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A A primer on confidence regions

If β is a scalar, the standard approach in economics to quantify and visualize the uncertainty

associated with an estimate for β is to construct a confidence interval. For a chosen size

α, such a confidence interval covers the true value β in 100 ∗ (1− α)% of all realizations of

the data: P(ℓ(X) < β < u(X)) = 1− α, where ℓ(X) and u(X) denote the lower and upper

bounds of the confidence interval and observed data are a realization from random variable

X. Intuitively, these intervals visualize to the reader what values of β are “plausible” based

on the observed data. The idea being that values inside this confidence interval appear

“plausible,” while values outside of the interval do not. More formally, values outside this

interval are rejected by a standard t-test at level α, while values inside the interval are not

rejected.

Since in this paper a dynamic treatment path is the object of interest, β = {βh}Hh=1 is

an ordered vector instead. We start with a diagram in Appendix Figure 1 that illustrates

standard methods in the case of a two dimensional parameter β = (β1, β2), where estimates

are β̂ = (β̂1, β̂2) = (2, 1) and Vβ = I2 is the 2 × 2 identity matrix.

The predominant practice today is to include pointwise confidence intervals in depictions

of estimated treatment effect paths. 100 ∗ (1−α)% pointwise intervals for a specific βh sim-

ply correspond to choosing (ℓh(X), uh(X)) = (β̂h − z1−α/2

√
Vβ[h, h], β̂h + z1−α/2

√
Vβ[h, h]),

where Vβ[h, h] is the variance of β̂h and z1−α/2 is the 1 − α/2 quantile of a standard nor-

mal distribution. For example, the pointwise 95% confidence intervals in the case of the

example in Appendix Figure 1 for β1 and β2 are, respectively, 2 ± 1.96 and 1 ± 1.96.

Correspondingly, the black square depicts the Cartesian product of these pointwise confi-

dence intervals for β1 and β2. Denote the region provided by the black square as CRpw.

Treated as a confidence region for (β1, β2), CRpw a) ignores any information in the off-

diagonal entries in the covariance matrix of β̂ and b) is only valid for testing pre-specified

hypotheses involving single coefficients. Thus, it does not achieve correct coverage for

the vector β = (β1, β2): For a chosen significance level α, it will generally be true that

P(β ∈ CRpw) = P(ℓh(X) < βh < uh(X) ∀ h) < (1 − α), such that the black square will

generally cover the true parameter β in less than 100(1 − α)% of realizations of the data.

For example, if Cov(β̂1, β̂2) = 0, the probability that the pointwise confidence region covers
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Appendix Figure 1: Illustration of different confidence regions. Pointwise (black), sup-t (red),

and Wald (blue) 95% confidence region in two dimensions. β̂ = (2, 1) with covariance matrix

Vβ = I2.

the vector β will be P (β ∈ CRpw) = (1− α)2.

One way to construct a uniformly valid confidence region is to take the Cartesian product

of sup-t confidence intervals (depicted in red) instead. Denote this region CRsup−t. Sup-t

intervals are easy to construct, and simply use a slightly large critical value compared to

pointwise confidence intervals. Specifically, 100(1 − α)% sup-t intervals are constructed by

choosing
(
ℓh(X), uh(X)

)
=
(
β̂h − cα

√
Vβ[h, h], β̂h + cα

√
Vβ[h, h]

)
, where cα is set such that

P(ℓh(X) < βh < uh(X) ∀ h) ≥ (1 − α). For a chosen significance level α, CRsup−t thus

achieves valid coverage, since P(β ∈ CRsup−t) ≥ (1 − α) by construction. For example, the

sup-t 95% confidence intervals in the case of the example in Appendix Figure 1 for β1 and

β2 are, respectively, 2 ± 2.24 and 1 ± 2.24. See, e.g., Freyberger and Rai [2018] and Olea

and Plagborg-Møller [2019] for details about sup-t interval construction as well as further

discussion of different (rectangular) confidence regions. We focus on pointwise and sup-t
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(a) Positive correlation (Cov(β1, β2) = 0.9).
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(b) Negative correlation (Cov(β1, β2) = −0.9).

Appendix Figure 2: Illustration of different confidence regions with non-zero correlation. Point-

wise (black), sup-t (red), and Wald (blue) 95% confidence region in two dimensions. β̂ = (2, 1).

V ar(β1) = V ar(β2) = 1.

confidence intervals, since these two are the predominant intervals used in practice (e.g.,

Callaway and Sant’Anna [2021]; Jordà [2023]).

Finally, the blue circle in Appendix Figure 1 corresponds to an alternative confidence

region for β, namely the Wald confidence region. Denote this region CRWald. This region

simply collects all parameter values (b1, b2) that are not rejected by a standard Wald test of

the null hypothesis that (β1, β2) = (b1, b2) at level α. For a chosen significance level α, this

region also achieves valid coverage: P(β ∈ CRWald) = (1− α) by construction.

