
ISSN: 1962-5361
Disclaimer: This Philadelphia Fed working paper represents preliminary research that is being
circulated for discussion purposes. The views expressed in these papers are solely those of
the authors and do not necessarily reflect the views of the Federal Reserve Bank of Philadelphia
or the Federal Reserve System. Any errors or omissions are the responsibility of the authors.
Philadelphia Fed working papers are free to download at: https://www.philadelphiafed.org/
search-results/all-work?searchtype=working-papers.

WP 25-25
PUBLISHED

September 2025

Working Papers
RESEARCH DEPARTMENT

DOI: https://doi.org/10.21799/frbp.wp.2025.25

Hadi Elzayn
Stanford University

Simon Freyaldenhoven
Federal Reserve Bank of Philadelphia

Minchul Shin
Federal Reserve Bank of Philadelphia

Precision Without Labels
Detecting Cross-Applicants
in Mortgage Data Using
Unsupervised Learning

https://www.philadelphiafed.org/search-results/all-work?searchtype=working-papers
https://www.philadelphiafed.org/search-results/all-work?searchtype=working-papers
https://doi.org/10.21799/frbp.wp.2025.25

Precision Without Labels: Detecting Cross-Applicants
in Mortgage Data Using Unsupervised Learning

Hadi Elzayn
Stanford University

Simon Freyaldenhoven
FRB Philadelphia

Minchul Shin
FRB Philadelphia∗

Abstract

We develop a clustering-based algorithm to detect loan applicants who submit
multiple applications (“cross-applicants”) in a loan-level dataset without personal
identifiers. A key innovation of our approach is a novel evaluation method that does
not require labeled training data, allowing us to optimize the tuning parameters of
our machine learning algorithm. By applying this methodology to Home Mortgage
Disclosure Act (HMDA) data, we create a unique dataset that consolidates mortgage
applications to the individual applicant level across the United States. Our preferred
specification identifies cross-applicants with 92.3% precision.

1 Introduction

The Home Mortgage Disclosure Act (HMDA) data is a leading example of a consumer finance dataset
at the account level that does not include person-level identifiers: it contains the near-universe of
all mortgage applications in the US, but does not contain an applicant identifier that allows linking
multiple applications to the same applicant. We present a novel approach to detect “cross-applicants”
– individuals who submit multiple mortgage applications – using a clustering-based algorithm applied
to loan-level data.

In a nutshell, our approach works as follows. Using application level mortgage data from a confidential
version of the widely known HMDA dataset2, we first split the data into partitions, characterized by
the distinct outcomes of nine categorical variables, such as census tract of the property or the race
of an applicant. We then apply a clustering algorithm to further break down these partitions into
clusters. These clusters have the property that all applications within one cluster are “close” in terms
of a number of continuous attributes, such as application date or reported income. This is motivated
by the fact that an applicant may submit two (almost) identical applications to different lenders on
subsequent days.

Figure 1 illustrates our approach. Here, we have created a partition of size four using categorical
variables in a first step. In the second step, we then use a single continuous variable, for instance
application date, to further split the partition into three clusters. The first two clusters consist of single
applications (reflecting two applicants), while the third cluster consists of two applications (reflecting
a third applicant). Here, the last two applications are assigned to the same cluster because they are
filed within a short time span. At this point, all applications in a given cluster are “near-identical.”
In both simulations and our empirical application, we provide evidence that clusters constructed
this way indeed mostly represent single individuals submitting multiple (near-identical) mortgage
applications for the same property.

∗We thank Andrew Gross, Ryan Kobler, Kellen O’Connor, and Eliana Sena Sarmiento for excellent research
assistance. The views expressed herein are those of the authors and do not necessarily reflect the views of the
Federal Reserve Bank of Philadelphia, or the Federal Reserve System. Emails: hselzayn@law.stanford.edu,
simon.freyaldenhoven@phil.frb.org, minchul.shin@phil.frb.org.

2We discuss our data in more detail in Section 4. For more background, see https://ffiec.cfpb.gov/.

Preprint. Under review.

mailto:hselzayn@law.stanford.edu
mailto:simon.freyaldenhoven@phil.frb.org
mailto:minchul.shin@phil.frb.org
https://ffiec.cfpb.gov/

Figure 1: Illustration of clustering algorithm in a hypothetical univariate example for a partition with
four applications, where the only clustering variable is “Time.” The last two applications are filed
within a short time span, and thus assigned to the same cluster.

The contributions of this paper are twofold. First, we develop a methodological framework that allows
us to identify and group loan applications submitted by the same individual in large-scale, anonymized
datasets. This framework is flexible and can be applied to a variety of datasets where individual-level
identifiers are absent. We implement our method using a state-of-the-art agglomerative clustering
algorithm, making it feasible to apply this method to large datasets with millions of observations.
Crucially, we develop a novel method to measure the quality of the proposed algorithm that does
not require labeled training data. To do this, we exploit the fact that consumers can take out
only a single first-lien mortgage for a given property. This insight further allows us to select the
tuning parameters of our algorithm to optimize its performance. We validate our approach through
simulation, demonstrating its effectiveness in identifying cross-applicants in simulated data. Second,
we then apply our method to the Home Mortgage Disclosure Act (HMDA) data, creating a unique
dataset that consolidates mortgage applications at the individual applicant level across the country.
Our preferred specification of the algorithm demonstrates a high level of precision, successfully
identifying cross-applicants with an estimated 92.3% precision.

