
Draft - comments welcomed 
 

Scorecard construction with unbalanced class sizes 
 

David J. Hand and Veronica Vinciotti 
Department of Mathematics 

Imperial College 
London 

 
{d.j.hand, v.vinciotti@ic.ac.uk} 

 
Abstract: 
 
A long-running issue in scorecard construction is how to handle dramatically 
unbalanced class sizes.  This is important because, in many applications, the class 
sizes are very different.  For example, it is common to find that 'bad' customers 
constitute less than 10% of the customer base and even more extreme situations often 
arise: Brause et al (1999) remark that in their database of credit card transactions ‘the 
probability of fraud is very low (0.2%) and has been lowered in a preprocessing step 
by a conventional fraud detecting system down to 0.1%,' while Hassibi (2000) 
comments that ‘out of some 12 billion transactions made annually, approximately 10 
million – or one out of every 1200 transactions – turn out to be fraudulent. Also, 
0.04% (4 out of every 10,000) of all monthly active accounts are fraudulent.’ 

 
In coping with unbalanced classes, there are two issues to be considered.  Firstly, 
what performance criterion is appropriate?  And, secondly, how should the scorecard 
be constructed, and any parameters estimated, from such unbalanced data? 
 
We look at each of these problems. 
 
For the first problem, we illustrate the effect that marked lack of balance has on 
performance criteria, demonstrating how easy it is to be misled.  The lack of balance 
means that simple error counts are inappropriate as performance criteria.  Rather, 
misclassifications of customers from the smaller class must be regarded as more 
serious than the converse: different costs must be adopted for the two different kinds 
of misclassification.  We examine some of the implications of this. 
 
For the second, we examine both classical linear scorecards and more powerful k-
nearest-neighbour nonparametric methods, such as are used in fraud detection.  In the 
case of linear scorecards (and, more generally, for any simple parametric form) 
improved classification accuracy is achieved by focusing classification performance 
in particular parts of the data space, with the relevant parts being implied by the 
relative misclassification costs.  We describe a new tool for constructing scorecards 
which takes this fact into account.  In the case of k-nearest-neighbour methods, we 
draw attention to a phenomenon we believe has not previously been reported, and 
which has an important effect on choice of k.  We illustrate both methods using a 
large data set of unsecured personal loan data. 
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1. Introduction 

 

A long-running issue in scorecard construction is the issue of how to handle 

dramatically unbalanced class sizes.  This is important because, in many applications, 

the class sizes are very different.  For example, it is common to find that 'bad' 

customers constitute less than 10% of the customer base, and in mass promotion 

campaigns a response rate of 1% or less is common.  Situations which are even more 

extreme arise in fraud detection (Bolton and Hand, 2002).  Brause et al (1999) remark 

that in their database of credit card transactions ‘the probability of fraud is very low 

(0.2%) and has been lowered in a preprocessing step by a conventional fraud 

detecting system down to 0.1%,' while Hassibi (2000) comments that ‘out of some 12 

billion transactions made annually, approximately 10 million – or one out of every 

1200 transactions – turn out to be fraudulent. Also, 0.04% (4 out of every 10,000) of 

all monthly active accounts are fraudulent.’  A common problem with such situations 

is that, as we explain below, often the minimum number of misclassifications is 

achieved simply by assigning everyone to the larger class.  Thus, for example, if 0.1% 

of a set of transactions are fraudulent, then if all transactions are taken as legitimate 

then only 0.1% of the transactions will be misclassified.  Such a course of action is 

seldom acceptable. 

 

For simplicity, in this paper we will restrict ourselves to the situation in which the aim 

is to predict which of just two classes the customer lies (or will lie) in.  We assume 

that we have available a retrospective data set, consisting of information about a set of 

customers (e.g., application form data, data on past behaviour with a financial 

product, or bureau data) and that for these customers we know which of the two 
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classes they eventually fell into.  Using this information, we aim to construct a 

scorecard which will allow us to predict the class of a new customer using their 

descriptive information.  The way we will treat a new customer (the action we will 

take with them) will depend upon which class we predict them to lie in.  Examples of 

different action pairs are (grant loan, do not grant loan), (treat as normal, investigate 

for possible fraud), (treat as normal, send warning letter), and so on.  At this point it is 

useful to distinguish between (i) those action pairs for which one of the actions means 

that the final class of a customer is never known and (ii) those action pairs for which 

the classes of all customers eventually become known.  An important example of the 

former is when the class pair is (default on loan, do not default) and the action pair is 

(grant loan, do not grant loan).  In this case one never discovers whether those not 

granted loans will default or not.  An example of the latter would be when the class 

pair relates to credit card delinquency, with the action pair being (send reminder 

letter, do not send letter).  In this paper we will concentrate on the second of these two 

situations, assuming that the true classes of all individuals in our retrospective data set 

are known. 

