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Abstract

Does social distancing harm innovation? We estimate the effect of nonpharmaceutical

interventions (NPIs)—policies that restrict interactions in an attempt to slow the spread

of disease—on local invention. We construct a panel of issued patents and NPIs adopted

by 50 large US cities during the 1918 flu pandemic. Difference-in-differences estimates

show that cities adopting longer NPIs did not experience a decline in patenting during the

pandemic relative to short-NPI cities and recorded higher patenting afterward. Rather

than reduce local invention by restricting localized knowledge spillovers, NPIs adopted

during the pandemic may have preserved other inventive factors.
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NBER, olivier@econ.ucsb.edu. Gaetani: University of Toronto, ruben.gaetani@rotman.utoronto.ca. Lin:
Federal Reserve Bank of Philadelphia, jeff.lin@phil.frb.org. Severen: Federal Reserve Bank of Philadelphia,
chris.severen@phil.frb.org.

Disclaimer: This Philadelphia Fed working paper represents preliminary research that is being circu-
lated for discussion purposes. The views expressed in this paper are solely those of the authors and do not
necessarily reflect the views of the Federal Reserve Bank of Philadelphia or the Federal Reserve System. Any
errors or omissions are the responsibility of the authors. Philadelphia Fed working papers are free to download
at https://www.philadelphiafed.org/research-and-data/publications/working-papers.

https://www.philadelphiafed.org/research-and-data/publications/working-papers


1 Introduction

Knowledge spillovers in cities are a key input in the production of new ideas. Urban densities

facilitate interactions that promote the recombination of existing ideas into new ones (Marshall,

1890; Jacobs, 1969; Lucas, 1988; Romer, 1990; Glaeser, 1999). Nearby inventors are more likely

to cite each other and create similar inventions, suggesting that proximity encourages knowledge

flows (Jaffe et al., 1993; Murata et al., 2014; Ganguli et al., 2020). Moreover, inventors in dense

cities create more novel patents, suggesting that cities are the engines of innovation (Carlino

et al., 2007; Packalen and Bhattacharya, 2015; Berkes and Gaetani, 2021).

The widespread adoption of nonpharmaceutical interventions (NPIs) by local and national

governments to slow the spread of COVID-19 has limited social interactions in cities, poten-

tially reducing the benefits of density. Will these limitations have long-lasting effects on cities’

fortunes, aggregate invention rates, and economic growth? To shed light on these questions,

we estimate the effect of NPIs on local patenting rates during the 1918 flu pandemic, when US

cities widely adopted a range of interventions analogous to the ones implemented in response

to the COVID-19 pandemic. These interventions drastically restricted social interactions in an

attempt to limit disease spread, and included school and business closures, public gathering

bans, and isolation and quarantine of infected people.

Our analysis combines high-frequency, city-level data on NPI duration and patenting rates

(number of patents filed, and subsequently issued, divided by city population). For each city,

we construct monthly patenting rates by filing date from the Comprehensive Universe of US

Patents (CUSP, Berkes, 2018), which provides the city of each inventor, filing and award dates,

technology class, and ownership status for the near-universe of US patents. We combine these

data with the lengths of NPIs adopted by 50 large US cities during the 1918 pandemic. We

extend the NPI database of Markel et al. (2007) by collecting data for seven additional cities

from an updated version of the same archival source, the Influenza Archive 2.0 (2016). The

resulting dataset is a balanced panel at the city-by-month level covering 1910–1926. The cities

in our sample accounted for 21% of the population and 39% of patents filed in the US in 1910.
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We estimate the effect of NPIs on patenting rates during and after the pandemic using a

difference-in-differences (DD) design. We classify cities into two groups: long-NPI cities (the

treatment group) with cumulative NPI durations of more than 90 days, and short-NPI cities

(the control group) with NPI durations of less than 90 days.1 Overall, we find that patent-

ing rates increase by 6–9% in long-NPI cities relative to short-NPI cities. We also distinguish

between the period during the pandemic (September 1918–March 1919) and after the pan-

demic subsided (April 1919 and later). During the pandemic, cities that adopted longer NPIs

experienced a statistically insignificant increase in relative patenting rates. After the pandemic,

however, cities that adopted longer NPIs saw a pronounced and statistically significant increase

in patenting rates by 7–12% relative to short-NPI cities. Our preferred specification includes

city-by-calendar-month, Census-region-by-year, and month-by-year fixed effects. These fixed

effects control for time-invariant confounders that correlate with NPI adoption and patenting

activity (e.g., the presence of nearby universities) and for national trends, local seasonality, and

differential regional trends (e.g., rapid growth in Western cities).

Nonetheless, the late 1910s and early 1920s was a period of demographic, cultural, and

economic change in the United States. A primary concern is that faster-growing cities, which

would have experienced larger increases in patenting anyway, adopted longer NPIs. Our results

are robust to several population normalizations and to controls for differential trajectories

by observable city characteristics (including age composition, education, and ethnic origin).

Furthermore, we find no evidence of differential trends in patenting by NPI length before the

pandemic. In some specifications, we analyze the effects of NPIs on patenting rates within

patent classes. This allows us to control for the differential evolution of technology classes

across cities. Taken together, the pre-trend analysis and alternative estimates suggest that our

results are unlikely to be driven by omitted factors or unobserved trends.

Our analysis contributes to literature on the importance of localized knowledge spillovers

for invention (Jaffe et al., 1993; Carlino and Kerr, 2015; Catalini, 2018; Atkin et al., 2022).

1We also report estimates where the treatment is continuous and defined as the number of days of NPIs in
each city.
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Andrews (2019) provides evidence that Prohibition reduced invention by reducing interpersonal

communication, especially informal interactions. Our results instead emphasize that during a

pandemic, NPIs may mitigate losses to other innovation factors.

We also contribute to the literature on the effects of the 1918 pandemic and the NPIs

adopted in response. NPIs appear to have reduced disruptions in business activity, according

to measures of contemporaneous economic activity such as industrial production or business

failures (Velde, 2020; Bodenhorn, 2020; Correia et al., 2022). Our analysis instead examines

the effects of NPIs on patenting, which is informative about the long-run evolution of future

productivity and output (Kogan et al., 2017). Moreover, our addition of seven cities to those in

Markel et al. (2007) provides better coverage of fast-growing cities in the US South and West.

Longer NPIs adopted in response to the 1918 pandemic did not, on net, reduce patenting

rates by limiting social interactions. Instead, those interventions may have had positive effects

on inventive activities through other channels. By favoring a coordinated response to the

pandemic, longer NPIs may have reduced uncertainty, anchored expectations, and preserved

business capital, increasing post-pandemic invention. While our data and design do not allow us

to formally test for this channel, we find evidence consistent with it. In particular we find larger

effects of NPIs on multi-inventor patents, patents owned by external assignees, and patents in

expanding technological fields.2 In other words, NPIs have larger positive effects on inventions

requiring more complex organizational structure and entailing a higher degree of technological

or market risk.

2 Historical Background and Conceptual Framework

The 1918 influenza pandemic was brief and severe. In the US, the first outbreaks occurred

in the spring and summer of 1918, confined mostly to soldiers. The second wave, beginning

in September 1918, was more serious. This wave was responsible for most of the pandemic’s

deaths in the US. Markel et al. (2007), studying 43 US cities, report that the first flu cases

2Patents owned by external assignees are often sponsored by a corporate or industrial R&D lab (Nicholas,
2010; Buzard et al., 2017).
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usually occurred in September, with one city (Philadelphia) reporting a case in late August, and

two cities reporting their first cases in early October. Mortality accelerated in late September

to early October, and excess deaths peaked in late October to early November. A third wave

started in January 1919 and ended in April 1919, the month that we define as the end of the

pandemic.3

US cities adopted a variety of NPIs to restrict social interactions and limit disease spread.

Markel et al. (2007) classify NPIs into three categories: public gathering bans, school closures,

and isolation and quarantine of confirmed and suspected cases. The earliest measures were

enacted in mid-September 1918, although some cities did not enact NPIs until mid-October.

There was significant variation across cities in the type and duration of those interventions. In

our sample of 50 cities, the total number of days of NPIs of all types ranged from 28 to 170

days (see Appendix Table A.1).

How did NPIs adopted by US cities affect local economic activity in general and invention

specifically? In the rest of this section, we review relevant existing evidence, with an emphasis

on the effects of the pandemic and NPIs on drivers of innovation.

First, NPIs may have been directly contractionary, as in the case of mandated social dis-

tancing and business closures. Further, limits on social interactions may have hindered local

invention by reducing localized knowledge spillovers (Jaffe et al., 1993; Carlino and Kerr, 2015;

Catalini, 2018; Atkin et al., 2022). Andrews (2019) provides evidence that Prohibition reduced

invention by reducing interpersonal communication, especially informal interactions. However,

the types and lengths of NPIs adopted during the 1918 pandemic suggest limited effects on

invention through a social interaction channel. Markel et al. (2007) report that the NPIs were

generally short-lived, with the median duration across categories of interventions between one

and six weeks. Also, the most common types of NPIs—school closures—seem less likely to

affect the kind of informal knowledge flows inventors rely on.

Second, NPIs may have anchored business expectations and mitigated the loss of organiza-

tional or intangible capital. The pandemic itself disrupted economic activity, even absent NPIs.

