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Abstract

We develop a new algorithm for inference in structural vector autoregressions
(SVARs) identified with sign restrictions that can accommodate big data and modern
identification schemes. The key innovation of our approach is to move beyond the
traditional accept-reject framework commonly used in sign-identified SVARs. We show
that embedding the elliptical slice sampling within a Gibbs sampler can deliver dramatic
gains in computational speed and render previously infeasible applications tractable.
To illustrate the approach in the context of sign-identified SVARs, we use a tractable
example. We further assess the performance of our algorithm through two applications:
a well-known small-SVAR model of the oil market featuring a tight identified set, and a
large SVAR model with more than ten shocks and 100 sign restrictions.
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1 Introduction

The growing availability of large datasets has led to a renewed interest in the use of large-scale

time-series models in economics. In univariate settings, Giannone, Lenza, and Primiceri

(2021) show that densely parameterized models equipped with appropriate shrinkage priors

typically outperform sparse alternatives in terms of predictive accuracy. In multivariate

settings, Bańbura, Giannone, and Reichlin (2010) and Koop (2013) have demonstrated that

Bayesian shrinkage enables the estimation of large vector autoregressions (VARs) without

compromising out-of-sample performance, and more recently, Crump, Eusepi, Giannone,

Qian, and Sbordone (2025) show how this approach can be used for policy analysis. These

insights have direct implications for structural vector autoregressions (SVARs)—one of the

major workhorses for studying the propagation of structural shocks in macroeconomics. If

prediction tasks are better handled by large models, then inference on structural shocks using

SVARs should similarly benefit from broader information sets, in line with early arguments

in favor of using large SVARs to understand the macroeconomic effects of monetary policy

(e.g., Leeper, Sims, and Zha, 1996; Bernanke, Boivin, and Eliasz, 2005).

Within the SVAR paradigm, sign restrictions have become a particularly popular method

for identifying the parameters of interest, typically impulse responses. The conventional

Bayesian approach to implementing sign restrictions—pioneered by Faust (1998), Canova

and De Nicoló (2002), and Uhlig (2005) and extended by Rubio-Ramı́rez, Waggoner, and

Zha (2010)—relies on sampling from the reduced-form posterior and a uniform prior over

the set of orthogonal matrices, combined with an accept-reject approach to impose the

restrictions. The method is straightforward to implement and produces independent draws.

However, it becomes increasingly infeasible in large systems due to the vanishing probability

of sampling admissible orthogonal matrices—especially as the number of sign restrictions

needed to identify multiple structural shocks increases, tightening the identified set.1 Recent

1We use the term admissible to refer to orthogonal matrices that satisfy the sign restrictions given the
reduced-form parameters.
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work by Chan, Matthes, and Yu (2025) introduces algorithmic refinements by exploiting

symmetry and permutation invariance in the space of orthogonal matrices, but even these

improved methods face limitations under tight identification. Notably, such computational

burdens are not unique to high-dimensional models. These challenges have coincided with

advances in identification strategies that also lead to tighter identified sets—even in low-

dimensional SVARs—such as ranking restrictions and elasticity bounds (Kilian and Murphy,

2012; Amir-Ahmadi and Drautzburg, 2021), as well as narrative sign restrictions (Antoĺın-Dı́az

and Rubio-Ramı́rez, 2018; Ludvigson, Ma, and Ng, 2021). These approaches go beyond

traditional sign restrictions while preserving their intuitive appeal and further reducing the

volume of the admissible space of orthogonal matrices. Together, these trends—the adoption

of larger information sets and the use of tighter identification strategies—and the limitations

of accept-reject sampling methods underscore the need for alternative algorithms for Bayesian

inference in SVARs identified with sign restrictions.

In this paper, we break with the accept-reject tradition and show that embedding the

elliptical slice sampling method of Murray, Adams, and MacKay (2010) within a Gibbs

sampler delivers substantial gains in computational speed, rendering previously infeasible

applications tractable. Like in the conventional approach, using the uniform prior over

the set of orthogonal matrices, our goal is to draw from the posterior distribution of the

orthogonal reduced-form parameters conditional on sign restrictions. However, by eliminating

the accept-reject step and directly conditioning on the sign restrictions within the Gibbs

sampler, our algorithm overcomes the bottlenecks that arise under tight identification—thus

enabling dynamic structural analysis with big data and rich identification schemes. To

illustrate the advantages of our approach, we consider a very simple example similar to the

one in Granziera, Moon, and Schorfheide (2018) and demonstrate that the efficiency of the

accept-reject algorithm hinges critically on the size of the identified set. As the identified

set becomes tighter, the accept-reject algorithm slows down dramatically. In contrast, our

Gibbs sampler efficiently shrinks the support of the candidate impulse responses toward the
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identified set, maintaining speed even under stringent restrictions.

For clarity and comparability with the literature, when describing our proposed Gibbs

sampler algorithm, we adopt the conjugate normal-inverse-Wishart prior for the reduced-form

parameters as our baseline. While this prior is popular due to its analytical convenience,

it precludes cross-variable shrinkage. To address this limitation, we extend our algorithm

to accommodate alternative priors, including the independent normal-inverse-Wishart and

the asymmetric prior of Chan (2022), both of which support cross-variable shrinkage. We

evaluate the performance of our approach using two applications. In the first, we replicate

Kilian and Murphy (2014), a model of the world oil market in which the standard accept-

reject algorithm fails. To address this infeasibility, Kilian and Murphy (2014) adopt an

approach similar to that of Chan, Matthes, and Yu (2025), exploiting permutations and

sign alternations. Our algorithm handles this application multiple times faster than the

accept-reject approach, though the computational times of both approaches are within a

range most practitioners would find acceptable. However, once we tighten the identified

set by adding a restriction on the price elasticity of oil demand—motivated by Caldara,

Cavallo, and Iacoviello (2019)—the difference in performance becomes substantial: The

accept-reject algorithm moves from requiring about 20 minutes to produce 1,000 draws to

nearly eight hours, whereas the computational time of our Gibbs sampler remains roughly

constant, increasing only from about 2 minutes to 5 minutes for the same number of effective

draws. In the second application, we revisit the structural analysis in Chan, Matthes, and

Yu (2025), who use Crump et al.’s (2025) large SVAR model of the U.S. economy to identify

eight structural shocks. While the latter uses the Minnesota prior, the former relies on the

asymmetric prior of Chan (2022). To simplify the comparison, we revert to the Minnesota

prior when applying both the accept-reject algorithm and the Gibbs sampler. We show that

as the number of shocks under analysis increases, the efficiency of the algorithm in Chan,

Matthes, and Yu (2025) declines markedly, eventually becoming impractical. With ten shocks,

it would take several days to obtain 1,000 draws. In contrast, the computational time of
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our Gibbs sampler is largely insensitive to the number of identified structural shocks. Even

with ten shocks, it would take only a few minutes to obtain 1,000 effective draws. We also

show that these striking differences are robust to using the asymmetric prior instead of the

Minnesota prior.

We need to highlight the contemporaneous contribution of Read and Zhu (2025), who

also propose an algorithm based on the slice sampling method but it is limited to the use of

the conditionally uniform prior described in Uhlig (2017) and Amir-Ahmadi and Drautzburg

(2021). While this prior can deliver substantial speed gains without the need of a Gibbs

sampler, it does not satisfy the requirements set out in Arias, Rubio-Ramı́rez, and Waggoner

(2025). As we explain in Section 8, this has important consequences: it implicitly alters the

prior over the impulse responses in a way that depends on the identification scheme. This

entanglement of inference and identification makes it difficult to know whether differences

in posterior inference reflect genuine differences in identification or are merely artifacts of

unintended changes in the prior distribution. By contrast, the uniform prior over orthogonal

matrices satisfies the requirements in Arias, Rubio-Ramı́rez, and Waggoner (2025) and,

therefore, guarantees that inference remains invariant to the set of imposed restrictions and

allows researchers to cleanly separate the role of prior beliefs from the role of identification

assumptions.

The remainder of the paper is organized as follows. Sections 2 through 4 introduce the

SVAR model, the sign restrictions, and the baseline conjugate uniform-normal-inverse-Wishart

(UNIW) prior. Section 5 describes the problem in a simple environment. Section 6 presents

our Gibbs sampler featuring the elliptical slice sampling and outlines its theoretical properties.

Section 7 applies the algorithm to two empirical settings: a small SVAR model of the world

oil market and a large SVAR model of the U.S. economy. Section 8 shows the shortcomings

of the conditionally uniform prior. Section 9 concludes. The Appendix adapts the algorithm

to two popular priors in SVAR analysis, the independent normal-inverse-Wishart prior and

the asymmetric prior proposed by Chan (2022), and it does some robustness analysis.
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2 The Model

Consider the SVAR with the general form,

y′tA0 = x
′
tA+ ε

′
t, 1 ≤ t ≤ T, (1)

where A′+ = [A
′
1 ⋯ A′p c′] and x′t = [y

′
t−1 ⋯ y′t−p 1] for 1 ≤ t ≤ T , and where yt is an n × 1

vector of endogenous variables, εt is an n × 1 vector of exogenous structural shocks, Aℓ

is an n × n matrix of parameters for 0 ≤ ℓ ≤ p with A0 invertible, c is a 1 × n vector of

parameters, p is the lag length, and T is the sample size. Hence, the dimension of A+ is m×n,

where m = np + 1. The vector εt, conditional on past information and the initial conditions

y0, . . . ,y1−p, is Gaussian with mean zero and covariance matrix In, the n × n identity matrix.

