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Abstract

We consider estimation and inference for treatment effect paths. Examples include

dynamic treatment effects, impulse response functions, and event study paths. We

present two sets of plausible bounds to help visualize uncertainty associated with these

paths. Both plausible bounds are often tighter than traditional confidence intervals,

and can provide insights even when traditional (uniform) confidence bands appear

uninformative. Our first set of bounds covers the average (or overall) effect rather than

the entire path. Our second set of bounds imposes data-driven smoothness restrictions

on the treatment path, using post-selection inference (Berk et al. [2013]) to provide

formal coverage guarantees.
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1 Introduction

We are interested in the treatment effect path of a policy at discrete horizons h = 1, ..., H.

Examples include dynamic treatment effects in microeconomics, impulse response functions

in macroeconomics, and event study paths in finance. We write β = {βh}Hh=1 for the vector

that collects this dynamic treatment effect path up to the fixed maximum horizon of interest

H. We assume access to point estimates of the parameters βh, denoted by β̂h, that correspond

to the cumulative effect of the policy at horizon h = 1, . . . H. Throughout, we assume the

vector that collects the estimated dynamic treatment effect path, β̂, satisfies β̂ ∼ N(β, Vβ)

and that we have access to the covariance matrix Vβ. Leading examples to obtain such

estimates include distributed lag models, local projections, and event studies.1 We consider

both point estimation and uncertainty quantification, though our focus will be on the latter.

In particular, we introduce two approaches to visualize the uncertainty about the treatment

path, which we call cumulative and restricted plausible bounds. Both bounds are often

substantially tighter than traditional confidence intervals, and can provide useful insights

even when traditional (uniform) confidence bands appear uninformative.

The standard approach in economics to quantify and visualize the uncertainty associated

with parameter estimates is to construct confidence regions. Intuitively, a confidence region

visualizes to the reader what values of the parameter, in this case β, are “plausible” based

on the observed data. The idea being that values inside this region appear plausible, while

values outside of the region do not. The two predominant confidence regions in practice are

pointwise and sup-t confidence regions (e.g. Callaway and Sant’Anna [2021]; Jordà [2023]).

A third alternative is the Wald confidence region CRWald. This region simply collects all

parameter values b that are not rejected by a standard Wald test of the null hypothesis that

β = b at level α. While a confidence region constructed from pointwise confidence intervals

does not achieve correct coverage for the vector β, both sup-t and Wald confidence regions

achieve valid coverage: P(β ∈ CRWald) = P(β ∈ CRsup−t) = (1− α).2

Sup-t and Wald confidence regions both come with some advantages and disadvantages.

Since the Wald region is an ellipsoid, a disadvantage of the Wald confidence region is that

1We abstract away from approximation issues, but note that standard asymptotic approximations within

these settings along with access to consistent asymptotic variance estimators motivate this setup.
2We discuss these regions, and their construction, in more detail in Appendix A. For further discussion

of uniform confidence bands, and, in particular, the merits of sup-t confidence bands, also see Freyberger

and Rai [2018] and Olea and Plagborg-Møller [2019].
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(a) Simulated data with Cov(β̂i, β̂j) = 0 for i ̸= j

0 2 4 6 8 10 12 14 16 18

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

(b) Replicated from Bosch and Campos-Vazquez

[2014] (Figure 4b)

Figure 1: Two exemplary treatment effect plots, including point estimates, and pointwise and

sup-t confidence intervals.

it becomes infeasible to visualize in higher dimensions (i.e. when H > 3). The sup-t

confidence region has the advantage of being easy to visualize. However, the volume of the

sup-t confidence region quickly explodes relative to the volume of the Wald region. For

example, when Vβ is the identity matrix, the relative volume of the Wald region is less than

10% and around 0.1% of the volume of the sup-t region for H = 12 and H = 24, respectively.

These numbers are generally even smaller if the entries in β̂ have non-zero correlation.3 One

immediate consequence is that, for even moderate horizons H, the overwhelming majority

of paths inside the sup-t bands would be rejected by a simple joint hypothesis test. This

property seems unappealing to us and serves as a first indication that sup-t confidence

bands may not always be appropriate for visualizing what dynamic treatment effect paths

are plausible.