2 Identifying Cross-Applicants

We assume access to a loan-level dataset without personal identifiers. Specifically, we will frame our
following discussion around a dataset of mortgage applications, in line with our empirical application.
There are N borrower-property pairs, which we refer to as “individuals.” If the same person applies
for a mortgage for two distinct properties, we would count this as two distinct individuals. Each
individual is indexed by i, where i ∈ 1, 2, ..., N . Individuals submit loan applications. They may
submit multiple applications for the same property, m ∈ 1, 2, ..., ni. The number of applications, ni,
for each individual may be dependent on the individual’s characteristics and can be random.

The covariate vector Zim = [Xim, Ci] includes variables observable by the researcher. Xim is a
vector of variables that may vary across applications if an individual submits multiple applications
(e.g., the application date), while Ci is a vector of variables that are constant across an individual’s
applications (e.g., the census tract for applications involving the same property). The binary indicator
Lim is set to 1 if individual i’s loan application m is accepted, and 0 otherwise. For each approved
loan, the applicant decides whether to originate or not. Let Oim = 1 if a loan is originated, and
Oim = 0 otherwise. We stress that, since we are considering first-lien mortgages throughout, an
individual can originate at most one loan.

The researcher does not observe the individual index i. Instead, they observe an application j ∈
1, 2, ..., J , where J ≥ N represents a row in the data and consists ofXj , Cj , Lj , and the element-wise
product LjOj .

2.1 Methodology

Our cross-applicants are constructed as follows. We first split the data into partitions based on the
realizations of the variables in Cj that are assumed to be constant across applications submitted by
the individual i (e.g., census tract). We then further break down these partitions into groups based on
the variables in Xj that are potentially different across applications submitted by the individual i (e.g.,
date) but expected to be “close.” In particular, we group applications such that, for all applications xj
and xj′ in the same group, d(xj , xj′) ≤ ε. Here, d(·) denotes distance, xj is a vector of observed

2

Application 1
x1 = $10K

Application 2
x2 = $11K

Application 3
x3 = $20K

S1 = {x1, x2} S2 = {x3}

S21 = {x1, x2, x3}

⇑ d(xj , xj′) ≤ ε

⇓ d(xj , xj′) > ε

Figure 2: The figure illustrates a hierarchical clustering process for three applications with identical
cj values (e.g., the same location) but differing loan amounts, denoted as xj . The red dashed
line represents the cutoff defined by ε for a hypothetical value of ε between $1K and $10K. The
clusters S1 = {x1, x2} and S2 = {x3} are ε-identical clusters at this cutoff. If ε is increased
beyond $10K (i.e., the red line is lowered), the applications merge into a single ε-identical cluster
S21 = {x1, x2, x3}. This example demonstrates how hierarchical clustering relies on forming an
inverse tree structure, after which identifying ε-identical clusters becomes straightforward by simply
adjusting the position of the cutoff line.

variables for application j of dimension r, and ε is a tuning parameter that determines the maximum
distance between two applications in the same group.3

Definition 1. We call a cluster of applications S ε-identical if d(xj , xj′) ≤ ε and cj = cj′ for any
applications j, j′ ∈ S, where zj = [xj , cj] is a vector of observed variables for application j.

We then treat applications in the same cluster as if they were submitted by the same individual, i. Our
hope is that these clusters indeed represent individual applicants who submitted multiple ε-identical
applications.

We first note that finding all ε-identical applications in the data is computationally challenging. One
simple strategy is to begin with single applications as their own clusters. Then, we iteratively merge
the two closest clusters until only one cluster remains. This process results in an inverse tree structure
where applications progressively merge into larger clusters. We then select the clusters where all
applications within a given cluster are ε-identical by truncating the inverse tree structure at a specific
ε value. All clusters constructed in this manner contain applications j, j′ that are identical in terms
of their categorical variables (cj = cj′) and near-identical in terms of their continuous variables
(d(xj , xj′) ≤ ε). Figure 2 illustrates this process for three applications with identical cj values (e.g.,
the same location) but differing loan amounts, denoted as xj . In this example, as we increase ε, the
algorithm will first cluster the first two applications together into one ε-identical cluster. Once ε is
larger than 10K, all three applications are clustered into a single cluster.

It is also important to note that once this inverse tree is created, there is no need to recompute
clusters for different choices of ε, which facilitates optimally choosing ε without incurring additional

3In our empirical implementation, we use a distance function d(·) of the following form:

d(xj , xj′) =

(
r∑

s=1

ds(xsj , xsj′)
2

)1/2

.

Note that this corresponds to a weighted ℓ2-norm if ds(xsj , xsj′) = ws(xsj − xsj′), although we also consider
more general distances (see Appendix B).