The reduced-form representation implied by Equation (1) is

y′t = x
′
tB+u

′
t, for 1 ≤ t ≤ T, (2)

where B = A+A
−1
0 , u′t = ε

′
tA
−1
0 , and E [utu′t] = Σ = (A0A

′
0)
−1
. The matrices B and Σ are

the reduced-form parameters, while A0 and A+ are the structural parameters. While B is an

m × n matrix, Σ belongs to the set S(n), which is the set of n × n positive definite matrices.

It will be useful to partition B as follows: B = [B′1 ⋯ B′p d′]
′
where Bℓ is an n × n matrix

of parameters for 1 ≤ ℓ ≤ p, and d is a 1 × n vector of parameters.

It is well known that for linear Gaussian models of the type studied in this paper, (A0,A+)

and (Ã0, Ã+) are observationally equivalent if and only if they have the same reduced-form

representation. This implies that the structural parameters (A0,A+) and (Ã0, Ã+) are

observationally equivalent if and only if A0 = Ã0Q and A+ = Ã+Q for some Q ∈ O(n), where

O(n) is the set of all n × n orthogonal matrices. To solve the identification problem, one

often imposes sign restrictions on either the structural parameters or some function of the

structural parameters, such as the impulse responses. To simplify the notation, we summarize
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the sign restrictions by SS(A0,A+) > 0, and let [SS(A0,A+) > 0] be an indicator function

that equals one if the sign restrictions are satisfied and zero otherwise.

3 The Orthogonal Reduced-Form Parameterization

Equation (1) represents the SVAR in terms of the structural parameterization, which is

characterized by (A0,A+). The SVAR can alternatively be written in what we call the

orthogonal reduced-form parameterization; see Arias, Rubio-Ramı́rez, and Waggoner (2018).

This parameterization is characterized by the reduced-form parameters (B,Σ) together with

an orthogonal matrix Q, and is given by the following equation:

y′t = x
′
tB+ε

′
tQ
′ h(Σ), for 1 ≤ t ≤ T, (3)

where the n × n matrix h(Σ) is any decomposition of the covariance matrix Σ satisfying

h(Σ)′h(Σ) = Σ. We take h to be the Cholesky decomposition, though any differentiable

decomposition would suffice.

Given Equations (1) and (3), we can define a mapping between (B,Σ,Q) and (A0,A+)

by

f(B,Σ,Q) = (h(Σ)−1Q
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A0

,Bh(Σ)−1Q
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A+

).

This mapping makes clear how the structural parameters depend on the reduced-form

parameters and orthogonal matrices. Given the reduced-form parameters, each value of

Q ∈ O(n) can be viewed as a particular choice among observationally equivalent structural

parameters. Thus, we can always write the sign restrictions in terms of the orthogonal

reduced-form parameterization. Hence, let [SR(B,Σ,Q) > 0] be an indicator function in

terms of the orthogonal reduced-form parameterization that equals one if the sign restrictions

are satisfied and zero otherwise, where SR(B,Σ,Q) = SS(f(B,Σ,Q)).

We can also define the impulse responses. Let ut = L0 εt for 1 ≤ t ≤ T , where L0 is an
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n × n invertible matrix that represents impulse responses at horizon zero. Given L0 and B, it

is possible to obtain the impulse responses beyond horizon zero recursively as

Lℓ =

min{ℓ,p}

∑
k=1

B′k Lℓ−k, ℓ > 0. (4)

We combine the impulse responses from horizons one through p and the constant term c into

a single matrix, L+ = [L
′
1 ⋯ L′p c′]

′
, where the maximum horizon of the impulse response

in L+ matches the lag length in Equation (1). The impulse response parameterization is

characterized by (L0,L+). Given the function f and Equation (4), we can also define a

mapping from (B,Σ,Q) to (L0,L+) by

ϕ(B,Σ,Q) = (h(Σ)′Q
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

L0

, [L1(B,Σ,Q)′ ⋯ Lp(B,Σ,Q)′ Q′(h(Σ)−1)′d′]
′

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
L+

), (5)

where Lℓ(B,Σ,Q) for 1 ≤ ℓ ≤ p is implicitly defined by Equation (4). The functions f and ϕ

are invertible, and f , ϕ, and their inverses are differentiable.

4 Conjugate Priors and Posteriors

For the reduced-form representation in Equation (2), the normal-inverse-Wishart family of

distributions is conjugate. A conjugate normal-inverse-Wishart distribution over the reduced-

form parameters is characterized by four parameters: a scalar ν ≥ n, an n × n symmetric

and positive definite matrix Φ, an m × n matrix Ψ, and an m ×m symmetric and positive

definite matrix Ω. We denote this distribution by NIW (ν,Φ,Ψ,Ω) and its density by

NIW(ν,Φ,Ψ,Ω)(B,Σ). Furthermore,

NIW(ν,Φ,Ψ,Ω)(B,Σ) ∝ ∣det(Σ)∣−
ν+n+1

2 e−
1
2
tr(ΦΣ−1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
inverse-Wishart

∣det(Σ)∣−
m
2 e−

1
2
vec(B−Ψ)′(Σ⊗Ω)−1 vec(B−Ψ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
conditionally normal

.
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If the prior distribution over the reduced-form parameters is NIW (ν̄, Φ̄, Ψ̄, Ω̄), then the

posterior distribution over the reduced-form parameters is NIW (ν̃, Φ̃, Ψ̃, Ω̃), where

ν̃ = T + ν̄,

Ω̃ = (X′X + Ω̄
−1
)−1,

Ψ̃ = Ω̃(X′Y + Ω̄
−1
Ψ̄),

Φ̃ =Y′Y + Φ̄ + Ψ̄
′
Ω̄
−1
Ψ̄ − Ψ̃

′
Ω̃
−1
Ψ̃,

for Y = [y1 ⋯ yT ]
′ and X = [x1 ⋯ xT ]

′.

The conjugate normal-inverse-Wishart prior is widely used in Bayesian VARs due to its

computational convenience and desirable properties (see Uhlig, 1994; Faust, 1998; Uhlig, 2005;

Sims and Zha, 1998; Rubio-Ramı́rez, Waggoner, and Zha, 2010; Kilian and Murphy, 2012,

2014). When combined with the conventional accept-reject approach, it produces independent

draws from the posterior, which makes it especially attractive. However, it also imposes a

Kronecker structure on the prior distribution of B, thereby constraining its covariance matrix,

and it rules out cross variable shrinkage. Consequently, researchers oftentimes consider:

(i) the independent normal-inverse-Wishart prior, which avoids the Kronecker covariance

structure and allows for greater flexibility; and (ii) the asymmetric priors proposed by Chan

(2022), which is becoming popular because it accommodates cross-variable shrinkage. Even

though, we will present the methodology using the conjugate normal-inverse-Wishart prior,

due to its prevalence in the literature, in Appendix II.2 we also adapt the algorithm to these

alternative priors.

Given the results in Arias, Rubio-Ramı́rez, and Waggoner (2025), we will combine the

conjugate prior with the following uniform density over the set of orthogonal matrices:

π(Q ∣ B,Σ) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

κ if Q ∈ O(n),

0 otherwise,
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where ∫O(n) κdQ = 1. This choice can be motivated by the fact that it assigns equal prior

weight to both observationally equivalent vectors of impulse responses and observationally

equivalent structural parameters (see Arias, Rubio-Ramı́rez, and Waggoner, 2025). We

call this combination the conjugate uniform-normal-inverse-Wishart distribution over the

orthogonal reduced-form parameterization; denote it by UNIW (ν,Φ,Ψ,Ω), and denote its

density over the orthogonal reduced-form parameterization by UNIW(ν,Φ,Ψ,Ω)(B,Σ,Q). It

is the case that

UNIW(ν,Φ,Ψ,Ω)(B,Σ,Q) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

κNIW(ν,Φ,Ψ,Ω)(B,Σ) if Q ∈ O(n),

0 otherwise.

(6)

Inference Based on Sign Restrictions

Our objective will be to draw from the posterior of the orthogonal reduced-form parameters

conditional on the sign restrictions,

p(B,Σ,Q ∣ (yt)
T
t=1,SR(B,Σ,Q) > 0) =

[SR(B,Σ,Q) > 0] UNIW (ν̃, Φ̃, Ψ̃, Ω̃)

Pr (SR(B,Σ,Q) > 0 ∣ (yt)
T
t=1)

, (7)

and then use f and ϕ to transform the draws to the desired vector of objects of interests such

as the structural parameters or impulse responses. The traditional approach to obtain draws

from Equation (7) uses the following accept-reject algorithm:

Algorithm 1. This algorithm independently draws from p(B,Σ,Q ∣ (yt)
T
t=1,SR(B,Σ,Q) > 0)

as described in Equation (7).

1. Draw (B,Σ) independently from the NIW (ν̃, Φ̃, Ψ̃, Ω̃) distribution.

2. Draw Q independently from the uniform distribution over O(n).

3. Keep (B,Σ,Q) if [SR(B,Σ,Q) > 0] = 1.

4. Return to Step 1 until the required number of draws has been obtained.

9



As mentioned above, while this algorithm has been widely adopted, it is well known that

there are cases in which the identified set is narrow, limiting the efficiency of the algorithm (see

e.g., Kilian and Murphy, 2014; Baumeister and Hamilton, 2024; Chan, Matthes, and Yu, 2025;

Read and Zhu, 2025). In the next section, we use a simple example to show its shortcomings.

We will also show how a carefully designed elliptical slice sampling algorithm is not subject

to this limitation and delivers dramatic speed gains. Importantly, Chan, Matthes, and Yu

(2025) show a new numerically efficient version of Algorithm 1 that facilitates the drawing

for a large number of structural restrictions. Therefore, when comparing our algorithm to

the traditional accept-reject approach, we will use this efficient version as the benchmark.

