair amount of the movement in actual

initial release inflation. For the case of λ = 0.1, the estimated linear combination of state

variables accounts for about 70 percent of the variance of initial release inflation.

Table 3 shows the estimation results for the auxiliary regressions of initial release real

GDP on the DSGE model factors. Since output enters the model in levels, we add a lag of

output to the vector of fundamental states and regress initial release real GDP growth on

the DSGE state vector. The estimates indicate again that we can find some predictability

of real GDP growth revisions in response to identified shocks. In particular, movements in

TFP growth zt, the preference for leisure φt, government spending gt, and price markups

λf,t lead to significant differences between initial release data and final release data.

Figure 4 plots the predicted values of initial release real GDP growth for the three

different values of λ as well as the actual initial release values of real GDP growth. Again,

the models do a fairly good job of picking up the low frequency movement in initial release

real output growth. For λ = 1 and λ = 0.1, the predicted series is about as volatile as the

actual series, while for λ = 1e-5, which essentially replicates final release real GDP growth,

the predicted series shows less volatility than the initial release series. For the case λ = 0.1,

the estimated linear combination of state variables accounts for about 56 percent of the

variance of initial release real GDP growth.

4 Impulse Response Analysis

With the DSGE model’s state variables evidently accounting in part for differences between

initial release and final release data on output growth and inflation, the structural model’s

identified shocks will have differential impacts on initial release and final release data. That

is, structural shocks may help explain dynamics of data revisions. We investigate this

further using impulse response analysis to investigate how initial release and final release

data respond to the model’s exogenous shocks.
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The auxiliary regression models are easily amenable to impulse response analysis. We

perturb shocks in (8) to trace out a sequence of states st. Given these state variable re-

sponses, we can use (12) to calculate not only how initial release data respond to changes in

the structural errors but also how first annual revision data respond to the structural errors.

To calculate the impulse responses, we compute the evolution of the model’s state vector,

evaluated at the posterior mean for the structural model parameter estimates, in response

to each of the model’s structural shocks. We then draw from the posterior of the auxiliary

equation parameter distribution. The impulse response functions from this exercise are

shown in Figures 5-8. Each figure shows two impulse responses: The solid dark line is the

response as calculated from the DSGE model i.e., the response in the final data. The dashed

lines are the responses of initial release data in Figures 5 and 7, and annual release data in

Figures 6 and 8, together with 90 percent probability coverage intervals.

Consider first the impulse responses for inflation that are shown in Figure 5 (for initial

release inflation) and Figure 6 (for first annual revision data on inflation). Figure 5 shows

that there are significant differences in the response of initial and final release inflation to

marginal efficiency of investment shocks, monetary policy shocks, and possibly TFP shocks.

In all three cases, the impulse responses for the initial estimates are closer to zero than

is the case for the final revision estimates, and of these three cases, only the monetary

policy shock impulse response is significantly different from zero. More generally, though,

the initial release impulse responses differ significantly from zero for government spending

shocks, monetary policy shocks, labor shocks, discount factor shocks, and price-markup

shocks. For these shocks (with the exception of the monetary policy shock), the impulse

responses of initial release inflation data is largely the same as the response of the final release

inflation data. It appears that shocks to TFP, the marginal efficiency of investment, and

monetary policy partly explain revisions to the data between the initial and final releases.

Presumably, as the data get revised over time, the response of earlier release data to

shocks will approach the response pattern that we see in the final release data. Confirming

evidence for this conjecture is shown in Figure 6, which plots the impulse responses from

an auxiliary model estimated using first annual revision data (rather than initial release

data) along with the impulse responses from the DSGE model and final release data for

comparison. We see now that with the possible exception of the monetary policy shock

impulse, the responses of the final release data lie within the probability coverage intervals

of the annual revision impulse responses. As was the case in Figure 5, the annual release

data are largely less responsive to identified shocks than are the final release counterparts.

16



Figures 7 and 8 show the same exercise for initial release and first annual revision release

data on output growth. For output, shocks to TFP, labor supply, and possibly price markups

lead to significant revisions from initial to final release. This pattern is less pronounced, but

is still evident in the first annual revision data on output growth. As was the case for the

inflation series, the initial release data are less responsive to economic shocks than are the

final release data. For the other shocks in the model, there is not much difference in the

response of initial versus final release data or first annual revision versus final data. Looking

across both the inflation and output series, TFP shocks lead to significant revisions in both

inflation and output growth while the other shocks in the model tend to affect revisions to

either inflation or output growth but not both. Discount factor shocks appear not to affect

revisions to either inflation or output growth, judging by the 90 percent coverage intervals.

