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Abstract

We propose a simple binarization of predictors—an “at-risk” transformation—as an alterna-
tive to the standard practice of using continuous, standardized variables in recession forecasting
models. By converting predictors into indicators of unusually weak states, we demonstrate their
ability to capture the discrete nature of rare events such as U.S. recessions. Using a large panel of
monthly U.S. macroeconomic and financial data, we show that binarized predictors consistently
improve out-of-sample forecasting performance—often making linear models competitive with
flexible machine learning methods—and that the gains are particularly pronounced around the

onset of recessions.
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1 Introduction

The accurate and timely forecasting of U.S. recessions remains a central challenge in macroeco-
nomics, with direct implications for policymakers, investors, and households. The recent literature
has largely advanced along two main fronts: (i) identifying informative predictors through variable
selection, screening, or factor-based aggregation of large datasets (Estrella and Mishkin, 1998;
Stock and Watson, 1993; Chen et al., 2011), and (ii) exploiting flexible non-parametric and machine
learning methods to uncover nonlinearities that may improve recession prediction (Qi, 2001; Ng,
2014; Vrontos et al., 2021).

Despite these advances, a common feature of this literature is the treatment of predictors. Most
studies, whether focusing on variable selection, combining large sets of predictors, or employ-
ing nonlinear and non-parametric methods, typically rely on raw data inputs. Beyond standard
procedures such as stationarization and standardization, they rarely apply additional variable trans-
formations. Drawing on the papers cited throughout this study, as well as a targeted review of
articles from the International Journal of Forecasting, we find that existing work on recession
nowcasting and forecasting generally avoids nonlinear transformations of predictors.! Instead, these
approaches feed the raw variables directly into the forecasting model, leaving any nonlinearities to
be captured by the parametric or nonparametric modeling framework itself.

In this paper, we take a different perspective. We propose that a crucial nonlinearity can be
embedded directly into the predictors themselves before any model is estimated. To do this, we
apply what we call the “at-risk” transformation: a simple binarization of predictors prior to their
inclusion in otherwise standard forecasting models. Specifically, each predictor is converted into
an indicator variable that equals one when the series enters an unusually weak state relative to its

historical distribution. While such a transformation may appear to discard valuable information, we

'We review all papers on model-based recession forecasting published in the International Journal of Forecasting as
of August 2025. Of course, if we broaden from binary recession prediction to continuous targets like output growth or
inflation, there is work using nonlinear predictor transformations (e.g., Goulet Coulombe et al., 2021a). In addition, there
are applications beyond recession prediction in which nonlinear transformations of predictors are explicitly adopted in
logistic regression. For example, in a recent paper, Liu and Wang (2025) analyze binary outcomes with heavy-tailed
covariates and show that their semiparametric tail objective is asymptotically equivalent to a logistic regression on tail
observations using the logarithm of the extreme predictor. See Appendix D for a more detailed analysis.



argue that it is well-suited for predicting rare events, such as U.S. recessions, where the relevant
signal often lies in whether indicators cross into unusually adverse territory.

Using a large panel of monthly U.S. macroeconomic and financial data, we show that binarized
predictors consistently outperform standard continuous predictors in out-of-sample recession fore-
casting. The improvement is robust across horizons, model classes, and aggregation methods. In
linear settings, logistic regressions with binarized inputs yield higher discriminatory power than
their continuous counterparts. In nonlinear settings, additional tree-based methods provide little
incremental benefit once binarization is applied, indicating that much of the relevant nonlinearity is
already captured by the transformation itself. We further show that combining binarized variables
through methods such as principal components improves predictive performance.

This paper contributes to the rare-event forecasting literature and practice (e.g., Lahiri and
Yang, 2013) by showing that substantial predictive gains can be achieved by reconsidering the
representation of predictors. We introduce a simple, data-dependent “at-risk” transformation that
converts predictors into indicators of unusually weak states. This transformation consistently
improves forecasting performance across linear and nonlinear models, and across multiple horizons.
Because it is easy to implement and computationally inexpensive, the approach offers a practical
benchmark for both academic research and applied forecasting of rare events such as recessions or
defaults. Our proposal is also closely related to several strands of the existing literature—including
early-warning rules, diffusion indexes, business cycle dating methods, and tree-based approaches—
which we review in Section 2.3.

The remainder of the paper is organized as follows. Section 2 introduces the proposed at-
risk transformation and associated prediction methods, and relates them to the existing literature.
Section 3 describes the out-of-sample forecasting design and evaluation metrics. Section 4 presents
the main empirical findings. Section 5 investigates the sources of these gains by comparing
probability forecasts and variable importance across models. Finally, Section 6 concludes by
verifying that the findings hold in parsimonious predictor sets. We provide additional robustness

checks in the appendix.



2 Predicting U.S. Recessions with the At-Risk Transformation

We begin with a standard model for forecasting U.S. recessions,

P(yun=1) = f(X;Q),

where ¥, 5, is a recession indicator that equals one if the U.S. economy is in a recession, as defined
by the NBER, at time ¢t + h. X is an /N x 1 vector of predictors that are useful for forecasting U.S.
recessions. The function f(-) maps the predictors to the recession probability. A popular choice for
f(+) leads to logistic or Probit regression. In our setup, time is measured monthly, and we consider
h = 3,6, 12, corresponding to 3-month, 6-month, and 12-month-ahead forecasts.

This general framework encompasses most prediction models that have appeared in the literature.
There are numerous studies on what to include in X;. For example, some researchers find that
the yield curve is a strong predictor of recessions (e.g., Estrella and Mishkin, 1996; Wright, 2006;
Rudebusch and Williams, 2009). More recently, researchers have found that including a large set
of economic indicators can improve predictive performance, either by applying dimensionality
reduction techniques to X; before estimating a logistic regressions or by employing regularization
methods in conjunction with logistic regression.

Another important choice is the functional form of f(-) and the linear index X/f. Some
researchers find that non-parametric approaches, such as Random Forests or gradient-boosted trees,
can perform better than parametric approaches like logistic regression (Ng, 2014; Dopke et al.,
2017; Vrontos et al., 2021). Others find that deep learning models such as LSTM and GRU neural
networks show promising results (Qi, 2001; Chung, 2024). Overall, the literature suggests that
incorporating nonlinearity can yield sizable predictive gains relative to a plain-vanilla logistic

regression model where X, enters linearly.



2.1 At-Risk Transformation

Economic downturns are often preceded by persistent weakness in certain indicators. Rather than
using the entire range of variation in a predictor, it may be more informative to focus on whether
that predictor is in an unusually weak state relative to its own historical behavior. To formalize this
idea, we transform each stationary series x;; into a new binary variable z;;, which we call the at-risk
transformation.

For each variable x;;, the at-risk transformation is defined as
_h
Zit = 1{ 5% < Qin,(Ty) } ; (D

where s; € {41, —1} indicates the cyclical orientation of the variable, with s; = +1 for pro-cyclical
variables and s; = —1 for counter-cyclical variables; :TUZ" is the h,-month moving average of the

original series x;;,
hg—1
hy 1
Ty = h_ E Tit—s,
9 s=0

and Q@hg (Tg) denotes the 7,-quantile of the historical distribution of S@Zf.

This transformation converts each original series x;; into a binary indicator z;; that equals one if
the historical moving average of x;, falls below a specified threshold, given by the 7,-th quantile
of its historical distribution. The two parameters 7, and h, are the key tuning parameters of the
transformation. In the next section, we discuss how we select these tuning parameters and provide
practical guidance. In our empirical analysis, the classification of each variable as pro-cyclical or
counter-cyclical is predetermined, with the full list provided in Appendix A.2. This classification is
based primarily on economic theory and, when needed, supported by historical correlations from
the training data.

The core idea is that recessions are more closely associated with extreme values—the tail
behavior—of certain predictors rather than with their full range of variation. By focusing on these tail

observations, the at-risk transformation aims to improve predictive performance relative to using



the raw series x;; directly. Whether this approach improves forecasting accuracy is ultimately an
empirical question; our results show that this specific nonlinear transformation provides meaningful

gains in predicting U.S. recessions.

2.2 Aggregating At-Risk Signals

Once the at-risk transformation is applied, the prediction model becomes

Pyen = 1) = f(Z9),

where Z; = [z, 294, ..., 2n¢| collects the N transformed binary indicators. This formulation links
the set of binary predictors directly to the recession indicator. Interpreting each z;; as the output
of an individual “recession signal” model, the single index Z}f represents an aggregated signal
obtained by combining these individual signals. The function f(-) then maps the aggregated signal
into a predicted recession probability.