5 The Problem with Accept-Reject Sampling

For the purposes of demonstrating the limitations of the accept-reject approach, it suffices to

work with a simple example similar to the one explored by Granziera, Moon, and Schorfheide

(2018). Thus, consider the following SVAR, with n = 2 and m = 0, written under the

orthogonal reduced-form parameterization:

y′t = (yt,1, yt,2) = ε
′
t(ΣtrQ)

′,

where we let Σtr = h(Σ)′. Initially, we assume Σtr is known, but we will later relax this

assumption. Let σtr,ij denote the i-th row and j-th column entry of Σtr. For simplicity, we

set σtr,11 = σtr,22 = 1 and σtr,21 = −0.9. Note that the contemporaneous impact matrix L0 is

defined as L0 =ΣtrQ. Henceforth, we focus on the impulse responses to the first shock—it is

straightforward to extend our analysis to the second shock.

Given the above, it is easy to see that the impact of the first shock on yt,1 and yt,2

can be written as ℓ11 = q11 and ℓ21 = −0.9q11 + q21, where ℓi1 and qi1 are the (i,1) entries

of L0 and Q, respectively. We now impose sign restrictions requiring that ℓ11 and ℓ21 are

nonnegative. These sign restrictions imply q11 ≥ 0 and q21 ≥ 0.9q11. Figure 1a illustrates this

10



(a) Identified set (b) Number of Q1 draws vs. arc length

Figure 1: (a) Identified set (red) and domain of (q11, q21)
′
(green). (b) Expected number

of draws required to meet the sign restrictions as a function of the identified set size (arc
length).

setup graphically. The green circle represents the domain of Q1 = (q11, q21)
′
, while the red

arc highlights the identified set that satisfies the imposed sign restrictions.

When using the popular accept-reject sampling approach described in Algorithm 1,

obtaining a draw from the posterior distribution of impulse responses satisfying the sign

restrictions involves drawing a 2 × 1 vector x1 from a N(0, I2) distribution and converting it

into a unit vector q1 via the normalization q1 = x1 /∣∣x1 ∣∣. The draw is accepted only if q1

satisfies the sign restrictions. Unrestricted draws (q11, q21)
′
lie uniformly on the entire unit

circle (depicted in green), whereas the accepted draws are uniformly distributed only over

the subset of the unit circle that meets the sign restrictions (the red arc).

The efficiency of the posterior simulator based on this type of accept-reject algorithm

depends heavily on the size of the identified set. As the identified set becomes tighter, we

naturally expect to discard a larger number of draws. Indeed, the expected number of draws

required to satisfy the sign restrictions is inversely proportional to the probability of meeting

those restrictions. Figure 1b illustrates this relationship analytically: the green line plots
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the expected number of draws needed to satisfy the sign restrictions as a function of the size

of the identified set (i.e., the length of the red arc). More specifically, we generate smaller

identified sets by gradually moving the left endpoint of the red arc toward its right endpoint.

As shown in the figure, the expected number of draws required increases hyperbolically as the

identified set shrinks. In realistic scenarios, as illustrated later in our empirical applications,

the number of draws required can become quite large, rendering the algorithm inefficient.

In this paper, we propose a Gibbs sampling algorithm based on the elliptical slice sampling,

which draws from the identified set more efficiently. This method can be viewed as an adaptive

Metropolis-Hastings algorithm that transitions from the previous draw x
(0)
1 to a new draw

using the following elliptical proposal:

x
(⋆)
1 = ν sin(θ) + x

(0)
1 cos(θ), where θ ∈ [0,2π],

where ν is a 2 × 1 vector drawn from N(0, I2). The scalar parameter θ controls the step

size of the proposed move. For instance, when θ is close to 0, the proposal is closer to the

previous draw x
(0)
1 , whereas when θ approaches π/2, the proposal is closer to the newly drawn

random vector ν. Unlike a conventional Metropolis-Hastings algorithm, the elliptical slice

sampling adaptively searches for a suitable step size to guarantee acceptance of the proposed

draw at every iteration. Intuitively, given that the previous draw lies within the identified

set, the elliptical slice sampling ensures that the new proposal x
(⋆)
1 also remains within the

identified set by uniformly drawing θ from a candidate set that shrinks exponentially. Under

appropriate regularity conditions, this procedure ensures the validity and convergence of the

Gibbs sampling algorithm as long as the random variable of interest, in this case q1, can be

written as a transformation of a normally distributed random variable (see Murray, Adams,

and MacKay, 2010; Natarovskii, Rudolf, and Sprungk, 2021, for details).

The fact that the candidate set for θ shrinks exponentially is an appealing feature, as it

significantly reduces the number of candidate draws of q1 needed to satisfy the restrictions.

12



This efficiency gain becomes particularly important as the dimension of the model increases,

since generating new draws of q1 is computationally costly. Figure 1b (red line) displays the

average number of trials required by the elliptical slice sampling to generate an accepted

draw of q1 within the identified set as a function of the length of the identified set. The

number of required trials for the conventional accept-reject sampler grows hyperbolically,

whereas that for elliptical slice sampling increases at a much slower rate.2

In the following section, we extend this simple example into a more realistic and useful

setting by: (1) identifying multiple shocks simultaneously rather than just a single shock;

(2) allowing sign restrictions to take a general form; and (3) developing a Gibbs sampling

algorithm that uses the elliptical slice sampling and targets the posterior of the orthogonal

reduced-form parameters conditional on the sign restrictions.

6 An Algorithm

In this section, we propose a Gibbs sampler algorithm that employs the elliptical slice sampling

to draw from the posterior of the orthogonal reduced-form parameters conditional on the

sign restrictions defined in Section 4. The algorithm relies on Assumption 1.

Assumption 1. The following conditions hold:

1.1 For almost all (B,Σ), the set {Q ∈ O(n) ∶ SR(B,Σ,Q) > 0} has positive measure.

1.2 For almost all (B,Q), the set {Σ ∈ S(n) ∶ SR(B,Σ,Q) > 0} has positive measure.

1.3 For almost all (Σ,Q), the set {B ∈ Rm×n ∶ SR(B,Σ,Q) > 0} has positive measure.

As noted above, the algorithm is formulated under a conjugate prior over the reduced-

form parameters. Given the choice of a conjugate uniform-normal-inverse-Wishart prior

2To make a fair comparison, one should account for the serial correlation introduced by the Gibbs sampling
algorithm, since the accept-reject algorithm generates independent draws. As demonstrated in Section 7,
we compute the effective sample size and find that in this example the number of draws required to obtain
one effective draw ranges from 1.04 to 1.35. Therefore, this adjustment does not alter the main conclusion
illustrated in the figure.
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distribution over the orthogonal reduced-form parameters, the posterior can be expressed as in

Equation (7). Using this equation, we derive the conditional posterior distributions satisfying

the sign restrictions for each component of the orthogonal reduced-form parameterization.

Crucially, as will be shown below, we sample from each of these conditional distributions

using the elliptical slice sampling. This is feasible because each conditional posterior can be

represented by a distribution featuring a Gaussian kernel, thereby permitting the use of the

elliptical slice sampling.

Conditional Posterior for Q. We first derive the posterior for Q conditional on the

reduced-form parameters and the sign restrictions. Equation (7) implies:

p(Q ∣ B,Σ, (yt)
T
t=1,SR(B,Σ,Q) > 0) =

[SR(B,Σ,Q) > 0]NIW(ν̃,Φ̃,Ψ̃,Ω̃)(B,Σ)

∫O(n)[SR(B,Σ,Q) > 0]NIW(ν̃,Φ̃,Ψ̃,Ω̃)(B,Σ)dQ

=
[SR(B,Σ,Q) > 0]

∫O(n)[SR(B,Σ,Q) > 0]dQ
∝ [SR(B,Σ,Q) > 0].

The first equality follows from Bayes’ rule. The second equality holds becauseNIW(ν̃,Φ̃,Ψ̃,Ω̃)(B,Σ)

is independent of Q. The proportionality follows from Assumption 1.1.

To sample from p(Q ∣ B,Σ, (yt)
T
t=1,SR(B,Σ,Q) > 0), we exploit the mapping from

X ∼ N(0n×n, In, In) to Q via the QR decomposition, denoted Q = γ(X). This ensures that

Q is uniformly distributed with respect to the Haar measure. Hence, if we draw X from

[SR(B,Σ, γ(X)) > 0]p(X) and transform it using Q = γ(X), we obtain draws from the

desired distribution. Since X is Gaussian, sampling can be performed using the elliptical

slice sampling.

Conditional Posterior for Σ. We next derive the posterior of Σ conditional on (B,Q)

and the sign restrictions:

p(Σ ∣ B,Q, (yt)
T
t=1,SR(B,Σ,Q) > 0) =

[SR(B,Σ,Q) > 0]N(Ψ̃,Ω̃,Σ)(B)IW(ν̃,Φ̃)(Σ)

∫S(n)[SR(B,Σ,Q) > 0]N(Ψ̃,Ω̃,Σ)(B)IW(ν̃,Φ̃)(Σ)dΣ
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∝ [SR(B,Σ,Q) > 0]N(Ψ̃,Ω̃,Σ)(B)IW(ν̃,Φ̃)(Σ).

The factorization comes from the decomposition NIW = N ×IW , which is convenient because

it highlights the Gaussian kernel. The proportionality follows from Assumption 1.2.