To illustrate this further, Figure 1 depicts two exemplary treatment effect plots. The

object of interest is the treatment path of a policy over the depicted horizon. The point

estimates β̂ are given by the black dots. Both panels further include pointwise 95% confidence

intervals (inner confidence set as indicated by the dashes) and uniform 95% sup-t confidence

bands (outer confidence set). While the pointwise confidence intervals only permit testing

of pre-selected hypotheses for individual coefficients βh, the sup-t bands contain the entire

true path β in 95% of realized samples. Figure 1a depicts a hypothetical example with zero

3We illustrate this difference in confidence region volume further in Appendix Figure 3.
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correlation between the estimated coefficients.4 Figure 1b is based on the same estimates as

Figure 4b in Bosch and Campos-Vazquez [2014]. In this example, all off-diagonal entries in

Vβ are positive, and the average correlation between adjacent coefficients is 0.95.

The sup-t region in Figure 1a includes treatment paths that imply an overall positive

effect (paths with
∑H

h=1 βh > 0) and treatment paths with very different shapes. In fact, β =

0 falls inside the sup-t bands, suggesting that the null of “no treatment effect” is plausible.

However, a joint test of the null hypothesis that β = 0 yields a p-value of 1.54 × 10−9. In

contrast, in Figure 1b the sup-t region does not include β = 0, suggesting that the null

of “no treatment effect” is not plausible. However, a joint test of the null hypothesis that

β = 0 yields a p-value of 0.33. These discrepancies between the easy-to-visualize sup-t region

and the results of simple joint hypothesis tests again suggest to us that the sup-t confidence

region may not always be providing an empirically effective visualization of what treatment

effect paths are plausible.

In Figure 2, we therefore introduce two alternative ways to visualize plausible treatment

effect paths. Panels 2a-2d are based on simulated data, while panels 2e and 2f are based on

published figures in macroeconomics (Nakamura and Steinsson [2018]) and microeconomics

(Bosch and Campos-Vazquez [2014]). The inner and outer confidence intervals, respectively,

correspond to the usual pointwise and sup-t confidence intervals.5 In addition, panels 2a-2d

include a solid blue line to represent the true treatment effect path and an additional dotted

red line, which we explain below. Finally, each plot includes two new features: (i) the shaded

red area, and (ii) the dashed and solid green lines. Importantly, these new features shift the

goal posts relative to the Wald and sup-t bounds: The inferential target of these bounds is

not the true treatment path.

The shaded red area represents our proposed 95% cumulative plausible bounds. We con-

struct these bounds so that the average treatment effect across the depicted horizons will

be within these bounds for 95% of all realizations of the data. For example, in Figure 2b,

these bounds suggest that the average effect of the policy over the 36 periods depicted is

between (-0.248, -0.156), and thus that the overall effect of the policy over the 36 periods

is strictly negative and inside the window (-8.93, -5.62). In contrast to the standard sup-t

region, these bounds suggest that a treatment path with no overall effect of the policy is not

4We give more detail on the underlying DGP in Section 4.
5Figure 2b is based on the same estimates β̂ as Figure 1a. Figure 2f is based on the same estimates β̂ as

Figure 1b.
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(a) treatment path constant (b) treatment path smooth, eventually flat

(c) treatment path hump-shaped (d) treatment path wiggly

(e) Replicated from Nakamura and Steinsson

[2018] (Figure A.2)

(f) Replicated from Bosch and Campos-Vazquez

[2014] (Figure 4b)

Figure 2: Exemplary treatment effect plots including our proposals. Our proposed visualization

includes two additional objects. The shaded red areas provide the cumulative plausible bounds. The

dashed green lines provide the restricted plausible bounds, and the thick solid green line provides

the corresponding restricted estimates. In the simulated panels (a)-(d), we further include the true

treatment path (thin blue line) and its surrogate (dotted red line).
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plausible. These cumulative plausible bounds have an alternative interpretation in terms of

the overall treatment effect path: The treatment path β (depicted as the solid blue line) will

on average be within these bounds for 95% of all realizations of the data.

The dashed green lines represent our proposed 95% restricted plausible bounds, which

are centered around restricted estimates provided by the solid green line. These restricted

estimates and bounds are motivated by envisioning a researcher who is interested in un-

derstanding key features of the treatment effect path but is not concerned with necessarily

covering the entire true path at every horizon. However, we also imagine the researcher as

being ex ante unsure about what the important features are and wanting to use the data to

help select a restricted model for summarizing the treatment effect path.