Appendix Figure 2 illustrates the three considered confidence regions in settings with

non-zero correlation between the two estimates. We first note that the pointwise confidence

region is identical in Appendix Figures 1 and 2, reflecting the fact that this region does not

depend on the off-diagonal entries in V ar(β̂). Second, while the sup-t region does depend

on the off-diagonal entries in V ar(β̂), it only does so in a limited way through the critical
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Appendix Figure 3: Volume of Wald confidence region relative to sup-t confidence region as a

function of H = dim(β). Vβ is a symmetric Toeplitz matrix with entries vij = ρ|i−j|.

value cα. In this example, the sup-t region is different between Appendix Figures 1 and 2,

but identical in Appendix Figures 2a and 2b. In contrast, the Wald confidence region differs

meaningfully in all three figures. This illustration suggests that the off-diagonal entries

in Vβ can have important implications for the construction of confidence regions, but that

traditional event study plots may be ineffective at visualizing these implications.

While the volumes of the Wald and sup-t regions can be similar for H = 2 (cf. Appendix

Figure 1), the volume of the sup-t confidence region quickly explodes relative to the volume

of the Wald region as H increases. We illustrate this difference in confidence region volume

in Appendix Figure 3, which plots the volume of the Wald confidence region relative to the

volume of the sup-t confidence region as a function of the dimension H for two exemplary

covariance matrices Vβ. We see that the volume of the sup-t region tends to be orders of

magnitude larger than the volume of the Wald region for the typical horizon that is depicted

in event studies and impulse responses. When Vβ is the identity matrix (ρ = 0), the relative

volume of the Wald region is less than 10% and around 0.1% of the volume of the sup-t

region for H = 12 and H = 24, respectively. These numbers are generally even smaller if the

entries in β̂ have non-zero correlation: When Vβ is a symmetric Toeplitz matrix with entries

vij = 0.95|i−j|, this ratio drops to 3.5% and 0.0001% for H = 12 and H = 24, respectively.
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B Alternative unrestricted bounds

An alternative interpretation of the cumulative plausible bounds is as boundary paths that

would be consistent with the upper and lower limits of a confidence interval for the overall

effect of the policy over H periods.

Formally, let

u1−α = max
H∑

h=1

β∗
h s.t. (β∗ − β̂)′V −1

β (β∗ − β̂) = κ(1−α), (1)

where κ(1−α) denotes the inverse of the chi-square cdf with one degree of freedom at chosen

significance level (1 − α). We define l1−α analogously, replacing the max in (1) with min.

Since both u1−α and l1−α, corresponding to the upper and lower limit of the overall effect are

scalars, there are infinitely many treatment paths that correspond to these bounds on the

overall treatment effect. The bounds in the main text are equivalent to using (U,L)1−α =

{U1−α
h , L1−α

h }Hh=1, where U1−α
h = u1−α

H
and L1−α

h = l1−α

H
. We choose this visualization as

the interval (U,L)1−α is a (1 − α)% Wald confidence interval for the average effect of the

policy over the horizon H, 1
H

∑H
h=1 βh. There are, of course, other options available, such as

centering the bounds around the unrestricted point estimates.
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C Algorithmic implementation

Recall that the algorithm takes as input jointly normal estimates of the treatment path

β̂ ∼ N(β, Vβ), where Vβ = σ2V , σ2 = 1
H

∑H
h=1 Vβ(h, h), and V is positive-definite. We define

the following object:

β̃(λ1, λ2, K) = argmin
b

Q(b, λ1, λ2, K)

= argmin
b

(β̂ − b)′V −1(β̂ − b)︸ ︷︷ ︸
distance from β̂

+λ1 b′D′
1W1(K)D1b︸ ︷︷ ︸

penalty on first difference
after horizon K

+λ2 b
′D′

3W3D3b,︸ ︷︷ ︸
penalty on

third difference

where

� λ1, λ2, K are tuning parameters that determine the surrogate M

� D1 and D3 are the H × (H − 1) and H × (H − 3) first and third difference operators

� V1 = D1V D′
1, V3 = D3V D′

3 are (scaled) variance matrices for first and third differences

� V1(K) is the (H − K) × (H − K) matrix consisting of the lower right entries of V1,

V1(K : H − 1, K : H − 1)

� V̄3 =
1

H−3

∑H−3
h=1 V3(h, h), V̄1(K) = 1

H−K

∑H−1
h=K V1(h, h)

� W1(K) =

(
0(K−1)×(K−1) 0(K−1)×(H−K)

0(H−K)×(K−1) diag(V1(K))/V̄1(K)

)

� W3 = diag(V3)/V̄3

Intuitively, W1(K) and W3 are analogs to natural scaling in standard ridge with independent

columns but different variances.

To select the surrogate M from the data, we choose M = (λ1, λ2, K) that minimizes a

BIC analog over M: M̂ = argminM∈M(β̂ − β̃(M))′V −1
β (β̂ − β̃(M)) + log(H)df(λ1, λ2, K).