4.1 Initial Data Releases as Forecasts

The impulse response functions indicate that initial release data on output growth and in-

flation are less responsive to identified macroeconomic shocks than the final release data.

If the BEA is largely forecasting final release data with its initial release estimates, we

might expect those estimates to be smoother than the final release data. Consider how the

BEA calculates the initial release of quarterly GDP and inflation. According to Grimm and

Weadock (2006), about 25 percent of the source data that are used to calculate the first

quarterly estimate of GDP are trend-based data, which means that the estimate is typi-

cally calculated from previous data using moving averages, regressions, and BEA judgment.

Another 30 percent of the source data are in the form of “monthly data and trend-based

data,” which typically include two months of source data but limited or no data for the third

month, which must then be calculated. The remainder of the source data are in the form

of “monthly or quarterly data,” which includes either monthly data for all three months of

a quarter or complete quarter data. This breakdown suggests that a substantial portion of

the first estimate of GDP in a quarter is tantamount to a forecast of missing components

that are then aggregated into the GDP estimates.

To characterize the BEA’s forecast approach in constructing its initial release estimates,

we ask how the estimates compare with private sector forecasts in response to identified

economic shocks. Of course, the BEA has access to confidential data when it prepares its

initial release data, so we might expect some differences in the responses. But to the extent

that the BEA initial release incorporates trends from past observable data, the responses

should be similar to professional forecasts. We investigate this issue using data from the
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Survey of Professional Forecasters (SPF). In particular, we use the SPF median nowcast

of the current quarter, taken before the release of the first GDP estimate, in the auxiliary

model. We estimate the models over the same sample period and present the impulse

responses of the SPF nowcasts to structural shocks in Figures 9 and 10.

Figure 9 shows the response of SPF nowcasts of real output growth (the dashed line)

compared with the responses in the initial release data (the solid line), as well as the 90

percent probability coverage interval for the nowcast impulse response. The SPF responses

do, in general, look quite similar to the responses from the BEA’s initial release data on

output growth. The SPF nowcast is more responsive to TFP shocks, less responsive to labor

supply shocks, and less responsive to price markup shocks. For the most part though, the

impulse responses from the SPF data and the initial release data line up fairly closely.

When we look at the inflation data, the impulse responses show a bit more divergence.

Monetary policy shocks and price-markup shocks lead to quite different responses from the

forecasters compared with the BEA. The SPF nowcasts for inflation show little response to

price markups, while the response in the BEA data is dramatic. The SPF nowcast shows

a positive response to the monetary policy shocks while the BEA data show a negative

response. There is also a tendency for the SPF inflation nowcast to under-respond to labor

supply shocks compared with the BEA initial release data. On balance, the SPF inflation

nowcast is less responsive to the model’s identified economic shocks than is the BEA initial

release data. Indeed, for most of the shocks, the 90 percent probability coverage interval

for the impulse responses contains zero. Overall, this exercise suggests that the information

set used by the BEA to construct the price index is quite different from that of the private

forecasters, and that it is not very well approximated by the historical data that forecasters

condition on. However, this seems to be much more the case for inflation than it does for

real output growth.

5 Discussion

The model estimation and impulse response analysis lead to four principal findings: (i)

initial release data on inflation and output growth are explained in significant part by

the model state variables derived from final release data, (ii) initial release data generally

under-respond to identified shocks relative to final release data, (iii) identified shocks help

explain data revisions from initial to final release, but there is not a general pattern across

the series and shocks, and (iv) the response of professional forecaster nowcasts of current
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output growth to shocks is similar to the responses of the BEA’s initial release data – this

is less so for the nowcasts of inflation.

These findings are broadly consistent with the view that the BEA’s initial release data

are forecasts of the final release data. The initial release data are much less responsive to

TFP shocks than the final release data for both inflation and output growth. This suggests

that it is particularly difficult to recognize productivity shocks in real time and to incorporate

them into initial estimates of output and inflation. For the other shocks in the model the

story is more nuanced. The initial release estimates of inflation show little response to

investment shocks, while on the output side, the initial and final release estimates track

closely. Similarly, the initial release estimate of inflation under-responds significantly to

monetary policy shocks (relative to the final release response) while on the output side the

responses of initial release and final release data are again quite similar. For price-markup

shocks, the initial release data over-respond on the output side, while on the inflation side

initial release and final release track closely.