As we demonstrate in the empirical section the “at-risk” transformation converts a large panel of
continuous macroeconomic predictors into a binary state matrix, Z;. While this matrix may contain
predictive information, its high dimensionality presents a significant modeling challenge. Using
the full, disaggregated matrix directly in a predictive model carries a high risk of overfitting and
can lead to unstable parameter estimates. Therefore, another central empirical question we will
explore in this study is how to best aggregate and model this information to maximize out-of-sample

forecasting performance. To this end, we consider several aggregation strategies.

Aggregation Strategies. Each aggregation strategy reduces Z; to a lower-dimensional representa-

tion W;, where dim(W;) < dim(Z;):

Disaggregated (Baseline) As a direct benchmark, our baseline model uses the full Z;

matrix of binarized predictors without further aggregation.



Simple Average The predictor is the cross-sectional mean of the disaggregated bina-

rized predictors:
1 n
Wy = n Z Zit
=1
similar to the “counting rule” widely used in constructing diffusion indexes, with

Moore (1961) providing the classic example.

Unsupervised Aggregation (PCA) The predictors are the first /i principal compo-
nents of Z;:

Wt :Vk/'Zt,

where Vi is the NV x K matrix whose columns are the eigenvectors corresponding
to the K largest eigenvalues of the sample covariance matrix of Z;. In our study,

we set K = 8, following McCracken and Ng (2016).

Main prediction models. For each aggregation approach, we consider two predictive model

classes:

Logistic Regression We specify f(-) as a logistic link applied to the linear index W}6.
In the baseline case using the full Z;, we employ /¢, penalization (Ridge) to

mitigate overfitting from high dimensionality.

Gradient Boosting We also consider a non-linear tree-based model (XGBoost). While
the at-risk transformation already introduces nonlinearity, tree-based methods
can capture complex interactions among predictors that may further improve

predictive performance.

2.3 Binarized Predictors and Related Literature

The idea of transforming economic indicators into threshold-based signals has appeared in several
strands of the literature, most prominently in the early-warning system framework. A well-known

example in recession prediction is the negative spread rule, where an inverted yield curve (spread
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< 0) is interpreted as a warning signal of an impending recession (Laurent, 1988; Lahiri and Yang,
2023b). Similarly, the Sahm rule identifies downturns when the three-month moving average of
the unemployment rate rises by 0.50 percentage points or more relative to the minimum of the
three-month averages from the previous 12 months, a specific threshold (Sahm, 2019).

The closest antecedent to our proposed method is Keilis-Borok et al. (2000), who adapted a
pattern recognition algorithm from earthquake prediction to forecast U.S. recessions. Their approach
transformed six economic indicators into binary signals and issued alarms whenever a sufficient
number crossed pre-specified thresholds. They exemplified that such binary transformations contain
predictive information beyond that captured by linear models. Our contribution builds on this insight
by extending the use of binarized variables to a high-dimensional setting. Rather than relying on a
small, fixed set of indicators and heuristic aggregation rules, we apply the at-risk transformation to
a broad panel of macroeconomic predictors and explore multiple data-driven aggregation methods
to combine these signals into recession probabilities.

Averaging a large number of binary signals has also been adopted in analyzing business cycles.
For example, the classic work of Moore (1961) introduced a diffusion index constructed as a
simple average of binary indicators, a method recently revisited by Mathy and Zhao (2025), who,
in their context, analyzed whether these diffusion indexes could predict recessions like the Great
Depression.

More generally, the so-called “date-and-average” approach to business cycle dating builds on
the same principle: individual series are first classified into contraction or expansion phases, after
which these binary classifications are aggregated to determine the overall chronology (see, for
example Burns and Mitchell, 1946; Harding and Pagan, 2006; Stock and Watson, 2014; Crump
et al., 2020). The aggregation is typically implemented by exploiting the clustering of turning points
across series. This logic naturally motivates our approach of transforming continuous predictors
into binary contraction/expansion signals and generating forecasts from their historical association
with the NBER recession indicator.

Our method is also related to tree-based approaches, since our binarized variables can be



interpreted as restricted decision stumps with data-dependent cutoffs. While we show in our results
that a simple linear aggregation of binarized predictors often outperforms standard tree-based
methods, we also find that tree-based models can offer advantages in specific contexts, particularly

for improving forecast performance when using aggregated factors.

3 Out-of-Sample Forecast Evaluation

3.1 Data

Our empirical analysis relies on the FRED-MD monthly database, a standard dataset for macroe-
conomic forecasting and business cycle research developed by McCracken and Ng (2016). The
sample spans January 1960 to December 2024 and includes 126 (reduced to 122 after exclusions)
time series covering key sectors of the economy, such as output and income, housing activity, and
financial markets. All series are transformed following the procedures in McCracken and Ng (2016).
The target variable (y;) is the NBER recession indicator, USRECM, which equals 1 in recession

months and O otherwise.

3.2 Model Specification and Tuning Parameters

Model specification. Our baseline model includes Z; and its lags as predictors in both the logistic
regression and XGBoost specifications. We define the set of included lags, £, as £ = {3,6, 12},
which includes short-, medium-, and long-term lags. We use a constant set of lags to not force
any assumptions about optimal horizon-dependent lags—this allows the model to select the best
features across them. The same specification is applied to models with X as well as to those using

the aggregated versions of Z; and Xj.

Tuning parameters. The at-risk transformation contains two tuning parameters, 7, and h,. The
quantile level 7, determines the threshold at which we convert continuous data into binary indicators.

This quantile is computed from the empirical distribution of the moving average f?tg, where h is



the window size. To avoid look-ahead bias, we set 7, in the forecasting performance evaluation as
follows: we take the median of the median individual quantiles during recession periods, based on
the initial training sample (January 1960 to December 1989). This procedure leverages historical
information on when the warning signal would have been activated. We then freeze this value for
the remainder of the evaluation sample to ensure that no future information is used. We present a
formal algorithm to select 7, in Appendix A.3.1. Our default choice for the window size is b, = 1
(meaning no smoothing). Larger values allow the model to incorporate lagged information into the
predictors themselves, which could, in principle, improve forecasts. In practice, however, we find
that including lags of Z; while keeping i, = 1 delivers strong predictive performance.

These rules are deliberately simple yet practical, providing a natural baseline. In the robustness
exercises reported in the Appendix, we show that there is potential for further predictive gains by
fine-tuning these parameters. For example, 7, could be allowed to vary across different categories
of predictors or the predictors themselves (Appendix C.1). In addition, /, can be greater than one to
incorporate more lagged information (Appendix C.2). While such refinements may improve forecast
accuracy, we keep the baseline specification simple to highlight how well even these parsimonious

choices perform.

Computation. When the logistic regression includes many variables, we employ ¢, regularization,
with the penalty strength selected by time-series cross-validation on the initial training sample and
then held fixed for the remainder of the evaluation period to avoid look-ahead bias (see Appendix
A.3.2 for full procedure). For PCA, we fix the number of factors for X; at eight, following
McCracken and Ng (2016), and use the same number for Z;. All computations are implemented
in Python: logistic regression models are estimated by maximum likelihood with an /5 penalty
(via scikit—-learn), while nonlinear benchmarks are estimated using gradient boosting with /5
regularization on leaf weights (via xgboost). Unless otherwise noted, XGBoost is run with its

default hyperparameters, which yield stable and competitive performance in our application.
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3.3 Evaluation Methods

To ensure our results reflect true predictive ability, our entire evaluation is conducted in a strict
out-of-sample context. We use a recursive forecasting design, with an initial training window from
1960 to 1989. We use this to produce the first forecast for January 1990. The training data is then
expanded by one month for each subsequent forecast, and all model parameters and aggregation
weights are re-estimated at every step to prevent any lookahead bias.

Throughout the text, we assess forecast quality using two primary metrics for a binary classifica-

tion problem:

Precision—Recall Area Under Curve (PR AUC). Our model produces predicted recession

probabilities, p;, which can be converted into point forecasts using a decision threshold ¢ € [0, 1]:

§(6) = 1{p, = 0}
For each ¢, we compute recall (true positive rate) and precision (positive predictive value) over the

evaluation sample:

B TP(0) B TP(5)
- TP(5) + FN(8)’ (9) = TP(6) + FP(0)

R(5)

where TP, FN, and F'P denote true positives, false negatives, and false positives, respectively.
Varying ¢ traces out the precision—recall curve. The precision—-recall area under the curve is then
defined as

! dR(J)

WME54H®77M=/HMM,

which integrates precision with respect to recall as the decision threshold varies.
PR AUC is particularly well-suited for imbalanced datasets such as recession forecasting,
since it emphasizes performance on the rare positive class. Unlike ROC AUC, which measures

performance in terms of false positive rate, PR AUC places direct weight on precision. This means
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it penalizes false alarms much more strongly, an important advantage in imbalanced settings such
as recession forecasting, where non-recession periods outnumber recession months. For a detailed
discussion of this issue, as well as comparisons between ROC AUC and PR AUC in the context of
recession forecasting and related studies, see Lahiri and Yang (2023a) and the references therein.
See Appendix B.2 for an ROC AUC description and scores from preliminary comparisons.