 

Let x represent the information describing a customer, and  the customer’s 

score on some scorecard.  This score represents a position on a continuum, for which, 

without loss of generality, we will take high scores as generally being associated with 

class 1 and low scores as generally being associated with class 0.  The score, s, is thus 

(monotonically increasingly) related to , an estimate of the probability 

that someone with characteristic vector x will belong to class 1.  Also, at this stage, 

we should note that we are assuming that the data are drawn (either entire populations 

of customers, or subsamples from these populations) in such a way that the proportion 

( )xss =

( xp |1ˆ ) ( )xp |1  

 3 



of customers which belong to each class are unbiased estimates of the probability of 

belonging to that class.  That is, we assume that the class proportions in the available 

data are not distorted away from the true priors.  Later we will consider sampling 

from the available data in a way which will distort these proportions. 

 

Given the estimate , to assign customers to classes one could assign them to 

the class to which they are estimated as being most likely to belong.  That is, one 

could adopt: 

( xp |1ˆ )

 

Rule 1: Assign to class 1 if  and to class 0 otherwise. ( ) 5.0|1ˆ >xp

 

Now suppose that class 0 is much larger than class 1 - that the classes are unbalanced.  

Then it can easily happen that  and  for all vectors x.  

Using Rule 1 would mean that no customers will be assigned to class 1.  The 

‘classification threshold’ 0.5 will minimise the overall number of customers 

misclassified (the number from class 0 assigned to class 1 plus the reverse) but may 

do this by the simple expedient of assigning all of the smaller class (class 1) to the 

larger class.  If the smaller class represents potential frauds or potential bad risk 

customers, this is not at all what we want.  The straightforward overall number of 

customers misclassified is thus an inappropriate measure of performance, so that Rule 

1, which minimises this measure, is an inappropriate classification rule.  As it 

happens, many other performance measures are used in retail banking, but most of 

them are also inappropriate. We describe such measures in Section 2. 

( ) 5.0|1 <<xp ( ) 5.0|1ˆ <<xp
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The problem with Rule 1 arises from the failure to recognise that different types of 

misclassification carry different penalties.  For example, assigning a fraudulent 

customer to the non-fraud class is more serious than the reverse: we wish to avoid this 

if at all possible, even if it means that we might misclassify some non-fraudulent 

customers as potentially fraudulent (and take some action, such as phoning them to 

see if their credit card has been stolen).  If we suppose that misallocating a class 1 

customer to class 0 is r times as serious as the reverse, and weight such 

misclassifications r times as heavily as the class-0-to-class-1 misclassifications (and 

also, for simplicity, assume that correct classifications incur no cost), then it is easy to 

show that comparing  with classification threshold (  minimises the 

overall weighted number of customers misclassified.  That is, the overall weighted 

misclassification rate is minimised by 

( xp |1ˆ ) ) 11 −+ r

 

Rule 2: Assign to class 1 if  and to class 0 otherwise. ( ) ( ) 11|1ˆ −+> rxp

 

The term  will be very different from the 0.5 used above if r is large. ( ) 11 −+ r

 

Four broad strategies have been developed for implementing Rule 2. 

 

(1) Introduce misclassification costs at the scorecard classification stage, so that 

misclassifications of the smaller class are explicitly regarded as more serious 

than the reverse.  This simply adopts rules of the form of Rule 2 directly, 

choosing the threshold  appropriately. ( ) 11 −+ r
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(2) Ignore the lack of balance, and use performance assessment measures which 

focus on the separability between the distributions of the estimates  for 

customers from the two classes.  While this can be used for choosing which 

scorecards are likely to be effective, one still needs to choose a threshold in 

order to make actual classifications. 

( xp |1ˆ )

 

(3) Preprocess the data to adjust the class sizes, either by subsampling from the 

larger class or by oversampling from the smaller class.  Thus, for example, by 

applying Rule 1 to a data set in which the larger class has been reduced in size 

one can achieve the same results as applying Rule 2 to the unmodified data.   