Consider again Figure 7, which shows the impulse responses of initial release real GDP

growth compared with final release. Recall that the structural model state variables account

for about 60 percent of the sample variance of initial output growth. With the exception

of TFP shocks and possibly price-markup shocks, the response of initial release real GDP

growth to the identified shocks is quite close to the response in the final release data.

More generally, though, how important are the various identified shocks in accounting for

the movements in initial release data? We get a sense of this by calculating the variance

contributions of the shocks using the estimated model. Table 4 shows the contribution of

each shock to the variance of initial and final release output and inflation. The table also

reports the 90 percent probability coverage interval for the estimates (which incorporates

both parameter and shock uncertainty). For the initial release data, the most important

shock is the labor supply shock, which accounts for about 40 percent of the variance of

initial release output growth. TFP shocks, investment shocks, and government spending

shocks each account for about 15 percent of output growth variance. Price-markup shocks

account for only about 3 percent of the variance. When contrasting these results with the

decomposition of final release output growth, the shock contributions are similar, with the

exception of TFP growth and labor shocks. For final release output growth, TFP shocks

are most important, accounting for about 37 percent of the variance of output, followed by

labor supply shocks, which account for about 20 percent of the variance. This suggests that

it is difficult to untangle labor supply shocks and TFP shocks in the early release data. The
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remaining shock contributions match up fairly closely between the initial release and final

release data.

For inflation, recall that the model state variables account for about 70 percent of the

sample variance of the initial release data. With the exception of TFP shocks, investment

shocks, and monetary policy shocks, the response of initial release data and final release data

are close to each other. The model’s variance decomposition for inflation indicates that labor

supply shocks and price-markup shocks are the most important contributors, at about 35

percent each. The results are similar in the final release data with labor supply shocks

and price-markup shocks contributing about 30 percent each to the variance of inflation.

The initial release and the final release contributions are quite similar across the columns,

suggesting that underlying shocks to the economy are reasonably well accounted for in the

initial release data. Unlike the case of output growth, the contributions from TFP shocks

and labor supply shocks are not confounded in the intial release and final release data.

These results suggest that a cautious approach should be taken when interpreting the

initial release data on inflation and output growth in terms of how they relate to the fun-

damental structure of the economy. While the economic shocks that account for the final

release data are influencing, to a substantial extent, the dynamics of the initial release data,

there is also a substantial influence from shocks that ultimately gives rise to revisions in the

data. In this paper, we have taken some first steps in quantifying these influences.
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Table 1: Prior and Posterior of DSGE Model Parameters (Part 1)

Prior Posterior

Name Density Para (1) Para (2) Mean 90% Intv.

Household

h B 0.700 0.050 0.728 [ 0.679 , 0.779 ]

a′′ G 0.200 0.100 0.307 [ 0.134 , 0.476 ]

νl G 2.000 0.750 1.738 [ 0.976 , 2.489 ]

ζw B 0.600 0.200 0.284 [ 0.216 , 0.351 ]

400(1/β − 1) G 2.000 1.000 0.870 [ 0.318 , 1.394 ]

Firms

α B 0.330 0.100 0.165 [ 0.128 , 0.199 ]

ζp B 0.600 0.200 0.850 [ 0.812 , 0.888 ]

S′′ G 4.000 1.500 4.884 [ 2.765 , 6.890 ]

λf G 0.150 0.100 0.155 [ 0.014 , 0.291 ]

Monetary Policy

400π∗ N 3.000 1.500 2.501 [ 1.808 , 3.229 ]

ψ1 G 1.500 0.400 2.854 [ 2.335 , 3.339 ]

ψ2 G 0.200 0.100 0.041 [ 0.022 , 0.061 ]

ρR B 0.500 0.200 0.853 [ 0.823 , 0.883 ]
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Table 1: Prior and Posterior of DSGE Model Parameters (Part 2)

Prior Posterior

Name Density Para (1) Para (2) Mean 90% Intv.