3See Beach et al. (2020) for more details on the historical context.
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For example, labor supply contracted due to either sickness or fear of infection and businesses

may have reduced investment in response to increased uncertainty. Increased uncertainty,

business disruptions, and business failures can reduce R&D investment or even accumulated

intangible or organizational capital (Dixit and Pindyck, 1994; Goel and Ram, 2001). By fa-

voring a coordinated response to the pandemic, NPIs may have reduced uncertainty, anchored

expectations, and preserved business capital, thus increasing post-pandemic invention. A com-

plementary explanation is that NPIs may have had large indirect effects in mitigating output

declines during a pandemic by shielding core sectors from surges in infection that could dispro-

portionately affect output (Bodenstein et al., 2020).

There is mixed evidence on the effects of NPIs on economic activity. Examining outcomes at

annual and biennial frequencies, Correia et al. (2022) find that NPIs had modest positive effects

on manufacturing activity in the decade following the pandemic. However, Lilley et al. (2020),

accounting for pre-trends in population growth 1910–1917, conclude that the estimated effect

of NPIs on economic activity is “a noisy zero.” Correia et al. (2022) also document a positive

effect of NPIs on National Bank assets in the years immediately following the pandemic.

There is more agreement that the pandemic disrupted high-frequency measures of business

activity, the production of intermediate inputs, and capital flows. Industrial production and

coal production dropped (Velde, 2020), as did textile and lumber (Bodenhorn, 2020). Correia

et al. (2022), using contemporary news sources, document widespread business disruption and

uncertainty during and in the aftermath of the pandemic. Fluegge (2022) provides theory and

evidence that temporary shocks to the local business environment during the pandemic led to

persistent negative effects on city growth, driven by destruction of local entrepreneurial capital.

NPIs appear to have reduced peak mortality, with smaller to null effects on overall mortality.

Correia et al. (2022) find, consistent with Markel et al. (2007) and Hatchett et al. (2007), that

NPIs reduced peak mortality, and, to a lesser extent, cumulative excess mortality.4 Consistent

with this, Bodenhorn (2020), using weekly data on business disruptions and mortality, finds that

4Chapelle (2020) finds that NPIs significantly reduced mortality in 1918, but these reductions were partially
offset with higher mortality in subsequent years. Finally, Clay et al. (2018) and Barro et al. (2020) find smaller
effects of NPIs in reducing mortality that are statistically insignificant.
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the economic losses due to the pandemic were due primarily not to NPIs, but to periods of high

excess mortality reducing labor supply and therefore output. Bodenhorn (2020) also provides

suggestive evidence that peak mortality, not NPIs, modestly increased business failures.

Thus, the net effect of NPIs on invention depends on the relative strength of these channels.

If the preservation of organizational or intangible capital from lower peak mortality, reductions

in business disruptions, or stabilized business expectations were stronger than the decrease in

knowledge spillovers from limited social interactions, then NPIs might have had a net positive

effect on patenting.

3 Data

We construct a new panel on NPIs and patenting rates at the city–month level. We add

seven cities to the 43-city NPI database by Markel et al. (2007), drawing from an update of

the same source archive (Influenza Archive 2.0 (2016)). To be consistent with Markel et al.

(2007), we define NPI length as the cumulative number of days of NPIs across three categories

of interventions (public gathering bans, school closures, and isolation and quarantine). Like

Markel et al. (2007), we are unable to provide a breakdown of NPI length by type, but a

virtue of our extended sample is better coverage of fast-growing western and southern cities

(see Appendix Table A.2).5 Systematic information on the duration of NPIs is unavailable

beyond the 50 cities in our extended sample.

We combine this with data on ever-granted patents from CUSP, which includes the near-

universe of patents issued by the US Patent and Trademark Office (Berkes, 2018). We select

patents for which at least one inventor resides in our sample of 50 cities. We construct a city-

specific patent count variable by dividing each grant by the number of co-inventors and assign

the corresponding fraction to each city-by-month observation. Importantly, CUSP includes the

application filing date for each ever-granted patent, allowing us to assign patents to the month

5This extended coverage allows us to better identify Census-region-by-year fixed effects, which control for
the substantial regional variation in city growth in the early decades of the 20th century.

7



of application instead of month of issuance (thus better reflecting the date of invention).6 City

populations are from the US decennial Censuses between 1900 and 1930,7 and literacy rates,

age, and ethnic-origin compositions are from the 1910 Census. Appendix A1 provides details

on the various data sources used in the analysis.

Across our 50-city sample, the monthly patenting rate by city (patent count per 100,000

population) ranges from 0 to 28, with an average of 5.19 (see Appendix Table A.1). This

amounts to an overall average of 27 patents per city per month, most of which are from single-

inventor patents. The average duration of NPIs is 85.2 days, with a minimum of 28 and a

maximum of 170. The share of cities classified as long-NPI cities (treatment group) is 0.36.

Appendix Table A.3 shows that long- and short-NPI cities are balanced across many observable

characteristics in 1910 and excess death rate during the 1918 pandemic. While some of the co-

variates display small but statistically significant differences (Column 3)—with long-NPI cities

recording higher patenting and literacy rates, average age, and share of population in prime

age (20–60 years old), and a lower excess death rate—the two groups are statistically indistin-

guishable once we control for Census-region fixed effects, as in our preferred specification below

(Column 4). This is consistent with the view that variation in NPI length is largely controlled

by geographical factors and is otherwise uncorrelated with local demographic characteristics

(Barro, 2020; Hatchett et al., 2007).

Figure 1 shows the mean log monthly patenting rates for long- and short-NPI cities between

January 1916 and December 1920. The dashed lines show residualized log monthly patenting

after demeaning by city and removing city-specific seasonality (with city-by-calendar-month

fixed effects). To better visualize the underlying patterns, the solid lines show smoothed values

of the residualized series estimated by local polynomial regression (with a bandwidth of 1.5

months on either side).

A few key patterns emerge from Figure 1. Before September 1918, both long- and short-

6Our measure of patenting rate based on the filing date of the patent (as opposed to patent granted date)
is not impacted by delays at the patenting office caused by the pandemic. Further, there is no evidence
of pandemic-related effects on the number of filed applications (see Annual Reports of the Commissioner of
Patents (1918, 1919)).

7Intercensal values are linearly interpolated between the Aprils of each Census year.
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NPI cities had similar trends in monthly patenting rates. Monthly patenting rates peaked in

early 1917 and declined thereafter until late 1918. These declines likely reflect US entry into

World War I and the mobilization of resources and labor for the war effort.8 Both long- and

short-NPI cities show sharp rebounds in patenting rates starting around October–November

1918. Short-NPI cities briefly exhibit higher patenting rates in mid-1919. However, through

the end of 1920, long-NPI cities show a persistent increase in patenting rates compared with

short-NPI cities.

4 Empirical Framework

We use a difference-in-differences (DD) design to identify the causal effect of NPIs on patenting

rates. Figure 1 shows the timeline of the pandemic and how it relates to the time periods in

our analysis. We define the months before September 1918 as the Pre-treatment period. In

some specifications, we partition Pre-treatment into a Before period, from the beginning of

the sample until one year before the pandemic started (August 1917), and a Baseline period

covering the year before the pandemic (September 1917–August 1918). The Post-treatment

period begins in September 1918, consistent with the onset of the most devastating wave of the

pandemic and the implementation of earliest NPIs.

We use a Poisson Pseudo-Maximum Likelihood (PPML) estimator, which handles two fea-

tures of the patenting data appropriately: zeros and heteroskedasticity. The baseline DD

specification that compares outcomes pre- and post-pandemic makes the following conditional

mean assumption for patenting rates:

E

[
Ycmt

Pcmt

]
= exp (δcm + δmy + δry + β · g(NPIc)× 1[Post 9/18]) , (1)

where Ycmt and Pcmt are the number of (ever-granted) patents filed and population in city c

during month m and year t, respectively. The indicator 1[Post 9/18] equals one in the Post-

8There may also have been some suppression of defense-related patent applications, though such efforts were
more systematic in World War II (Gross, 2019).
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treatment period. Since the 1910s and 1920s saw rapid social and economic changes, we test

the robustness of the estimates to alternative choices for the starting and ending years.

In our preferred specification, we include city-by-calendar-month fixed effects (e.g., separate

effects for Philadelphia Januaries vs. Februaries) to control for time-invariant determinants of

inventive activities specific to a city, such as proximity to transportation networks (Perlman,

2016; Agrawal et al., 2017) or universities (Kantor and Whalley, 2014; Andrews, 2020), while

also controlling for differential seasonality across cities. We also include month-by-year fixed

effects (i.e., a separate effect for January 1916 and January 1917) to control for national trends

in patenting, and Census-region-by-year fixed effects to control for the differential evolution of

patenting trends in the North, South, Midwest, and West driven by factors such as the Great

Migration of African-Americans from the South to northern cities (Collins and Wanamaker,

2014) or growing industrialization of the West (Kim and Margo, 2004).9 With the inclusion of

city-by-calendar-month, month-by-year, and Census-region-by-year fixed effects, any remaining

threat to identification would have to operate through unobserved time-varying confounders at

a spatial scale finer than region, e.g., state-by-year shocks correlated with both NPI adoption

and inventive activities.

The primary treatment is a function g(·) of the number of days of NPIs imposed by each

city. We focus on a binary treatment indicator that compares cities with shorter and longer

NPIs (NPI duration of 90 days or more), but we also report estimates where the treatment is

continuous and defined as the number of days of NPIs in each city. The goal of the analysis

is to identify the causal effect of NPI length on the local patenting rate, as represented by the

parameter β.