3

computational costs. The algorithm described above is a version of what is known as agglomerative
clustering. Unfortunately, this algorithm has a worst-case time complexity of O(ℓ3), where ℓ is
the size of the largest partition. Instead, we apply a state-of-the-art hierarchical agglomerative
clustering algorithm for complete-linkage clustering that is based on the nearest-neighbor chain
method. This algorithm has a worst-case complexity of O(ℓ2) while converging to the same clusters
that the original, slower algorithm would produce [Müllner, 2011]. We implement the agglomerative
clustering algorithm using the fastcluster package in Python [Müllner, 2013].

2.2 Useful bounds for tuning parameter selection

In practice, our clustering algorithm may pick up some pairs of applications that are near identical
in terms of their observable characteristics, but in fact correspond to multiple individuals. We next
propose a way to lower-bound the performance of our algorithm in identifying clusters of applications
belonging to the same applicant. In addition, we will use these bounds to choose our tuning parameters
(d(·),ε). We make the following assumptions:
Assumption 1 (Origination decisions are independent across borrowers). For any l,m and i ̸= j:

Pr[Oim = 1|Ojl = 1] = Pr[Oim = 1].

Assumption 2 (Origination Probability is weakly increasing). An applicant’s origination probability
is weakly larger in the number of submitted applications:

Pr[
∑
m

Oim = 1|ni = k + 1] ≥ Pr[
∑
m

Oim = 1|ni = k] ∀k

Let False denote the event that a cluster is a false positive (i.e. contains applications from more
than one applicant), and let Mult denote the event that there are multiple originations in a cluster S
(i.e.

∑
i,m∈S Oim > 1). Let p be the unconditional probability of origination for an application (i.e.

p = Pr[Oim = 1]). We obtain the following result.
Theorem 1. Under Assumptions 1-2, the false positive rate can be bounded above as follows:

Pr[False] ≤ Pr[Mult]

p2
.

Equivalently, this implies that the precision of our algorithm is at least 1− Pr[Mult]
p2 .

The proof can be found in the Appendix. For intuition, consider a simplified version of the problem
where all clusters are at most of size two and applicants submit at most two applications. Recall that no
individual can take out two first lien mortgages for the same property: for all i,

∑M
m=1 LimOim ≤ 1.

If our algorithm works perfectly, and each cluster contains only applications from a single applicant,
the probability of seeing two originations in the same cluster is equal to zero, since for all clusters
S:
∑

i,m∈S LimOim ≤ 1. On the other extreme, suppose our clusters contain random pairs of
applications. In that case, the probability of seeing two originations in a given cluster can be
approximated by P (Oim)P (Ojk) = P (Oim)2. Thus, the rate at which our algorithm creates clusters
with multiple originations is informative about the quality of the algorithm. This allows us to not
only assess the quality of our clustering algorithm for a given value of tuning parameters (d(·),ε) but
also choose our tuning parameters.

Theorem 1 means that that we can lower-bound the precision of our algorithm using only an estimate
of the unconditional probability of origination p, and the rate at which our estimated clusters contain
multiple originations Pr[Mult]. To estimate these, we simply use the empirical probability of
origination in our dataset, p̂, to estimate p, and the fraction of clusters that have multiple originations,
p̂m, to estimate Pr[Mult].

Finally, we note that we can exclude any clusters that indeed contain multiple origination (which we
know are false positives) to improve the precision of our algorithm. Our initial clusters contained
three types of clusters: 1) True cross-applicants ŜT , 2) False positives with zero or one originations
ŜF
0−1, and 3) False positives with multiple originations ŜF

2+. Since we can easily identify the clusters
in the third category, we can improve the performance of our algorithm by simply dropping estimated
clusters with multiple originations. This yields a new lower bound on the precision of our algorithm:

Pr[False] ≥
1− Pr[Mult]

p2

1− Pr[Mult]
. (1)

4

Its empirical counterpart is then given by

̂Pr[False] ≥
1− p̂m

p̂2

1− p̂m
. (2)

3 Simulation

We next generate a hypothetical dataset to illustrate our algorithm and demonstrate its performance in
a stylized setting. While we describe our simulated data in more detail in Appendix C, we provide a
brief overview here.

We first create one million “census tracts.” For each census tract c, the number of applicants belonging
to this census tract, Nc, is random and its distribution approximates the distribution of partitions we
observe in our empirical application. The number of applications per applicant i is also random, with
expected number of applications per applicant ni equal to 1.25. In addition to the census tract Ci,
each application Aim = {Ci, Gi, TimXim} consists of a discrete group membership Gi ∈ {0, 1}
(e.g. gender of the applicant), a continuous variable Tim (e.g. time of application), and a continuous
variableXim (e.g. the loan amount). Tim andXim differ (slightly) across applicationsm to reflect the
observed data. Potential lenders make a decision whether to extend the loan. An applicant hears back
sequentially from her applications. As long as she has not originated a loan, each time an application
is approved the applicant originates the corresponding loan with probability 0.9. Importantly, once
she originates her first loan, the applicant does not originate any additional loans. We reemphasize
that the researcher observes application level data but not the index i. That is, she does not know
whether two applications j and j′ are submitted by the same individual i.