The baseline PR AUC equals the unconditional probability of a recession,

#{recession months} 36 0.086
#{total months} 420~

meaning that random guessing would achieve a PR AUC of 0.086. This value provides a natural
lower bound: any model should exceed this benchmark, and higher PR AUC values are strictly

better, with 1 representing a perfect model.

Brier Score. The Brier Score is a proper scoring rule that measures the mean squared error of
probabilistic forecasts:
I, . )
BS = EZ(M — )"

t=1

where p; is the predicted probability and y; is the realized outcome (0 for expansion, 1 for recession).
Like the mean squared error of point forecasts, the Brier Score is a function of terms that reflect
reliability (calibration, analogous to bias) and resolution (discrimination, analogous to variance)
(Murphy, 1973; Diebold and Rudebusch, 1989). A random guess of p, = 0.5 yields a Brier Score of
0.25, which serves as a useful upper bound. Smaller values indicate better accuracy and calibration

of the probabilistic forecasts, with 0 representing a perfect model.

4 Main Empirical Findings

This section provides the central empirical evidence for the at-risk transformation. We first bench-
mark the predictive value of Z; against continuous-input and factor-model alternatives. We then

assess whether alternative aggregation schemes or nonlinear models further improve performance.
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Table 1: Out-of-Sample Performance of the At-Risk Transformation (Z;) vs. Benchmarks

PR AUC Brier Score
Model Configuration h=3 h=6 h=12 h=3 h=6 h=12
Proposed (Z;, Logit-/5) 0.718 0.370 0.398 0.049 0.082 0.087

Alternative Specifications

X3, Logit-£ 0.501 0.286 0.170 0.069 0.096 0.121
PCA of X, Logit-/5 0.552 0.408 0.314 0.064 0.083 0.108
X, XGBoost 0.584 0338 0.351 0.062 0.085 0.098

Note: All models use the full predictor set and include contemporaneous values plus 3-, 6-, and 12-month lags. The
"Proposed” model is a logistic regression with an ¢5 penalty trained on the binarized ’at-risk’ state matrix (Z;).
Benchmarks are trained on the standard continuous data matrix (X;). Bold values indicate the best-performing model
for each metric and horizon.

Finally, we use forecast encompassing tests to evaluate whether competing approaches add informa-

tion beyond our proposed framework.

4.1 The Predictive Value of the ‘“At-Risk” Transformation

We begin our empirical analysis by evaluating the performance of the at-risk transformation within
a traditional linear framework by comparing a Logistic Regression model with an /5 (Ridge)
regularization penalty trained on the disaggregated Z; matrix (our baseline model) against models
trained on the full X, predictor set, as well as a standard factor model benchmark using Principal
Component Analysis. The comprehensive out-of-sample results for the 3-, 6-, and 12-month forecast
horizons are presented in Table 1. For each model-input combination, we report the PR AUC and
Brier Score. Other metrics are reported in the appendix.

The out-of-sample results show that our proposed ’at-risk’ transformation (Z;) provides a distinct
advantage at all horizons. The improvement in probabilistic accuracy is particularly notable, as
evidenced by the consistently lower Brier Scores of the proposed model. The proposed model also
shows a notable increase in discriminatory power, especially on A = 3.

Consistent with previous studies, extracting the common component from X; prior to its

inclusion in the predictive model appears to enhance overall predictive power. In addition, we also
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find that allowing X; to enter the predictive model nonlinearly improves performance (e.g., X; with
XGBoost) relative to its linear counterpart (e.g., X; with Logit-¢5). However, our proposed model
outperforms both these alternative and traditional specifications. This suggests that our “at-risk”
transformation appears to capture a highly relevant form of nonlinearity for recession prediction.

The performance at the medium-term (h = 6) horizon reveals a more complex dynamic. The PR
AUC for our proposed model is 0.370, slightly lower than its performance at the 12-month horizon
(0.398). This non-monotonic pattern across horizons has been observed in other studies (Vrontos
et al., 2021). Importantly, we find that this concavity disappears under alternative specifications, for
example, when using PCA on Z;, suggesting that the shape of the performance curve is sensitive
to how the at-risk signals are aggregated. Nonetheless, even at the A~ = 6 horizon, our proposed
approach continues to deliver better-calibrated probabilities and higher overall accuracy than
traditional alternatives.

Taken together, the evidence in Table 1 provides strong support for our central hypothesis. The
“at-risk” transformation, which converts a large panel of continuous data into a matrix of binary
state indicators, creates a powerful and robust feature set for recession forecasting. Our proposed
framework, even when implemented with a linear specification and simple regularization, proves
superior to, or highly competitive with, benchmarks that include standard factor models and more
complex non-linear classifiers. Having established the fundamental value of the Z; matrix, we next

turn to methods for refining this signal through aggregation.

4.2 Evaluation of Advanced Modeling Strategies

Having established the inherent value of the Z; matrix, we now investigate whether its signal can be
refined and enhanced. In this section, we conduct a comparison of the different aggregation and
modeling strategies outlined in our methodology to identify the optimal modeling approach for the
at-risk feature set.

Table 2 presents the out-of-sample performance of our three primary aggregation strategies:

the disaggregated baseline, a simple average, and an unsupervised PCA approach. To examine
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Table 2: Out-of-Sample Performance of Alternative Aggregation Strategies for Z;

PR AUC Brier Score
Aggregation Method Model h=3 h=6 h=12 h=3 h=6 h=12

Disaggregated (Baseline) Logit-¢,  0.718 0.370  0.398 0.049 0.082 0.087
XGBoost 0.583 0.300 0.269 0.065 0.089 0.099

Simple Average Logit-¢,  0.541 0365 0.190 0.151 0.188 0.229
XGBoost 0.466 0.257 0.106 0.115 0.133 0.141
PCA on Z, Logit-¢,  0.688 0.528  0.404 0.062 0.081 0.106

XGBoost  0.686 0.567 0.315 0.052 0.063 0.086

Note: This table compares the performance of different methods for modeling the Z; matrix. The “Disaggregated” row
corresponds to the baseline model from Section 4.1. Bold values indicate the best performance for each metric and
horizon.

the interaction between aggregation and model complexity, we evaluate each strategy using both
Logistic Regression with ¢, regularization and an XGBoost model across all three forecasting
horizons. As in the previous section, we present the PR AUC and Brier Scores of aggregation
method under Logistic Regression and XGBoost.

Taken together, the results in Table 2 shed light on how different aggregation strategies interact
with model complexity in shaping predictive performance. Several key patterns emerge.

First, the Logit-¢s models exhibit significantly higher discriminatory power, often without a
meaningful loss in Brier Score, especially for short horizons. This underscores that simple linear
classifiers remain highly effective when paired with our at-risk transformation.

Second, as noted earlier for the disaggregated baseline, XGBoost does not consistently improve
performance. In fact, adding additional nonlinearity often reduces predictive accuracy. This
contrasts with the results in Table 1, where applying XGBoost to the raw X; dataset substantially
boosted its performance. The difference suggests that the “at-risk” transformation effectively
linearizes the prediction problem with respect to the recession indicator. By embedding the essential
nonlinearities into the features themselves, it allows a parsimonious and robust linear model to
outperform more complex alternatives.

Third, the simple average aggregation, which is analogous to a diffusion index or “counting rule,”

15



performs poorly. By treating all indicators equally, it effectively washes out valuable heterogeneity
across predictors. This result underscores the importance of allowing weights to differ across signals
rather than merely counting the number of indicators currently at risk.

Lastly, PCA on Z; performs particularly well at the medium- and long-horizon forecasts
(h = 6,12). In terms of PR AUC, it often matches or exceeds the disaggregated baseline, while also
producing calibrated probabilities with competitive Brier Scores. For short horizons (h = 3), the
disaggregated benchmark still performs best, but PCA remains close. Notably, PCA on Z; delivers
the lowest Brier Score at the 6-month horizon when paired with XGBoost, suggesting that it can
refine predictive accuracy in some settings. From a practical, real-time forecasting perspective, PCA
on Z; offers a significant advantage. Macroeconomic data are released asynchronously, leaving a
“ragged edge” at the end of the sample. The PCA framework provides a natural and established
method for handling this missing data. This makes PCA on Z; an appealing real-time forecasting

tool, complementing the disaggregated specification’s strong short-horizon performance.