Shocks

400γ G 2.000 1.000 1.737 [ 1.285 , 2.145 ]

g∗ G 0.300 0.100 0.292 [ 0.130 , 0.438 ]

ρz B 0.200 0.100 0.204 [ 0.096 , 0.310 ]

ρµ B 0.800 0.050 0.817 [ 0.761 , 0.868 ]

ρλf B 0.600 0.200 0.325 [ 0.208 , 0.440 ]

ρg B 0.800 0.050 0.959 [ 0.944 , 0.975 ]

ρb B 0.600 0.200 0.832 [ 0.754 , 0.910 ]

ρφ B 0.600 0.200 0.978 [ 0.963 , 0.990 ]

σz IG 0.750 2.000 0.623 [ 0.549 , 0.694 ]

σµ IG 0.750 2.000 0.428 [ 0.349 , 0.499 ]

σλf IG 0.750 2.000 0.175 [ 0.148 , 0.203 ]

σg IG 0.750 2.000 0.357 [ 0.317 , 0.400 ]

σb IG 0.750 2.000 0.381 [ 0.296 , 0.467 ]

σφ IG 4.000 2.000 2.761 [ 2.019 , 3.526 ]

σR IG 0.200 2.000 0.140 [ 0.122 , 0.156 ]

Notes: Para (1) and Para (2) list the means and the standard deviations for the Beta

(B), Gamma (G), and Normal (N ) distributions; s and ν for the Inverse Gamma (IG)

distribution, where pIG(σ|ν, s) ∝ σ−(ν+1)e−νs
2/2σ2

. The joint prior distribution is obtained

as a product of the marginal distributions tabulated in the table and truncating this product

at the boundary of the determinacy region. Posterior summary statistics are computed based

on the output of the posterior sampler. The following parameters are fixed: δ = 0.025,

λw = 0.3; estimation sample: 1984Q1 to 2010Q4.
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Table 2: Prior and Posteriors of Auxiliary Inflation Regressions

Posterior

Factor Prior Mean λ = 1 λ = 0.1 λ = 1e−5

α0 0.648 0.669 0.668 0.648

[ 0.608, 0.738 ] [ 0.605,0.728 ] [ 0.642,0.653 ]

c 0.029 0.048 0.043 0.029

[ 0.001, 0.093 ] [ 0.009,0.081 ] [ 0.028,0.030 ]

i 0.010 0.011 0.011 0.010

[ 0.002, 0.021 ] [ 0.003,0.019 ] [ 0.010,0.010 ]

K̄ -0.023 -0.024 -0.023 -0.023

[ -0.050, 0.002 ] [ -0.045,-0.000 ] [ -0.024,-0.023 ]

R -0.290 -0.134 -0.126 -0.287

[ -0.297, 0.031 ] [ -0.270,0.025 ] [ -0.297,-0.277 ]

w 0.052 0.030 0.033 0.052

[ -0.016, 0.075 ] [ -0.007,0.073 ] [ 0.050,0.054 ]

z -0.009 0.044 0.044 -0.008

[ -0.012, 0.102 ] [ -0.012,0.098 ] [ -0.016,0.001 ]

φ 0.029 0.035 0.033 0.029

[ 0.013, 0.058 ] [ 0.014,0.050 ] [ 0.028,0.029 ]

µ 0.107 0.003 0.003 0.107

[ -0.103, 0.106 ] [ -0.098,0.101 ] [ 0.100,0.113 ]

b 0.202 0.188 0.187 0.204

[ 0.060, 0.309 ] [ 0.065,0.300 ] [ 0.196,0.211 ]

g 0.039 0.069 0.064 0.040

[ 0.016, 0.127 ] [ 0.016,0.114 ] [ 0.036,0.044 ]

λf 1.600 1.437 1.435 1.597

[ 1.222, 1.659 ] [ 1.209,1.636 ] [ 1.568,1.624 ]

ρ -0.164 -0.160 0.001

[ -0.344, 0.011 ] [ -0.330,0.023 ] [ -0.167,0.167 ]

ση 0.114 0.029 0.029 0.033

[ 0.022, 0.036 ] [ 0.022,0.036 ] [ 0.026,0.041 ]

Note: The 90 percent probability coverage intervals are in brackets.
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Table 3: Prior and Posteriors of Auxiliary Output Regressions

Posterior

Factor Prior Mean λ = 1 λ = 0.1 λ = 1e−5

α0 0.441 0.205 0.193 0.441

[ 0.090, 0.323 ] [ 0.093,0.301 ] [ 0.436,0.446 ]

c 0.842 0.759 0.849 0.842

[ 0.605, 0.905 ] [ 0.791,0.909 ] [ 0.841,0.843 ]

i 0.179 0.151 0.170 0.179

[ 0.121, 0.181 ] [ 0.157,0.184 ] [ 0.179,0.180 ]

K̄ -0.021 -0.017 -0.014 -0.021

[ -0.063, 0.030 ] [ -0.047,0.019 ] [ -0.022,-0.021 ]