Identification of β requires correct specification of the mean conditional on controls and

fixed effects. This can be interpreted as a parallel trends assumption: patenting outcomes in

short-NPI cities provide a valid counterfactual for patenting outcomes in long-NPI cities, in the

absence of longer restrictions. We test the identifying assumption by probing the robustness of

9Andrews and Whalley (2022) describe the economic geography of innovation in the US over the last 150
years.
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the estimates to different sets of fixed effects and controls that may predict invention rates (e.g.,

educational attainment trends). We also report pre-adoption (i.e., “pre-trends”) estimates of

the NPI effect as a test for possible bias due to uncontrolled confounders.10

We provide additional specifications to examine effect timing and to control for changes in

industrial composition across cities. Our extended timing specification divides Pre-treatment

into Before and Baseline periods and divides Post-treatment into During and After periods

(see Figure 1 for a timeline). This directly tests for differences in pre-trends and highlights

dynamic effects of longer NPIs on innovation During versus After the pandemic. In patent

class specifications, we define the outcome as the number of patents in a city in a particular

patent class; we then interact fixed effects with patent classes. This fixed effects regime controls

for both differences in the ex ante distribution of patenting by technology class across cities

and in the evolution of classes. A possible driver of these differences is industrial composition,

which was evolving rapidly in response to World War I and the subsequent armistice.

5 Results

Table 1 reports the baseline estimates of β from Equation (1) as well as from the extended

specification. The PPML estimates can be interpreted as the effect of NPI length on log

patenting rates (i.e., in percentage terms). Panels A-D present estimates for two different

functional form assumptions on g(·) and two different specifications of the DD model. First

we consider the patenting rate in a city-month. Columns (1) to (3) introduce different sets of

fixed effects in the regressions while Column (4) focuses on an alternative time window for the

sample. Columns (5) and (6) consider patenting rates in a class-city-month, using the same

sample and specification as Column (3), but adds class-city-month fixed effects. Standard errors

clustered by city are reported in parentheses.

10Our application follows the standard DD model with one treatment group, one control group, and a single
time period where treatment status changes in the treatment group. In such models, the DD estimand identifies
the average treatment effect on the treated even in presence of treatment-effect heterogeneity (Card and Krueger,
1994; Abadie, 2006), unlike in the staggered adoption setting (e.g., de Chaisemartin and D’Haultfœuille, 2020;
Goodman-Bacon, 2018).
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The results in Panel A show that long-NPI cities had higher patenting rates than short-NPI

cities after the pandemic. The simple DD estimates indicate a 5.6% to 8.6% increase in monthly

patenting.11 All these estimates are statistically significant at the 5% level; the choice of fixed

effects and starting and ending years is mostly inconsequential. Our preferred specification in

Column (3) includes city-by-calendar-month, Census-region-by-year, and month-by-year fixed

effects. In that specification, the effect of long NPIs on patenting rate is 7.4%, with a 95%

confidence interval ranging between 1.7% and 13.1%. The magnitude of these estimates is

similar to the effect of Prohibition estimated by Andrews (2019), who finds that the adoption

of statewide Prohibition reduced patenting in previously wet counties by 8% to 18%.

Columns (5) and (6) support the same conclusion by comparing patenting within technology

classes. These specifications—which use three-way fixed effects that interact two-way fixed

effects for city-month, month-year, and region-year with patent-class fixed effects—control for

different specialization in innovation and production to specific technology classes across cities

(e.g., textiles, transportation, etc). This is potentially important since the armistice at the end

of World War I affected production (and innovation) differentially across technology classes,

potentially confounding the impact of NPI status on patenting activity. However, the similarity

of Columns (5) and (6) to the baseline estimates suggests that this confounding factor is not a

first-order threat.

The extended estimates in Panel B show that the positive effect of NPI length on invention is

largely driven by the period After the pandemic ended, versus During the pandemic (although

the After - During differences are not statistically significant). Importantly, the extended DD

estimates also show no statistically significant evidence of pre-pandemic differences in patenting

rates across treatment and control cities. This result supports the main identifying assumption

of difference-in-differences models.12

Panel C presents the same analysis as in Panel A, but for a specification where NPI length

11We follow the convention of interpreting log point differences as approximating percentage differences in
the rest of the paper.

12The fact that our results are driven by the years after the pandemic suggests that they are unlikely to be
explained by NPIs affecting the time lag between conception of an idea and patentable invention.
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enters linearly in number of days (divided by 30 for ease of interpretation). While less precise,

the results in Panels C and D confirm the findings in Panels A and B. Cities with more months

of NPIs had higher monthly patenting rates in the period during and after the pandemic. The

extended DD results in Panel D further confirm the absence of significant pre-trend differences

across NPI groups length and that the NPI effect on patenting rate primarily operates through

an impact on patenting rates in the After -pandemic period.

Finally, in order to more flexibly investigate pre- and post-pandemic differences in patenting

rates between long- and short-NPI cities, we also estimate event-study variants of Equation

(1). Figure 2 reports these results. We aggregate the data to an annual frequency, shifting the

start of each year by four months earlier so that no years cover both pre- and post-pandemic

months (e.g., 1918 sums patents over September 1917–August 1918). The top panel shows the

coefficient estimates on the binary long-NPI treatment interacted with year indicators, while

the bottom panel interacts the continuous measure of cumulative NPI days with year indicators.

The shifted year of September 1917 to August 1918 is the reference category and the regression

models for Figure 2 include city and year fixed effects. Both specifications of NPI length show

little evidence of pre-trend differences, as the point estimates (black circles) are small and the

95% confidence intervals (in gray) always include zero. Beginning in 1919 (i.e., 9/18–8/19),

however, these estimates become larger, positive, and significantly different from zero in about

half the years.

5.1 Robustness

We briefly discuss the results of the robustness analyses reported in Appendix Table A.4.

Taken together, the evidence in Appendix Table A.4 confirms our main finding in Table 1 that

longer NPI periods led to a positive and statistically significant increase in patenting rates. In

particular, the results are robust to using only the original 43-city sample of Markel et al. (2007)

(Columns 3 and 4), to controlling for city-levels indicators of pandemic severity (Columns 5 and

6), and to the inclusion of linear time trends interacted with city-specific indicators of human
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capital (Columns 7 and 8) and age composition (Columns 9 and 10). In Columns (11) and (12)

we control for linear time trends interacted with the 1910 share of local population of German

descent, to account for the potentially confounding effect of the decline (and later resumption)

of knowledge flows between US and German scientists during World War I (Iaria et al., 2018).

Adding a linear time-trend interacted with city-specific NPI length or city-specific linear time

trends to the baseline specification leads to a 35% to 55% increase in the standard errors, but

does not meaningfully change the magnitude of the estimates of the NPI effect (Columns 13

and 14). Appendix Table A.7 further documents the robustness of the central estimates to

alternative approaches for calculating the population estimates used to construct the patenting

rates.13

In order to probe the potential influence of any particular city on our baseline results, we

perform a jackknife-like exercise and report the estimated coefficients for 50 DD regressions

where each specification drops one city from the estimation sample. Appendix Figure A.2

shows that the estimates of the impact of NPIs on patenting activity are generally stable

and statistically significant across all jackknife samples. Finally, in Appendix Figure A.3 we

investigate the robustness of our main estimates to alternative thresholds to define long- and

short-NPI cities. We consider a series of regressions where the threshold in days of NPIs to

switch from “short” to “long” varies from a low of 41 days to a high of 154 days (the 10th

and 90th percentiles in the NPI duration distribution). The results indicate that for a range

of thresholds from 78 days or greater to 143 days or greater, the corresponding estimates are

similar in magnitude to those in Table 1 and statistically significant.

13We performed additional tests and analyzes to confirm our main results are not confounded by other
events that occurred around the time of the pandemic. Appendix Table A.5 shows that accounting for the
implementation of Prohibition during our sample period does not meaningfully alter our baseline estimates
of the impact of NPIs. To assuage concerns that our results are driven by confounding city-level political
preferences, we verify in supplementary analysis that NPI length is uncorrelated with local political leaning (as
measured by county-level outcomes in the 1916 presidential election) and that our results are robust to mayoral
party affiliation.
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5.2 Interpretation and Additional Results

Table 2 explores various dimensions of heterogeneity in the impact of NPIs that can be addressed

with our detailed patent data. For brevity, we focus only on our preferred empirical specification

(Column 3 in Table 1).

Panel A shows the estimated effect of NPIs separately by inventor status (single versus

multiple investors) and by patent ownership status (patents owned by the inventors them-

selves versus other assignees such as firms or universities). The estimates indicate that long

NPIs increased patenting rates across most categories of inventor status and patent ownership.

Notably, the positive effect of long NPIs is substantially larger for teams of multiple invent-

ors irrespective of patent ownership (20%, in Column 2) compared to single inventor patents

(6.2%, in Column 1). The estimates in Columns (7) and (8) further show a larger effect for

multi-inventor patents with an assignee. The increasing magnitudes of the estimates moving

rightward in Columns (5)–(8) point to an ordering of these impacts: there is no statistically

significant effect for single-inventor, no-assignee patents; there is a small significant effect for

single inventors associated with an assignee; there are larger effects for multi-inventor patents

without an assignee; and the largest effects are for multi-inventor patents with an assignee.