4.3 Forecast Encompassing Test

From the metrics themselves, we can conclude that our approaches (Z; and Z; with PCA) are
superior to their continuous-input counterparts. However, it is important to formally test whether
they provide statistically significant information beyond that contained in standard benchmarks.
To this end, we implement a forecast encompassing test. This type of test evaluates whether one
forecast contains all the relevant information in another and is therefore more efficient (Granger
and Newbold, 1973). Early applications include Fair and Shiller (1990), and later work extends the
framework to probability forecasts by Clements and Harvey (2010). Our implementation follows
the same spirit but differs in detail: rather than projecting the target on forecast probabilities, we
estimate a probit regression of the binary recession indicator on the log-odds of the competing
probability forecasts.

More specifically, we estimate a probit model where the dependent variable, y;, is the NBER

recession indicator at time ¢. The regressors are the out-of-sample predicted probabilities from our
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Table 3: Forecast Encompassing Test Results

Ba BB
Proposed Model (A) Benchmark Model (B) Coeff. p-value Coeff. p-value
h=3
Zy (Logit-£5) X; (Logit-(5) 0.630™ 0.000 0.003 0.958
Z; (Logit-£5) X; (XGBoost) 0.592™ 0.000 0.026 0.689
PCA on Z; (Logit-¢5) PCA on X; (Logit-{5) 0.548™ 0.000 0.040 0.405
h==6
Zy (Logit-{5) X; (Logit-{5) 0.331" 0.000 0.049 0.444
Zy (Logit-{5) X; (XGBoost) 0.298" 0.000 0.049 0.288
PCA on Z, (Logit-¢5) PCA on X; (Logit-{5) 0.587" 0.000 0.020 0.730
h=12
Zy (Logit-{5) X; (Logit-{5) 0.595" 0.000 —0.097 0.405
Zy (Logit-{5) X; (XGBoost) 0.350™" 0.005 0.077" 0.069
PCA on Z,; (Logit-¢5) PCA on X; (Logit-{5) 0.746™ 0.000 0.308 0.243

Note: The table reports the estimated coefficients () and corresponding p-values from the probit encompassing
regression specified in Equation 2. Z, refers to the disaggregated “at-risk” matrix, and X, refers to the full FRED-MD
dataset. Significance at the 10%, 5%, and 1% levels is denoted by *, **, and ***, respectively.

proposed model and from a competing benchmark. To ensure the regressors are unbounded, we

apply the log-odds (logit) transformation, L(p;) = log (1 b - ), to each probability series. The
— Dt
estimated model is specified as
P(y: = 1| pt.a,pre) = ®(Bo + Ba - L(Pr.a) + Bs - L(Pr.B)), (2)

where p, 4 is the forecast from our proposed model (A), p; p is the forecast from the benchmark
model (B), and ®(-) denotes the standard normal cumulative distribution function. Since our
goal is to test whether model A (proposed) encompasses model B (benchmark), we focus on the
significance of the coefficient S5. If g = 0, the benchmark forecast contributes no additional
predictive power once we condition on the forecasts from the proposed model.

The results of the forecast encompassing tests, presented in Table 3, provide strong and consistent
statistical evidence for the superiority of our proposed approaches. In most cases, the coefficient on

the benchmark model () is statistically indistinguishable from zero, indicating that benchmark
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forecasts contribute no incremental information. There are a few instances where [ is significantly
different from zero, but even then the magnitude of 34 is much larger than that of g, implying that
forecasts from our proposed model dominate those from benchmark models based on X,. Taken
together, these results reinforce the findings from the previous sections that the at-risk transformation

delivers superior predictive content relative to traditional specifications.

5 Understanding Drivers of Forecasting Performance

To better understand the relative strengths of our baseline “at-risk” transformation model and the
continuous-predictor benchmark, this section examines both the forecasts they generate and the
economic drivers underlying those forecasts. We first analyze the out-of-sample probabilities
to assess how timely and decisive each model is in signaling recessions. We then turn to the
composition of forecast importance across variables and sectors to evaluate whether differences in

performance can be traced to different economic underpinnings.

5.1 Out-of-Sample Probabilities

First, we start by examining the probability forecasts generated by the models. To visualize this,
Figure 1 presents the out-of-sample monthly recession probabilities from our standard “at-risk”
transformation—the Disaggregated Z; (Logit-L2) model and the Full X; (XGBoost) model. The
figure displays the forecasts for each of the three horizons (h = 3, 6, 12 months), allowing for a
direct comparison of how our binary variables perform against their continuous counterparts.

The plots reveal several aspects of our proposed model and its relation to its continuous
benchmark. First, the probabilities of Z; rise much more rapidly than the probabilities of X; on
every horizon. The model’s probabilities generally spike in recessions such as 1990, 2001, and
2008, indicating that the binarized transformation more effectively captures the onset and dynamics
of recessions than continuous variables.

Another observation is the cautiousness of the XGBoost model trained on the Full FRED-MD
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Figure 1: Out-of-Sample Recession Probabilities of Disaggregated Z;
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(c) 12-Month-Ahead Forecast (h = 12)

Note: The figure plots the out-of-sample monthly recession probabilities from our primary Z; (Logit-L2) model (blue
line) and the Full X; (XGBoost) model (red line). Shaded vertical bars indicate official NBER recession periods.
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Figure 2: Forecast Disagreement Between Proposed and Benchmark Models (h = 3)
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Note: The figure plots the difference between the out-of-sample recession probability from our primary Z; (Logit-L.2)
model and the X; (XGBoost) benchmark for the 3-month-ahead forecast. Positive values indicate that our proposed
model assigned a higher probability of recession. Shaded vertical bars indicate official NBER recession periods.

dataset. Across h = 3,6, 12, its probabilities stay very dormant in expansionary periods, even
when there is economic turmoil that did not lead to an official recession. But this indecisiveness by
the model is the cause for its subpar performance. It tends to remain very cautious and raises its
probabilities only during the clearest signals of a downturn. For example, on i = 6, it only raises
probabilities to slightly above 0.2 during the 2001 recession (which was known for being relatively
mild), and on h = 12, it completely misses the recession and raises its probabilities afterward.

On the other hand, our approach offers a better point of performance on this trade-off. In signs
of clear economic expansion (such as the 2010s), it keeps its probabilities very low on all horizons,
leading to a better Brier Score. It is also more sensitive, making it faster to react and keeping more
sustained probabilities during the recession, resulting in it having superior discrimination (PR AUC).
Thus, our framework offers a very good balance between sensitivity and calibration, something that
the continuous predictor model struggles with.

To further demonstrate this, we begin with a visual analysis of the forecast disagreement between
our Z; (Logit-L2) model our benchmark, X; (XGBoost), for the 3-month horizon. Figure 2 plots
the time series of the difference between their out-of-sample recession probabilities. Positive values
indicate periods where our “at-risk” model assigned a higher probability of recession than the

XGBoost benchmark, while negative values indicate the reverse.
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Table 4: Decomposition of Mean Squared Error (MSE) for i = 3 Forecasts

Model Configuration Proposed Model Benchmark Model
(Z:, Logit-L2) (X4, XGBoost)

MSE during Recessions 0.222 0.513
MSE during Expansions 0.031 0.015
MSE on Full Sample 0.049 0.062

Note: The table reports the Mean Squared Errors (MSE/Brier Score) for the 3-month-ahead out-of-sample forecasts,
decomposed into NBER-dated recession and expansion periods. A lower value indicates a better forecast calibration.

The plot reveals a revealing pattern about the nature of using binary and continuous predictors.
In the periods immediately preceding the NBER-dated recessions of 1990, 2001, 2008, and 2020,
the disagreement series consistently spikes into positive territory. This indicates that our “at-
risk” transformation provides earlier and more decisive warning signals than the benchmark.
Additionally, while somewhat variable, the disagreement series tends to reside in positive values
during recessionary periods.

During expansionary periods, the disagreement series generally hovers around 0, indicating that
there is not a substantial difference between the probabilities. However, it does lie on the positive
side, confirming our finding from Figure 1 that the X; and XGBoost configuration is well-calibrated
during expansions. To further illustrate this phenomenon, we decompose the Brier Score (Mean
Squared Error) across recessionary and expansionary periods for each model, found in Table 4.

As noted in Figure 2, the XGBoost model trained on X is slightly more calibrated on expansions,
though the difference is small. By contrast, the Brier Score for the X; and XGBoost model is
significantly higher than that of our approach on strictly recessionary periods, illustrating that our

approach provides a much better trade-off in terms of sensitivity and calibration.