 

(4) Introduce misclassification costs at the scorecard construction stage, so that 

again misclassifications of the smaller class are explicitly regarded as more 

serious than the reverse.  In contrast to this, the traditional statistical approach 

has been to separate the model building and decision making phases (strategy 

1 above).  We demonstrate that such separation is not always a wise strategy, 

and that improved performance can be attained by taking the misclassification 

severities into account at the model building stage. 

 

In Section 3, we review each of these in turn, and draw some conclusions about their 

relative merits.  Before that, however, in Section 2, we examine scorecard 

performance measures, indicating how lack of balance impinges on them.   Section 4 

describes an illustrates a method for implementing strategy 4 which has the practical 

merits of the popular logistic regression approach, but which leads to improved 

scorecard performance. 
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2. Assessing scorecard performance 

 

Logically, the choice of performance criterion precedes the selection, construction, 

and estimation of a scorecard.  One measures the quality of a scorecard by seeing how 

effective it is at doing what one wants it to do.  Only once one has determined how 

one will measure and compare performance can one rationally choose between 

alternatives or decide that a certain parameter setting is a good one.  In view of this, 

one might expect it to be unusual to use one criterion for constructing the scorecard, 

and then another for assessing performance since it is possible that the two criteria 

might take their optima with very different scorecards.  Benton (2002) illustrates the 

large differences which can arise between simple linear scorecards when different 

criteria are used to choose them.  It is therefore surprising that, in almost all practical 

implementations of scorecards in the retail credit industry, the criteria used for 

constructing scorecards are different from those used for assessing performance.  For 

example, likelihood is a common estimation criterion used when constructing 

scorecards, but likelihood is of no interest as a performance criterion.  Indeed, 

likelihood is an overall measure of how well a model fits a data set and we show, in 

Sections 3.4 and 4, that this is not really relevant in many credit scoring contexts. 

 

Broadly speaking, we can distinguish between two types of performance measure: 

 

Type 1: Those which compare the score distribution of customers in class 0 with 

the score distribution of customers in class 1. 
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Type 2: Those which recognise that the aim is to carry out an action, with different 

actions being taken for those predicted to be in class 0 and those predicted to be in 

class 1. 

 

Type 2 criteria are the more powerful of the two types, in the sense that they more 

properly reflect the use of the scorecard and its classification rule.  However, they 

require not only the scorecard to have been constructed, but also a classification 

threshold to have been chosen.  Now, clearly, to use the scorecard to make decisions 

(and hence to carry out actions) a classification threshold must have been chosen.  

However, it may not be clear what threshold to choose at the time the scorecard is 

being constructed.  Indeed, the classification threshold may vary over the course of 

time, as economic conditions change.  This mean that circumstances do arise when 

one would like to be able to evaluate how effective is a scorecard without having an 

explicit classification threshold.  Type 1 criteria are appropriate for such 

circumstances.  Familiar examples of type 1 rules are the Gini coefficient, the 

Kolmogorov-Smirnov statistic, the information value, and the mean difference. 

 

The Gini coefficient.  This is usually defined as twice the area between a Receiver 

Operating Characteristic (ROC) curve and the diagonal of an ROC square (Hanley 

and McNeil, 1982). It is equivalent to the area under the ROC curve, the AUC.  These 

measures can be given a natural interpretation, since they are also equivalent to the 

two sample Mann-Whitney-Wilcoxon test statistic, which estimates the probability 

that a randomly drawn member from class 0 will have a lower score than a randomly 

drawn member of class 1.  All of these measures are equivalent in the sense that there 

are direct mathematical functions relating them: given any one, it is straightforward to 
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calculate the others.  We see that their definitions make no reference to any 

classification threshold.  In fact, it can be shown that these measures are equivalent to 

integrating the misclassification rate (see below) over the entire range of possible 

thresholds (Hand and Till, 2001; Hand, 2002), so that these measures do not, in a very 

real sense, require one to choose a classification threshold. 

 

The Kolmogorov-Smirnov test statistic.  This is an estimate of the maximum 

difference between the cumulative distribution functions of the scores of class 0 

customers and class 1 customers.  Hand (2002) shows that this measure is equivalent 

to choosing a classification threshold which minimises a particular weighted 

combination of the proportion of class 0 misclassified and the proportion of class 1 

misclassified, using a classification threshold which is a function of the data.  This is 

potentially very misleading, since the classification threshold should be chosen on the 

basis of the relative misclassification costs, as outlined above. 