To sample from p(Σ ∣ B,Q, (yt)
T
t=1,SR(B,Σ,Q) > 0), we exploit the mapping Σ = ς(R) =

(RR′)−1, where R ∼ N(0n×ν̃ , Φ̃
−1
, Iν̃). This ensures that Σ is inverse-Wishart. Hence, if we

draw R from [SR(ς(R),Σ,Q) > 0]N(Ψ̃,Ω̃,ς(R))(B)p(R) and transform it using Σ = ς(R), we

obtain draws from the desired distribution. Since R is Gaussian, sampling can be performed

using the elliptical slice sampling.

Conditional Posterior for B. Finally, the posterior of B conditional on (Σ,Q) and the

sign restrictions is:

p(B ∣Σ,Q, (yt)
T
t=1,SR(B,Σ,Q) > 0) =

[SR(B,Σ,Q) > 0]N(Ψ̃,Ω̃,Σ)(B)IW(ν̃,Φ̃)(Σ)

∫Rm×n[SR(B,Σ,Q) > 0]N(Ψ̃,Ω̃,Σ)(B)IW(ν̃,Φ̃)(Σ)dB

∝ [SR(B,Σ,Q) > 0]N(Ψ̃,Ω̃,Σ)(B).

The proportionality follows from Assumption 1.3. Notably, the conditional posterior contains

a Gaussian kernel, making the elliptical slice sampling applicable.

Gibbs Sampler. Having defined the three conditional posteriors, we can now outline the

Gibbs sampler:

Algorithm 2. This algorithm draws from p(B,Σ,Q ∣ (yt)
T
t=1,SR(B,Σ,Q) > 0) as described

in Equation (7).

1. Set I > 1, initialize i = 1, and assign initial values to (Bi−1,Σi−1
).

2. Draw Qi from

p(Q ∣ Bi−1,Σi−1, (yt)
T
t=1,SR(B

i−1,Σi−1,Q) > 0) ∝ [SR(B
i−1,Σi−1,Q) > 0].
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3. Draw Σi from

p(Σ ∣ Bi−1,Qi, (yt)
T
t=1,SR(B

i−1,Σ,Qi
) > 0) ∝ [SR(B

i−1,Σ,Qi
) > 0]N(Ψ̃,Ω̃,Σ)(B

i−1
)IW(ν̃,Φ̃)(Σ).

4. Draw Bi from

p(B ∣Σi,Qi, (yt)
T
t=1,SR(B,Σi,Qi

) > 0) ∝ [SR(B,Σi,Qi
) > 0]N(Ψ̃,Ω̃,Σi)(B).

5. If i < I, increment i and return to Step 2.

As mentioned above, we have used the conjugate normal-inverse-Wishart prior over the

reduced-form parameters to describe the algorithm. Appendix I discusses how to set initial

values for the algorithm, and Appendices II.1 and II.2 show that the approach can be easily

adapted to two alternative priors: the independent normal-inverse-Wishart prior and the

asymmetric conjugate priors of Chan (2022), respectively.

7 Applications

We now illustrate the performance of our algorithm using two empirical applications. The

first is a small-scale SVAR of the global oil market, based on the model in Kilian and Murphy

(2014), which identifies flow supply, flow demand, and speculative demand shocks using a

combination of sign and elasticity bounds. The tight identifying assumptions in this model

render traditional accept-reject methods computationally intensive, whereas our algorithm

improves efficiency while replicating the main results. The second application revisits the

large-scale SVAR model of the U.S. economy developed by Crump, Eusepi, Giannone, Qian,

and Sbordone (2025) and analyzed structurally by Chan, Matthes, and Yu (2025), which

includes 35 macroeconomic and financial variables and identifies up to eight structural shocks.

We show that our algorithm remains computationally stable as the number of restrictions
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increases, in contrast to the exponential rise in computation time exhibited by the accept-

reject method. Both applications highlight the scalability of our approach in distinct empirical

settings. For each application, we first demonstrate that our approach replicates the main

results reported in the original papers and then analyze the computational timing to show

that our method can be more efficient than the traditional accept-reject algorithm.

7.1 Small SVAR of the World Oil Market

In our first application, we replicate the results of Kilian and Murphy (2014), who extend

the framework of Kilian and Murphy (2012) by incorporating oil inventories to identify

speculative demand shocks. The identification strategy in Kilian and Murphy (2014) relies

on tight sign and elasticity bound restrictions, which result in a small identified set and may

render standard accept-reject algorithms slow. Notably, Kilian and Murphy (2014) adopt an

approach similar to that of Chan, Matthes, and Yu (2025), relying on permutations and sign

alternations. Therefore, when using the same set of sign and elasticity bound restrictions,

the computation times we report for the accept-reject algorithm are comparable to those

in the original study and similar to those obtained with our approach. However, when an

additional elasticity bound is introduced, the accept-reject approach becomes computationally

unfeasible, while the Gibbs sampler remains as fast, highlighting the speed advantages of our

algorithm in such settings.

Model Specification and Impulse Responses

We begin by describing the model specification in Kilian and Murphy (2014). They model

the global market for crude oil using a four-variable SVAR featuring the percent change in

global crude oil production, a measure of global real activity, the real price of crude oil, and

the change in global above-ground crude oil inventories. The SVAR is specified at a monthly

frequency, with an estimation sample covering 1973:M2–2009:M8. The model includes 24

lags, a constant, and seasonal dummies to remove seasonal variation. Kilian and Murphy
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(2014) adopt a weak conjugate normal-inverse-Wishart prior distribution (see, e.g., Uhlig,

2005) for the reduced-form parameters.

Turning to identification, the goal of Kilian and Murphy (2014) is to identify three

structural shocks using a combination of sign restrictions on impact impulse responses,

sign restrictions at horizons 1 through 12, and elasticity bounds. Table 1 summarizes the

identifying assumptions. The structural shocks are labeled flow supply shock, flow demand

shock, and speculative demand shock.

Sign Restrictions on Impact Impulse Responses

Variable/Shock Flow supply Flow demand Speculative demand
Oil production −1 +1 +1
Real activity −1 +1 −1
Real price of oil +1 +1 +1
Inventories +1

Elasticity Bounds

Flow supply shock Flow demand shock Speculative demand shock
Price Elasticity of Oil Supply (0, 0.025) (0, 0.025)

Sign Restrictions on Impulse Responses at Horizons 1 through 12

Flow supply shock Flow demand shock Speculative demand shock
Real activity −1
Real price of oil +1

Table 1: Sign and Elasticity Bound Restrictions

Note: All shocks raise the real oil price. ±1 indicates positive or negative sign restrictions; blanks
indicate no restriction.

We adopt the exact same specification and use Algorithm 2. We obtain one million draws,

saving one every 10; hence, the figures are produced using one hundred thousand draws.

Figure 2 presents the impulse responses to the three shocks. The results broadly match those

in Kilian and Murphy (2014). In particular, a negative flow supply shock causes a persistent

decline in global economic activity and oil inventories, and a persistent increase in the real

price of oil. The response of oil production is persistently negative. A positive flow demand

shock is associated with a persistent increase in global economic activity, a persistent increase

in the real price of oil, and a positive response of oil production. Oil production increases

sluggishly, given the imposed elasticity bounds, and peaks at about one year after the shock

before declining to pre-shock levels. Finally, a positive speculative demand shock causes a

persistent increase in the real price of oil and a large increase in inventories. Global real
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activity and oil production decline persistently in response to this shock, although the effects

are modest.
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Figure 2: Impulse Responses

Note: The solid red lines depict the pointwise posterior median; the dashed blue lines depict the
pointwise 68 percent posterior probability bands.

Timing

We next compare the computational time of our Gibbs sampler to that of the accept-reject

algorithm. Table 2 reports the time (in hours) per 1,000 effective draws—defined as total

computation time divided by the effective sample size and scaled by 1,000—using Algorithm 2
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and the accept-reject method.3 As highlighted above, we implement the efficient variant of

the accept-reject algorithm proposed by Chan, Matthes and Yu. We approximate the effective

sample size using the multivariate effective sample size metric of Vats, Flegal, and Jones

(2019), which is well suited for SVAR analysis where inference often targets high-dimensional

objects such as vectors of impulse responses. In particular, we estimate effective sample size

under the impulse response parameterization using the multivariate batch means approach

described in that work, with a batch size of N1/4, where N denotes the number of stored

draws.4 Because the accept-reject algorithm produces independent draws, effective draws

and sample size are the same.

The column “Benchmark Model” in Table 2 compares the time (in hours) required to

obtain 1,000 effective draws under the specification of Kilian and Murphy (2014). As shown

in the table, the Gibbs sampler requires less than 2 minutes to produce 1,000 effective draws.

In contrast, the accept-reject algorithm takes approximately 20 minutes to achieve the same

number of draws.5 To further illustrate the gains of our proposed Gibbs sampler, we consider

a scenario in which a researcher imposes an additional restriction on the price elasticity of

oil demand in response to a flow supply shock. As emphasized by Caldara, Cavallo, and

Iacoviello (2019), such a restriction is empirically important in SVAR models of the oil

market. Following their work, we constrain the price elasticity of crude oil demand to lie

within a narrow interval around the point estimate of −0.08 reported by Caldara, Cavallo,

and Iacoviello (2019); specifically, we impose the restriction that the elasticity must lie in

the interval (−0.09, ,−0.07). The column “Benchmark Model + Additional Restriction” in

Table 2 reports the results under this added constraint. The time under the Gibbs sampler is

under 6 minutes, while the performance of the accept-reject algorithm deteriorates sharply,

requiring nearly 8 hours to obtain 1,000 draws.