R 0.000 -0.044 0.093 -0.002

[ -0.353, 0.255 ] [ -0.148,0.343 ] [ -0.012,0.008 ]

w 0.017 -0.024 0.010 0.017

[ -0.105, 0.054 ] [ -0.052,0.072 ] [ 0.016,0.019 ]

z 0.000 -0.423 -0.328 -0.002

[ -0.564, -0.291 ] [ -0.429,-0.230 ] [ -0.009,0.007 ]

φ 0.000 0.032 0.025 0.000

[ -0.006, 0.067 ] [ 0.001,0.048 ] [ -0.000,0.000 ]

µ 0.006 0.096 -0.003 0.005

[ -0.108, 0.297 ] [ -0.176,0.165 ] [ -0.002,0.012 ]

b -0.000 0.078 0.013 -0.001

[ -0.147, 0.310 ] [ -0.189,0.215 ] [ -0.008,0.006 ]

g 1.021 0.771 0.874 1.020

[ 0.606, 0.944 ] [ 0.784,0.959 ] [ 1.016,1.024 ]

λf 0.000 -0.418 -0.416 0.001

[ -0.801, -0.026 ] [ -0.801,-0.054 ] [ -0.027,0.029 ]

ylag -1.000 -0.848 -0.968 -1.000

[ -0.991, -0.705 ] [ -1.026,-0.911 ] [ -1.001,-0.999 ]

ρ -0.086 -0.100 -0.004

[ -0.270, 0.090 ] [ -0.281,0.070 ] [ -0.167,0.154 ]

ση 0.303 0.086 0.088 0.157

[ 0.065, 0.107 ] [ 0.067,0.109 ] [ 0.122,0.191 ]

Note: The 90 percent probability coverage intervals are in brackets.
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Table 4: Variance Contribution of Shocks

Output Growth Inflation

Shocks Initial Final Initial Final

z 0.372 0.159 0.010 0.012

[ 0.295, 0.453 ] [ 0.104,0.216 ] [ 0.001,0.020 ] [ 0.003,0.020 ]

φ 0.192 0.391 0.288 0.320

[ 0.134, 0.249 ] [ 0.316,0.466 ] [ 0.050,0.511 ] [ 0.149,0.485 ]

µ 0.114 0.151 0.056 0.083

[ 0.058, 0.169 ] [ 0.093,0.204 ] [ 0.003,0.112 ] [ 0.031,0.134 ]

b 0.075 0.105 0.171 0.161

[ 0.042, 0.108 ] [ 0.062,0.145 ] [ 0.032,0.300 ] [ 0.087,0.232 ]

g 0.114 0.145 0.017 0.003

[ 0.085, 0.143 ] [ 0.107,0.181 ] [ 0.000,0.041 ] [ 0.000,0.005 ]

λf 0.037 0.029 0.281 0.372

[ 0.023, 0.052 ] [ 0.014,0.043 ] [ 0.135,0.424 ] [ 0.254,0.486 ]

εR 0.011 0.021 0.017 0.049

[ 0.005, 0.017 ] [ 0.010,0.032 ] [ 0.003,0.031 ] [ 0.021,0.076 ]

Note: The 90 percent probability coverage intervals are in brackets and are computed on a

shock-by-shock basis. Hence, column entries need not sum to 100 percent.
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Figure 1: Estimated Latent Variables
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Figure 2: Final and Intial Release Data
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Figure 3: Predicted vs. Actual for Initial Release Inflation
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Figure 4: Predicted vs. Actual for Initial Release Output Growth
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Figure 5: Inflation Impulse Responses for Initial Release vs. Final

0 2 4 6 8 10 12
−0.05

0

0.05
Response to TFP Shock

 

 

Final

Initial

0 2 4 6 8 10 12
0

0.1

0.2

Response to φ Shock

0 2 4 6 8 10 12
−0.1

0

0.1

Response to µ Shock

0 2 4 6 8 10 12
−0.2

0

0.2
Response to Discount Factor Shock

0 2 4 6 8 10 12
−0.02

0

0.02

0.04
Response to Gov Shock

0 2 4 6 8 10 12
−0.5

0

0.5

Response to λ
f
 Shock

0 2 4 6 8 10 12
−0.05

0

0.05
Response to Monetary Shock

31



Figure 6: Inflation Impulse Responses for Annual Revision vs. Final
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Figure 7: Output Growth Impulse Responses for Initial Release vs. Final
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Figure 8: Output Growth Impulse Responses for Annual Revision vs. Final
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Figure 9: SPF Output Growth Impulse Responses vs. Initial
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Figure 10: SPF Inflation Impulse Responses vs. Initial
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