 

The information value is a symmetric Kullback-Leibler distance, and as such it 

integrates over all possible values of the score.  This means that it ignores the 

classification threshold and using irrelevant information about the absolute value of 

the scores. 

 

The mean difference score is the test statistic used in Student’s t-test: the standardised 

difference between the means of the class 0 and class 1 score distributions.  This 

ignores the classification threshold and the class priors, and also uses information 

about the absolute values of the scores.  This information is typically irrelevant since 

the same action will be taken for all those customers scoring above the threshold, 
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regardless of their actual score.  The same applies to those scoring below the 

threshold.  The Gini coefficient and Kolmogorov-Smirnov statistic are invariant to 

nonlinear monotonic transformations of the score scale.  The mean difference, 

however, is not.  This means that before this measure can sensibly be used it is 

necessary to transform it to a standard form.  A common way of doing this is to 

transform this scale so that the log(odds) of being in class 1 (say) is a linear function 

of the transformed score.  In fact, if this is done on with score scales which are 

comparable, scorecards can be conveniently compared by using the slope of the 

log(odds) line. 

 

Note that the Gini coefficient, the KS statistic, and the information value do not take 

account of the class priors.  They simply compare the distributions for the class 0 and 

class 1 points, regardless of how many there are of each type.  The same is true of the 

mean difference, except that the two classes may be weighted differentially when 

calculating the common standard deviation by which to standardise the mean 

difference.  In particular, this will mean that the estimate of common standard 

deviation will be similar to the standard deviation of the larger class, and influenced 

relatively little by the smaller class.  This raises a more general point, described in 

Section 3.4: scorecards of certain types will be biased by failing to accord proper 

weight to the smaller class during construction.  Since type 1 measures ignore the 

class sizes, they will not be influenced by lack of balance.  That is, they can be 

calculated and used as estimation and selection criteria with no adjustment for the fact 

that one class is much smaller than the other (with the possible exception of the mean 

difference measure). 
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Type 2 measures use only the true classes of the customers and whether their score is 

above or below the classification threshold t.  Hand (1997, Chapter 8) discusses such 

measures in detail.  A common simplification is to suppose that correct classifications 

incur no cost (because the appropriate action is taken), but that incorrect 

classifications of class 0 (to class 1) incur a cost  (due to taking the action 

corresponding to class 1) while incorrect classifications of class 1 incur a cost c .  

Then the appropriate performance measure to use is the overall misclassification cost, 

defined as n , where  is the number of class k points which are 

misclassified.  Various other aspects of the ‘true-by-predicted’ table of class cross-

classifications are sometimes used, including sensitivity and specificity (proportions 

of the true class correctly classified), and positive and negative predicted value 

(proportions of those classified which turn out to be correct).  Definitions are given in 

Hand, 1997).  These last four terms are also used in epidemiological contexts, but 

elsewhere other terms are used for the same concept (e.g. precision and recall in data 

mining).  However, one looks at the ‘true-by-predicted’ cross-classification table, it 

involves three degrees of freedom, which need to be reduced to one to yield an overall 

measure which can be used to compare scorecards.  Overall cost and misclassification 

rate (which assumes the misclassification cost to be equal) are two ways of doing this, 

but other, more exotic but less theoretically justified methods have also been 

developed (e.g. the geometric mean of precision and recall, or the geometric mean of 

sensitivity and specificity).  Given that the aim of the classification is to choose which 

of two possible actions to take, and that different costs are incurred if inappropriate 

actions are taken, then the overall cost seems the most appropriate measure.  This is 

developed in detail in Hand (2002). 

0c

1

1100 cnc + kn
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Overall misclassification cost can be reinterpreted as a combination of the specificity 

and sensitivity, weighted appropriately by class sizes and the relative misclassification 

costs for members of the two classes.  As such, this measure takes proper account of 

balance or lack of balance.  Other ways of summarising the true-by-predicted table 

may not do this.  That is, they may handle lack of balance inappropriately. 

 

Type 1 measures are equivalent to aggregating values of particular type 2 measures 

over all possible choices of the classification threshold (see, for example, Hand, 

2002).  But this is clearly unrealistic.  Different choices of the classification threshold 

correspond to different values for the relative costs of misclassification, and 

aggregating over all values is equivalent to an assertion that one has no idea at all 

what might be an appropriate measure.  This is seldom the case.  Typically one knows 

that certain values are possible and others not.  Adams and Hand (1999) explore this, 

and define a measure which permits one to use information about likely values for the 

relative sizes of misclassification costs. 