More concretely, we construct the restricted estimates and plausible bounds by using

a statistical model selection procedure to select an approximating model from within a

pre-specified universe of candidates. We consider a default set of models motivated by a

preference for smooth dynamics that eventually die out induced by shrinking first and third

differences of β̂, though the procedure could be applied with any finite, pre-specified universe

of models. The restricted estimates are then simply the point estimates of the treatment

path based on the selected model. We construct the restricted plausible bounds to provide

uniform (95%) coverage accounting for data-dependent model selection by applying Berk et

al.’s [2013] post-selection inference (PoSI) to our setting.

Looking at the restricted estimates and restricted plausible bounds in each panel paints a

starkly different picture compared to the sup-t intervals. In all cases, the restricted plausible

bounds are relatively narrow and seemingly quite informative about the broad features of the

treatment effect paths. Figure 2f stands out and merits further discussion. In this instance,

our model selection procedure selects a constant treatment effects model. Our restricted

estimates then coincide with the MLE estimate of a constant treatment effects model.6

Remarkably, this estimate is −0.0017, which is outside of the convex hull of the individual

estimates β̂h.
7 Further, a Wald test of the null hypothesis that βh = −0.0017 for h = 1, . . . , H

gives a p-value of 0.36. That is, a traditional joint hypothesis test suggests there is relatively

little evidence against this hypothesis, which thus appears relatively “plausible,” contrary

to what a visual inspection of the traditional treatment effect plot might suggest. This

6That is, a model with β̂ ∼ N(β, Vβ), where β is constant across h.
7Intuitively, this behavior results from the strong positive correlation in the estimates combined with

more precise estimates in early periods. We note that this strong positive correlation in the estimates cannot

be inferred from the traditional plot.
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difference underscores that traditional treatment effect plots may be ineffective at visualizing

the impact of the off-diagonal entries in Vβ (we illustrate this further in Appendix A). In

contrast, the entire covariance matrix Vβ is reflected in our restricted plausible bounds.

Accounting for the covariance structure can lead to interestingly different results, improving

the informativeness of these plots.

Finally, we reiterate that the inferential target of the restricted plausible bounds in the

population is not the true treatment path. Rather, the restricted plausible bounds provide

uniform coverage of a surrogate path given by the approximation that would be obtained

by applying the selected model to the true effect path. We depict the selected surrogate for

each of the simulated scenarios in Figure 2 with a dotted red line. In Figure 2a and Figure

2b, this surrogate is indistinguishable from the true treatment path. In Figure 2c and Figure

2d, the surrogate differs from the true treatment path but visually captures what seem to be

key features of the overall treatment path. Indeed, we suspect many empirical researchers,

if given the true treatment path from Figure 2d, would actually be more interested in the

smooth approximation provided by the surrogate in this case. That is, we view the fact that

the restricted plausible bounds cover a data-dependent approximation to the population

treatment effect path as a potentially appealing feature.

In summary, we propose augmenting standard event study plots with two additional

elements: a shaded red region (the cumulative plausible bounds) and dashed and solid

green lines (the restricted plausible bounds and estimates, respectively). Together with the

usual pointwise and sup-t intervals, these visualizations offer a more comprehensive view

of plausible effect paths, each serving distinct inferential purposes. Sup-t bands provide

a simple, assumption-free summary of plausible paths. Pointwise intervals target effects

at specific horizons. Cumulative bounds inform average treatment effects, while restricted

bounds and estimates capture approximations of the effect path obtained using data-driven

smoothing.

We obtain our restricted plausible bounds and estimates by considering a finite set of

candidate models for β. This approach is thus closely related to work that considers para-

metric models and approximations to β (e.g., Almon [1965], Barnichon and Matthes [2018],

Barnichon and Brownlees [2019]). Our restricted estimates are akin to point estimates that

could be obtained by taking an empirical Bayes approach within the framework of Shiller

[1973], which considers a closely related model universe and takes a fully Bayesian approach.

See also the SmIRF estimator of Plagborg-Møller [2016] for a related approach that includes
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confidence sets with guaranteed frequentist coverage. In contrast to all the papers above,

our inferential target is the population value of the selected surrogate path; see, for example,

Genovese and Wasserman [2008] for a general discussion of inference on surrogates.