Panel B reports estimates of the effect of NPI length on patenting rates for different tech-

nology classes. We use the 8 main patent categories in the Cooperative Patent Classification,

labelled A through H; examples of classes include “Human necessities” (Class A), “Mechanical

engineering” (Class F), and “Electricity” (Class H). The estimated effect of NPI length on

invention varies across technology classes. We find statistically significant positive impacts of

longer NPIs for Class D (Textiles and paper), Class F (which includes Mechanical engineering,

Lighting, and Heating), and Class H (Electricity). For the other classes, the estimates are not

statistically significant. Two of the three technology classes that saw increased patenting in

response to longer NPIs (Classes F and H) were rapidly expanding and gaining importance in

the invention landscape in the 1910s and 1920s, at the expense of shrinking fields, such as Class

A, which includes Agriculture (Kelly et al., 2021, Berkes et al., 2022).
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Although there are several possible interpretations of these findings, these results provide

useful evidence that helps inform some of the channels linking NPI length with increased

patenting during and after the pandemic. Because multi-inventor patents were not negatively

affected in long-NPI cities, reductions in social interactions during the pandemic do not seem

to have produced, on net, a decline in invention. Instead, the results on patents owned by an

assignee and multi-inventor patents suggest that NPIs may have preserved inventive factors

important for coordinating inventing teams or organizations.

Further, the results by technology classes suggest that NPIs may have had a positive impact

on local invention by reducing business uncertainty and stabilizing local financing conditions.

Emerging fields were likely characterized by a higher degree of technological and market risk,

making the access to the necessary resources difficult and the presence of a healthy system of

financial intermediation critical for invention.14 Correia et al. (2022) analyze contemporaneous

news data and find that the pandemic generated considerable stress on the financial markets.

However, they also find that national banks’ assets grew more in cities with longer NPIs after

the pandemic (although the difference is not statistically significant). Insofar as national banks’

assets partly reflect the strength of the local banking sector, an improvement in the conditions of

financial intermediation and an overall decrease in economic uncertainty can explain the larger

positive response of invention to NPIs in newly emerging, and possibly more risky, technological

domains.

Panel C tests for differential impacts of NPIs on patenting rates by inventor age, mobility

inside the United States, and birthplace (using data from Berkes and Nencka, 2021; Bazzi et al.,

2022). We do not find definitive evidence that NPIs differentially impacted inventors based on

age, mobility, and birthplace. This suggests that variation in NPIs length across cities did not

lead to a migratory response by inventors, and that changes in international migration flows

after World War I are unlikely to confound our baseline results.

Finally, we also estimate the impact of NPIs for “higher quality” patents. To this end,

14Nanda and Nicholas (2014) show that during the Great Depression measures of local bank distress were
associated with lower firm-level patenting rates and a shift towards more incremental and less risky inventions.
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we focus on patenting rates for two definitions of “breakthrough patents” (Kelly et al., 2021).

The estimates, reported in Columns (7) and (8) in Panel C are qualitatively similar to those

from the overall patenting rate, albeit with larger standard errors. This rules out, at least to

a first order, that our baseline results are driven by an impact of NPIs on low-quality patents,

providing evidence that the effect of NPIs on patenting reflects, at least in part, an increase in

valuable innovation.

6 Discussion and Conclusion

This paper analyzes the effect of NPIs on invention using a difference-in-differences approach

and panel data on patenting rates and NPI duration for 50 large US cities in the context of the

1918 flu pandemic. Cities that responded to the pandemic with longer NPIs did not experience

a relative decline in patenting rates during the pandemic—in fact, they experienced significantly

higher relative patenting rates in the years after the pandemic ended. Longer NPIs had even

larger positive effects on patenting by multiple inventors, patents owned by external assignees,

and patenting in rapidly growing classes.

These findings contribute new evidence on the economic consequences of the 1918 pan-

demic (Beach et al., 2020). Previous research has focused on contemporaneous measures of

economic activity, such as manufacturing employment (Correia et al., 2022, Lilley et al., 2020).

In contrast, we study patenting rates, a measure that links current economic activity to future

outcomes. The literature has linked invention rates to long-run aggregate and firm-level pro-

ductivity growth (Jones, 1995; Kortum, 1997; Kogan et al., 2017) and to variation in long-run

population growth across cities (Kantor and Whalley, 2021; Berkes et al., 2022). In light of

this literature, our findings suggest that the adoption of NPIs might have contributed to higher

aggregate productivity growth, and that cities adopting more stringent NPIs might have ex-

perienced a positive persistent effect on their long-run economic performance.

Why did restrictions on interactions and activity during the 1918 pandemic not cause a

reduction in patenting rates? Modern evidence suggests that personal interactions are an im-
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portant factor in innovation (Atkin et al., 2022; Boudreau et al., 2017). Historically, reduced

social interactions during Prohibition had significant negative effects on patenting rates (An-

drews, 2019). Two factors reconcile our results with previous findings. First, the most common

NPI in 1918 was school closure (Markel et al., 2007). Compared with business closures or

public gathering bans, school closures seem least likely to hinder the interactions that matter

for invention. Second, even in the absence of mandated closures or social distancing, people in

short-NPI cities may have voluntarily limited their own social interactions to reduce their risk

of exposure.15 Rather than challenging the evidence on the importance of in-person contacts

for invention, our results suggest that NPIs might have helped prevent a decline in patenting

rates by decreasing uncertainty, and preserving intangible and organizational capital, without

disproportionately hindering knowledge flows in cities.

Although both the 1918 pandemic and the COVID-19 pandemic featured contagious respir-

atory viruses and the adoption of NPIs to slow the spread of disease, a few factors complicate

direct comparison. First, modern communication technologies might be a substitute for many

of the social interactions that favor idea flows. Second, the two pandemics were markedly dif-

ferent in overall mortality and extent of public health response. NPIs in 1918 were shorter and

less extensive than the ones implemented in 2020. These factors make it difficult to extrapolate

from the positive effects of NPIs in 1918 on patenting rates to the present day.

What can we learn from history, then? Our evidence suggests that the decrease in local

interactions constitutes only part of the effect of NPIs on invention rates. These results highlight

the importance of considering the impact of NPIs on invention rates through a wide range of

channels, and can be informative for future research on how the design of NPIs can help promote

invention rates and productivity growth in the aftermath of pandemics.

15Goolsbee and Syverson (2020) find that during the COVID-19 pandemic, mandatory mobility restrictions
in the US explain only a small fraction of the observed decline in overall consumer traffic. Individual choices
played a more important role in reducing mobility.
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Figure 1: Monthly Patenting Rates in Short- and Long-NPI Cities

Figure 1 displays residualized log monthly patenting rates after demeaning by city and removing
city-specific seasonality with city-by-calendar-month fixed effects (dashed lines). The average
residualized monthly patenting rate for long- (short-)NPIs cities is shown in blue (orange).
The solid lines are smoothed values of the residualized series estimated by local polynomial
regression with a bandwidth of 3 months. Figure 1 also provides the timeline of the pandemic
and defines the critical time periods that underlie our analysis. The Pre-treatment period
corresponds to the period before September 1918, which we also divide into the Before period
(from the beginning of the sample until one year before the pandemic started (August 1917)),
and the Baseline period (September 1917 - August 1918). The Post-treatment period begins
in September 1918 and is split into a During period (the period of seven months during which
the flu was most active (September 1918 through the end of March 1919)), and an After period
(from April 1919 to the end of the sample).
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Figure 2: Event Study Analysis (Aggregated to Shifted Years)

Figure 2 reports estimates from event-study variants of Equation (1). The city-month data on
NPIs and patenting rates is aggregated to an annual frequency represented by shifted years
(where the start of each year is shifted by four months to the left (e.g., so that 1918 includes
September of 1917 to August of 1918)). The top panel shows the coefficient estimates on
the binary measure of treatment (cumulative NPIs longer than 90 days) interacted with year
indicators, while the bottom panel reports the same for the continuous measure of cumulative
days of NPIs (divided by 30). The regression models include city and year fixed effects, and the
shifted year corresponding to September of 1917 to August of 1918 is the reference category.
Point estimates are shown by the black circles, and the 95% confidence intervals (dashed lines
in gray) are cluster-robust at the city level.
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Table 1: Effect of NPI Length on Patenting Rate

Patents in
Patents in City-Month Class-City-Month

(1) (2) (3) (4) (5) (6)

NPI Length = 1[NPIs > 90 Days]

Panel A. Simple DD
Post Pandemic × NPI Length 0.056* 0.065* 0.074* 0.086* 0.066* 0.057*

(0.027) (0.027) (0.029) (0.044) (0.029) (0.027)
Panel B. Extended DD

Before Pandemic × NPI Length 0.013 0.007 0.012 0.032 0.011 0.013
(0.027) (0.027) (0.033) (0.038) (0.034) (0.034)

During Pandemic × NPI Length 0.049 0.040 0.058 0.069+ 0.065 0.046
(0.041) (0.041) (0.040) (0.039) (0.041) (0.039)

After Pandemic × NPI Length 0.068* 0.076* 0.088* 0.117** 0.075* 0.071+
(0.033) (0.032) (0.035) (0.045) (0.034) (0.037)

NPI Length = Days of NPIs ÷ 30

Panel C. Simple DD
Post Pandemic × NPI Length 0.017+ 0.020* 0.024* 0.030+ 0.019 0.016

(0.010) (0.010) (0.011) (0.017) (0.012) (0.012)
Panel D. Extended DD

Before Pandemic × NPI Length 0.008 0.006 0.008 0.009 0.003 0.004
(0.010) (0.010) (0.011) (0.015) (0.011) (0.011)

During Pandemic × NPI Length 0.016 0.011 0.018 0.023+ 0.022 0.016
(0.014) (0.014) (0.013) (0.013) (0.015) (0.015)

After Pandemic × NPI Length 0.023+ 0.026* 0.032* 0.040* 0.020 0.019
(0.013) (0.013) (0.016) (0.020) (0.015) (0.016)

Fixed Effects
City X - - - - -
Month-Year(-Patent Class) X X X X X X
City-Month(-Patent Class) - X X X X X
Region-Year(-Patent Class) - - X X X X

Sample coverage
begins January of 1916 1916 1916 1910 1916 1916
ends December of 1920 1920 1920 1926 1920 1920

Patent Class - - - - 1 digit 3 digit

N 3000 3000 3000 10200 19830 101256

Table 1 reports DD estimates of the effect of NPI length on patenting rates. The sample includes

the 50 cities for which we have information on NPI length (see Appendix Table A.2). The

dependent variable is the patenting rate (patents filed/population) in a city-month in Columns

(1)–(4), and in a 1- or 3-digit patent class in a city-month in Columns (5) and (6), respectively.