 

3. Strategies for unbalanced classes 

 

3.1 Using costs at the classification stage 

 

In the introductory section, we described the most obvious approach to handling 

unbalanced classes.  This is a two stage approach.  Stage 1 involves estimating 

 using all of the available data.  For example, linear and logistic regression and 

tree classifiers are particularly common, but other methods include neural networks, 

tree classifiers, and so on.  Linear and logistic regression methods have the property 

( xp |1 )
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that the resulting scores are simply weighted sums of the raw customer characteristics 

(perhaps partitioned, or combined in some way - see Hand and Adams (2000), for an 

example), which is often desirable in consumer credit applications. 

 

Stage 2 involves comparing the estimate  with a threshold.  Ideally, the 

threshold will reflect some measure of the relative severity of the two kinds of 

misclassification. 

( xp |1ˆ )

)

 

Many authors have followed this two stage procedure.  It is perhaps the most natural, 

from a traditional perspective, which often regards such problems as two stage 

processes: estimate the distributions involved (model building) and then make the 

decision (by comparing the model with a threshold).  However, despite the simplicity 

and popularity of this approach, it is often not ideal.  In particular, if the estimate 

 is misspecified in some way (for example, it is based on a parametric form 

which does not properly reflect the true distributions), then it may lead to a decision 

surface which is a poor approximation to that for the desired threshold.  We discuss 

the implications of this, and how to avoid it, in Sections 3.4 and 4.  For now, however, 

a simple example will illustrate. 

( xp |1ˆ

 

In standard linear discriminant analysis the assumed common covariance is estimated 

as a weighted average of estimates of the two within-class covariance matrices.  The 

weights are normally taken to be the observed class sizes in the data.  If one class is 

much larger than the other, then the estimate will be biased towards that class.  In 

linear discriminant analysis, the decision surface is taken to be linear, and such 

surfaces will have the same orientation for all classification thresholds.  This 
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orientation is a function of the vector difference between the sample centroids of the 

two classes and the assumed common covariance matrix.  If the estimate of the latter 

is determined essentially by the larger class, then it may lead to a suboptimal decision 

surface for unbalanced cases. 

 

3.2 Separability criteria based on within class score distributions 

 

As described in Section 2, many measures in common use adopt this approach.  

Unfortunately, since the entire purpose of the classification is to take some action, 

such measures are not ideal.  They aggregate in some way over all possible threshold 

(Hand, 2002).  The practical consequence is that such measures may lead to the 

choice of a rule which is globally optimal in some average sense, but in fact performs 

poorly for the actual situation facing one.  Adams and Hand (1999) describe strategies 

for taking into account information on likely threshold values, even if one cannot 

assert these values with precision. 

 

In fact, the use of such global separability measures is widespread.  Every retail bank 

and credit rating agency uses such measures, despite their disadvantages.  An example 

for unbalanced data is given in Ling and Li (1998), who study a marketing application 

in which as little as 1% of the population responds to a promotion.  If those likely to 

respond can be identified a priori, then a more targeted and hence cost-effective 

promotions strategy can be adopted.  If the scores, s, are categorised into groups, 

, then Ling and Li (1998) use a measure of separability equivalent to a 

weighted sum of the estimated probability of being in class 1 in each of the groups: 

 

gisi ,...,1, =

( )∑
i

ii spw |1 .
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3.3 Preprocessing the data 

 

Many studies adopt the strategy of preprocessing the data to (roughly) equalise the 

numbers of elements in the two classes - to achieve better balance.  Kubat and Matwin 

(1997), for example, preprocessed the data by removing unnecessary instances from 

the majority class.  Isolated points from the majority class in regions dense with 

points from the other class, and examples which are redundant in the sense that their 

removal does not affect the decision surface, or those that are close to the decision 

boundary can all be considered as candidates for removal.  The ideas parallel those 

developed some two decades previously, in attempts to speed up the processing time 

of nearest neighbour classification rules (see, for example, Hart, 1968; Gates, 1972; 

Hand and Batchelor, 1978). 

 

An et al (2001) adopted the opposite approach.  Rather than subsampling the larger 

class, they experimented with duplicating the elements of the smaller class (so that 

this class comprised from 4% to 50% of the training data).  Lee (1999, 2000), also 

duplicated elements of the smaller class, but added small random perturbations to the 

replicated points. 