5.2 Economic Drivers of Forecast Performance

The preceding sections established the superior out-of-sample performance of models using the
“at-risk” transformation. We now turn to an analysis of the economic drivers of this performance

gain.
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Table 5: Top 10 Most Important Predictors by Framework (h = 3)

“At-Risk” (7;) + Logit-L.2  Continuous (X;) + XGBoost

Variable Importance Variable Importance

3 mo-FF spread 0.704 5 yr-FF spread 93.733
1 yr-FF spread 0.694 10 yr-FF spread 71.358
6 mo-FF spread 0.653 1 yr-FF spread 70.255

M2 (real) 0.649 6 mo-FF spread 68.517
5 yr-FF spread 0.623 3 mo-FF spread 26.535
CP-FF spread 0.622 Emp: total 26.478
10 yr-FF spread 0.594 Avg hrs: mfg 17.736
S&P div yield 0.575 Aaa-FF spread 17.389
Aaa-FF spread 0.520 Starts: nonfarm 17.373
S&P 500 0.491 Emp: mfg 14.949

Note: Importance scores are aggregated across all relevant lags for each base variable. The importances of the Logit-¢
model are the average absolute coefficient. The importances of the XGBoost model are the average ‘Gain’ metric.
The absolute scales of the two metrics are not directly comparable; the analysis focuses on the relative rankings and
composition of the predictor sets.

We first examine which specific features contribute to the forecasts made by the considered Z;
and X; models to understand the key driver of increased predictive performance due to the “at-risk”
transformation. The top 10 predictors with the highest average coefficients/importances (summed
across all lags) are reported in Table 5. We take h = 3 as our chosen example for this analysis.

The results reveal fundamental similarities and differences in the models’ learned strategies.
Both models assign a central role to interest rates and term spreads in forecasting recessions,
consistent with the classic findings of Estrella and Mishkin (1996). However, the distribution of
importance diverges sharply: in the X; + XGBoost model, feature importance falls rapidly from
about 70 for spread variables to roughly 27 for the leading labor market indicator, indicating that
the model concentrates weight on a narrow set of predictors. By contrast, the Z; + Logit-L2 model
shows a gradual tapering of importance across predictors, with monetary aggregates (e.g., M2)
and stock market indicators retaining nontrivial influence. Although both models incorporate ¢
penalization, XGBoost produces a much sharper hierarchy, placing disproportionate emphasis on a
small subset of variables, whereas our baseline model distributes weight more evenly across the

predictor set.
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Table 6: Sectoral Contribution to Forecasts in Pre-Recession Periods

Contribution to Forecast (%) in Year Before Recession

‘At-Risk’ (Z;) + Logit-/5, Model

Economic Sector 1990 2001 2008 2020
Output & Income 10.8 8.8 9.7 10.1
Labor Market 26.9 28.0 27.2 26.5
Housing 7.1 8.0 8.1 7.8
Consumption & Orders 4.5 4.3 4.5 5.1
Money & Credit 10.5 10.6 10.1 10.8
Interest Rates & Spreads 27.1 259 25.6 24.3
Prices 8.1 9.3 94 9.2
Stock Market 5.1 5.2 54 6.2
Continuous (X;) + XGBoost Model
Economic Sector 1990 2001 2008 2020
Output & Income 34 24 3.8 6.3
Labor Market 19.5 20.2 30.4 20.2
Housing 2.5 11.9 13.2 13.7
Consumption & Orders 0.7 1.7 2.8 1.0
Money & Credit 0.8 5.3 1.6 2.1
Interest Rates & Spreads 66.1 52.6 43.8 53.8
Prices 0.8 0.6 1.2 1.0
Stock Market 6.3 54 32 1.9

Notes: The table reports the percentage of total feature importance attributable to each economic sector during the
12-month window immediately preceding the NBER-dated peak of each recession. Values are calculated from the
out-of-sample feature importances of the ‘Z;, Logit-L2’ and ‘ X;, XGBoost’ models.

We further illustrate this pattern in Table 6, which reports the average contribution of each
economic sector—following the classification of McCracken and Ng (2016)—to forecasts during
the 12 months preceding each NBER recession peak. The table reinforces our earlier finding:
the X; model relies disproportionately on interest rates and spreads, often assigning them more
than half of total importance, while giving only marginal weight to other sectors. By contrast,
the “at-risk” transformation yields a more balanced structure. Interest rates and labor market
indicators emerge as the two leading contributors, each carrying a similar share of importance,
with other categories—such as prices, money and credit, and output and income—also playing

more meaningful roles. Such diversification highlights the mechanism through which the at-risk
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transformation improves predictive performance compared with the continuous specification.
Another important observation from Table 6 is the stability of sectoral contributions across the
four recessions in our baseline model. In contrast, the X; + XGBoost model exhibits considerable
fluctuations in its allocation of importance. For example, the contribution of Interest Rates &
Spreads and Stock Market variables declines across the first three recessions, while the influence of
Labor Market and Housing variables rises. Given the stronger performance of our baseline model,
these shifts in the X; model are more plausibly attributable to overfitting than to genuine time-
variation in the underlying predictive relationships. Binarization appears to make the forecasting
framework more robust by preventing it from responding excessively to short-term variation in X}

and instead focusing on the tail behavior that carries the strongest recession signals.

6 Parsimonious Modeling with At-Risk Transformation

Our analysis of the full, high-dimensional models has revealed two key findings: first, that our
“at-risk” transformation is the superior out-of-sample performer, and second, that extracting factors
from a high-dimensional Z; rather than X; is a better modeling choice. However, this motivates a
crucial final question: is the “at-risk” transformation’s benefit solely a phenomenon of “big data,” or
does it represent a fundamental improvement applicable to simpler, more traditional forecasting
exercises?

To answer this, we conduct the same out-of-sample analysis used for our main results, but in
a low-dimensional environment. We consider two predictor sets. The first contains only a single
variable—the 10-year Treasury—Fed Funds spread. The second contains ten canonical predictors
emphasized in the recession forecasting literature, which we refer to as the parsimonious model.

For each of these reduced predictor sets, we evaluate the performance of a Logit-¢5 model applied to

2To construct a fair and robust comparison, we use indicators not derived directly from our feature importances.
Instead, we follow the academic literature to select variables that mimic a traditional forecasting exercise: two spreads
(10-year Treasury—Fed Funds spread and Baa—Fed Funds spread), three labor market measures (total employment,
unemployment insurance claims, and the unemployment rate), and one representative variable from each of the other
major categories: industrial production (real activity), nonfarm housing starts (housing), retail sales (consumption and
orders), the S&P 500 index (stock market), and real M2 (money and credit).
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Table 7: Out-of-Sample Performance: Univariate and Parsimonious Models

PR AUC Brier Score
Model Specification h=3 h=6 h=12 h=3 h=6 h=12

Full Feature Space
Continuous (X;) + XGBoost 0.584 0.338 0.351 0.062 0.085 0.098
“At-Risk” (Z;) + Logit-/s 0.718 0.370 0.398 0.049 0.082 0.087

Univariate Models (Term Spread Only)
Continuous (X;) + XGBoost 0.367 0.242 0.255  0.092 0.111 0.109
“At-Risk” (Z;) + Logit 0.264 0334 0384 0.130 0.124 0.121

Parsimonious Models (10 Core Indicators)
Continuous (X;) + XGBoost 0.529 0.314 0.343 0.072 0.093  0.090
“At-Risk” (Z;) + Logit-{s 0.721 0.485 0451 0.057 0.088 0.117

L2

Notes: The “Full Feature Space” corresponds to the entire FRED-MD panel used in earlier sections. The “Univariate
specification uses only the 10-year Treasury—Fed Funds spread. The “Parsimonious” model uses ten core indicators
grounded in the literature: two spreads (10-year Treasury—Fed Funds spread, Baa—Fed Funds spread), three labor market
measures (total employment, unemployment insurance claims, unemployment rate), industrial production (real activity),
nonfarm housing starts (housing), retail sales (consumption and orders), the S&P 500 index (stock market), and real M2
(money and credit).

the at-risk transformation (Z;) against an XGBoost model applied to the corresponding continuous
variables (X,).

The results are presented in Table 7. For reference, the top panel reproduces the full feature space
results from the previous section, where we showed that the at-risk transformation outperforms the
continuous X, representation even when the latter is paired with a nonlinear XGBoost model. The
second panel, which examines the univariate performance of both approaches with the 10-year Fed
Funds term spread, reveals a nuanced result. The continuous representation is superior in terms
of overall calibration at all horizons, but the binarized term spread exhibits significantly better
discriminatory power (PR AUC) at h = 6, 12. Additionally, the “at-risk” state is effective at longer
horizons with long-lead indicators. However, we find that when relying on a univariate feature
space, the effects of binarization vary by indicator and horizon.

The last panel, however, reveals the true power of our approach. In a realistic multivariate
setting, one that mirrors traditional recession forecasting practice, the at-risk transformation (Z;)

consistently outperforms the continuous specification (X;) across nearly every horizon and metric,
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with especially large gains in discriminatory power (PR AUC) at medium and long horizons. This
confirms our main finding that the “at-risk™ transformation is a robust and effective way to improve
recession predictability.