3.1 Results

We next run our partitioning and clustering algorithm on the simulated data outlined above to
identify cross-applicants. For the simulation exercise, we use simple Euclidean distance, d(xj , xk) =
∥xj − xk∥2, as our distance function between two applications xj , xk when computing our clusters.
To demonstrate how additional observed covariates impact our results, we run our algorithm two
times. In the first specification (“without date”), we use only a single continuous variable in Xj

during the clustering step, withholding the second observed covariate Tj . In the second specification
(“with date”), we use both Xj and Tj during the clustering step.4

We first illustrate the performance of our algorithm as a function of the tuning parameter ε, where
d(xj , xk) < ε if applications j and k are grouped together in the same cluster S. Figure 3a depicts
the fraction of clusters that contain only applications from a single applicant. This represents the
precision (= True Positives/(True Positives + False Positives)) of our algorithm, where a positive
instance corresponds to cross-applicants.5 We first note that the availability of an additional covariate
greatly improves the performance of the algorithm: Without the date variable Tj , the precision of our
algorithm is below 70% for all values of ε, while including the date variable can lead to a precision
above 95%. Next, we note that the quality of our algorithm increases as we reduce the size of ε.
Intuitively, as we require applications within a cluster to be closer to identical, we reduce the number
of “false positives” - applications that look similar but are submitted by distinct applicants. However,
Figure 3b illustrates how the number of estimated cross-applicants increases with ε. We thus face
a trade-off - while small values of ε tend to lead to fewer false positives, we might want to keep ε
large enough to obtain a substantial sample size. In both our specifications here, we observe a sweet
spot slightly below ε = 0.1. For example, with ε = 0.06 our algorithm finds more than 370,000
clusters that contain multiple applications in both specifications, and around 95% (“with date”) and
64% (“without date”) of these clusters contain only applications from a single applicant.

4Alternatively, we note that the two specifications can be viewed as using two different weight vectors on
the covariate vector. That is, with xj = [Xj , Tj], and using a weighted ℓ2-norm of the form dw(xi, xj) =(∑r

k=1 wk(xki − xkj)
2
)1/2 as the distance metric between applications, our two specifications (“with date”

and “without date”) correspond to weight vectors of w = (1, 1) and w = (1, 0), respectively. We will revisit
this interpretation in Section 4.

5To keep the discussion as simple as possible, we drop all clusters with more than two applications in both
our simulation results and our application that follows, such that all results are based on clusters with two
applications.

5

(a) Fraction of clusters that consist of applications from
a single applicant (precision).

(b) Number of estimated clusters.

Figure 3: Estimated cross-applicants as function of tuning parameter ε. Raw cluster estimates are
adjusted by dropping clusters with multiple originations.

Since the construction of Figure 3a requires knowledge of an individual’s identifier i, it is infeasible in
practice and cannot be used to assess the quality of the estimates or to choose the value of the tuning
parameter ε. However, as we showed in Section 2, the rate at which we find multiple originations
in the same cluster is informative about the quality of our algorithm. The probability of origination
for a given approved application is p̂ = 0.7917, and the probability of a random pair of approved
applications having both loans originated is thus equal to p̂2 = 0.6269. For a given choice of ε, we
can further compute the empirical fraction of clusters with multiple originations, p̂m. Using Equation
(2), we can then lower-bound the fraction of clusters that consists of applications from the same
applicant. This is depicted in Figure 4a. We first note the close resemblance between Figures 3a
and 4a. We take this as an encouraging sign that our proposed method to assess the performance of
our algorithm works well. In our main specification (“with date”), we obtain a feasible estimate for
a lower bound of how many clusters contain applicants from a single applicant equal to 93.7% at
ε = 0.06.

Finally, we directly depict the trade-off between the estimated precision of our algorithm and the
number of estimated cross-applicants in Figure 4b. This allows for an easy illustration of the relevant
trade-off across the different tuning parameters (e.g. the tolerance ε and distance function d(·)).
For example, when considering two sets of tuning parameters (ε1, d1(·)) and (ε2, d2(·)), we strictly
prefer (ε1, d1(·)) to (ε2, d2(·)) if it results in both higher implied precision and a larger sample size.

4 Application to the US Mortgage Market

4.1 Data

We obtain data on mortgage applications from the Home Mortgage Disclosure Act (HMDA). The vast
majority of all mortgage applications filed in the US are subject to HMDA reporting and thus included

(a) As a function of ε (b) As a function of sample size

Figure 4: Implied fraction of clusters that consists of true cross-applicants (precision).

6

in this dataset. While a publicly available version of this dataset exists, we work directly with a
confidential version (cHMDA) that includes more detailed information for each loan application (e.g.
the exact date an application was filed).

We restrict our analysis to mortgage applications filed between 2018 and 2023. We exclude appli-
cations from earlier years because a number of important borrower and loan characteristics, such
as the credit score and the loan-to-value ratio (LTV) are available only starting in 2018. We further
retain only first-lien mortgages and applications that are either approved or denied, dropping ap-
plications that are withdrawn by the applicant before a decision was made, applications closed for
incompleteness, loan purchases, and applications that went through only the pre-approval process.
Finally, we drop applications filed outside the 50 states and Washington, D.C. This gives us 65.5
million applications to analyze.