Alternative approaches to quantifying and visualizing uncertainty about treatment effect

paths include Sims and Zha [1999], who argue that conventional pointwise bands should be

supplemented with measures of shape uncertainty. Jordà [2009] suggests a method to con-

struct simultaneous confidence regions for impulse responses given propagation trajectories.

Freyberger and Reeves [2018] propose a uniformly valid inference method for an unknown

function or parameter vector satisfying certain shape restrictions. Inoue and Kilian [2016]

suggests a “shotgun plot” which depicts a random sample of B impulse responses contained

in the joint Wald confidence set to visualize plausible treatment effect paths. We believe

our proposal to provide simple additional visual elements to the usual treatment effect plot

provides a useful complement to this existing literature.

2 Cumulative Plausible Bounds

Our first visual feature, the cumulative plausible bounds, does not impose any functional

form or smoothness assumptions on the underlying treatment path. However, rather than

targeting uniform coverage of the full treatment effect path, the cumulative plausible bounds

use a weaker notion of “cumulative coverage.” These bounds are simply visualizations of the

dynamic treatment paths corresponding to the largest and smallest average treatment effect

up to horizon H not rejected by a standard hypothesis test. They are simply constructed

as (U,L)1−α = {U1−α
h , L1−α

h }Hh=1 = {w′β̂/H ± z1−α/2(w
′Vβw)

1
2/H}Hh=1, where z1−α/2 is the

(1 − α/2) quantile of the standard normal distribution, and w is a vector of ones of length

H.8

These cumulative plausible bounds also have an interpretation in terms of coverage for

the event path. The following proposition states that, for a given significance level α, the

true treatment path will on average be within our bounds for (1−α) of all realizations. This

follows immediately from the fact that any path that is not, on average, inside the cumulative

plausible bounds implies an overall treatment effect over H periods that is rejected by the

corresponding hypothesis test.

8Instead of using bounds (U,L)1−α that are constant across h, one could alternatively depict bounds that

reflect the shape of the unrestricted estimates. See Appendix B.
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Proposition 1. The true treatment path β will on average (over H) be within the cumulative

plausible bounds for (1− α)% of all realizations:

P

(
H∑

h=1

L1−α
h <

H∑
h=1

βh <
H∑

h=1

U1−α
h

)
= (1− α). (1)

Proof. By construction, a t-test on the average treatment effect with significance level (1−α)

will reject

a) any treatment path β̃h with
∑H

h=1 β̃h

H
>

∑H
h=1 U

1−α
h

H
(i.e., with

∑H
h=1 β̃h >

∑H
h=1 U

1−α
h ),

b) any treatment path β̃h with
∑H

h=1 β̃h

H
<

∑H
h=1 L

1−α
h

H
(i.e., with

∑H
h=1 β̃h <

∑H
h=1 L

1−α
h ).

Since a t-test for the average effect has correct size, the result follows immediately.

3 Restricted Plausible Bounds

The second idea we pursue is to present confidence regions that cover approximations of the

true effect path that have “reasonable shapes.” We term these confidence regions restricted

plausible bounds. Here, we define “reasonable shapes” by pre-specifying a universe of models.

We then use data-dependent model selection to choose a good representation for β̂ from

among this set. Intuitively, this approach is related to directly imposing a functional form

restriction as is often done in empirical work, for example, by

� specifying a parametric model for β, e.g., imposing a constant treatment effects model

(βh = βh′ ∀h, h′),

� aggregating the underlying dataset over time (e.g., monthly to quarterly), which effec-

tively restricts β to “step functions,”

� estimating an impulse response function (IRF) via a vector auto regression (VAR),

which restricts the IRF to functional forms compatible with the chosen VAR (cf. the

discussions in Li et al. [2024] and Olea et al. [2024]).

One key feature of our approach is that we do not rely on a fixed functional form restric-

tion or make use of some other implicit device to choose a restricted model. Rather, we select

a model, and then take model selection explicitly into account when constructing confidence
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bounds. That is, we propose a model selection procedure that is explicit, transparent, and

will allow us to maintain formal coverage guarantees.