 

Chan and Stolfo (1998) studied a credit card fraud data set, which had about 20% in 

the smaller (fraudulent) class.  This is exceptionally large for the proportion of 

fraudulent customers in a data set, and arises because a pre-processing stage has been 

applied which eliminated many of those thought very unlikely to be fraudulent.  Chan 

and Stolfo tackled the lack of balance by randomly partitioning the larger set into four 
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non-overlapping samples, and combining each of these with the smaller set, to yield 

four smaller data sets with equal numbers from each class.  The four resulting 

classification rules were merged to yield a meta-classifier.  This might not be a very 

effective strategy when the imbalance is marked, or if very few points are available 

from the smaller class. 

 

Many of the subsampling or oversampling procedures are rather ad hoc.  Elkan (2001) 

describes what sampling fractions are appropriate for given cost ratios. 

 

Rule 2 can be alternatively written as: assign a customer with characteristic vector x to 

class 1 if  

( ) ( ) ( ) ( ) rpxppxp 10ˆ0|ˆ1ˆ1|ˆ >   (1) 

and to class 0 otherwise, where  is the estimated probability that a customer 

from class k will have characteristic vector x, and  is the estimated overall 

probability of belonging to class k. 

( kxp |ˆ )

( )kp̂

 

(1) is equivalent to  

( ) ( ) ( ) ( )1ˆ0ˆ0|ˆ1|ˆ prpxpxp >   (2) 

Ideally, subsampling would reduce the class 0 prior by a factor of r1 , so that the new 

class priors become π , estimated by π , the proportion of the (sampled) 

data set which belong to class k.  Expression (2) then becomes 

( ) 1,0, =kk ( )kˆ

( ) ( ) ( ) ( )1ˆ0ˆ0|ˆ1|ˆ ππ>xpxp   (3) 

so that the classification rule is simply: assign a customer with characteristic vector x 

to class 1 if 
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( ) ( )
( ) ( )

( )
( )

1
|0ˆ̂
|1ˆ̂

0ˆ0|ˆ
1ˆ1|ˆ

>=
xp
xp

xp
xp

π
π   (4) 

and to class 0 otherwise, where the  are based on the sampled data.  This is, of 

course, equivalent to Rule 1, but using the  in place of the raw (unsampled) 

data, so that an appropriate threshold is used. 

( xkp |ˆ̂

p̂̂

)

)( xk |

 

A similar derivation applies if class 1 is oversampled, rather than class 0 subsampled. 

 

The derivation of (4) assumed that the sampling fraction was r1 , this being the 

fraction which is appropriate to balance the relative severities of the two kinds of 

misclassification.  If a different sampling fraction is used then a poor rule could result.  

For example, many authors simply try roughly to equalise the sizes of the two classes.  

This confounds differences between class sizes with the relative severities of the two 

kinds of misclassification.  The two need have no relationship at all. 

 

The sampling approach (assuming the correct sampling fraction is used) has the merit 

that it focuses attention on the correct decision surface.  That is, it is equivalent to 

using the optimal threshold (  of Rule 2, rather than the inappropriate threshold 

0.5 of Rule 1.  However, one might have doubts about the subsampling strategy, on 

the grounds that it sacrifices information.  Likewise, the oversampling strategy either 

fails to model the variation of the smaller class properly (if the data from this class are 

simply replicated) or attempts to model this variation, but in a way which is not 

proven to be correct (by perturbing the replicates).  Section 3.4 describes an 

alternative approach which sidesteps these problems. 

) 11 −+ r
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3.4 Using costs when building the scorecard 

 

The strategy described in Section 3.1 is based on the assumption that the relative 

misclassification severities, equivalently the particular threshold to use in the 

classification rule, should not affect the estimate .  This is a reasonable 

assumption if one believes that the model form underlying the estimate  is 

sufficiently flexible to include the true distributions.  For example, if one believes that 

the contours of the function  really are linear in the raw characteristics, then 

linear and logistic regression models are appropriate to consider.  Of course, the fact 

is that one will seldom have such confidence, although one might believe that a given 

parametric model form provides a reasonable approximation.  In contrast, 

nonparametric approaches, such as kernel and nearest neighbour methods, do not 

restrict the model (indeed, subject to certain regularity conditions, they can be shown 

to be able to model any distribution, at least asymptotically).  However, in the credit 

scoring context, there is a premium on simplicity.  Often it is necessary to explain the 

reasoning behind the rules to fairly non-numerate people, and often there are legal 

requirements that one must be able to indicate on what grounds a decision has been 

made.  Such considerations lead to an emphasis on simple parametric models (see 

Adams and Hand, 1999). 

