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Problem Statement

• A loan is commonly considered to be in
default if any of the following occur:
– a loan is classified as non-accrual
– a borrower is 90 days or more past due in its

principal or interest payments
– a borrower has filed for bankruptcy protection
– a loan is partially or fully written off

• Only a few quantitative models for private
Middle Market firms
– most banks use judgmental models
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Problem Statement

• Growing interest for private firm models
due to Basel II Accord and loan
securitization

• Quantitative models can be used as a
decisioning tool to:
– automate mechanical tasks such as financial

assessment of a company
– analyze multidimensional interactions
– simulate complex what-if scenarios
– provide early warning signals
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Problem Statement

• Given historical data from annual financial
statements of defaulted and non-defaulted
firms estimate
– probability P{yt+k| Xt}, that a firm will default

(y=1) within the next K months from the date
of financial statements T

– for a short term horizon model K=12 months
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Problem Statement

• Independent variables from the literature
– Coverage ratios

• EBIT / interest
• EBITDA / interest

– Profitability ratios
• (net income - extraordinary items) / total assets
• EBIT / total assets

– Leverage ratios
• total liabilities / net worth
• total liabilities / total assets



7

Problem Statement

• Independent variables (cont.)
– Liquidity

• working capital / total assets
• current assets / current liabilities
• cash / total assets

– Activity ratios
• accounts payable
• accounts receivable

– Growth ratios (net sales, net income)
– Financial size (assets)



8

Modelling Approaches

• Discriminant Analysis for estimation of
generative models

• Limitations of DA
– assumes explanatory variables have a

multivariate normal distribution
– requires the proportion of default/non-default

in the sample to be the same in the population
– linear classification rule
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Modelling Approaches

• Probit and Logit (discriminative) models
– y*

t+k
 = bXt + ut

• y=1 if y*
t+k

 >=0; y=0 otherwise
• assumptions about distribution of ut

– pros: estimation of expected probability of
default

– violation of assumption about distribution of
defaults in the population makes parameter
estimates biased
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Modelling Approaches

• Instead of yi being the (0/1) random
variable, suppose the length of time ti that
firm i survives is the random variable
– each firm either defaults during the sample

period, survives the sample period, or leaves
the sample for some other reason

• The hazard function hd(t;x,b) gives the
instantaneous probability of the length of
time t ending with default conditional on
surviving up to that time
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Modelling Approaches

• With hazard models there is no need to
assume independence between firm-year
observations as with previous approaches

• All the above modelling approaches are
parametric
– a lot of effort for crafting the form of the model
– difficult to capture interactions amongst

variables
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Private Firm Data Mining

• History of financial statements of
Canadian companies since 1991

• Exclude real estate firms, financial
institutions and government as obligors

• Data cleansing
• Database of private firms

– 2,177 obligors
– 8,757 financial statements
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Private Firm Data Mining

• Candidate Input Variables:
– 34 financial variables

• debt service coverage, profitability, liquidity,
leverage, activity, growth, financial size

– type of financial statement
• 1 for audited and unqualified; 2 for reviewed

and compiled; 0 otherwise

• Target Variable: 0/1 (=default) in the next
12 months from the F/S date
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Private Firm Data Mining

• Construct the dataset of observations
– for each defaulted (“bad”) obligor construct

one observation of the input variables from
financial statements with date

• at least 12 months prior to default and
• no more than 24 months prior to default

– for each “good” obligor and for each financial
statement date in our database construct an
observation of the input variables
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Private Firm Data Mining

• Training/Test split of dataset
– Test (out-of-sample) set contains obligors with

F/S dates since 1998/02 (temporal constraint)
• 454 obligors; 760 F/S records

– Training set contains obligors not in test set
(cross-sectional constraint) and with F/S dates
prior to 1998/02

• 1446 obligors; 4495 records

– temporal + cross-sectional constraints = true
out-of-sample testing



16

Private Firm Data Mining

• Descriptive statistics of some financial
ratios in training set

Attributes Median 25% Quartile 75% Quartile
Total Assets ($M) 3.947 1.896 10.271
Inventory/COGS 0.1648 0.0861 0.279
Liabilities/Assets 0.693 0.4928 0.85
Net Income Growth 6.235 -38.14 77.5
Net Income/Assets 0.0795 0.037 0.1428
Quick Ratio 0.9107 0.5752 1.4496
RE/A 0.2359 0.0786 0.4147
Sales Growth 7.625 -1.28 20.94
Cash/Assets 0.0675 0.0148 0.1774
EBIT/Interest 3.33 1.56 8.78
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Private Firm Data Mining



18

Private Firm Data Mining



19

Model Development

• Predictive performance
– true bads: actual defaults (bads) correctly

predicted as defaults
– true goods: actual good obligors correctly

predicted as good
– false bads: actual good obligors incorrectly

predicted as defaults (Type II Error)
– false goods: actual defaults incorrectly

predicted as good (Type I Error)

• In a probabilistic model there is tradeoff
between true goods and false goods
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Model Development

“Good” “Bad”

Predicted Score

Pr
ob

ab
ili

ty

Cutoff

False BadsFalse Goods

How can we induce from data “good” and “bad”
distributions with little overlap?
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Model Development

• Receiver-Operating Characteristic (ROC)
curve

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%0%

“Good” Model

B

“Random” Model

Percentile of p(no default) for “goods”

0%

20%

40%

60%

80%

100%

A

“Perfect” Model

Pr
op

or
tio

n 
of

 fa
ls

e 
“g

oo
ds

”