Before we formally define our proposal, we introduce some necessary notation. We first

borrow from the nonparametric statistics literature to introduce the notion of a “surrogate”

(cf. Genovese and Wasserman [2008]). A surrogate path βM is close to, but potentially

simpler than, β. We note that the surrogate path is a population object that approximates β,

the true treatment path. For example, we may define a constant treatment effects surrogate

of β as βs = argminb (β − b)′(β − b) s.t. ∆b = 0. If the surrogate model M is fixed a priori

(and not itself a function of the data), inference for βM is straightforward, though we stress

that any inferential statements in this case will be about βM and not β.9 However, failing to

take into account that the data is used to select the surrogate creates a problem for inference

(e.g., Leeb and Pötscher [2005] or Roth [2022]). In our setting the surrogate is explicitly a

function of the data (or more precisely, of the unrestricted estimates β̂), and we may thus

write βM(β̂) to denote a data-dependent surrogate path. In a first step, we use the data to

select the surrogate model. In a second step, we then create a uniformly valid confidence

region for the selected surrogate path, taking into account that the choice of surrogate is

also random (i.e., a function of the data).

Given that we are doing model selection from a specified universe of models, a key choice

is the specific model universe we consider. We consider a model universe motivated by the

following economic intuition:

1. The dynamics of the treatment effect die off eventually. That is, after K periods, the

treatment effect is constant. We treat K as unknown and allow K to be as large as

H, thus allowing dynamics across the entire depicted horizon.

2. The dynamic treatment path is “smooth,” where we measure smoothness using the

third differences of the treatment path.

In practice, we use shrinkage over first and third differences of β̂ to implement 1. and 2.

Formally, we assume that the estimates of the treatment path β̂ are jointly normal with

β̂ ∼ N(β, Vβ), where Vβ = σ2V , σ2 = 1
H

∑H
h=1 Vβ(h, h), and V is positive-definite. Taking β̂

9Targeting a simple surrogate function is akin to the standard approach in economics of estimating linear

models even when the conditional expectation function is not believed to be linear. One can think of the

linear model as a “surrogate model” capturing the best linear predictor. Inference will then be about the

linear surrogate, and not the “truth.”
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as input, we define the following object:

β̃(λ1, λ2, K) = argmin
b

Q(b, λ1, λ2, K)

= argmin
b

(β̂ − b)′V −1(β̂ − b)︸ ︷︷ ︸
distance from β̂

+λ1 b′D′
1W1(K)D1b︸ ︷︷ ︸

penalty on first difference
after horizon K

+λ2 b
′D′

3W3D3b,︸ ︷︷ ︸
penalty on

third difference

(2)

where

� D1 and D3 are the (H ×H − 1) and (H ×H − 3) first and third difference operators,

� η = (λ1, λ2, K) are tuning parameters,

� W1(K) and W3 are weighting matrices, where W1(K) only places weight on first dif-

ferences for horizon K ≤ H and beyond (see Appendix C for further details).

Solving (2) provides a closed form solution10 for β̃(λ1, λ2, K) := β̃(M) given by

β̃(M) =
(
V −1 + λ1D

′
1W1(K)D1 + λ2D

′
3W3D3

)−1
V −1β̂

= P (M)β̂.

For fixed M = (λ1, λ2, K), it immediately follows that

β̃(M)− P (M)β ∼ N(0, VM), (3)

where VM = P (M)VβP (M)′. Here, P (M)β = βM defines a particular surrogate path for β.

Intuitively, P (M)β corresponds to a “projection” of the true treatment path β into a lower

dimensional space. Given (3), it would be straightforward to construct a confidence region

for {βM,h}Hh=1, where βM,h denotes the hth entry in vector βM , for a given, fixed value of the

tuning parameters. However, knowing ex ante what values to use for λ1, λ2, and K seems

challenging. We thus use model selection to choose λ1, λ2, and K — or, equivalently, to

choose the surrogate model M .

10For intuition, note that the problem in (2) is closely related to the following constrained optimization

with tuning parameters c1, c2, and K, explicitly bounding the first and third difference:

β̂(c1, c2,K) = argmin
b

(β̂ − b)′V −1(β̂ − b)︸ ︷︷ ︸
distance from β̂

such that b′D′
1W1(K)D1b ≤ c1︸ ︷︷ ︸

small first difference,
after horizon K

and b′D′
3W2D3b ≤ c2︸ ︷︷ ︸

small third difference

.