Although the parsimonious model tested here is not a fine-tuned specification and is built
on a generic set of indicators chosen for their economic intuition, a researcher does not know
a priori which indicators to include in a prediction model. Therefore, one should not interpret
the performance presented in this table as evidence that this set can dominate other aggregation
methods in practice. The point of this exercise is to demonstrate that the strong and consistent
outperformance of the Z; framework in this setting provides compelling evidence of its value beyond
high-dimensional applications (see Appendix C.4 for additional combinations).

While the transformation’s effect on any single variable can be complex, its primary strength is
its ability to provide diverse, yet unified, signals, allowing a simple model to learn from a chorus
of evidence (discrete 1s and Os). For recession forecasting problems relying on a handful of key
indicators, the “at-risk” transformation offers a more effective method for representing the predictive

information contained in these key indicators.

7 Conclusion

The evidence presented in this paper suggests that a simple binarization of predictors—the “at-risk”
transformation—is a powerful tool for recession forecasting. Building on the foundational insight of
Keilis-Borok et al. (2000), who first applied this idea to a small set of indicators in a simpler setup,
we demonstrate the effectiveness of a similar approach in a modern, high-dimensional forecasting
environment. Our recursive out-of-sample analysis shows that models using these binary features
are not only highly competitive but often superior to benchmarks that use standard continuous
data, including machine learning methods like XGBoost. We also find that performance improves
significantly when extracting PCA factors from the binarized representation of continuous variables.

Looking ahead, several directions can broaden the scope of our findings. First, as with any
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forecasting model, the out-of-sample period, while spanning over three decades and multiple
business cycles, is ultimately finite. The definitive test of the framework’s robustness will be its
continued performance in real-time. Second, it would be interesting to test the idea in other countries,
using comparable datasets (e.g., Goulet Coulombe et al., 2021b, for the UK), and in other contexts
such as quantile regression (e.g., Adrian et al., 2019). Lastly, it would be fruitful to formalize the
data-generating settings under which binarized “at-risk” predictors and their aggregations dominate
continuous-input models. A natural case is a common extreme-shock mixture, where mean shifts are
negligible but the frequency of synchronized tail realizations spikes in pre-recession states—making
counts or principal components of standardized Z; near-sufficient while linear models on X, are
misspecified. This also connects to nonlinear PCA for binary data (e.g., logistic PCA), providing a

principled counterpart to our pragmatic PCA benchmark.
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Appendix

A Method Details

A.1 Data

For this study, we rely on the FRED-MD macroeconomic dataset, containing monthly data for 126
time series in eight categories. Similar to the authors’ exercise, we remove ACOGNO (New Orders
for Consumer Goods), TWEXAFEGSMTHx (Nominal Advanced Foreign Economies U.S. Dollar
Index), UMCSENTx (Consumer Sentiment Index), and OILPRICEx (Crude Oil, spliced WTI and
Cushing) because either they are highly irregular after transformation or a significant amount of
data is missing (McCracken and Ng, 2016), resulting in 122 macroeconomic predictors.

A crucial part of time-series analysis is the stationarity of the predictor variables. To achieve this,
we follow the standard procedure for the FRED-MD dataset by applying the specific transformations

recommended by McCracken and Ng (2016).

A.2 Counter-cyclical variables

We use a mix of judgment and data-driven analysis to determine which stationarized series are
counter-cyclical. Since the stationarized series z; behaves differently from the original series from
FRED-MD, we compute its correlation with the NBER recession indicator on the in-sample period.
If the correlation is strongly negative (< —0.10), the series is categorized as a counter-cyclical
series. The remaining series are classified as pro-cyclical.

The variables classified as counter-cyclical are as follows: unemployment rate (U: all), mean
duration of unemployment rate (U: mean duration), civilians unemployed < 5 weeks (U < 5 wks),
civilians unemployed 5-14 weeks (U 5-14 wks), civilians unemployed 15+ weeks (U 15+ wks),
civilians unemployed 15-26 weeks (U 15-26 wks), civilians unemployed 27+ weeks (U 27+ wks),

initial claims (UI claims), inventories to sales ratio (M&T invent/sales), and CBOE volatility index.
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A.3 Hyperparameter Selection
A3.1 Selecting 7,

For the global threshold 7, employed in the main text, we determine it once from the initial training

sample (¢t = 1, ...,T) to prevent look-ahead bias. The procedure is as follows:
1. For each predictor 7 and for each recession month ¢ € S,..., we compute the empirical quantile
level, 7;;, of the observation a_czltg relative to the full training-sample distribution, F; 7.

Tit = FzT(fZg)

2. For each predictor ¢, we then calculate the median of these recession-time quantile levels.
This value, 7%, represents the typical quantile level for that specific predictor during historical
recessions.

Ti* = median({m ’ te Srec})

3. Finally, the global threshold 7, is set to the median of these predictor-specific values. This

approach balances the signals across all N predictors in the dataset.

7, = median({7;" [ i =1,...,N})

A.3.2 Selecting \

The logistic regression models in this study are estimated with an ¢, (Ridge) regularization penalty
to mitigate overfitting from high-dimensional predictors while handling multicollinearity. The

associated objective function is the penalized log-likelihood:

T N
BN —argmax{z [thﬁ log(1 +e X, } —)\Zﬁf},
j=1

t=1
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The hyperparameter A > 0 controls the strength of the penalty. Due to implementation in scikit-
learn, we tune for the parameter C', which is equivalent to % To select C' in a manner that is robust
and free of look-ahead bias, we perform a time-series cross-validation procedure exclusively on
the initial training sample (data from ¢ = 1,..,T"). The selected value, C*, is then held constant
throughout the entire recursive out-of-sample forecasting exercise.

The selection procedure is as follows:

1. We specify a logarithmic grid of 30 candidate values for the hyperparameter, denoted by the

set A, spanning the interval [1073, 10].

2. We use an expanding-window cross-validation scheme with K = 5 splits, consistent with
scikit-learn’s TimeSeriesSplit. The initial training sample is partitioned into K +1 = 6
contiguous blocks. For each split k£ € {1, ..., K}, the training set uses the first £ blocks and

the validation set uses the (k + 1)-th block.

T
The size of each validation block, s, is approximately s = i1 ~ 60 months. The sets are

constructed as:

S — L4 1<t <s-k}
S ={t|s-k<t<s-(k+1)},
ensuring that training data always precedes validation data.
3. For each candidate value C,,, € A and for each split k, we perform the following steps:

(a) Estimate the coefficient vector f;(),,) by maximizing the penalized log-likelihood on

the training data S,

(b) Generate out-of-sample probability forecasts, p;(\,), for each observation in the valida-

tion set, t € Sy
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(c) Calculate the Brier Score on the validation set as a measure of forecast performance:

SV al
2

Bsk( |Sv41’ Z o yt) ’

where |S¥| is the number of observations in the validation set.

4. The final value \* is chosen as the candidate that minimizes the average Brier Score across

all K folds.

This process is then repeated for every predictor set trained on a Logit-/5 classifier.

B Additional Metrics

B.1 Bootstrap confidence interval

Table 8 is the same table as Table 1, but with confidence intervals estimated based on bootstrapping.
We produce these confidence intervals for the point estimates of PR AUC and Brier Score using

a stationary bootstrap method with 1,000 replications®. We set the average block length as
L = max(h, LTI/?’]),

where h is the forecast horizon and 7" = 420 (our out-of-sample size). The term 7"'/3 follows
the heuristic from Politis and Romano (1994), which shows that the stationary bootstrap achieves
good asymptotic properties when the block length grows at the rate of the sample size raised to the
one-third power. However, we set the block length to be at least as large as the horizon A to ensure
that each bootstrap sample preserves the dependence structure needed for h-step-ahead predictions.