( xp |1ˆ )

)

)

( xp |1ˆ

( xp |1

 

In these circumstances, model fitting procedures typically aggregate the quality of fit 

over the entire data space.  For example, least squares regression is based on a 

criterion which combines the sum of squared residuals from all data points.  Likewise, 

maximum likelihood methods combine the contribution to the likelihood from all the 

observed data points.  Such aggregation will yield a model which is the best overall 
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model, where the meaning of ‘best’ depends on the particular criterion chosen - sum 

of squares, likelihood, etc.  However, since they do aggregate over all data points - 

over the entire data space - they combine the accuracy of the model in the particular 

regions of interest (those given by the threshold) with all other regions (those far from 

the threshold).  In particular, it is entirely possible that the fit in the region of interest 

is not very good, even though the overall average fit is the best that can be achieved.  

It means that a better local model, in the region which matters, might be possible. Put 

another way, it means that the relative severities of the two kinds of misclassification 

should be taken into account when the model is constructed.  These ideas are 

described in more detail in Hand and Vinciotti (2002) and are illustrated in Section 4 

below. 

  

More generally than the particular model we have developed, several authors have 

explored the use of relative misclassification penalties when constructing classifiers, 

including Pazzani et al (1994), Turney (1995), Cardie and Howe (1997), Bradford et 

al (1998), Fan et al(1999), Domingos (1999), Verlopoulos et al (1999), Wan et al 

(1999), and Ting (2000).   

 

4. Local scorecard models 

 

Hand and Vinciotti (2002) give an example in which the contours of  are 

linear, but not parallel (the support of  is specified as zero in regions where 

different contours may cross, so that there are no conflicts).  Logistic regression 

assumes parallel linear contours.  In effect, such a model ‘averages’ the non-parallel 

contours of the example over the entire data space.  If, by accident, the particular 

( xp |1 )

( )xp
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contour corresponding to the threshold (  is parallel to this ‘average’ contour, 

then the model will yield good predictions.  On the other hand, if the contour of 

interest is not parallel to this ‘average’ contour then the predictions could be poor.  In 

the case when one of the classes is very small, the data points from this class may lie 

in a relatively small region of the data space.  If this happens, the aggregation process 

when a global parametric model is fitted will yield a model which has greatest 

accuracy in the vicinity of the data points from the smaller class.  This will generally 

not correspond to threshold values which weight the relative misclassifications 

appropriately, so that the effect will be more marked in unbalanced situations. 

) 11 −+ r

 

If the problem with the standard models is that it aggregates over all data points, 

‘averaging’ over all the different contours, then one can ease the problem by focusing 

attention around the contour which matters.  Data far from this contour are at best 

irrelevant, and at worst misleading, leading to a poor estimate.  Of course, one cannot 

take this principle too far.  Thus one might weight the data so that points close to the 

relevant contour are weighted more heavily.  The problem is, of course, that one 

cannot identify the relevant data because one does not know the position of the 

contour.  Thus suggests an iterative, or at least several-stage process, in which one 

uses an estimate of the relevant contour to provide information on the weights, which 

in turn leads to an improved estimate, and so on.  Hand and Vinciotti (2002) describe 

such an approach using a modified likelihood function, and we use method in the 

examples below, using real credit data sets. 

 

The appropriate performance measure to use here is the overall misclassification cost, 

, defined above, where we have taken .  For a given cost pair, 1100 cncn + 110 =+ cc
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this measure was calculated for both the standard (global) logistic regression model 

and the local logistic model described above.  As the cost varies (as one chooses 

different costs) so, of course, different contours become the most important contour.  

Thus, for both global and local models, a threshold will be chosen to match the costs: 

this threshold will be ( ) ( ) 0
1

01
1 11 cccr =+=+ −−

( )xp |1ˆ

.  For global logistic models the 

same probability estimate  will be used for all costs.  In contrast, for the local 

model different estimates will be used - estimates which are tuned to the cost.  To 

compare the two models, we used the difference between the global and local costs.  

A positive value of the (global-local) difference means that the global model has 

greater cost - that the local model yields superior cost weighted classifications. 