The treatment variable is an indicator of NPI length: a binary indicator for NPI period longer

than 90 days (Panels A and B) or the number of days of NPIs divided by 30 (Panels C and D).

All specifications are estimated using a Poisson Pseudo-Maximum Likelihood (PPML) with the

exposure variable set to a linear interpolation of city population. The estimated coefficients can

be interpreted as a percentage change in the patenting rate. Standard errors are cluster-robust

at the city level. + p<0.10, * p<0.05, ** p<0.01, *** p<0.001.
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Table 2: Effect of NPI Length on Patenting Rate by Co-Inventor and Assignee Status, and by
Patent Technology Class

Single Single Multiple Multiple
Single Multiple No With Inventor, Inventor, Inventors, Inventors,

Inventor Inventors Assignee Assignee No Asgn. W/ Asgn. No Asgn. W/ Asgn.
Panel A: By Co-Inventor & Assignee Status (1) (2) (3) (4) (5) (6) (7) (8)

Post Pandemic × NPI Length 0.062+ 0.200*** 0.055 0.101* 0.046 0.085* 0.163* 0.259*
(0.033) (0.055) (0.042) (0.041) (0.045) (0.041) (0.075) (0.117)

Mean of Dep. Variable 24.80 2.41 15.84 11.39 14.72 10.37 1.34 1.40

Class A Class B Class C Class D Class E Class F Class G Class H

Human Operat.; Chemist.; Textiles; Fixed Mech.
Necessit. Transport. Metal. Paper Construct. Engr. Physics Electric.

Panel B: By Patent Class (1) (2) (3) (4) (5) (6) (7) (8)

Post Pandemic × NPI Length 0.012 0.056 -0.078 0.240* -0.074 0.148** 0.169 0.213***
(0.070) (0.041) (0.153) (0.116) (0.082) (0.053) (0.114) (0.061)

Mean of Dep. Variable 4.76 9.43 1.57 1.11 1.86 5.00 2.52 2.56

Inventor Age Inventor Mobility Inventor Birthplace Breakthrough Patents

Non- Inter- 5-year 10-year
≥Median <Median Stayers Stayers US national Window Window

Panel C: Inventor & Patent Heterogeneity (1) (2) (3) (4) (5) (6) (7) (8)

Post Pandemic × NPI Length 0.102* 0.166*** 0.096* 0.069* 0.119*** 0.053 0.061 0.087
(0.046) (0.040) (0.048) (0.033) (0.033) (0.039) (0.070) (0.061)

Mean of Dep. Variable 11.00 11.15 8.58 18.90 15.50 11.44 14.31 14.46

Notes: Table 2 reports DD estimates of the effect of NPI length on patenting rates by co-inventors and by assignee status (Panel A), patenting class

(Panel B), and inventor and patent characteristics (Panel C). The sample includes the 50 cities for which we have information on NPI length and

covers the period January 1916 to December 1920. The dependent variable is the patenting rate (patents filed/population) in a city-month. The

treatment variable is a binary indicator for NPI period longer than 90 days. Panel C, Columns (1)–(6) probabilistically match patents to inventor

characteristics in the Census. Columns (1)–(2) split by median inventor age, 40. Column (3) counts patents by inventors who have filed at least two

patents in the same location, once before Sep. 1918 and once after; Column (4) counts the remainder of patents, including those by first-time inventors.

Columns (5)–(6) split by inventor birthplace. Columns (7)–(8) consider breakthrough patents defined as patents above the median in terms of the

breakthrough measures proposed by Kelly et al. (2021). All specifications are estimated using a Poisson Pseudo-Maximum Likelihood (PPML) with

the exposure variable set to a linear interpolation of city population and include month-by-year, city-by-month of year, and region-by-year fixed effects.

The estimated coefficients can be interpreted as a percentage change in the patenting rate. Sample size is 3000 city-months before removing collinear

fixed effects. Standard errors are cluster-robust at the city level. + p<0.10, * p<0.05, ** p<0.01, *** p<0.001.
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Appendices for:
Lockdowns and Innovation: Evidence from the 1918 Flu

Pandemic

by Enrico Berkes, Olivier Deschênes, Ruben Gaetani, Jeffrey Lin, and
Christopher Severen

A1 Additional Details on Data Sources

We provide additional details related to the data collection and processing below. The summary

statistics for the key variables in our analysis (primary sample window of January 1916 to

December 1920) are shown in Table A.1.

A1.1 Comprehensive Universe of US Patents (CUSP)

Data on the number of patents filed by date at the city level are taken from the Comprehensive

Universe of US Patents (CUSP). For the analysis in this paper, these data represent the near

universe of the filing date (by city) of all ever-granted patents. Details on the procedure

behind the data collection and georeferencing can be found in Berkes (2018). CUSP contains

information on technology classes (as they appear on the USPTO website in June 2016), name

and location (at the city level) of inventors and assignee, filing date, and issue date. The

estimated coverage of this data set is above 90% in each year between 1836 and 2010.

Some patents have multiple inventors whose locations are not in the same city. For patents

with N ≥ 2 inventors, we assign 1/N of the patent to each city associated with an inventor.

Because more than 90% of the patents have a single inventor, and inventors for many multi-

inventor patents are often in the same city, the precise way that we assign multi-inventor patents

makes little difference.

A1.2 Extending the Markel et al. (2007) Sample

Markel et al. (2007) provide the standard data set for NPI length during the 1918 pandemic.

Their data include the sum of days of enforcement for each type of NPIs in 43 cities for which

they obtained a complete history of NPIs and weekly influenza data. The limiting factor is

availability of weekly influenza data (Beach et al., 2020).

We use the 43 cities included in Markel et al. (2007) and add seven cities for which there is

systematic historical documentation of responses to the 1918 pandemic in the Influenza Archive

2.0 (2016), an extension of the historical data collected in support of Markel et al. (2007). These

seven cities are Atlanta, GA; Charleston, SC; Dallas, TX; Des Moines, IA; Detroit, MI; Salt
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Lake City, UT; and San Antonio, TX. Whereas the 43 original cities in Markel et al. (2007)

were primarily located in the Northeast and Upper Midwest, five of these seven additional cities

are in Southeast and West.

We collect the number of days of school closures and public gathering bans for these seven

cities. If there were multiple closure events, we sum the days across events. We report the

information for the seven additional cities in the table below, and show the distribution of NPI

length in 5-day bins for the full sample of 50 cities in Figure A.1. Importantly, there appears

to be a substantial gap in NPI length around 90 days; no city has NPI length between 82 and

99 days. We view this as a natural gap in the distribution and define our binary definition

of treatment around 90 days of NPI length. We assess sensitivity to this threshold in Section

A2.1.

NPI Lengths for Seven Additional Cities not Included in Markel et al. (2007)

Days of Days of Public Mandatory Total Long
City School Closure Gathering Bans Quar. & Isol. NPI Days NPI

Atlanta 27 19 No 46 No
Charleston 37 32 Unknown 69 No
Dallas 18 23 Unlikely 41 No
Des Moines 46 10 No 56 No
Detroit 11 18 Unknown 29 No
Salt Lake City 60 81 Some 141 Yes
San Antonio 45 36 Unknown 81 No

Markel et al. (2007) also include a third category to create their measure of total NPI days:

mandatory isolation and quarantine (I&Q) requirements. We were not able to conclusively

document legal requirements for I&Q for the seven additional cities, as the historical record

covering I&Q appears sparser than those for other categories of NPIs. We were able to estab-

lish that Iowa had a statewide regulation banning mandatory I&Q, and Atlanta chose not to

implement such measures. Salt Lake City likely had mandatory I&Q measures, but the period

of coverage is unknown. On at least one date (10/14/1918), Dallas’ health officer decided not

to request the power to dictate I&Q. For Dallas and the other three cities, we are unable to

determine whether mandatory I&Q measures were ever implemented.

We note several reasons why the NPI data limitation in the additional seven cities is unlikely

to meaningfully influence our estimates of the impact of NPI length on patenting rates. First

and foremost, our preferred measure of NPI duration discretizes NPI length for periods longer

or shorter than 90 days. The contribution of mandatory I&Q to total NPI length is likely less

than the school closures or public gathering bans (as discussed below), and so it is unlikely
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that adding a few days to total NPI length would switch any short-NPI cities to long-NPI

cities. Furthermore, short-NPI cities generally had shorter NPIs in all categories. Nevertheless,

we test the robustness of our main estimates to varying the threshold of the number of NPI

duration in days to separate between short- and long-NPI cities in Figure A.3 below.