Table 8 also includes the percentage of bootstrap samples where the benchmark outperformed the

3In practice, when L is small, the stationary bootstrap occasionally discards a single replication due to edge effects,
resulting in 999 rather than 1,000 usable replications. This has no substantive impact on the results.
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Table 8: Out-of-Sample Performance of the At-Risk Transformation (Z;) vs. Benchmarks

PR AUC Brier Score
Model Configuration h=3 h=6 h =12 h=3 h=6 h =12
Proposed (7, Logit-1.2) 0.718 0.370 0.398 0.049 0.082 0.087
[0.406, 0.897] [0.154, 0.641] [0.107, 0.647] [0.025, 0.076] [0.044, 0.124] [0.055, 0.121]
Benchmark (X, Logit-L2) 0.501 2.9%) 0.286 (16.3%) 0.170 (2.6%)  0.069 (0.3%) 0.096 (12.3%) 0.121 (0.1%)
[0.239, 0.775] [0.129, 0.526] [0.069, 0.336] [0.041, 0.099] [0.063, 0.131] [0.080, 0.161]
Benchmark (PCA of X, Logit-12) 0.552 (12.5%) 0.408 (68.4%) 0.314 (24.8%) 0.064 (5.1%) 0.083 (48.8%) 0.108 (1.3%)
[0.273, 0.829] [0.196, 0.651] [0.124,0.519] [0.038, 0.094] [0.054, 0.113] [0.080, 0.136]
Benchmark (X,, XGBoost) 0.584 (2.4%) 0.338 (35.6%) 0.351 (32.9%) 0.062 (11.4%) 0.085 (43.6%) 0.098 (25.1%)
[0.299, 0.806] [0.131, 0.647] [0.115,0.561] [0.029, 0.100] [0.037, 0.138] [0.048, 0.154]

proposed model in parentheses.

B.2 ROCAUC

We now present the ROC (Receiver Operating Characteristic) AUC scores for the models presented
in our preliminary comparison (Table 1) as a comparison to the use of PR AUC in the main text. To
compute ROC AUC, we first convert predicted recession probabilities, p;, into point forecasts using

a decision threshold § € [0, 1]:

9:(0) = 1{p, > &}.

However, instead of calculating recall and precision, for each §, we simply find the true positive rate

and false positive rate:

__ TP@)
" TP(6) + FN(5)’

__ FPQ)
- FP(§)+TN(5)’

7o) F(3)

where T'P, F'N, and F'P denote true positives, false negatives, and false positives, and 7" and F'
denote the true positive rate and false positive rate, respectively. Varying § produces the ROC curve.

The area under the curve is then defined as

ROC AUC — /0 () dFd—ff) d5 — / T(F)dF.

The results are shown in Table 9. The ranking mostly reflects our preliminary results, with the
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Table 9: Table 1 ROC AUC Scores

ROC AUC
Model Configuration h=3 h=6 h=12
Proposed (Z;, Logit-/5) 0949 0.861 0.826

Alternative Specifications

X3, Logit-£ 0913 0.801 0.753
PCA of X, Logit-/{5 0923 0.895 0.843
X, XGBoost 0.920 0.829 0.822

exception of PCA on X, performing slightly better on the longer horizons. However, ROC AUC
does not consider class imbalance, so models that do well on large expansion periods but perform
poorly on the short, sparse recessionary periods can still achieve a high ROC AUC score (part of the
reason why we consider PR AUC in the main text).

For the other comparisons, we find that, as in to Table 9, the results reflect original rankings

closely.

C Robustness checks

C.1 Varying 7,

For robustness, we also evaluate model performance using two other thresholding strategies,
computing: (1) cutoff quantiles for each sector and (2) cutoff points for each variable. The results
are shown in Table 10.

The results show that while increasing threshold complexity can help to an extent, it can also
increase the chances of overfitting. For both the disaggregated and PCA-based models, using a
sector-specific threshold can be of benefit, particularly at longer horizons. However, implementing
a variable-specific cutoff leads to overfitting, as the threshold for each variable in the initial training
sample tends to evolve over time. Other specialized thresholding techniques could also be explored

in future research.
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Table 10: Robustness to Alternative Threshold Specifications

PR AUC Brier Score
Threshold Specification h=3 h=6 h=12 h=3 h=6 h=12

Disaggregated Z; + Logit-(, Model

Global Threshold (Main Spec.) 0.718 0.370 0.398 0.049 0.082 0.087
Sector-Specific Thresholds 0.652 0.397 0.508 0.052 0.078 0.085
Variable-Specific Thresholds 0.662 0.370 0.313 0.053 0.078 0.098

PCA (Z,) + Logit-(, Model

Global Threshold (Main Spec.) 0.688 0.528 0.404 0.062 0.081 0.106
Sector-Specific Thresholds 0.728 0.572 0.549 0.051 0.068 0.088
Variable-Specific Thresholds 0.722 0.453 0.364 0.064 0.079 0.114

C.2 Varying h,

In Section 3.2, we briefly discussed the h, tuning parameter, which denotes the moving average
window of the input signal. In our main analysis, we set i, = 1 and added explicit lags; now, we
explore an alternative way to incorporate past information without explicit lags by setting h, > 1,
shown in Table 11.

The results demonstrate that while using a moving average (h, > 1) can incorporate past
information, it generally leads to lower PR AUC and higher Brier Scores compared with our main
specification (h, = lwithexplicitlagsonZ;). This suggests that for the “at-risk” "transformation,
the predictive signal derived from the timing and persistence of the binarized “’at-risk” states
(captured by lags of Z;) is more valuable than smoothing the intensity of the continuous variable

itself before binarization.

C.3 Contemporaneous Predictors

In our main analysis, all models in the study were evaluated with lags of L = {3,6,12}. Asa
robustness check, we also evaluate the models without any added lags. In Table 12, we present
our baseline comparisons using only contemporaneous signals. In most places, there is a drop

in performance, but with some models on certain horizons (such as Z; on h = 6) the predictive
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Table 11: h, Moving Average Results

PR AUC Brier Score
Moving Average Window h=3 h=6 h=12 h=3 h=6 h=12

Disaggregated Z; + Logit-(, Model

hg =3 0.551 0370 0.363 0.066 0.102 0.142
hg =6 0.611 0.257 0.479 0.067 0.110 0.124
hg =12 0.563 0.330 0.254 0.074 0.097 0.135
PCA (Z,) + Logit-(, Model

hg =3 0.684 0.411 0.283 0.086 0.121 0.161
hy =6 0.618 0.481 0.288 0.090 0.113 0.149
hg =12 0.578 0.254 0.167 0.099 0.134 0.168

Table 12: Baseline Performance Without Lags

PR AUC Brier Score
Model Configuration h=3 h=6 h=12 h=3 h=6 h=12
Proposed (Z;, Logit-(5) 0.594 0.464 0.274 0.069 0.102 0.137

Alternative Specifications

X, Logit-0y 0462 0332 0311 0.087 0.107 0.162
PCA of X, Logit-/, 0.541 0.429 0380 0.105 0.110 0.146
Xy, XGBoost 0.582 0.275 0.212 0.066 0.104 0.120

Note: This table compares the out-of-sample performance of a Logistic Regression with ¢, penalty trained on our
binary at-risk state matrix (Z;) against several benchmarks (using unlagged predictors). Bold values indicate the
best-performing model for each metric and horizon.

performance increases. However, we see most models generally perform better when lagged features
are included. Below is Table 13 (aggregation strategies) using only contemporaneous features.
The discriminatory power significantly decreases for XGBoost, which relies on the lags as
mentioned above, but feature sets using it have the lowest Brier Scores at each horizon. As
mentioned previously, although removing lags improves performance in certain scenarios, a general
conclusion is that all models perform better when incorporating lagged features, and Z; still offers

better predictive performance than the benchmarks in most cases, even without lags.
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Table 13: Aggregation Strategies for Z; Without Lags

PR AUC Brier Score
Aggregation Method Model h=3 h=6 h=12 h=3 h=6 h=12

Disaggregated (Z;) Logit-¢5  0.594 0.464 0.274 0.069 0.102 0.137
XGBoost 0.659 0.281 0.239 0.055 0.089 0.106

Simple Average Logit 0.555 0.362 0.104 0.154 0.205 0.253
XGBoost 0.322 0.276  0.088 0.191 0.207 0.251
PCA on Z, Logit-¢  0.668 0.507 0.289 0.083 0.123 0.153

XGBoost 0.583 0.344  0.312 0.068 0.091 0.091

Notes: This table compares the aggregation and modeling strategies applied to the Z; matrix without lags. No
penalization is used for the simple average, since there is only one feature.

C.4 Other Parsimonious Sets

We demonstrate the use of only one representative, parsimonious set in Section 6, but we test
alternative subsets to see whether Z; surpasses X, there as well.

For set S;, we only use spreads*. For set IZ;, we use only real economy variables®. Table 14
shows the key metrics for our competing specifications.

For S;, while performance decreases on the short-term horizons for all models (Estrella and
Mishkin (1996) find that yield curve performance is higher after 2 quarters), we find that the
longer-horizon models do well. Even using just the spreads, the “at-risk’ transformation delivers
superior discriminatory power on h = 3, 6, 12. Its probability estimates are slightly less accurate on
h = 12, but this is compensated for through its better ability to separate the two classes.