The universe of models considered, M, includes

(a) A constant, linear, quadratic, and cubic treatment effect model (with one, two, three,

and four degrees of freedom, respectively),
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(b) Surrogates of the form P (M)β = β(λ1, λ2, K) using a grid over (λ1, λ2, K),

(c) The unrestricted estimates β̂ (df = H).

We construct the grid for the surrogates under (b) as follows. First, we set lower and upper

bounds for λ1 and λ2. Independent of K, these bounds are equal to (λ1, λ̄1) = (e−10, e10),

and (λ2, λ̄2) = (e−10, λ̄2), where λ̄2 is defined as the λ2 such that df(e−10, λ2, K) = 4.1 Note

that, with λ1 = 0, λ̄2 also does not depend on K. We then consider the Cartesian product

of an equal spaced grid of 20 points between (log(λ1), log(λ̄1)) and an equal spaced grid of

20 points between (log(λ2), log(λ̄2)), and retain those grid points with df ∈ [4, H − 1].

1Recall that df(λ1, λ2,K) = trace
((

V −1 + λ1D
′
1W1(K)D1 + λ2D

′
3W3D3

)−1
V −1

)
.
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D Simulation design

Scenario treatment path β

Constant treatment effect βh = −0.4 ∀ h

Smooth, eventually flat βh =

{
−0.289 + (18−h)2

1000
h ≤ 17

−0.289 h ≥ 18

Hump-shaped βh = −0.4− 0.4 sin

(
3
70
π(h− 1)

)
∀ h

Wiggly

βh = β̆h + ξh, where ξh ∼ N(0, 0.1) iid across h and

β̆h =

 −0.4 sin

(
1
35
π(h− 1)

)
h ≤ 19

−0.4 h ≥ 20

Appendix Table 1: Detailed description of the four different treatment paths β = {β}36h=1

considered in the simulations. We draw a single realization of the “Wiggly” scenario (which is

depicted in Figure 3d) to use throughout our simulations.

We generate the covariance matrix of β̂ as Vβ = σ2 ∗ diag(S)R diag(S), where Sh =

(100 + h)/100, and R is a H × H Toeplitz matrix with Rij = ρ|i−j|. For all results in the

main text, we set ρ = 0 (such that R becomes the identity matrix).
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E Additional simulation results

(a) treatment path constant (b) treatment path smooth, eventually flat

(c) treatment path hump-shaped (d) treatment path wiggly

Appendix Figure 4: Exemplary event study plots including our proposals with smaller noise

than in Figure 2.
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(a) Constant Treatment Effect (b) Smooth, eventually flat

(c) Hump-shaped (d) Wiggly

Appendix Figure 5: Illustration of model universe M. Brown lines correspond to all considered

models M of the form P (M)β = β(λ1, λ2,K) with df ∈ [4, H − 1]. Blue line corresponds to true

treatment effect β.
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Appendix Figure 6: Chosen df across realizations for restricted estimates as a function of the

amount of noise σ2 in the initial estimates β̂.
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(a) Constant Treatment Effect (b) Smooth, eventually flat

(c) Hump-shaped (d) Wiggly

Appendix Figure 7: Illustration of the chosen surrogates across our 1,000 simulations for σ2 =

0.014 (log(σ2) = −4.27), corresponding to the left most point in Figures 4-5, and thus a large

amount of noise in β̂.
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(a) log(σ2) = −4.27 (b) log(σ2) = −5.66

(c) log(σ2) = −7.04 (d) log(σ2) = −8.43

Appendix Figure 8: Illustration of 1,000 chosen surrogates for Wiggly DGP for various levels of

σ2, the amount of noise in the initial estimates β̂.
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F Simulation results with positively correlated esti-

mates

In this appendix, we repeat the simulation experiment reported in the main test using a

covariance matrix Vβ capturing positively correlated estimates. In particular, recall that

Vβ = σ2 ∗ diag(S)R diag(S), where Sh = (100 + h)/100, and R is a H ×H Toeplitz matrix

with Rij = ρ|i−j|. In the results that follow, we set ρ = 0.8.
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Appendix Figure 9: Relative performance of restricted and unrestricted estimators. Depicted is

the ratio MSE(β̃(M̂))

MSE(β̂)
as a function of the amount of noise in the initial estimates β̂.
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Appendix Figure 10: Coverage properties of various confidence regions as a function of the

amount of noise in the initial estimates β̂.
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Appendix Figure 11: Average width of confidence regions relative to pointwise confidence in-

tervals as a function of the amount of noise in the initial estimates β̂.
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(a) Constant Treatment Effect (b) Smooth, eventually flat

(c) Hump-shaped (d) Wiggly

Appendix Figure 12: Illustration of the 1,000 chosen surrogates for σ2 = 0.014 (log(σ2) = −4.27)

under positive correlation in the point estimates.
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