Second, mandatory I&Q measures appear to have been unpopular and used less commonly

than other measures. Table 2 of Markel et al. (2007) is a bit difficult to parse, but appears to

indicate that mandatory I&Q measures are used in fewer instances than other measures and

combinations of measures, and when used alone, are used for relatively short periods of time.

Moreover, at least one state (Iowa) banned mandatory I&Q measures as a violation of civil

liberties, leading us to believe that they were relatively unpopular.

We also show that our primary results hold when considering only the 43 cities in Markel

et al. (2007). Columns (3) and (4) in Appendix Table A.4 replicate the Table 1 analysis

and show that the estimated coefficient magnitudes in the 43 city and the 50 city samples are

similar. Appendix Figure A.2 further documents the robustness of our main results to dropping

individual cities from the estimation sample.

A1.3 Other data sources

We augment our estimation sample with city-level data on total population from the historical

US Decennial Censuses, 1900–1930. Intercensal values are linearly interpolated between the

Aprils of each Census year. We also construct city-level controls for literacy rates (share of

the population that could both read and write) and schooling (share of the population enrolled

in school) in the 1910 Decennial Census. For each city we additionally calculate the share of

people whose reported birthplace was Germany or one of its regions (e.g., Bavaria) and whose

mother tongue is either German or one of its dialects (e.g., Austrian). These measures allow

us to estimate the prevalence of immigrants of German descent in the cities we consider.

A2 Alternative Results and Robustness

A2.1 Sample Composition and Treatment Definition

Our sample of 50 cities with NPI length information includes an heterogeneous mix of cities at

the time of the 1918 pandemic, from larger ones like New York City and Chicago to relatively

smaller cities such as Des Moines and San Antonio (see Appendix Table A.2). We use a jackknife

approach to test if our main results are driven by the inclusion or exclusion of any single city

in the sample. Figure A.2 shows 50 estimated coefficients obtained by alternately leaving one

city out of the estimation sample (jackknifing). The figure reports the estimated coefficients for
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both the binary and continuous NPI length models as in Table 1, Column (3).16 The top panel

shows jackknife replicates for binary treatment sorted by the duration of NPI length (in days)

for the omitted city. All estimates of the effect of longer NPIs on patenting rates range between

0.06 and 0.09 and are statistically significant at the 5% level as in Table 1 (with the exception of

1 sub-sample out of 50, shown by the blue cross). Similarly, the bottom panel shows jackknife

replicates for the continuous measure of treatment (number of days of NPI divided by 30). The

resulting estimates range between 0.02 and 0.03 and in 44 out of the 50 samples are generally

statistically significant at the 5% level. Importantly, across both panels there is no systematic

evidence of a correlation between the jackknife replicates and NPI length.

From the jackknife replicates reported in Figure A.2, it is straightforward to calculate jack-

knife estimates of treatment effects by averaging the 50 leave-one-out estimates. For the binary

treatment measure we obtain an estimate of 0.074 with a standard error of 0.035 while for the

continuous measure of treatment we obtain an estimate of 0.024 with a standard error of 0.014.

Overall the evidence in Figure A.2 is similar to the main results in Column (3) of Table 1, and

indicates that these results are stable across the jackknife sub-samples and that no single city

has a great leverage on our estimates, which is reassuring given the small number of cities in

our sample.

Next we investigate the robustness of our estimates based on the binary treatment to chan-

ging the threshold in the number of days that separates long- and short-NPI cities. That is,

we want to ensure that our results are not driven by the choice of 90 days of cumulative NPI

length to separate long- and short-NPI cities.

Appendix Figure A.3 reports estimates of β from Equation (1) (along with the 95% confid-

ence intervals) from a series of regressions where the threshold in days of NPIs to switch from

“shorter” to “longer” varies from 41 days (the 10th percentile in the NPI duration distribution)

to 154 days (the 90th percentile in the NPI duration distribution). Throughout the regression,

models are based on the preferred specification of Column (3) in Table 1. The results indicate

that for a range of thresholds from 78 days or greater to 143 days or greater, the corresponding

estimates of β are similar in magnitude to those in Table 1 and statistically significant. Es-

timates based on treatment group thresholds at the lower end (most cities in treatment group)

and upper end (few cities in treatment group) are less precise.

A2.2 Addressing Potentially Confounding Covariates and Trends

Appendix Table A.3 compares demographic characteristics computed from the 1910 decennial

Census and a measure of severity of the 1918 pandemic across long and short-NPI cities. To

16This specification includes city-by-month of year and Census-region–year fixed effects and uses the data
from 1916–1920.
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measure pandemic severity at the city level, we use the excess pneumonia and influenza mortal-

ity per 100,000 population during the 24 weeks from September 8, 1918, through February 22,

1919, as reported in Markel et al. (2007).17 While some of the variables in Table A.3 display

small but significant differences between the two groups (Column 3), with long-NPI cities re-

cording higher patenting and literacy rates, higher average age, a higher share of population in

prime age (20–60 years old), and lower excess mortality during the pandemic, the covariates in

the two groups become statistically indistinguishable once we look at variation within Census

regions, as in our preferred specification (Column 4).

Columns (5) and (6) in Appendix Table A.4 estimate the same set of models as Table 1

using the binary specification of treatment, but include an interaction between the log of excess

mortality at the city level and indicators for the Post period (Simple DD model), and indicators

for the Before, During, and After periods (Extended DD model). The results in Appendix

Table A.4 show that adding the interactions with city-level pandemic severity does not alter

our baseline estimates of the effect of NPIs on patenting rates. Moreover, the interactions with

pandemic severity themselves are imprecisely estimates and statistically insignificant (estimates

not reported).

Columns (7) and (8) in Appendix Table A.4 are based on the preferred specification in

Table 1, but include controls for literacy and schooling. Since education may be linked to

invention, this specification investigates whether controlling for differences in educational at-

tainment across cities alters our baseline results. Data on educational attainment at the city

level during the early 20th century are limited. We draw on two variables available from the

1910 Census: the share of the adult population that is literate, and the share of the total

population enrolled in school. Since we are concerned that these measures of education after

the pandemic may reflect a response to the pandemic (and thus be ‘bad controls’), we include

them in the models with a linear time trend interacted with the 1910 shares of these variables.

The age composition of the local population might also confound the results, since it is likely

correlated with innovation capacity and with service in World War I. To account for this, in

Columns (9) and (10) we display estimates of a specification in which we control for the 1910

share of local population in prime age (20 to 60 years old) interacted with a linear time trend.

Finally, the disruption (and later resumption) in the knowledge flows between German and US

inventors during World War I might also be a confounding factor. In Columns (11) and (12),

we show results when including a control for the 1910 share of population of German descent,

again interacted with a linear time trend.

The results in Columns (7)-(12) of Appendix Table A.4 indicate that adding these measures

of education, age composition, and ethnic origin does not meaningfully alter our baseline results.

17This measure is only available for the 43 cities in Markel et al. (2007). Unfortunately, the weekly mortality
data in Markel et al. (2007) does not extend past February 1919.
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There are two main findings: First, the coefficients on NPI length in Columns (7)-(12) are

very similar to the baseline estimates (Columns 1 and 2) and remain statistically significant

at the 5% level. Second, the coefficient estimates (not reported) on the trends in the three

covariates are either marginally significant (with places with higher 1910 literacy and older

1910 population being on slightly upward patenting trends) or not statistically significant (for

the share of population of German descent). This suggests that differential patenting trends

in cities with different literacy rates, age composition, and share of German descent do not

significantly confound the baseline results.

We also provide two tests that control for heterogeneous trends in patenting rates across

cities. Specifically, in Columns (13) and (14) of Appendix Table A.4 we add a linear time-

trend interacted with city-specific NPI length (Column 13) and city-specific linear time trends

(Column 14). Both tests allow pre-trends to vary across cities, but absorb a substantial amount

of variation in the data. This is evident when examining the estimated standard errors which

are inflated by 35% and 55% when compared to those in Column (1). The doubling of the

standard errors in Column (14) is due to the fact that allowing for city specific time trends adds

49 additional coefficients to be estimated, relative to the model in Column (1). Importantly,

however, the magnitudes of the point estimates in Columns (13) and (14) are very similar to

those in Column (1), mitigating concerns about differential trends across cities contaminating

the baseline estimates.

Finally, we explored whether the presence of a local university could constitute a confound-

ing factor in our estimates. While our specification includes city fixed effects, the presence

of a local university may be correlated with NPI adoption and, at the same time, may have

improved local invention capacity after the pandemic. However, we verified that there is no

meaningful variation in our sample in whether cities hosted a university. In particular, using a

variety of sources including the historical appendix of Andrews (2020), we confirmed that all

but one of the cities in our sample were home to at least one university in 1916, the beginning

of the sample period in our preferred specification.

A2.3 Patent Assignment and Population Robustness

The baseline measure of patenting as used to estimate Equation (1) assigns multi-inventor

patents to cities in a particular manner and imputes city-level population. Our results are

robust to alternative choices of assignment and imputation.