22

Model Development

• Area under ROC curve is the probability
that a randomly selected “bad” obligor will
have predicted score of no-default less
than that of a randomly selected “good
obligor
– a measure of separability of two distributions

• Use the area under ROC curve as the
performance criterion in an algorithm that
learns a model from data
– criterion = 2*AUROC-1
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Model Development

• NBTree is an in-house technique for
learning a probabilistic model from data
– a decision tree (discriminant model) where

internal nodes are partitioning the data into
subsets and each leaf node contains a
generative model for estimating conditional
probability using variables not in the path to
that leaf

• Let X = [x1, x2, …, xn] be the vector of input
variables (financial ratios) and Y the
output binary variable (default event)
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Model Development

• To compute probability of default
P{Y=1|x1,x2,…,xn} one needs to make
assumptions for independence amongst
input variables

• NBTree learns these assumptions from data
by recursively building a decision tree

PROB =
P{Y|X’,x3>value3}
where X’ denotes the
variables excluding x3

x3

<= value3 > value3

x1

...

PROB
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Model Development

• Feature Selection is a hard problem
– various heuristic approaches, e.g. forward

selection, backward selection

• Use an in-house feature selection
technique based on genetic algorithms for
searching for a “best” subset of input
variables such that the NBTree model has
the biggest area under the ROC curve



26

Model Development

• Our feature selection technique selected
a “best” set of model variables (PFirm)

•  Profitability1
•  Profitability2
•  Liquidity1
•  Liquidity2
•  Leverage1
•  Profitability3
•  Leverage2
•  Leverage3
•  Growth1
•  Growth2
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Model Development

• Graphical
Representation
of PFirm Model
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Model Evaluation

• Four benchmark models (Appendix) on
the out-of-sample (test) dataset:
– RiskCalc 10-variable model

• NB. Since RiskCalc is continuously recalibrated
by Moody’s its performance is in-sample rather
out-of-sample

– Altman’s 5-variable model by refitting it on our
training data

– Shumway’s model by refitting it on our training
data

– NI/TA - TL/TA (naïve predictor)
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Model Evaluation
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Model Evaluation

PFirm NI/TA-
TL/TA

RiskCalc Altman Shumway

AUROC 0.6628 0.4358 0.5539 0.4774 0.4605

Accurary
Ratio

0.6542 0.4324 0.5396 0.4736 0.4578

• Summary of comparisons based on area
under ROC curve in previous graphs and
accuracy ratio for area under CAP curve
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Model Evaluation

• Main points from evaluation:
– PFirm seems to be robust in changes in the

cycle since it is trained on expansion years
and tested on recession years

– Altman’s, Shumway’s and naïve-predictor
models have almost the same performance

• they are linear models in contrast to PFirm and
RiskCalc that are non-linear and perform better

– One of the reasons that PFirm is performing
better than RiskCalc is because PFirm is
capturing co-dependencies amongst variables
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Explaining Model Prediction

• Case Study: XYZ Corp.
– classified date: July 2001

May-98 May-99 May-00
Percentile Rel. Contr. Percentile Rel. Contr. Percentile Rel. Contr.

profitability1 53.00% 0.73% 21.00% -4.75% 3.00% -26.63%
profitability2 33.00% 0.00% 14.00% 0.00% 3.00% -0.01%
liquidity1 40.00% -0.01% 41.00% 0.00% 42.00% 0.00%
liquidity2 52.00% 0.00% 30.00% 0.00% 43.00% 0.00%
leverage1 39.00% -67.70% 61.00% 58.20% 55.00% 23.42%
profitability3 34.00% -31.46% 15.00% -32.66% 8.00% -39.21%
leverage2 81.00% 0.09% 99.00% 0.64% 100.00% 2.67%
leverage3 45.00% 0.00% 18.00% -0.01% 14.00% -0.01%
growth1 NaN NaN 95.00% 1.81% 8.00% -0.70%
growth2 NaN NaN 19.00% -1.92% 6.00% -7.35%
PD 0.008518 0.008518 0.017634 0.017634 0.692126 0.692126
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Discussion

• PFirm is built on in-house techniques for
feature selection and model development

• NBTree is a non-parametric modeling
technique that combines the advantages
of discriminant and generative techniques

• The evaluation results show that PFirm
performs better than benchmark models
including Riskcalc

• Work underway for incorporating industry
factors into PFirm
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Appendix: Benchmarks

• RiskCalc: a three stage model
– total assets
– net income/assets
– net income growth
– interest coverage
– quick ratio
– cash & equivalents/assets
– inventories/GOCS
– sales growth
– liabilities/assets
– retained earnings/assets
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Appendix: Benchmarks

• Two linear models for predicting the
probability of default for 1 and 5 years

• Each model is estimated in three stages:
– (i) transform the input data of the model

variables into percentiles (binning)
– (ii) build univariate default models by

separately fitting each transformed model
variable to the target variable

– (iii) use the output of the above model to fit a
linear probit model for predicting default
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Appendix: Benchmarks

• Altman’s: logistic regression model
– Z = b1*(WorkingCapital/TotalAssets) +

b2*(RetainedEarnings/TotalAssets) +
b3*(EBIT/TotalAssets) +
b4*(bookEquity/TotalLiabilities) +
b5*(Sales/TotalAssets)

• Shumway’s: logistic regression model
– S = b1*(NetIncome/TotalAssets) +

b2*(TotalLiabilities/TotalAssets) +
b3*(CurrentAssets/CurrentLiabilities)
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