However, this formulation is computationally more challenging, making it less appealing.
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Specifically, we use the estimated β̂ and an object akin to an information criterion to

select the surrogate M . First, note that we can construct the “residuals” β̂ − β̃(M) =

β̂ − P (M)β̂ = (I − P (M))β̂. We use this residual formulation to define an analog of model

degrees of freedom given by df(M) = trace(P (M)). We then select a model that minimizes

a BIC analog over M, where M denotes the universe of values for M = (λ1, λ2, K):

M̂ = argmin
M∈M

(β̂ − β̃(M))′V −1
β (β̂ − β̃(M)) + log(H)df(M).

We tie the researcher’s hands by pre-specifying M, the universe of models considered.

In our implementation, M includes surrogate models corresponding to a constant, linear,

quadratic and cubic treatment effect path (with one, two, three, and four degrees of freedom,

respectively), as well as an unrestricted model corresponding to the unrestricted estimates

β̂ (with H degrees of freedom). M further includes surrogate models corresponding to

surrogate paths of the form P (M)β = βM using a grid over (λ1, λ2, K). We discuss our

implementation in more detail in Appendix C and visualize the model universe M for four

exemplary treatment paths β in Appendix Figure 5, but note that M does not depend on

β̂ or σ.

Remark 1. One could use other model universes and shrinkage methods. Examples of al-

ternative approaches include Barnichon and Matthes [2018] and Barnichon and Brownlees

[2019]. We have chosen a class that we believe will be a reasonable representation of beliefs

in many applications. Our approach with this model class is also particularly easy computa-

tionally, which allows us to nest a large universe of models. Likewise, one could select the

surrogate model M using methods other than minimizing our BIC analog. We found that

the specific structure and estimation we employ performed well across our simulations.

Given the selected surrogate M̂ , we define the restricted estimates as β̃(M̂). However,

we cannot directly apply (3) to obtain a valid confidence region for the population value of

the surrogate path βM̂ = P (M̂)β because M̂ was selected by looking at the data, β̂. Thus,

in a second step, we use valid post-selection inference (Berk et al. [2013]), which explicitly

accounts for data-dependent (and thus random) model selection, to construct a uniformly

valid confidence region for βM̂ . These confidence intervals, our restricted plausible bounds,

are rectangular regions of the form CRPOSI = {ℓh(X), uh(X)}Hh=1 for [ℓh(X), uh(X)] =

[β̃(M̂)h±CαV
1/2

M̂
(h, h)], where β̃(M̂)h denotes the restricted estimate of the effect at horizon

h and V
1/2

M̂
(h, h) is the square root of the hth diagonal entry of VM̂ . To ensure uniform validity

we use the “PoSI constant” of Berk et al. [2013] as Cα, defined as the minimal value that

11



satisfies

P
(
max
M∈M

max
h

|th·M | ≤ Cα

)
≥ (1− α),

where th·M = V
−1/2
M (h, h)ξh, and ξh is the hth element of multivariate normal vector ξ with

mean 0H and variance VM . Importantly, Cα depends on M, the universe of models consid-

ered, but not on the model selection procedure.

The following proposition is a direct application of Berk et al. [2013].

Proposition 2. For any treatment path β, we obtain valid coverage for its surrogate βM̂ :

P[βM̂ ∈ CRPOSI ] ≥ 1− α. (4)

Proof. This follows immediately from the guarantees in Berk et al. [2013]:

P(βM ∈ CRPOSI |M̂ = M) ≥ 1− α.

Proposition 2 guarantees that our restricted plausible bounds cover the selected surrogate

to the truth in at least (1− α)% of sample realizations.

Remark 2. An immediate consequence of Proposition 2 is that P(β ∈ CRPOSI) ≥ 1− α if

P (βM̂ = βM = β) = 1. That is, in cases where model selection is effectively non-random and

the selected surrogate path coincides with β, the restricted plausible bounds will also provide

valid coverage for the true treatment path. Given the form of our BIC type objective for

selecting M̂ and that the unrestricted estimates are always included in our default model

universe, one could provide conditions for P (βM̂ = βM = β) = 1 under a sequence of models

where σ2 → 0 and surrogate paths were well-separated – e.g. where ∥β−βM∥ ≥ δ > 0 for all

candidate models M such that βM ̸= β. While technically possible, we i) question the utility

of this perspective in offering a useful finite sample approximation and ii) view the surrogate

as an economically interesting summary of the treatment path in itself.