3Since the accept-reject approach produces independent draws, the number of effective draws equals the
total number of draws in that case.

4We consider the first three columns of the impulse response parameters, which correspond to the shocks
of interest in this application. Results are robust to using impulse responses for all shocks.

5All computations were performed in MATLAB on an Intel Xeon Platinum 8488C processor with 16
active cores running at 2.4 GHz on an x86 64 architecture.
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Specification Benchmark Model Benchmark Model +
Additional Restriction

Gibbs Sampler 0.03 0.10
Accept-Reject 0.33 7.92

Table 2: Time (Hours) Per 1,000 Effective Draws

These results indicate that, for this model, the accept-reject algorithm is already near its

computational limit under the benchmark specification, and that introducing even a single

additional restriction dramatically reduces its efficiency. In contrast, the Gibbs sampler

maintains its performance even as additional identifying restrictions are introduced.

7.2 Large SVAR of the U.S. Economy

In our second application, we replicate and extend the analysis of Chan, Matthes, and Yu

(2025), who build on the large-scale SVAR framework of Crump, Eusepi, Giannone, Qian,

and Sbordone (2025) to study the structural dynamics of the U.S. economy. Their model

incorporates 35 macroeconomic and financial variables commonly monitored by the Federal

Reserve and identifies eight structural shocks using an extensive set of sign and ranking

restrictions. Chan, Matthes, and Yu (2025) employ an accept-reject algorithm, which becomes

computationally intensive as the number of identifying restrictions increases.6 As we show

below, our algorithm is more efficient.

To demonstrate this, we extend the baseline model by identifying two additional shocks—an

oil price shock and a consumer sentiment shock—bringing the total number of sign restrictions

from 105 to 129. This provides a stringent test of our algorithm’s performance relative to the

accept-reject method. Importantly, Chan, Matthes, and Yu (2025) use the asymmetric priors

defined in Chan (2022) for the reduced-form parameters, instead of the Minnesota prior used

in Crump, Eusepi, Giannone, Qian, and Sbordone (2025). To simplify the comparison, we

revert to the Minnesota prior when applying both the accept-reject algorithm and the Gibbs

6We thank Christian Matthes for sharing their replication files and data with us.
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sampler. Appendix III compares both approaches under the asymmetric prior.

Model Specification and Impulse Responses

The SVAR used in this section is specified at a quarterly frequency, includes a constant

and five lags, and uses an estimation sample that spans from 1973:Q2 until 2019:Q4. As

mentioned, we assume a Minnesota prior for the reduced-form parameters and set the hyper-

parameters following Giannone, Lenza, and Primiceri (2015). Turning to the identification,

Table 3 summarizes the variables and the sign and ranking restrictions imposed on the

contemporaneous impulse responses. Chan, Matthes, and Yu (2025) consider only the first

eight shocks (demand, investment, financial, monetary, government spending, technology,

labor supply, and wage bargaining). In total, 105 sign restrictions are imposed in their

baseline specification. We have added two additional shocks (labeled oil price and consumer

sentiment) to assess the performance of our algorithm. With the inclusion of these two shocks,

the total number of sign restrictions increases to 129. When using the Gibbs sampler, we

obtain one million draws and retain one every 10.

Let us begin by describing the selected impulse responses to a unit standard deviation

expansionary demand shock, shown in Figure 3a. Red lines depict point-wise posterior

medians, and shaded areas represent point-wise 68% posterior probability bands. The signs

of the impact responses of real GDP, the PCE price index, the federal funds rate, and

the unemployment rate are restricted. The remaining horizons, as well as the responses of

non-residential investment and the real wage, are unrestricted. As can be seen, the demand

shock causes a transient increase in output and prices, and a decrease in the unemployment

rate. The federal funds rate increases in response to the shock. The restrictive stance of

monetary policy eventually lowers economic activity, as seen, for example, in the decline of

non-residential investment. The real wage decreases in the short run in response to the shock,

as nominal wage increases are not sufficient to offset higher prices—possibly due to sluggish

nominal wage adjustment.
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Sign restrictions Dem Inv Fin Mon Gov Tec Lab Wag Oil Con

GDP +1 +1 +1 -1 +1 +1 +1 +1 +1 +1
PCE 0 0 0 0 0 +1 0 0 +1 +1
Residential investment 0 0 0 0 0 0 0 0 0 +1
Nonresidential investment 0 +1 0 0 0 +1 0 0 +1 +1
Exports 0 0 0 0 0 0 0 0 0 0
Imports 0 0 0 0 0 0 0 0 0 0
Government spending 0 0 0 0 +1 0 0 0 0 0
Fed. budget surplus/deficit 0 0 0 0 -1 0 0 0 0 0
Fed. tax receipts 0 0 0 0 +1 0 0 0 0 0
GDP deflator +1 +1 +1 -1 +1 -1 -1 -1 -1 +1
PCE index +1 +1 +1 -1 +1 -1 -1 -1 -1 +1
PCE index less F&E +1 +1 +1 -1 +1 -1 -1 -1 -1 +1
CPI index +1 +1 +1 -1 +1 -1 -1 -1 -1 +1
CPI index less F&E +1 +1 +1 -1 +1 -1 -1 -1 -1 +1
Hourly wage 0 0 0 0 0 +1 -1 -1 +1 0
Labor productivity 0 0 0 0 0 +1 0 0 +1 0
Utilization-adjusted TFP 0 0 0 0 0 +1 0 0 +1 0
Employment 0 0 0 -1 0 0 -1 0 0 0
Unemployment rate -1 -1 -1 +1 -1 -1 +1 -1 +1 +1
Industrial production index +1 +1 +1 -1 0 0 0 0 0 0
Capacity utilization +1 +1 +1 -1 0 0 0 0 0 0
Housing starts 0 0 0 0 0 0 0 0 0 0
Disposable income 0 0 0 0 0 0 0 0 0 0
Consumer sentiment 0 0 0 0 0 0 0 0 0 0
Fed funds rate +1 +1 +1 +1 +1 0 0 0 0 0
3-month T-bill rate +1 +1 +1 +1 +1 0 0 0 0 0
2-year T-note rate 0 0 0 +1 0 0 0 0 0 0
5-year T-note rate 0 0 0 +1 0 0 0 0 0 0
10-year T-note rate 0 0 0 +1 0 0 0 0 0 0
Prime rate +1 +1 +1 +1 +1 0 0 0 0 0
Aaa corporate bond yield 0 0 0 +1 0 0 0 0 0 0
Baa corporate bond yield 0 0 0 +1 0 0 0 0 0 0
Trade-weighted US index 0 0 0 0 0 0 0 0 0 0
S&P 500 0 -1 +1 -1 0 0 0 0 0 +1
Spot oil price 0 0 0 0 0 0 0 0 -1 0

Ranking restrictions

Nonresidential investment/GDP -1 +1 +1 0 0 0 0 0 0 0
Government spending/GDP -1 -1 -1 0 +1 0 0 0 0 0

N0 of restrictions 14 15 15 19 14 12 8 8 13 11
Cum. N0 of restrictions 14 29 44 63 77 89 97 105 118 129

Table 3: Sign restrictions, ranking restrictions and identified shocks

Note: The mnemonics for the shocks are as follows. Dem: demand, Inv: Investment, Fin: Financial,
Mon: Monetary Policy, Gov: Government Spending, Tec: Technology, Lab: Labor Supply, Wag:
Wage Bargaining, Oil: Oil Price, Con: Consumer Sentiment.

The investment shock, shown in Figure 3b, appears similar to the demand shock in

terms of economic consequences for real GDP, the federal funds rate, the price level, and

the unemployment rate. However, the impulse response of non-residential investment is

substantially different. In particular, the investment shock causes a short-run boom in
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(a) Demand shock (b) Investment shock

Figure 3: Impulse Responses

non-residential investment. This finding partly reflects the ranking restriction requiring that

the impact response of non-residential investment be larger than the impact response of

real GDP. As with the demand shock, the investment shock causes a persistently negative

response of the real wage.

Turning to the financial shock, shown in Figure 4a, it is worth highlighting that this shock

is identified using the same sign restrictions as the investment shock, except for the impact

response of the S&P 500, which is assumed to be positive instead of negative. Overall, the

impulse responses are similar, except that the decline in non-residential investment after five

quarters is slightly less pronounced under the financial shock, consistent with the positive

response of asset prices.

The impulse responses to a unit standard deviation contractionary monetary policy shock

are depicted in Figure 4b. This shock causes the federal funds rate to remain above zero

for more than two years, reflecting inertia in the conduct of monetary policy. Real GDP
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(a) Financial shock (b) Monetary policy shock

Figure 4: Impulse Responses

and prices decline persistently, and the unemployment rate jumps upon impact before slowly

returning to baseline. Non-residential investment drops on impact and recovers after about

one year, in line with a less restrictive monetary policy stance. The real wage increases,

driven by a decrease in the price level. A notable aspect of these responses is that they

suggest monetary policy can operate with shorter lags than traditionally assumed under the

“long and variable lags” view.

The government spending shock is shown in Figure 5a. An expansionary one unit standard

deviation government spending shock leads to an increase in real GDP for about two quarters

and to a long-lasting increase in the price level. To conclude, we discuss the impulse responses

to the supply-related structural shocks, that is, the technology, labor supply, and wage

bargaining shocks. A unit standard deviation positive technology shock leads to a protracted

increase in real GDP and non-residential investment (see Figure 5b). The higher level of

output is accompanied by a sustained decline in the unemployment rate and a sustained
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(a) Government spending shock (b) Technology shock

Figure 5: Impulse Responses

increase in the real wage. The federal funds rate rises marginally, indicating that monetary

policy remains roughly neutral in response to technology shocks.