4.2 Identifying cross-applicants

Around 22% of Americans apply for more than one mortgage during the mortgage application process
[Consumer Financial Protection Bureau and Federal Housing Finance Agency, 2024]. Since the
HMDA dataset is at the application level, and not the individual level, it is generally not possible to
identify applicants that submit multiple applications. We apply our proposed method to identify these
“cross-applicants” who applied for several loans during the mortgage application process.

Following our earlier discussion, we first split the data into partitions based on categorical characteris-
tics we expect to be constant at the individual level. These are: census tract, property type, occupancy,
loan purpose, applicant race, applicant sex, applicant age, loan type and a flag for whether or not
there is a co-applicant.6

Next, we apply the above-mentioned hierarchical agglomerative clustering algorithm to further break
down the partitions into clusters. We define our clusters such that, for all applications xj , xj′ in the
same cluster the following holds:

d(xj , xj′) ≤

(
r∑

s=1

ds(xsk, xsj)
2

)1/2

≤ ε, (3)

where xj is a vector of observed variables for application j. Specifically, we use xj =
(datej , incj , sizej , ficoj , ltvj), where datej represents the date an application is filed, incj is
the reported income in thousands of dollars, sizej is the requested loan amount in thousands of
dollars, ficoj denotes the reported credit score at the time of application, and ltvj is the loan-to-value
ratio of the loan. Note that this corresponds to a weighted ℓ2-norm if ds(xsj , xsj′) = ws(xsj − xsj′),
although we also consider more general distances (for more implementation details, see Appendix B).

We consider a total of 96 combinations of distance functions d(·) and tolerance parameters ε, and
select the best combination based on the accuracy-size trade-off discussed in the previous section
and illustrated in Figure 5. In particular, Figure 5 depicts the precision of our algorithm relative
to the sample size for the points (d(·), ε) on the “frontier”: the combinations of d(·) and ε that are
not dominated by an alternative combination yielding both higher precision and a larger sample
size. Each point on the curve represents a specific combination of distance function and tolerance
parameter. We highlight our preferred specification as the larger orange dot. At this specification, we
obtain 314, 344 clusters, and estimate that 92.3% of our estimated clusters are true cross-applicants.

Figure 6 provides several diagnostics to validate our estimated cross-applicants. Figure 6a depicts the
distribution of the difference in dates between applications within a cluster. We depict this distribution
separately for those cross-applicants that have their first application denied and approved. We see
that most applications within the same cluster are submitted within 3 weeks, and observe a bunching
of the differences at multiples of seven, corresponding to applications being submitted on the same
weekday. Further, cross-applicants who first get denied take slightly longer to submit their second

6Note that this implies that applicants who apply for different types of loans cannot end up in the same
cluster. This approach makes sense when we want to investigate whether and how a lender distinguishes between
two (almost) identical applications submitted by the same individual. In a different context, it may be more
appropriate to track an applicant who applies for different types of loans for the same property. Hence, this is an
application-specific modeling choice, and we suggest carefully selecting the variables in the distance function to
ensure that the identified cross-applicants are consistent with the research question.

7

Figure 5: The precision-sample size frontier for identifying cross-applicants. Each point on the curve
represents a specific combination of distance function and tolerance parameter. The large orange dot
corresponds to our preferred specification, balancing precision and sample size.

application, compared to cross-applicants who have their first application approved. This may suggest
that applicants who had their first application denied may try to improve their profile before applying
again. In Figures 6b-6d, we therefore explore how some of the key variables that determine a loan
decision vary between the two applications an applicant submits.

Figure 6b shows that applicants whose first application is rejected tend to have a slightly higher credit
score on their second application, compared with applicants whose first application is approved, when
they submit their second application within four weeks of their first application. After four weeks,
both groups experience a drop in their credit score. This is consistent with a hard credit inquiry as a
result of their first application negatively impacting their credit score.

Figure 6c shows that applicants whose first application is rejected tend to report a higher income
on their second application, compared with applicants whose first application is approved. This
is consistent with denied applicants taking steps to (marginally) improve their profile if their first
application is rejected. In particular, we note that income is generally self-reported (though subject to
verification), making it potentially easier to alter compared to, for instance, one’s credit score.

Figure 6d shows that applicants whose first application is rejected tend to request a slightly lower loan
amount on their second application, compared with applicants whose first application is approved.
This is again consistent with denied applicants taking steps to (marginally) improve their profile if
their first application is rejected.

5 Conclusion

We presented a novel clustering-based algorithm designed to detect cross-applicants in large
anonymized datasets, such as loan-level mortgage data. In particular, our approach introduces
a new evaluation method that enables a researcher to optimize the trade-off between precision and
sample size without the need for labeled training data, making our proposed method highly prac-
tical. By applying this methodology to the Home Mortgage Disclosure Act (HMDA) dataset, we
successfully identified individuals submitting multiple mortgage applications, achieving an estimated
precision of 92.3%. Our results open several promising directions for future research. We conclude
by highlighting three potential applications of our work:

1. Measuring Fairness. Cross-applicants may be useful for measuring fairness across demographic
groups in the mortgage market. Elzayn et al. [2025] argue that cross-applicants who had one

8

0

.01

.02

.03

.04

.05

Pe
rc

en
ta

ge
 o

f a
pp

lic
an

ts

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536373839

Difference in days between applications

First accepted First rejected

(a) Histogram of date differences within cluster.