For set R;, the performance is slightly more variable, with the “at-risk™ set showing superior
discriminatory power on shorter horizons, while the continuous version of R, exhibits better
calibration at the significantly high cost of discriminatory power. While it may seem like the
continuous Ry is better at longer horizons, performance is so low that it is not realistic to compare

them—it is not even realistic to use them in a model for recession prediction at these ranges given

*We use five yield spreads (10-year, 5-year, 1-year, 6-month, and 3-month Treasury-Fed Funds spreads), two credit
spreads (AAA- and Baa-Fed Funds spreads), and the Commercial Paper-Fed Funds spread.

>We use four labor market (payrolls, unemployment insurance claims, average weekly hours in manufacturing, and
the unemployment rate), two output (industrial production, real personal income), housing starts, and retail sales.
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Table 14: Out-of-Sample Performance of Parsimonious Models with Alternative Indicators

PR AUC Brier Score
Model Specification h=3 h=6 h=12 h=3 h=6 h=12

Full Feature Space
Continuous (X;) + XGBoost 0.584 0.338 0.351 0.062 0.085 0.098
“At-Risk” (Z;) + Logit-/ 0.718 0.370 0.398 0.049 0.082 0.087

Si (8 Spreads)
Continuous (X;) + XGBoost 0.490 0.356 0.416 0.079 0.085 0.086
“At-Risk” (Z;) + Logit-{ 0.529 0.427 0451 0.071 0.086 0.103

R, (8 Real Economy Indicators)
Continuous (X;) + XGBoost 0.439 0.208 0.131 0.077 0.123 0.103
“At-Risk” (Z;) + Logit-/ 0.542 0.238 0.107 0.128 0.183 0.233

Notes: The “Full Feature Space” corresponds to the entire FRED-MD panel used in earlier sections. The S; models
use five yield spreads (10-year, 5-year, 1-year, 6-month, and 3-month Treasury-Fed Funds spreads), two credit spreads
(AAA- and Baa-Fed Funds spreads), and the Commercial Paper-Fed Funds spread. The R; models use four labor market
indicators (payrolls, unemployment insurance claims, average weekly hours in manufacturing, and the unemployment
rate), two output indicators (industrial production, real personal income), housing starts, and retail sales.

their empirical performance. When considering a representative set that performs well and is part of
a more realistic recession forecasting exercise, we find that the “at-risk” transformation is beneficial

for model performance.

D Additional Survey of Predictor Representation

This appendix presents a survey of the standard treatment of predictors in existing literature
on model-based recession forecasting. We specifically focused on the International Journal of
Forecasting, a leading journal in the field. Our search included all articles as of September
2025 containing the terms “recession” and “probit”. This was supplemented by the first 100
relevant Google Scholar results (using the query: source:"international Jjournal of
forecasting" "recession", without the term “probit”). The final sample consists of 24
papers, and they are listed below. These papers can be grouped into three broad topics: (1) variable
selection for recession forecasting using probit/logit regression, (ii) applications of new statistical

or machine learning methods to binary recession outcomes, and (iii) real-time recession dating
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(nowcasting) using Markov-switching models.
Whether the prediction model is linear or nonlinear, we find that none of these papers apply
explicit nonlinear transformations of predictors beyond standardization and stationarization, in

contrast to the approach proposed in our paper.

1. Liu and Moench (2016); Probit models map a large panel of financial and macro indicators to
the NBER recession state; US monthly 1959-2011, predictors stationarized per series (levels,

log-diffs, annual diffs, moving averages); target is NBER recession dummy.

2. Duarte et al. (2005); Dynamic probit (and threshold growth models) use the EMU term spread
to predict recessions constructed from GDP contractions; Euro area quarterly 1970Q1-2000Q4;
recession dummy = >2 negative quarters in 5-quarter window; GDP in log-diffs (annualized),

spreads in levels.

3. Hamilton (2011); Markov-switching models of real activity detect recession states in real
time from coincident indicators; US quarterly/monthly real activity, unemployment, term

structure; growth via log-diffs/annualization; nonlinearity via regime switching.

4. Dopke et al. (2017); Boosted regression trees classify the binary recession state and capture
nonlinear thresholds/interactions; Germany monthly 1973-2014; 35 indicators, many YoY or

real terms, some in levels; stationarity checked; nonlinearity from regression trees.

5. Aastveit et al. (2019); Probit tests whether residential investment improves recession predic-
tion over standard predictors; 12 OECD countries 1960Q1-2014Q4; NBER/ECRI dummies;

predictors in quarterly log differences with lags up to 4.

6. Qi1 (2001); A feedforward neural network combines leading indicators (esp. yield spread) to
generate multi-quarter recession probabilities; US quarterly 1967Q2-1995Q1; 27 leading

indicators, many log-diffs or growth, some levels; NN provides nonlinearity.

7. Aastveit et al. (2016); Markov-switching factor models identify Norwegian business-cycle
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10.

11.

12.

13.

14.

regimes and turning points; Norway quarterly 1978-2011; GDP, macro, surveys, FCI;

logged/factored data; regime switching supplies nonlinearity.

. Bluedorn et al. (2016); Logit predicts recession starts using asset price drops, volatility,

spreads, oil prices; G7 quarterly 1970-2011; asset prices deflated, oil real, spreads in levels;

logit nonlinearity only.

. Lietal. (2021); Bayesian quickest detection (sequential) rule on HMM flags peaks/troughs

earlier than DFMS; US monthly vintages 1967-2013; four coincident series; Kalman filtering

+ factor extraction; no extra nonlinear transforms.

Davig and Smalter Hall (2019); Naive Bayes and MS-Naive Bayes classify recessions with
macro-financial predictors, exploiting persistence; US monthly 1959-2016; FRED-MD

standardized transforms; 10 lags; nonlinear via NB/MS.

Fintzen and Stekler (1999); Decision-theoretic and survey-based analysis explains why
forecasters missed the 1990 recession; US 1989—-1990 survey + Greenbook; macro in growth

rates; descriptive, no model transforms.

Levanon et al. (2015); A PCA-based Leading Credit Index replaces M2 in the LEI, probits
on the new LEI yield earlier recession signals; US 1990-2013 monthly; six standardized

financial indicators interpolated; probit on lagged LEI.

Huang and Startz (2020); MS factor model augmented with regime-switching volatility
improves real-time dating; US monthly 1959-2018; four coincident series in log-diffs, stock

returns via MS volatility.

Carstensen et al. (2020); Three-state MS-DFM distinguishes ordinary vs severe recessions;
Germany monthly 1991-2016; 35 candidates, EN picks 6; hard series in growth, spreads in

levels; standardized.

44



15.

16.

17.

18.

19.

20.

21.

22.

Clements and Harvey (2011); Combining logit-based probabilities (spread & hours) via
log-odds improves forecast scores; US monthly 1965-2007; spread in levels, hours in YoY %;

nonlinearity from logit link and KK combination.

Giusto and Piger (2017); Learning Vector Quantization classifies monthly states from coinci-
dent growth rates with persistence rule; US monthly 1967-2013; four coincident indicators in

growth; vintages mimic real time.

Proafio and Theobald (2014); Composite real-time dynamic probit pools multiple lag struc-
tures/indicators for stable probabilities; Germany 1991-2011 & US 1969-2011 monthly;

industrial production/NBER dummies; growth rates, spreads in levels, standardized.

Hansen (2024); Static/dynamic probits use VIX—yield spread cycles to outperform the spread
alone; US monthly 1950-2022; 10y—3m spread, VIX (extended pre-1990); smoothed, stan-

dardized, winsorized cycle indicators.

Antunes et al. (2018); Dynamic panel probits with lags + exuberance dummies improve
banking-crisis early warnings; 22 European countries quarterly 1970-2012; credit gaps, debt

service, house prices, equities; ratios, YoYs, HP-filtered gaps.

Chauvet and Potter (2010); Probits with recurrent breaks (and AR latent) improve clas-
sification over fixed/no-break models; US monthly 1959-2007; four coincident series in

100xlog-diffs; break-specific variances, AR latent adds persistence.

Layton and Katsuura (2001); Regime-switching with time-varying transition probabilities out-
performs probit/logit for dating/forecasting; US monthly 1949-1999; ECRI coincident/leading

composites; month-to-month growth, moving sums for LRG.

Carriero and Marcellino (2007); Probits on selected indicators outperform VARs/MS for UK
turning points; UK monthly 1978-2004; coincident (IP, sales, employment, income) + leading

(CB set); growth/log-diffs, standardized.
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23. Lahiri and Yang (2015); Probits/MS with LCI-augmented LEI yield better probabilities
(via QPS/ROC diagnostics); US monthly 1990-2014; LEI in log-diffs; focus on resolu-

tion/discrimination rather than predictor transforms.

24. De Pace and Weber (2016); Probits and TVP models show HY spread predictive power faded
post-2000 while term spread regained long horizon signal; US quarterly GDP 1982-2011 &
monthly IP 1982-2011; HY/term spreads stationary, growth annualized.
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