Remark 3. Throughout, we work with the unrestricted estimates β̂. An alternative would be

to estimate the restricted models directly on the data. In settings where β̂ ∼ N(β, Vβ) provides

a good approximation, we suspect that such an approach will yield qualitatively similar results.

It may be interesting to explore directly estimating restricted models in settings where the

approximation β̂ ∼ N(β, Vβ) is questionable.
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4 Numerical Results

In this section, we illustrate the properties of our restricted plausible estimates and bounds

as well as our cumulative plausible bounds in simulation experiments with treatment paths

generated to resemble treatment path dynamics that practitioners may encounter. We illus-

trate these treatment paths in Figure 3. We consider a constant treatment effect path (cf.

Figure 3a); a treatment path that smoothly declines before flattening out (cf. Figure 3b); a

hump-shaped treatment path with dynamics that continue for the entire H periods (cf. Fig-

ure 3c); and a “wiggly” treatment path (cf. Figure 3d). We describe the exact DGP for each

of the four panels in more detail in Appendix Table 1.11 The object of interest is the treat-

ment path over a 36-month horizon. We have access to jointly normal estimates {β̂h}36h=1.

For each of these four treatment paths, we then draw 1,000 realizations of β̂ ∼ N(β, Vβ).
12

0 5 10 15 20 25 30 35

-0.8

-0.6

-0.4

-0.2

0

0.2

(a) Constant Treatment Effect

0 5 10 15 20 25 30 35

-0.8

-0.6

-0.4

-0.2

0

0.2

(b) Smooth, eventually flat

0 5 10 15 20 25 30 35

-0.8

-0.6

-0.4

-0.2

0

0.2

(c) Hump-shaped

0 5 10 15 20 25 30 35

-0.8

-0.6

-0.4

-0.2

0

0.2

(d) Wiggly

Figure 3: Four exemplary treatment effect paths β.

11Figure 2 provides one example realization from each of these DGPs.
12In the figures that follow, Vβ is diagonal with its entries specified in Appendix D. We repeat our exercise

with more general covariance matrices in Appendix F.
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(b) Smooth, eventually flat
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(c) Hump-shaped
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(d) Wiggly

Figure 4: Relative performance of restricted and unrestricted estimators. Depicted is the ratio in

mean-squared error between restricted and unrestricted estimates, MSE(β̃(M̂))

MSE(β̂)
, as a function of the

amount of noise σ2 in the initial estimates β̂.

We first compare the point estimation properties of the unrestricted estimates β̂ with our

restricted estimates β̃(M̂) for each of these four scenarios. In particular, Figure 4 depicts

the ratio in mean-squared error, MSEβ̃(M̂)/MSEβ̂, as a function of σ2, which scales the

covariance matrix of the estimates, Vβ (see Appendix D for more detail).

The largest value of σ2 in Figure 4 (corresponding to the left most point) thus represents

relatively noisy estimates.13 We conclude that in most cases our restricted estimator has

excellent point estimation properties when the target is the true treatment path β. In the

three panels that have a smooth treatment path (Figures 4a-4c), the MSE of our restricted

estimate is a full order of magnitude lower compared to the unrestricted estimate. In Figure

4d, our restricted estimate has a lower MSE when estimates are very noisy, a higher MSE

13Figure 2 was created from a single realization of the the left most point in Figure 4. To give the reader

a sense of the scale of the x-axes, Appendix Figure 4 also illustrates a single realization of the right most

point in Figure 4.
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for intermediate sizes of σ2, and a similar MSE when σ2 is small. However, we suspect that

a lower-dimensional summary of β, as provided by the surrogate path, may in fact be the

policy relevant object in cases where the true treatment path exhibits complicated dynamics

as in this panel (cf. Figure 3d).

Figure 5 summarizes inference results, where we set α = 0.05. We again consider the

four previous DGPs and vary the amount of noise in the estimation of β by varying σ2.