(b) Credit score

(c) Income (yearly, in 1,000s) (d) Loan amount (in 1,000s)

Figure 6: Average change in the reported variable in an applicant’s second application relative to
her first application, as a function of the date differences between the first and second application
submitted. Yellow triangles represent cross-applicants whose first application was approved. Blue
dots represent cross-applicants whose first application was denied.

application approved and a second (near-identical) application rejected can be thought of as “marginal
applicants”: those on the lenders’ decision boundary. Comparing the subsequent default probabilities
of these marginal applicants can thus avoid the issue of inframarginality (cf. Simoiu et al. [2017]),
and be used to test for discrimination in the lenders’ loan granting decisions.

2. Monitoring Lending Standards and Comparing Banks/Lenders. Identifying marginal borrow-
ers may also provide a way to better monitor current lending standards. Monitoring the characteristics
(e.g., credit scores) of approved applicants over time to measure lending standards (e.g., Mayer et al.
[2009], Demyanyk and Van Hemert [2011]) again faces the problem of inframarginality. Monitor-
ing the characteristics of marginal applicants avoids this issue, allowing us to track how lending
conditions vary over time or to compare lending standards across lenders.

3. Exploring Mortgage Shopping Behavior. Access to a dataset of cross-applicants enables studying
the shopping behavior of mortgage applicants (e.g., understanding of how borrowers compare lenders,
and how these behaviors differ across various demographic or economic groups). Existing attempts
have had to rely on either survey data (Bhutta et al. [2020]) or credit inquiries as proxies for shopping
behavior (Agarwal et al. [2024]).

A potential limitation of using our approach to study the questions above is that, because we prioritize
precision over sample size at our preferred specification, our clusters likely make up only a small
fraction of all true cross-applicants. This leads to a relatively small sample size, and the resulting
sample may also not be representative.

9

References
Sumit Agarwal, John Grigsby, Ali Hortaçsu, Gregor Matvos, Amit Seru, and Vincent Yao. Searching

for approval. Econometrica, 92(4):1195–1231, 2024. doi: 10.3982/ECTA21163.

Neil Bhutta, Andreas Fuster, and Aurel Hizmo. Paying too much? Price dispersion in the US
mortgage market. Staff Reports, Federal Reserve Bank of New York, (925), 2020. URL https:
//doi.org/10.17016/FEDS.2020.062.

Consumer Financial Protection Bureau and Federal Housing Finance Agency. National survey of
mortgage originations, 2024. URL https://www.consumerfinance.gov/data-research/
national-survey-mortgage-originations/. Accessed: September 11, 2024.

Yuliya Demyanyk and Otto Van Hemert. Understanding the subprime mortgage crisis. The Review of
Financial Studies, 24(6):1848–1880, 2011.

Hadi Elzayn, Simon Freyaldenhoven, Ryan C. Kobler, and Minchul Shin. Measur-
ing fairness in the U.S. mortgage market. Philadelphia Fed Working Paper, 2025.
URL https://www.philadelphiafed.org/consumer-finance/mortgage-markets/
measuring-fairness-in-the-us-mortgage-market.

Christopher Mayer, Karen Pence, and Shane M. Sherlund. The rise in mortgage defaults. Journal of
Economic Perspectives, 23(1):27–50, 2009.

Daniel Müllner. Modern hierarchical, agglomerative clustering algorithms. arXiv preprint
arXiv:1109.2378, 2011.

Daniel Müllner. Fastcluster: Fast hierarchical, agglomerative clustering routines for R and Python.
Journal of Statistical Software, 53:1–18, 2013.

Camelia Simoiu, Sam Corbett-Davies, and Sharad Goel. The problem of infra-marginality in outcome
tests for discrimination. The Annals of Applied Statistics, 11(3):1193–1216, 2017.

10

https://doi.org/10.17016/FEDS.2020.062
https://doi.org/10.17016/FEDS.2020.062
https://www.consumerfinance.gov/data-research/national-survey-mortgage-originations/
https://www.consumerfinance.gov/data-research/national-survey-mortgage-originations/
https://www.philadelphiafed.org/consumer-finance/mortgage-markets/measuring-fairness-in-the-us-mortgage-market
https://www.philadelphiafed.org/consumer-finance/mortgage-markets/measuring-fairness-in-the-us-mortgage-market

A Mathematical Appendix

In this section, we derive how we can use the observed rate of multiple originations per cluster to
bound the rate at which applications from distinct individuals are incorrectly clustered together in
more detail. Let K be the number of distinct applicants in a cluster. Before the main result, we start
with the following useful lemma.
Lemma 1. The probability of multiple originations in a false cluster is bounded below by p2. That is:

Pr[Mult|False] ≥ Pr[Oim = 1]2 = p2.