 

Figures 1 to 3 show the values of global-local cost for three examples.  As can be 

seen, in all cases, over the entire range of relative misclassification costs, the local 

method usually yields a smaller overall cost: the local method is usually, though not 

always, superior. 

 

Example 1: These data were supplied by a major UK bank. They consist of 21618 

unsecured personal loans with a 24-month term, collected over the two year 

period January 1995 to December 1996. An account is defined as bad if it is at 

least three months in arrears. With this definition, 11% of customers turn out to be 

bad.  16 variables describe the application for the loan. 

 

Example 2: These data were supplied by a major UK credit card company. The aim of 

the analysis was to predict the future behaviour of a customer based on their 
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previous behaviour. There were 772 observations on 8 variables, with 9% of the 

data in class 1 and 91%in class 0. 

 

Example 3: These data were supplied by a major UK bank.  They describe customers 

who have defaulted on a loan in some well-defined sense and from whom the 

bank is trying to recover the loan. A bad account is defined as one that has spent 

more than a month in this “collections” state. The data consists of 6811 

observations on 11 variables. 9% of the data are in the smaller class. 

 

In fact, further data were also available for examples 2 and 3 above, so we also 

explored the effectiveness of the local model in more balanced situations. 

 

Example 4: These data arise from the same situation as Example 2, but consist of 

1490 observations on 8 predictor variables, with 47% of the customers in class 1.   

 

Example 5: These data arise from the same situation as Example 3, but consist of 

10102 observations on 11 variables, with 39% of the customers being in class 1. 

 

In both of these (more balanced) cases, the local model is never worse than the global 

model. 
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Figure 1: Global-local costs for Example 1. 
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Figure 2: Global-local costs for Example 2. 
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Figure 3: Global-local costs for Example 3. 
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Figure 4: Global-local costs for Example 4. 
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Figure 5: Global-local costs for Example 5. 
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5. Conclusion 

 

Unbalanced data sets, those in which one of the (two) classes is much larger than the 

other, are common in retail banking applications, and several strategies have been 

proposed for building scorecards using such data sets.  The most straightforward 

approach is simply to adjust the threshold with which  is compared.  If  

is based on a model which is thought to properly reflect the true probability structure 

, then this is fine.  However, often, especially in retail banking applications, a 

simple form is adopted for the estimate, and it is difficult to argue that this is likely to 

properly reflect the truth.  In this case, the probability estimate  is obtained as 

an aggregate value over the entire data set, so that it may not yield a very good 

estimate for any particular value.  In particular, it may not yield an accurate estimate 

of the contour of  which is to be used for classification. 

( xp |1ˆ )

)

)

( )xp |1ˆ

( xp |1

( xp |1ˆ

( ) txp =|1

 

Another class of methods is based on selectively sampling from the two classes, either 

to reduce the size of the larger class or to increase the size of the smaller.  Often the 
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sampling fraction (which is larger than unity in the second case) is taken to be such as 

to yield approximately equal class sizes.  This, however, is unlikely to be the optimal 

sampling fraction.  If this method is adopted, then sampling should be such as to yield 

a class size ratio determined by the relative costs of misclassification for customers 

from the two classes. 

 

The sampling approach is equivalent to adjusting the relative misclassification costs 

of customers from the two classes.  This is easily seen from (2), which may be 

rewritten as 

( ) ( ) ( ) ( )1ˆ0ˆ0|ˆ1|ˆ 10 pcpcxpxp >  

From this, we see that artificially distorting the  yields an effect equivalent to 

adjusting the . 

( )kp̂

kc

 

Even if an optimal sampling fraction is chosen, the sampling methods leave one with 

the suspicion that something better could be done.  After all, subsampling appears to 

discard information, while oversampling either ignores natural variability or 

artificially introduces it.  In any case, just as with the simple method based on 

adjusting the threshold, sampling methods are global.  They aggregate information 

from the entire data set and do not concentrate attention where it matters. 

 

The final strategy is to take account of the misclassification costs - of which contour 

matters - when the probability estimates  are made.  In particular, we describe 

such an approach which is based on logistic regression, and so preserves the simple 

linear form of such models.  This method then concentrates estimation power in the 

region of this contour, so that irrelevant contours, which may merit a model with 

( xp |1ˆ )
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completely different parameters, albeit of the same form, do not influence the 

estimate.  This strategy is appropriate whether or not the classes are unbalanced, 

though it may be particularly pertinent in the unbalanced case.  Our empirical 

investigations show that this method generally improves on straightforward logistic 

regression. 
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