Specifically, in our baseline specification, we assign 1/Np of a patent to each inventor’s city,

where Np is the total number of inventors on patent p. Table A.6 repeats our baseline results in

Column (1), and then reports the results from Equation (1) using two alternative assignment

rules. In Column (2), only the first inventor’s city is used, and it receives the full patent count.
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In Column (3), each inventor’s city receives a full patent count (rather than a fraction). Results

are similar to the baseline specification.

In Equation (1), we impute city-level population in a month-year cell linearly between census

observations. High-frequency population measures by city are unavailable for our full sample,

so instead we show that our results are robust over a range of population imputations, and—

because the consequences of incorrect population imputation are most troubling if the drift in

a confounding manner—over a range of sample windows. Table A.7 first repeats our baseline

specification from Table 1, but now also shows intermediate sample windows. Panel A drops

population from the specification. This increases standard errors, as expected, but results are

consistent with the baseline specification, especially over shorter windows. Note that in Panel

A, city fixed effects capture average population. Panel B includes imputed population as a

control with a free coefficient (in the baseline specification, it is included with a coefficient fixed

to 1, which is equivalent in a PPML specification to setting the dependent variable to the log

of patenting rate). Results are again consistent, if noisier over longer windows. Panel C simply

uses the 1910 census population to define the patenting rate, and as such is most likely to

confound population change and patenting. However, because of the fixed effects present, this

is identical to Panel A. Finally, Panel D uses 1910 census population to define the patenting

rate and includes imputed population as a control. But, because of the fixed effects present,

its results are also identical to Panel B. In sum, our results are robust to reasonable alternative

manners of controlling for population change.
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Figure A.1: Distribution of NPI Length Across 50 Cities
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Figure A.2: Leave-One-Out Estimates of the Effect of NPI Length on Patenting Rates

Figure A.2 shows 50 estimated coefficients obtained by alternately leaving one city out of the
estimation sample and estimating the DD parameter β as in Equation (1). The top panel is
for the binary treatment specification and the bottom panel is for the continuous NPI model.
In both cases, the specification includes city-by-month of year and Census-region–year fixed
effects and uses the data from 1916–1920. The estimates are sorted by the duration of NPI
length (in days) for the omitted city. Inference is based on city-level cluster-robust methods.
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Figure A.3: Estimated Effect of NPIs on Patenting Rates Across Central 80% of Possible
Cutoffs for Binary Treatment Definition

Figure A.3 reports estimates of β from Equation (1) from a series of regressions where the
threshold in days of NPIs to switch from “shorter” to “longer” varies from 41 days (the 10th
percentile in the NPI duration distribution) to 154 days (the 90th percentile in the NPI duration
distribution). The underlying regression models include city-by-month of year and Census-
region–year fixed effects and are estimated on the 1916–1920 period sample. The vertical
bars represent the 95% confidence intervals from inference based on city-level cluster-robust
methods.
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Table A.1: Summary Statistics on Patents and NPIs

Mean SD Min p25 p50 p75 Max N

Outcome Variables
Patenting Rate (per 100,000 population) 5.19 3.17 0 2.91 4.86 6.89 27.58 3000
Patents 26.95 50.58 0 5.5 13 25.5 392.67 3000
Single-inventor patents 24.8 46.89 0 5 12 23 366 3000
Multi-inventor patents 2.15 4.05 0 0 1 2.5 37 3000
No-assignee patents 15.84 29.81 0 3 8 15.5 258.5 3000
Patents with assignees 11.10 21.62 0 1 4.5 11 172 3000

Treatment Variables
Days NPIs 85.18 45.59 28 49 65.5 132 170 50
1[NPIs > 90] 0.36 0.48 0 0 0 1 1 50
Excess Death Rate (Markel et al. 2007) 505.5 138.2 210.5 410 522.9 591.8 806.8 43

The sample period is 1916–1920. All variables are defined at the city-month level for the 50 cities in the
main sample, except the city-level measure of pandemic severity which is only available for the 43 cities
in Markel et al. (2007). The outcome variables are patenting rates (per 100,000 population), constructed
from all patents filed and subsequently granted, taken from CUSP. Patents are assigned to cities based on
the inventors’ city of residence. Multi-authored patents are proportionally assigned in a way that reflects
the share of inventors residing in each city. The treatment variables are the number of days of NPIs, a
binary indicator for NPI periods longer than 90 days, and a city-level measure of the severity of the 1918
pandemic (excess death rate). The NPI variables are observed for the 50 cities of the main sample while
the excess death rate is measured in only the 43 cities in Markel et al. (2007). See Appendix Table A.2
for the complete list of 50 cities.
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Table A.2: NPI Duration and Population by City

City Days of NPIs Pop. (1910) Source

Albany, NY 47 100,253 Markel et al. (2007)
Atlanta, GA 46 154,839 Influenza Archive 2.0
Baltimore, MD 43 558,485 Markel et al. (2007)
Birmingham, AL 48 132,685 Markel et al. (2007)
Boston, MA 50 670,585 Markel et al. (2007)
Buffalo, NY 49 423,715 Markel et al. (2007)
Cambridge, MA 49 104,839 Markel et al. (2007)
Charleston, SC 69 58,833 Influenza Archive 2.0
Chicago, IL 68 2,185,283 Markel et al. (2007)
Cincinnati, OH 123 363,591 Markel et al. (2007)
Cleveland, OH 99 560,663 Markel et al. (2007)
Columbus, OH 147 181,511 Markel et al. (2007)
Dallas, TX 41 92,104 Influenza Archive 2.0
Dayton, OH 156 116,577 Markel et al. (2007)
Denver, CO 151 213,381 Markel et al. (2007)
Des Moines, IA 56 86,368 Influenza Archive 2.0
Detroit, MI 29 465,766 Influenza Archive 2.0
Fall River, MA 60 119,295 Markel et al. (2007)
Grand Rapids, MI 62 112,571 Markel et al. (2007)
Indianapolis, IN 82 233,650 Markel et al. (2007)
Kansas City, MO 170 248,381 Markel et al. (2007)
Los Angeles, CA 154 319,198 Markel et al. (2007)
Louisville, KY 145 223,928 Markel et al. (2007)
Lowell, MA 59 106,294 Markel et al. (2007)
Milwaukee, WI 132 373,857 Markel et al. (2007)
Minneapolis, MN 116 301,408 Markel et al. (2007)
Nashville, TN 55 110,364 Markel et al. (2007)
New Haven, CT 39 133,605 Markel et al. (2007)
New Orleans, LA 78 339,075 Markel et al. (2007)
New York City, NY 73 4,766,883 Markel et al. (2007)
Newark, NJ 33 347,469 Markel et al. (2007)
Oakland, CA 127 150,174 Markel et al. (2007)
Omaha, NE 140 124,096 Markel et al. (2007)
Philadelphia, PA 51 1,549,008 Markel et al. (2007)
Pittsburgh, PA 53 533,905 Markel et al. (2007)
Portland, OR 162 207,214 Markel et al. (2007)
Providence, RI 42 224,326 Markel et al. (2007)
Richmond, VA 60 127,628 Markel et al. (2007)
Rochester, NY 54 218,149 Markel et al. (2007)
Salt Lake City, UT 141 92,777 Influenza Archive 2.0
San Antonio, TX 81 96,614 Influenza Archive 2.0
San Francisco, CA 67 416,912 Markel et al. (2007)
Seattle, WA 168 237,194 Markel et al. (2007)
Spokane, WA 164 104,402 Markel et al. (2007)
St Louis, MO 143 687,029 Markel et al. (2007)
St Paul, MN 28 214,744 Markel et al. (2007)
Syracuse, NY 39 137,249 Markel et al. (2007)
Toledo, OH 102 168,497 Markel et al. (2007)
Washington, DC 64 331,069 Markel et al. (2007)
Worcester, MA 44 145,986 Markel et al. (2007)
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Table A.3: Baseline Characteristics of Long and Short-NPI Cities

Difference Difference
Mean if Mean if without with

Long NPIs Short NPIs Region FEs Region FEs N

(1) (2) (1) - (2)

Patenting rate (per 100,000 population), 7.13 5.35 1.78* 0.78 50
average monthly rate in 1910 [2.91] [2.50] (0.81) (0.92)

Population (April 1910) 259660 478080 -218420 -192813 50
[158372] [897326] (163593) (223114)

Maximum excess death rate during 1918 pandemic 437.1 550.2 -113.1** -19.6 43
(per 100,000, from Market et al., 2007) [106.8] [139.8] (37.7) (57.9)

Share of population in school (April 1910) 0.182 0.194 -0.012* -0.004 50
[0.019] [0.017] (0.005) (0.009)

Share of population that is literate (April 1910) 0.971 0.937 0.034*** 0.007 50
[0.011] [0.033] (0.006) (0.006)

Share of population of German descent (April 1910) 0.050 0.035 0.015 0.006 50
[0.037] [0.029] (0.010) (0.014)

Share of population with German as mother tongue (April 1910) 0.009 0.004 0.005+ 0.005 50
[0.011] [0.004] (0.003) (0.003)

Share of population aged 20–60 (April 1910) 0.612 0.578 0.034** 0.005 50
[0.039] [0.025] (0.010) (0.010)

Average age (April 1910) 28.8 27.9 0.9* 0.3 50
[1.3] [1.3] (0.4) (0.5)