Proof. By definition, K ≥ 2 for false clusters and thus:

Pr[Mult|False] = Pr[K = 2|False] Pr[Mult|K = 2] + Pr[K > 2|False] Pr[Mult|K > 2]

= Pr[K = 2|False] Pr[Mult|K = 2] + (1− Pr[K = 2|False]) Pr[Mult|K > 2].

We can further separate the clusters with two distinct applicants into those that contain exactly two
applications, and those that contain more than two applications, and thus write Pr[Mult|K = 2] =
w2 Pr[Mult|K = 2, |S| = 2]+(1−w2) Pr[Mult|K = 2, |S| > 2] where w2 = Pr[|S| = 2|K = 2].
By Assumption 1, Pr[Mult|K = 2, |S| = 2] = p2. Since further, by Assumption 2, Pr[Mult|K =
2, |S| > 2] ≥ Pr[Mult|K = 2, |S| = 2], it follows that Pr[Mult|K = 2] ≥ p2.

In fact, we can use the same argument to separate the clusters with K > 2 distinct applicants into
those that contain exactly K applications, and those that contain more than K applications. Then,
Pr[Mult|K = k] = wk Pr[Mult|K = k, |S| = k] + (1 − wk) Pr[Mult|K = k, |S| > k]. By
Assumption 1, Pr[Mult|K = k, |S| = k] = 1 − Pr[¬Mult|K = k, |S| = k]. This probability is
given by

Pr[¬Mult|K = k, |S| = k] : = g(p, k) = (1− p)k +

(
k

1

)
p(1− p)k−1

= (1− p)k + kp(1− p)k−1

= (1− p)k−1(1− p+ kp)

= (1− p)k−1(1 + p(k − 1)).

With g(p, k) = (1− p)k−1(1 + p(k − 1)), note that for any fixed p ∈ [0, 1],

∂g

∂k
≤ 0

for all k; to see this, we calculate that:

∂g

∂k
= (1− p)k−1 [((k − 1) p+ 1) ln(1− p) + p] .

Then notice that the inner term is 0 at p = 0 and decreases with p, because

∂

∂p
[((k − 1)p+ 1) ln(1− p) + p] = (k − 1) ln(1− p)− pk

1− p
,

which is non-positive for any k ≥ 1, p ∈ [0, 1]. Hence ∂g
∂k is product of a non-negative and non-

positive term, i.e. is non-positive overall. In other words, Pr[¬Mult|K = k, |S| = k] is decreasing
in k. Since Pr[Mult|K = k, |S| = k] = 1 − Pr[¬Mult|K = k, |S| = k], we must have that
Pr[Mult|K = k, |S| = k] is increasing in k, and Pr[Mult|K = k, |S| = k] ≥ Pr[Mult|K =
2, |S| = 2] = p2.

Since, by Assumption 2, Pr[Mult|K = k, |S| > k] ≥ Pr[Mult|K = k, |S| = k], it also follows that
Pr[Mult|K = k] ≥ p2. Putting it together, we obtain that

Pr[Mult|False] = Pr[K = 2|False] Pr[Mult|K = 2] + (1− Pr[K = 2|False]) Pr[Mult|K > 2]

≥ Pr[K = 2|False]p2 + (1− Pr[K = 2|False])p2 = p2.

11

The proof of Theorem 1 then follows:

Proof of Theorem 1. We can write:

Pr[Mult] = Pr[False] Pr[Mult|False] + Pr[¬False] Pr[Mult|¬False].

But Pr[Mult|¬False] = 0 because we consider first-lien mortgages and therefore an individual can
originate at most one loan. We can thus write that:

Pr[False] =
Pr[Mult]

Pr[Mult|False]
≤ Pr[Mult]

p2
,

where the inequality follows from Lemma 1. It also immediately follows that the precision of our
algorithm is given by

precision = Pr[¬False] = 1− Pr[False] ≥ 1− Pr[Mult]

p2
.

12

B Implementation Details

Recall that we use our agglomerative clustering algorithm to break down the partitions of the data
into groups such that for all applications xj and xj′ in the same group, d(xj , xj′) ≤ ε. We use a
distance function of the following form:

d(xj , xj′) =

(
r∑

s=1

ds(xsj , xsj′)
2

)1/2

.

Table 1 summarizes the different ways we compute the distance between applications. Each row
corresponds to a specific definition of the distances ds(·) for s = 1, . . . r. If ds is numeric,
ds(xsj , xsj′) = ws(xsj − xsj′) with the number in Table 1 indicating the value of ws. Thus,
if the entire weight vector is numeric, the corresponding row represents a weighted ℓ2-norm. If ws is
equal to “Penalize exact”,

ds(xsj , xsj′) =

{
(xsj − xsj′) if xsj ̸= xsj′

55 if xsj = xsj′ .

If ws is equal to “Reward exact”,

ds(xsj , xsj′) =

{
0 if |xsj − xsj′ | < 7

2(|xsj − xsj′ | − 7) otherwise.

Table 1: Universe of distance functions considered. Each line corresponds to one definition of
distance between applications.