The responses to a unit standard deviation positive labor supply shock are shown in

Figure 6a. This shock induces a hump-shaped response of real GDP and leads to persistently

lower prices. The responses to a unit standard deviation negative wage bargaining shock are

shown in Figure 6b. The identifying assumptions for this shock are identical to those of an

expansionary labor supply shock, except that the unemployment rate is assumed to decrease

upon impact. When a negative wage bargaining shock occurs, workers experience a decline

in their nominal wage alongside a decrease in the unemployment rate. The real wage remains

unaffected on impact, as the lower wages are offset by the assumed decrease in the price level.

Subsequently, the price level remains below zero, inducing an increase in the real wage.
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(a) Labor supply shock (b) Wage bargaining shock

Figure 6: Impulse Responses

Timing

We begin by comparing the efficiency of the Gibbs sampler algorithm relative to the accept-

reject algorithm when replicating the identification scheme in Chan, Matthes, and Yu (2025).

Figure 7a reports the time (in minutes) per 1,000 effective draws using Algorithm 2 as a

function of the number of identified shocks.7

To assess the computational time as a function of the size of the identified set, we proceed

incrementally: we first obtain draws by identifying only the demand shock, then add the

investment shock, the financial shock, and so on, until all eight shocks in Table 3 are included.

As shown, the time per 1,000 effective draws remains computationally feasible even as the

number of sign restrictions increases.

Figure 7b replicates the same figure but using the efficient accept-reject version of

7When computing the multivariate effective sample size, we only consider the columns of the impulse
response parameters corresponding to the shocks of interest in this application.
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Figure 7: Time Per 1,000 Effective Draws

(a) Gibbs Sampler Shocks (1 to 9)

1 2 3 4 5 6 7 8 9

0

0.2

0.4

0.6

0.8

1

(b) Gibbs Sampler Shocks (1 to 10)
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(c) Accept-Reject Shocks (1 to 9)
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(d) Accept-Reject Shocks (1 to 10)

1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

10

Figure 8: Gibbs Sampler vs. Accept-Reject

Note: The time of the accept-reject algorithm for shocks 9 and 10 is extrapolated based on 10 draws.

Algorithm 1 proposed by Chan, Matthes, and Yu (2025). In this case, the computation time

increases dramatically, as shown in the figure. Although the runtime will vary depending on

the hardware architecture and the number of variables, the main conclusion from comparing

Figures 7a–7b remains unchanged: the performance of the accept-reject algorithm can
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deteriorate sharply as the identified set narrows. Figure 7c combines the timings to facilitate

visual comparison.

To further emphasize this point, we now consider additional shocks to illustrate that the

accept-reject approach can eventually become impractical. Specifically, we extend the number

of shocks identified in Chan, Matthes, and Yu (2025) by adding the oil price shock and the

consumer sentiment shock described in Table 3. Figures 8a–8d replicate the exercise shown

in Figures 7a–7b for the cases of nine and ten shocks.8

As the reader can see, computation time does not increase exponentially when we use

the elliptical slice sampling approach. In contrast, when we consider nine shocks under the

accept-reject approach, the times are now measured in hours, and when we consider ten

shocks, the times are measured in days—Figures 8c and 8d provide the detailed timings.

To facilitate the comparison, Figure 9 overlays both sets of timings to make clear that our

algorithm can handle settings (in terms of the number of variables and shocks) that the

traditional accept-reject approach cannot.

(a) Comparison Shocks (1 to 9)
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(b) Comparison Shocks (1 to 10)
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8
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Figure 9: Gibbs Sampler vs. Accept-Reject

8The runtime of the accept-reject algorithm for the nine- and ten-shock cases is extrapolated based on
ten draws.
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8 Pitfalls of the Conditionally Uniform Prior

The main computational cost of our approach stems from running the Gibbs sampler,

particularly in large models, since it produces auto-correlated draws. As a result, one might

be tempted to bypass this cost and instead address the bottleneck issues inherent in the

accept-reject approach by employing the conditionally uniform prior approach described in

Uhlig (2017), Amir-Ahmadi and Drautzburg (2021), and Read and Zhu (2025), among others.

The main appeal of this simpler approach is that, like the accept-reject algorithm, it generally

yields independent draws. While such a simplification is indeed attractive due to its lower

computational burden, it is essential for the researcher to be aware of a critical drawback,

which we will explain in this section. Before turning to this pitfall, we first describe the

conditionally uniform prior and outline the main algorithmic steps commonly used in its

implementation.

Let Qn(B,Σ) = {Q ∈ Qn ∶ SR(B,Σ,Q) > 0} and define ∫Qn(B,Σ) κ(B,Σ)dQ = 1. The

prior underlying the conditionally uniform approach is then given by:

CUNIW(ν,Φ,Ψ,Ω)(B,Σ,Q) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

κ(B,Σ)NIW(ν,Φ,Ψ,Ω)(B,Σ) if Q ∈ Qn(B,Σ),

0 otherwise.

(8)

Crucially, κ(B,Σ) depends on (B,Σ), while κ in Equation (6) does not. This is due to the

fact that the conditionally uniform approach combines the conjugate normal-inverse-Wishart

prior over the reduced-form parameters with π(Q ∣ B,Σ) of the form:

π(Q ∣ B,Σ) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

κ(B,Σ) if Q ∈ O(n)(B,Σ),

0 otherwise.

This conditional uniform prior has the property that it overweights reduced-form parameters

with smaller identified sets, measured by κ−1(B,Σ) (see Uhlig, 2017). Unlike the prior
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in Equation (6), the prior in Equation (8) cannot be justified using the results of Arias,

Rubio-Ramı́rez and Waggoner (2025), who aim to construct priors that, among other things,

separate inference from identification, as it is undesirable for the prior to change when the

restrictions are modified, since this makes it impossible to determine whether differences in

results stem from changes in the prior or from changes in the identification restrictions.

Under the conditional uniform prior, the objective is to draw from the following posterior

of the orthogonal reduced-form parameters conditional on the sign restrictions:

p(B,Σ,Q ∣ (yt)
T
t=1,SR(B,Σ,Q) > 0) =

[SR(B,Σ,Q) > 0] CUNIW (ν̃, Φ̃, Ψ̃, Ω̃)

Pr (SR(B,Σ,Q) > 0 ∣ (yt)
T
t=1)

, (9)

and then use f and ϕ to transform the draws to the desired vector of objects of interests

such as the structural parameters or impulse responses. It is straightforward to adapt the

traditional approach described in Algorithm 1 to obtain draws from Equation (9) as follows:

Algorithm 3. This algorithm independently draws from p(B,Σ,Q ∣ (yt)
T
t=1,SR(B,Σ,Q) > 0)

as described in Equation (9).

1. Draw (B,Σ) independently from the NIW (ν̃, Φ̃, Ψ̃, Ω̃) distribution.

2. Draw Q independently from the uniform distribution over O(n) until SR(B,Σ,Q) > 0.

3. Repeat Steps 1 and 2 until the desired number of draws is obtained.

While Algorithm 3 does not sample from the posterior distribution defined in Equation (7),

it draws from the posterior distribution defined in Equation (9) and it can be justified under

a prior different from that in Equation (6).

We now illustrate how, under the conditionally uniform prior approach, inference and

identification become intertwined. Consider an SVAR with n = 3 and m = 0, that is, without

lags or constant terms. Suppose that Researcher A aims to identify three structural shocks

using identification scheme A, as defined in Table 4, while Researcher B employs identification
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scheme B, also defined in the same table. Clearly, any set of impulse responses satisfying

scheme B will also satisfy scheme A.

Identification A
Shock 1 Shock 2 Shock 3

Variable 1 +1 +1 +1
Variable 2 +1 −1 +1
Variable 3 +1 −1

Identification B
Shock 1 Shock 2 Shock 3

Variable 1 +1 +1 +1
Variable 2 +1 −1 +1
Variable 3 +1 −1 −1

Table 4: Sign restrictions: +1 and −1 indi-
cate positive and negative sign restrictions,
respectively; blanks indicate no restriction.

Define Qj
n(Σ) = {Q ∈ Qn ∶ S

j
R(Σ,Q) > 0} as the set of valid rotation matrices for researcher

j ∈ {A,B}, with associated κj(Σ) implicitly defined by ∫Qj
n(Σ) κ

j(Σ)dQ = 1. Even if both

researchers specify the same reduced-form prior, changing the identification scheme alters the

implied prior over the impulse responses. To illustrate, set ν = 100 and Φ = In, and consider

ten values of {Σi
}10i=1 such that when evaluated at the prior distribution IW(ν,Φ) they all

have identical prior density. Let {Li
0}

10
i=1 denote ten corresponding impact impulse response

matrices that happen to satisfy identification B. Because the volume element from (Σ,Q) to

L0 only depends on the determinant of Σ and we have also restricted {Σi
}10i=1 to have the

same determinant, all {Li
0}

10
i=1 are equally favored by the prior before any sign restrictions

are imposed. After the sign restrictions are introduced, we have:

πj(Li
0)

πj(Li′

0 )
=
κj(Σi

)

κj(Σi′
)
for i, i′ = 1, . . . ,10, and j ∈ {A,B},

where πj(L0) is the prior density over impulse responses under researcher j ∈ {A,B}. This

expression implies that any variation in this ratio is solely attributable to the additional
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negative sign restriction on shock 2 to variable 3 associated with identification scheme B.