Coverage results are depicted in Figures 5a-5d. The pointwise, sup-t, and restricted

coverage numbers, as indicated by the three solid lines, represent the empirical analogue to

the usual notion of uniform coverage for β: It reflects the fraction of simulations in which the

true treatment path β falls entirely inside the pointwise confidence intervals (black), sup-t

intervals (red), and restricted plausible bounds (yellow), respectively.

Across all four DGPs, the pointwise confidence intervals cover the true treatment path in

only 15-20% of simulations. On the other hand, the sup-t intervals achieve nominal coverage

across all DGPs. The restricted plausible bounds are not constructed to provide uniform

coverage for the true treatment path. It is thus not surprising that these bounds do not

cover the entire treatment path in 95% of simulations across all DGPs. However, we do

see that their coverage appears to converge towards 95% as the amount of noise in the

initial estimates decreases (cf. Remark 2). Further, the restricted plausible bounds perform

substantially better than the pointwise confidence intervals in covering the true treatment

path when the true path is smooth. In the scenario of a wiggly treatment path, the restricted

bounds exhibit poor coverage properties when the amount of noise in the initial estimates is

large.

Proposition 2 guarantees that the plausible bounds cover the selected surrogate to the

truth in at least 95% of realizations. In Figures 5a-5d, the restricted plausible bounds’

coverage of the surrogate is illustrated by the dashed purple line. We see that this coverage

is above 95% for all levels of σ2 across all DGPs. We reemphasize that, in the scenario of a

wiggly treatment path, a smooth approximation to the true path, for which we obtain valid

coverage, may be a policy relevant object. Finally, we note that, in line with Proposition 1,

the cumulative bounds (as indicated by the dashed green lines) indeed cover the cumulative

effect of the policy in 95% of simulations. That is, the true treatment path is on average

within these bounds in 95% of simulations.

In order to cover the true path in a higher fraction of simulations, the sup-t bands are
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(f) Width. Smooth, eventually flat
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Figure 5: Inference results. Panels (a)-(d) provide coverage properties of various confidence

regions as a function of the amount of noise σ2 in the initial estimates β̂. Panels (e)-(h) provide

width of sup-t and plausible bounds relative to the width of pointwise intervals.
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generally wider than the pointwise bands (cf. Figure 1). We illustrate this across our simula-

tions in Figures 5e-5h, which depict the average width of the sup-t bands and the restricted

bounds, relative to the pointwise intervals. Across most scenarios, the restricted bounds

are narrower than both pointwise and sup-t bands, despite offering improved coverage. For

example, in the constant treatment effect case, restricted bounds are less than half as wide

as pointwise bands and less than a quarter as wide as sup-t bands, yet still achieve close

to 95% coverage. The restricted bounds are only wider than the sup-t bands when (i) the

treatment path is wiggly and (ii) there is very little noise. In this region of the parameter

space, our model selection mechanism results in relatively little smoothing. Our restricted

plausible bounds are then slightly more conservative than the sup-t bands, which follows

immediately from the results in Berk et al. [2013].14

5 Conclusion

We propose restricted and cumulative plausible bounds as new visualization tools for dynamic

treatment effect paths. By targeting objects other than uniform coverage of the entire path,

these bounds can be substantially tighter than standard pointwise and uniform confidence

bands, and thus provide more informative summaries when traditional bands are uninfor-

mative. Our approach can also yield markedly different conclusions when there is strong

correlation in the estimates. As a byproduct, our restricted estimates deliver improved point

estimates in settings where the effect path is smooth.

It may be interesting to explore the notion of explicitly covering data-dependent sur-

rogates in other economically relevant settings. Although we have focused on treatment

path estimation, our approach — shrinking unrestricted models toward lower-dimensional

subspaces using data-driven ridge penalties — applies more broadly. For example, an alter-

native application may include shrinking estimates towards theoretical restrictions implied

by economic theory as in Fessler and Kasy [2019]. Further, it would be interesting to explore

related ideas in more structural settings, such as selecting among or regularizing moment

conditions in GMM-type frameworks.

14We illustrate the model selection of our procedure further in Appendix Figures 6-8. Essentially, we

frequently select surrogate paths βM with significantly reduced degrees of freedom. This effective dimension

reduction explains both the improvement in point estimation properties of β̃(M̂) relative to the unrestricted

estimates β̂ documented in Figure 4, and the decrease in width of the confidence intervals documented in

Figure 5.
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