Application Date Income Loan Amount Credit Score Property Value

1. 1 0 0 0 1
2. 1 0 1 0 0
3. 1 1 0 0 0
4. 1 1 1 0 1
5. 1 1 1 1 1
6. 1 1 1 2 1
7. 1 1 1 3 2
8. Penalize Exact Penalize Exact 1 1 1
9. Penalize Exact Penalize Exact Penalize Exact 1 1

10. Reward Exact 1 1 1 1
11. Reward Exact 1 1 2 1
12. Reward Exact 1 1 3 2

For each row, we then use ε ∈ {15, 22, 30, 40, 52, 70, 90, 110} for a total of 96 combinations of
(d(·), ε). Figure 7 shows the precision and sample size for each of these combinations. We run our
algorithm on an internal cluster with 64 3500MHz processors with 16 cores each and 377GB memory.
The entire algorithm (partitioning the 65.5 million applications in the data, clustering the resulting
partitions according to the twelve difference functions in Table 1, then traversing the resulting trees
and calculating the performance for the eight versions of ε) takes less than a day.

13

Figure 7: Precision and sample size of our algorithm as a function of different distance definitions
and tolerances. Each point on the curve represents a specific combination of distance function and
tolerance parameter. The large orange dot corresponds to our preferred specification, balancing
precision and sample size.

14

C Simulation Details

We first create one million “census tracts.” For each census tract c, the number of applicants belonging
to this census tract Nc is equal to 1+ψc, where ψc drawn from a Poisson distribution with parameter
λ = 1 to approximate the distribution of partitions we observe in our empirical application (cf. Figure
8 below).

Next, an applicant i submits a loan application. After each application, she continues to submit
another application with probability 0.2 such that the expected number of applications per applicant
ni is 1.25.

We then create features associated with each application (in addition to the census tract Ci) as follows.
First, to create a second variable that is constant across an individual’s applications we randomly
assign a group membership Gi ∈ {0, 1} to applicant i with Pr(Gi = 1) = γ0 ∈ (0, 1), where Gi is
independent across i. The variable Gi may represent characteristics such as race or gender. Next,
each application m by applicant i is associated with three further covariates Xim, Tim and ηi. We
assume that bothXim and Tim are observed by the researcher, while ηi is not. We stress thatXim and
Tim may differ (slightly) across applications m to reflect the observed data. We create realizations
of these random variables as follows. Tim may reflect the time of the application, and is equal to
Tim = T̃i + νim, where T̃i ∼ Unif [0, 1] and νim ∼ N(0, σT). Xim may reflect the loan amount,
and is equal to Xim = X̃i + ξim, where ξim ∼ N(0, σX). The conditional distribution of (X̃i, ηi)
conditional on Gi is given by

[X̃i, ηi]
′ ∼ Lognormal(µg,Σg), (4)

where µg and Σg are mean and covariance matrix of bivariate normal for Gi = g. Specifically, we
use γ0 = 0.5, µ0 = [−3,−3], µ1 = [−2.5,−2.5], Σ0 = Σ1 = [0.25 0.1, 0.1 0.25].

Finally, each applicant has a default behavior associated with her. We assume that the default
probability of an applicant, Pr(Di = 1), depends on both X̃i and ηi as follows:

Pr(Di = 1|X̃i, ηi, Gi, T̃i, Ci) = min(1, δ0 + δ1X̃i + δ2ηi). (5)

Potential lenders observe (or are able to estimate) an individual’s default probability P (Di), and their
decision whether to extend the loan takes the form:

P (Lim = 1) =


1 if P (Di = 1) < 0.27

0.5 if P (Di = 1) ∈ [0.27, 0.29]

0 if P (Di = 1) > 0.29.

(6)

An applicant hears back sequentially from her applications. As long as she has not originated a loan,
each time an application is approved the applicant originates the corresponding loan with probability
0.9. Once she originates her first loan, the applicant does not originate any additional loans.

We reemphasize that the researcher observes application level data without knowing the index i.7
That is, she does not know whether two applications j and j′ are submitted by the same individual i.
For each application j, the variables Gj , Cj , Xj , Tj , Lj as well as the element-wise products DjLj

and OjLj are observable by the researcher. On the other hand, X̃i, T̃i, and ηi are unobserved to the
researchers.

Finally, we compare the number of observed applications per partition in our simulated data and our
empirical application in Figure 8. Both histograms indicate that the majority of partition is relatively
small. This is intuitive: In our application, each partition includes only applications for mortgages in
a small geographic region (census tract), and among those we further separate applications by eight
additional discrete attributes of applicant and property. For Figure 8b, partitions larger than twelve
applications are omitted for clarity. The largest partition in our application contains 153 applications.

7However, while this is infeasible in practice, knowing the index i in our simulated dataset will allow us to
evaluate the performance of our algorithm.

15

(a) Simulated Data (b) Empirical Application

Figure 8: Distribution of partition sizes (number of applications per partition). In our empirical
application we truncate the histogram at twelve for better readability. Less than 0.1% of partitions
include 13 or more applications.

16

	wp25-25-cover.pdf
	neurips_2025 final
	Introduction
	Identifying Cross-Applicants
	Methodology
	Useful bounds for tuning parameter selection

	Simulation
	Results

	Application to the US Mortgage Market
	Data
	Identifying cross-applicants

	Conclusion
	Mathematical Appendix
	Implementation Details
	Simulation Details