All variables are as of the 1910 Census except the patenting rate and the excess death rate during the 1918 pandemic. The
patenting rate is calculated as the average per capita patenting rate across all months in 1910; excess death rate is as reported
in Markel et al. (2007). The share of population of German descent is calculated as the share of people that reported Germany
(or one of its regions) as birth place. German as mother tongue also includes its dialects (e.g., Austrian). Average age is across
all city residents in 1910 census. Standard deviations in brackets. Robust standard errors of difference tests in parentheses. +
p<0.10, * p<0.05, ** p<0.01, *** p<0.001.
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Table A.4: Robustness Analysis

Preferred With With With
Specification Only 43 pandemic literacy & With share With
(Column 3 Markel et al. severity schooling age German time
in Table 1) (2007) cities (43 cities) controls controls controls trends

NPI Length=1[NPIs>90 Days] (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

Post Pandemic × NPI Length 0.074* 0.065* 0.066* 0.062* 0.060* 0.076* 0.074+ 0.063
(0.029) (0.028) (0.029) (0.029) (0.029) (0.036) (0.039) (0.045)

Before Pandemic × NPI Length 0.012 0.011 0.017 0.018 0.019 0.010
(0.033) (0.033) (0.031) (0.033) (0.033) (0.036)

During Pandemic × NPI Length 0.058 0.064 0.061 0.054 0.053 0.059
(0.040) (0.040) (0.038) (0.039) (0.039) (0.042)

After Pandemic × NPI Length 0.088* 0.074* 0.080* 0.079* 0.077* 0.090*
(0.035) (0.033) (0.033) (0.035) (0.035) (0.036)

Time Trend × (Days of NPIs)/30 -0.000
(0.005)

City Time Trends - - - - - - - - - - - - - X
N 3000 3000 2580 2580 2580 2580 3000 3000 3000 3000 3000 3000 3000 3000

The dependent variable is the patenting rate (patents filed/population) in a city-month. All specifications are estimated using PPML with the exposure variable set to
a linear interpolation of city population; coefficients can be interpreted as representing a percentage change in the patenting rate. All models include month-by-year,
city-by-month of year, and region-by-year fixed effects, and all samples begin January 1916 and end December 1920. Pandemic severity is the log maximum excess death
rate as reported in Markel et al. (2007), interacted with the post period in Column (5) and with Before, During, and After periods in Column (6). Literacy and schooling
controls are the share of the population that could both read and write and the share of the population that was enrolled in school, respectively, in the 1910 Census,
interacted with a linear time trend. Age controls are share aged 20–60 and average age in the 1910 Census interacted with linear time trend. Share German controls are
the share of the population of German descent and the share of the population speaking German as their mother tongue in the 1910 Census interacted with linear time
trend. Standard errors clustered by city. + p<0.10, * p<0.05, ** p<0.01, *** p<0.001.
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Table A.5: Effects of NPI Length Accounting for Prohibition

(1) (2) (3) (4) (5) (6)

NPI Length = 1[NPIs > 90 Days]

Panel A. Simple DD
Post Pandemic × NPI Length 0.058* 0.062* 0.067* 0.071** 0.076** 0.076**

(0.027) (0.027) (0.027) (0.027) (0.029) (0.028)

Alcohol Prohibited (18th Amend.) 0.022 0.017 0.030
(0.023) (0.023) (0.027)

Alcohol Prohibited (WPA) 0.041 0.042 0.046
(0.033) (0.033) (0.037)

Panel B. Extended DD
Before Pandemic × NPI Length 0.012 0.011 0.007 0.005 0.010 0.008

(0.028) (0.028) (0.027) (0.028) (0.033) (0.032)

During Pandemic × NPI Length 0.049 0.049 0.040 0.039 0.059 0.056
(0.041) (0.041) (0.041) (0.041) (0.040) (0.040)

After Pandemic × NPI Length 0.070* 0.074* 0.078* 0.082* 0.088** 0.088**
(0.033) (0.034) (0.033) (0.033) (0.034) (0.032)

Alcohol Prohibited (18th Amend.) 0.022 0.018 0.030
(0.023) (0.023) (0.026)

Alcohol Prohibited (WPA) 0.042 0.044 0.046
(0.033) (0.033) (0.036)

Fixed Effects
City X X - - - -
Month-Year X X X X X X
City-Month - - X X X X
Region-Year - - - - X X

N 3000 3000 3000 3000 3000 3000

Notes: Table A.5 reports DD estimates of the effect of NPI length on patenting rates with controls
for Prohibition. The sample includes the 50 cities for which we have information on NPI length (see
Appendix Table A.2). The dependent variable is the patenting rate (patents filed/population) in a
city-month. The treatment variable is a binary indicator for NPI period longer than 90 days. Alcohol
Prohibited (18th Amend.) uses the date the 18th Amendment went into effect (Jan. 17, 1920)
as the date that all not-yet-dry cities prohibited alcohol sales; Alcohol Prohibited (WPA) instead
uses the date the Wartime Prohibition Act went into effect (July 1, 1919). All specifications are
estimated using a Poisson Pseudo-Maximum Likelihood (PPML) with the exposure variable set to a
linear interpolation of city population. The estimated coefficients can be interpreted as a percentage
change in the patenting rate. Standard errors are clustered by city. + p<0.10, * p<0.05, ** p<0.01,
*** p<0.001.
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Table A.6: Robustness to Alternative Assignments of Multi-Inventor Patents

Weight Assigned to Inventors on Multi-Inventor Patents:
1

No. of Inventors. First Inventor Only=1 Each Inventor=1

(1) (2) (3)

NPI Length = 1[NPIs > 90 Days]

Panel A. Simple DD
Post Pandemic × NPI Length 0.074* 0.076* 0.085**

(0.029) (0.030) (0.027)
Panel B. Extended DD

Before Pandemic × NPI Length 0.012 0.016 0.014
(0.033) (0.033) (0.034)

During Pandemic × NPI Length 0.058 0.061 0.075*
(0.040) (0.041) (0.038)

After Pandemic × NPI Length 0.088* 0.093** 0.099**
(0.035) (0.036) (0.036)

Fixed Effects
Month-Year X X X
City-Month X X X
Region-Year X X X

N 3000 3000 3000

Notes: Table A.6 reports DD estimates of the effect of NPI length using different assignment rules for
multi-inventor patents. The sample includes the 50 cities for which we have information on NPI length
(see Appendix Table A.2). The dependent variable is the patenting rate (patents filed/population),
with multi-inventor patent inventors given a weight of one over the total number of inventors in
Column (1) (our preferred measure), only the first inventor receiving a weight of one in Column
(2), and each inventor receiving a weight of one in Column (3). The treatment variable is a binary
indicator for NPI period longer than 90 days. All samples begin January 1916 and end December
1920. All specifications are estimated using a Poisson Pseudo-Maximum Likelihood (PPML) with
the exposure variable set to a linear interpolation of city population. The estimated coefficients can
be interpreted as a percentage change in the patenting rate. Standard errors are clustered by city. +
p<0.10, * p<0.05, ** p<0.01, *** p<0.001.
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Table A.7: Robustness to Population Measures

(1) (2) (3) (4) (5) (6) (7)

NPI Length = 1[NPIs > 90 Days]

Panel 0. Baseline (patenting rate with imputed intercensal population)
Post Pandemic × NPI Length 0.056* 0.065* 0.074* 0.067* 0.093* 0.088* 0.086*

(0.027) (0.027) (0.029) (0.032) (0.044) (0.041) (0.044)

Panel A. Exclude population
Post Pandemic × NPI Length 0.071* 0.080** 0.067** 0.054 0.080* 0.069 0.055

(0.029) (0.029) (0.025) (0.040) (0.037) (0.044) (0.073)

Panel B. Include interpolated population as control
Post Pandemic × NPI Length 0.062* 0.068* 0.062* 0.077+ 0.083* 0.091* 0.108

(0.031) (0.030) (0.027) (0.041) (0.035) (0.045) (0.072)

Panel C. Use 1910 population as rate
Post Pandemic × NPI Length 0.071* 0.080** 0.067** 0.054 0.080* 0.069 0.055

(0.029) (0.029) (0.025) (0.040) (0.037) (0.044) (0.073)

Panel D. Use 1910 population as rate & interpolated population as control
Post Pandemic × NPI Length 0.062* 0.068* 0.062* 0.077+ 0.083* 0.091* 0.108

(0.031) (0.030) (0.027) (0.041) (0.035) (0.045) (0.072)

Fixed Effects
City X - - - - - -
Month-Year X X X X X X X
City-Month - X X X X X X
Region-Year - - X X X X X

Sample coverage
begins January of 1916 1916 1916 1913 1916 1913 1910
ends December of 1920 1920 1920 1920 1923 1923 1926

N 3000 3000 3000 4800 4800 6600 10200

Notes: Table A.7 shows robustness of DD estimates of the effect of NPI length on patenting rates to
alternative population measures. The sample includes the 50 cities for which we have information on NPI
length (see Appendix Table A.2). The dependent variable is patents in a city-month. The treatment
variable is a binary indicator for NPI period longer than 90 days. All specifications are estimated using
a Poisson Pseudo-Maximum Likelihood (PPML). Panel 0 uses imputed intercensal population to define
the dependent variable as patenting rate, as is used in all other specifications in the paper. Panel A
excludes population. Panel B includes interpolated population as a control variable (the default model
uses interpolated population as the exposure variable, which is like fixing its coefficient to 1). Panel C
sets the exposure variable to 1910 population. Panel D combines the specifications of Panels B and C.
Standard errors are clustered by city. + p<0.10, * p<0.05, ** p<0.01, *** p<0.001.
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