As shown in Table 5, the difference in the identification schemes leads to differences in the

implied priors. On the one hand, Researcher A’s prior favors L5
0 1.45 times as much as L1

0,

while Researcher B’s prior favors L1
0 about twice as much as L4

0. On other hand, Researcher

B’s prior favors L3
0 twice as much as L1

0, while Researcher A’s prior favors L1
0 1.13 times as

much as L3
0. These findings demonstrate that, under the conditionally uniform approach,

changing identification schemes alters the implied prior over parameters of interest (such as

impulse responses), thereby entangling estimation and identification.

Draw 1 2 3 4 5 6 7 8 9 10

πA(Li
0)/π

A(L1
0) 1.00 1.29 0.89 0.62 1.45 1.52 0.46 0.07 1.24 0.41

πB(Li
0)/π

B(L1
0) 1.00 1.60 1.88 0.25 0.58 0.83 0.26 0.03 1.00 0.31

Table 5: Ratio of priors across draws of Li
0.

The reason for this unfortunate result is that κ(Σ) varies across identification schemes

in a way that disproportionately favors L0 values associated with Σ that induce smaller

identified sets. Since different sign restrictions affect the size of the identified set differently

for each Σ, different identification restrictions will imply different priors over impulse response

functions. This problem does not arise under the uniform prior described in Equation (6),

since in that case κ does not depend on the reduced-form parameters. More broadly, this

highlights the cost of not adopting a uniform prior over the orthogonal matrices as described

in Arias, Rubio-Ramı́rez, and Waggoner (2025). As shown in that paper, specifying a uniform

prior over the set of orthogonal matrices ensures disentangling inference from identification.

9 Conclusion

This paper proposes a Gibbs sampling algorithm for structural vector autoregressions identified

with sign restrictions. We show that the algorithm effectively overcomes the computational

bottlenecks associated with conventional accept-reject methods, especially as the number
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of identifying restrictions increases or as the identified set becomes tight. Our empirical

applications illustrate how the proposed algorithm can extend existing analyses in the

literature, including SVARs with a large-number of macroeconomic and financial variables.

Overall, the paper provides contributions to the implementation of sign-restricted SVARs,

offering tools that are applicable across a wide range of empirical models.
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Appendix

I Initialization

Our algorithm requires initial values for (B,Σ,Q) that satisfy the sign restrictions imposed

to identify the SVAR. We accomplish this by setting (B,Σ) to the maximum likelihood

estimates and by constructing Q one column at a time such that the sign restrictions hold,

as described in Algorithm 4. This strategy works as long as the researcher does not imposes

cross equation sign restrictions.

Algorithm 4. The following algorithm sequentially builds an orthogonal matrix Q subject to

sign restrictions. Let Σ ∈ S(n) and define Qj = [Q1 ⋯ Qj] for 1 ≤ j ≤ n. Let [Sj(B,Σ,Qj) >

0] denote sign restrictions associated with shock j for j = 1, . . . , n, and assume the researcher

imposes sign restrictions for the first m ≤ n shocks. The restrictions are satisfied when

∏
m
j=1[Sj(B,Σ,Qj) > 0] = 1.

1. Let j = 1.

2. Draw xj ∈ Rn independently from a standard normal distribution.

3. If j ≤m, let

xj = xj −Qj−1Q
′
j−1 xj.

and set Qj = xj/ ∥ xj ∥ and return to Step 2 until [Sj(B,Σ,Qj) > 0] = 1.

4. If j >m,

Qj = xj/ ∥ xj ∥ .

5. If j < n, set j = j + 1 and return to Step 2.

The Gaussian draw in Step 2 is invariant to rotations; projecting onto the orthogonal

complement and re-normalizing yields a vector uniformly distributed on the unit sphere
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of that subspace. Rejection sampling in Step 3 enforces user-defined sign restrictions. For

columns j >m no restrictions apply.

We note that a similar idea is employed by Amir-Ahmadi and Drautzburg (2021), who

generate draws from the posterior distribution p(Q ∣ B,Σ, (yt)
T
t=1,SR(B,Σ,Q) > 0) by

sequentially sampling each column qj of Q conditional on the remaining columns, that is,

from p(qj ∣Q−j,B,Σ, (yt)
T
t=1,SR(B,Σ,Q) > 0) for j = 1, . . . , n, where Q−j denotes the matrix

Q with the j-th column removed. In such cases, the projection step in Algorithm 4 (Step 3)

is modified accordingly. In both approaches, if the sign restrictions are linear in qj (that is,

of the form Aqj ≥ 0) sampling efficiency can be improved. Specifically, these restrictions are

satisfied as long as A(I−Qj−1Q
′
j−1)xj ≥ 0, where xj is a draw from a standard multivariate

normal distribution. Hence, one can generate draws of xj that satisfy the sign restrictions

using efficient routines for sampling from truncated multivariate normal distributions with

linear inequality constraints.

II Alternative Prior Specifications

Our Gibbs sampler algorithm can be adapted to work with two popular priors in SVAR

analysis: the independent normal-inverse-Wishart prior, and the asymmetric priors proposed

by Chan (2022).

II.1 Independent normal-inverse-Wishart Prior

Let us begin showing how to adapt our Gibbs sampler to the case in which a researcher aims to

use an independent normal-inverse-Wishart prior for (B,Σ) of the form IW(ν̄,Φ̄)(Σ)N(vec(µ̄B),V̄B)(vec(B)).

When using this prior, the final objective of the researcher is to sample from the following
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posterior:

p(B,Σ,Q ∣ (yt)
T
t=1,SR(B,Σ,Q) > 0) ∝ [SR(B,Σ,Q) > 0]

×NIW(ν̂,Φ̂,Ψ̂,Ω̂)(B,Σ)IW(ν̄,Φ̄)(Σ)N(vec(µ̄B),V̄B)(vec(B))

(A.1)

where NIW(ν̂,Φ̂,Ψ̂,Ω̂)(B,Σ) denotes the likelihood, with ν̂ = T −m − (n + 1), Ω̂ = (X′X)−1,

Ψ̂ = Ω̂X′Y, and Φ̂ =Y′Y−Ψ̂
′
Ω̂
−1
Ψ̂, where Y′ = (y1, . . . ,yt) and X′ = (x1, . . . ,xt). Table 6

describes the conditional posterior distributions obtained from Equation (A.1)—using similar

arguments than those given in Section 6—where

ν̃ = ν̄ + T,

Φ̃ = Φ̄ + (Y−XB)′(Y−XB),

Ṽ
−1
B = V̄

−1
B + (Σ

−1
⊗X′X),and

µ̃B = ṼB(V̄
−1
B µ̄B + (Σ

−1
⊗X′X)Ψ̂).

p(Q ∣ B,Σ, (yt)
T
t=1,SR(B,Σ,Q) > 0) ∝ [SR(B,Σ,Q) > 0]

p(Σ ∣ B,Q, (yt)
T
t=1,SR(B,Σ,Q) > 0) ∝ [SR(B,Σ,Q) > 0]IW(ν̃,Φ̃)(Σ)

p(B ∣Σ,Q, (yt)
T
t=1,SR(B,Σ,Q) > 0) ∝ [SR(B,Σ,Q) > 0]N(vec(µ̃B),ṼB)(vec(B))

Table 6: Conditional Posterior Distributions

Hence, we now can write a Gibbs Sampler of the following form:

Algorithm 5. This algorithm draws from p(B,Σ,Q ∣ (yt)
T
t=1,SR(B,Σ,Q) > 0) described in

Equation (A.1).

1. Let I > 1 and set i = 1 and assign initial values to (Bi−1,Σi−1
).

2. Draw Qi from

p(Q ∣ Bi−1,Σi−1, (yt)
T
t=1,SR(B

i−1,Σi−1,Q) > 0) ∝ [SR(B
i−1,Σi−1,Q) > 0].
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3. Draw Σi from

p(Σ ∣ Bi−1,Qi, (yt)
T
t=1,SR(B

i−1,Σ,Qi
) > 0) ∝ [SR(B

i−1,Σ,Qi
) > 0]IW(ν̃,Φ̃)(Σ).

4. Draw Bi from

p(B ∣Σi,Qi, (yt)
T
t=1,SR(B,Σi,Qi

) > 0) ∝ [SR(B,Σi,Qi
) > 0]N(vec(µ̃B),ṼB)(vec(B)).

5. If i < I, let i = i + 1 and return to Step 2.

II.2 Asymmetric Priors

Instead of directly working with the typical conjugate normal-inverse-Wishart prior over the

reduced-form parameters (B,Σ), Chan (2022) works with structural parameters subject to a

recursive identification scheme and denotes the resulting parameterization as (θ,σ2). This

parameterization implies a prior over the reduced-form parameters (B,Σ) that allows the

shrinkage strength for coefficients on own lags to be different than the shrinkage strength for

coefficients on the lag of other variables.

For completeness, we will describe the mapping from (θ,σ2) to (B,Σ). To this end, it is

useful to begin by considering the recursive SVAR proposed by Chan (2022):

AS yt = bS
+BS

1 yt−1 +⋯ +B
S
1 yt−p +ε

y
t , εyt ∼ N(0,Σ

S
) (A.2)

where AS is a lower triangular matrix with ones along the diagonal, bS, BS
1 ,..., B

S
p , denote

a constant term and the slope coefficients, and ΣS
= diag(σ2) = diag([σ2

1, . . . , σ
2
n]). Given

this representation, we use the following notation: bSi denotes the i-th element of bS, bS
j,i

represents the i-th row of BS
j , βi = (b

S
i ,b

S
1,i, . . . ,b

S
p,i)
′ collects all the VAR slope coefficients

associated with the i-th equation, and αi = (Ai,1, . . . ,Ai,i−1)′ where Ai,j denotes the i-th row

and the j-th column of A.
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For i = 1, . . . , n, let θi = [β
′
i,α

′
i]
′
, where βi is a vector containing the slope coefficients

of the i-th equation of a recursive SVAR and αi is a vector containing the unrestricted

elements of the i-th row of the inverse of the impact impulse response matrix. Further-

more, set θ = (θ′1, . . . ,θ
′
n)
′. If we define wS

i,t = (−y1,t, . . . ,−yi−1,t), x
S
t = (1,y

′
t−1, . . . ,y

′
t−p),

xi,t = (wS
i,t,x

S
t ), yi = (yi,1, . . . , yi,T )

′, and Xi = (xi,1, . . . ,xi,T )
′, then yi = Xi θi +ε

y
i , εyi ∼

N(0, σ2
i IT ). Importantly, equation (A.2) can be written as

yt = b+B1 yt−1 +⋯ +Bp yt−p +ε
y
t , εyt ∼ N(0,Σ) (A.3)

where b = (AS
)−1bS, Bj = (A

S
)−1BS

j for j = 1, . . . , p, B = [b,B1, . . . ,Bp]
′
, and Σ =

(AS
)−1ΣS

((AS
)−1)′. Hence, we have implicitly defined a mapping from (θ,σ2) to (B,Σ).

The mapping is invertible. Given (B,Σ) we can obtain (θ,σ2) by using the Cholesky

composition to obtain AS and ΣS, and then we can construct βi by using bS
= AS b,

BS
1 =A

S B1, . . . BS
p =A

S Bp, for i = 1, . . . , n. Putting the mapping defined above with the

mapping ϕ, we obtain a one-to-mapping between the impulse responses, that is (L0,L+), and

(θ,σ2,Q).

Exploiting Proposition 2 in Arias, Rubio-Ramı́rez, and Waggoner (2025), we will combine

the product of normal-inverse-gamma over (θ,σ2) proposed by Chan (2022), i.e.,

p(θ,σ2) =
n

∏
i=1

p(θi, σ
2
i ) =

n

∏
i=1

IG(νi,Si)(σ
2
i )N(mi,σ2

i Vi)(θi) (A.4)

where θ = (θ1, . . . ,θn) and σ2 = (σ2
1, . . . , σ

2
n), with a uniform prior over Q under the Haar

measure in order to induce a prior over (L0,L+). Then, tracing a parallel to the case in which

we work with the orthogonal reduced-form parameters (B,Σ,Q), we will conduct posterior

inference over (L0,L+) subject to sign restrictions by sampling from the following posterior

p(θ,σ2,Q ∣ (yt)
T
t=1,S(θ,σ

2,Q) > 0) ∝ [S(θ,σ2,Q) > 0]
n

∏
i

IG(ν̃i,S̃i)(σ
2
i )N(θ̃i,σ2

i K
−1
θi
)(θi),

(A.5)
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and then converting the draws to the desired parameterization; where ν̃i = νi +
T
2 , S̃i =

Si + (y′i yi +m
′
iV
−1
i mi −θ̃

′
iKθi

θ̃i)/2, yi = (yi1, . . . ,yiT )
′, yit denotes the i-th entry of yt,

Kθi
=V−1i +X

′
iXi, and θ̃i =K

−1
θi
(V−1i mi +X

′
i yi).

Conditional Posterior for Q. Let us begin by deriving the posterior for Q given the

reduced-form parameters and the sign restrictions. Equation (A.5) implies that

p(Q ∣ θ,σ2, (yt)
T
t=1,S(θ,σ

2,Q) > 0) =
[S(θ,σ2,Q) > 0]

∫O(n)[S(θ,σ
2,Q) > 0]dQ

∝ [S(θ,σ2,Q) > 0].

Hence, we can sample from this conditional posterior as described in Section 6.

Conditional Posterior for σ2. Next, we derive a useful expression for the posterior of σ2

given (θ,Q) and the sign restrictions. In this case, Equation (A.5) implies that

p(σ2 ∣ θ,Q, (yt)
T
t=1,S(θ,σ

2,Q) > 0) ∝ [S(θ,σ2,Q) > 0]
n

∏
i=1

IG(ν̃σ2,i,S̃σ2,i)
(σ2

i ),

where ν̃σ2,i = νi +
T+ki
2 and S̃σ2,i = S̃i +

1
2(θi −θ̃i)

′Kθi
(θi −θ̃i)/2. Drawing from the conditional

posterior p(σ ∣ θ,Q, (yt)
T
t=1,S(θ,σ

2,Q) > 0) follows straightforwardly from Section 6 once we

notice that IG(ν̃σ2,i,S̃σ2,i)
(σ2

i ) is equivalent to a univariate inverse-Wishart IW(2ν̃σ2,i,2S̃σ2,i)
(σ2

i ).

Given the indicator function [S(θ,σ2,Q) > 0], we draw σ2
i conditional on the σ2

−i where σ2
−i

denotes the vector σ2 excluding its i-th entry.

Conditional Posterior for θ The third and last conditional posterior corresponds to the

posterior of θ given (σ2,Q) and the sign restrictions. In this case, we use Equation (A.5) to

obtain:

p(θ ∣ σ2,Q, (yt)
T
t=1,S(θ,σ

2,Q) > 0) ∝ [S(θ,σ2,Q) > 0]
n

∏
i=1

N(θ̂i,σ2
i K

−1
θi
)(θi).
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Given the indicator function [S(θ,σ2,Q) > 0], we draw θi conditional on the θ−i where θ−i

denotes the vector θ excluding its i-th entry. Having defined the three conditional posteriors

described above, we now can write a Gibbs Sampler of the following form:

Algorithm 6. This algorithm draws from p(θ,σ2,Q ∣ (yt)
T
t=1,S(θ,σ,Q) > 0) as described

in Equation (A.5).

1. Let J > 1 and set j = 1 and assign initial values to (θj−1,σ2(j−1)).

2. Draw Qj from

p(Q ∣ θj−1,σ2(j−1), (yt)
T
t=1,S(θ

j−1,σ2(j−1),Q) > 0) ∝ [S(θj−1,σ2(j−1),Q) > 0].

3. Draw σ2(j) from

p(σ2 ∣ θj−1,Qj, (yt)
T
t=1,S(θ

j−1,σ2,Qj
) > 0) ∝ [S(θj−1,σ2,Qj

) > 0]
n

∏
i=1

IG(ν̃σ2,i,S̃σ2,i)
(σ2

i ).

4. Draw θj from

p(θ ∣ σ2(j),Qj, (yt)
T
t=1,S(θ,σ

2(j),Qj
) > 0) ∝ [S(θ,σ2(j),Qj

) > 0]
n

∏
i=1

N(θ̂i,σ2
i K

−1
θi
)(θi).

5. If j < J , let j = j + 1 and return to Step 2.

III Large-SVAR with Asymmetric Priors

To conclude the appendix, we reproduce the analysis in Section 7.2 using the asymmetric

priors proposed by Chan (2022).
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III.1 Impulse Responses

We begin by reporting the impulse responses with each of the eight structural shocks identified

by Chan, Matthes, and Yu (2025) obtained using the Gibbs sampler described in Algorithm

6. The results reported in Figures 10a-11d are nearly identical to those reported in Chan,

Matthes, and Yu (2025). Notice that in this case we can extend the horizon of the impulse

responses beyond 5 years without a large increase in posterior uncertainty. This is because

the asymmetric priors used in Chan, Matthes, and Yu (2025) allow for more flexibility in

terms of shrinkage of the slope coefficients of the reduced-form representation of the SVAR.

III.2 Timing

In this section, we compare the efficiency of our Gibbs sampler algorithm to the one of the

accept-reject when using the asymmetric priors. We highlight three results. First, there

are cases in which when using asymmetric priors with a relatively small number of sign

restrictions, the accept-reject algorithm is somewhat more efficient than our approach, see for

example the timings for. Second, as shown in Figure 12, the advantage of the accept-reject

vanishes as we increase the number of shocks. Notice that the Gibbs sampler algorithm

is faster than the baseline specification in Chan, Matthes, and Yu (2025), which features

8 structural shocks. Third, as shown in Figure 13, as we continue to increase the number

of sign restrictions by adding shocks 9 and 10, respectively, the accept-reject algorithm

reproduces the explosive patterns in Figures 1-14. In contrast, the efficiency of the Gibbs

sampler algorithm remains nearly unchanged.
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(a) Demand shock (b) Investment shock

(c) Financial shock (d) Monetary policy shock

Figure 10: Impulse Responses
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(a) Government spending shock (b) Technology shock

(c) Labor supply shock (d) Wage bargaining shock

Figure 11: Impulse Responses
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(a) Gibbs Sampler
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(c) Comparison
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Figure 12: Time Per 1,000 Effective Draws

(a) Gibbs Sampler Shocks (1 to 9)
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(b) Gibbs Sampler Shocks (1 to 10)
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(c) Accept-Reject Shocks (1 to 9)
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(d) Accept-Reject Shocks (1 to 10)

1 2 3 4 5 6 7 8 9 10

0

5

10

15

20

25

Figure 13: Gibbs Sampler vs. Accept-Reject

Note: The time of the accept-reject algorithm for shocks 9 and 10 is extrapolated based on 10 draws.
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(a) Comparison Shocks (1 to 9)
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(b) Comparison Shocks (1 to 10)
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Figure 14: Gibbs Sampler vs. Accept-Reject
Note: The time of the accept-reject algorithm for shocks 9 and 10 is extrapolated based on 10 draws.
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