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Abstract

We develop an algorithm to construct approximate decision rules that are piecewise-

linear and continuous for DSGE models with an occasionally binding constraint. The

functional form of the decision rules allows us to derive a conditionally optimal particle

filter (COPF) for the evaluation of the likelihood function that exploits the structure

of the solution. We document the accuracy of the likelihood approximation and embed

it into a particle Markov chain Monte Carlo algorithm to conduct Bayesian estimation.

Compared with a standard bootstrap particle filter, the COPF significantly reduces the

persistence of the Markov chain, improves the accuracy of Monte Carlo approximations

of posterior moments, and drastically speeds up computations. We use the techniques

to estimate a small-scale DSGE model to assess the effects of the government spending

portion of the American Recovery and Reinvestment Act in 2009 when interest rates

reached the zero lower bound. JEL: C5, E4, E5
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1 Introduction

Dynamic stochastic general equilibrium (DSGE) models with financial frictions are widely

used in central banks, by regulators, and in academia to study the effects of monetary

and macroprudential policies and the propagation of shocks in the macro economy. The

most recent vintage of these models involves occasionally binding constraints arising from

financial frictions and the zero lower bound (ZLB) on nominal interest rates. In order for

these models to be useable for a quantitative analysis, they need to be solved numerically,

and their parameters need to be estimated based on historical data.

Two types of solution approaches for models with occasionally binding constraints have

been used in the literature. The first group of solution algorithms can be broadly classified

as global methods. Agents’ decision rules (or value functions associated with optimiza-

tion problems) are represented by a family of flexible functions—for example, Chebyshev

polynomials—or by a discrete mapping on a finite state-space domain. The flexible func-

tions are parameterized by coefficients that are chosen such that the resulting decision rules

(approximately) satisfy the model’s equilibrium conditions and solve the underlying intertem-

poral optimization problems.

The second type of solution approaches are variants of the extended perfect-foresight

path (EPFP) method that build on Fair and Taylor (1983). These algorithms rely on the

assumption that, after H periods, the system reverts back to the steady state in which the

constraint, say, is non-binding. With an initial guess about whether the constraint is binding

in periods t + h, h = 1, . . . , H, it is possible to solve the dynamic system for the values of

the endogenous variables. We can then compare the initial guess about the duration of the

binding regime to the backward solution and iterate until consistency is achieved. Because

the computations are based on the initial state, the previously described steps need to be

repeated for every t in a multi-period simulation.

From the model solution, we can construct a state-space representation for an estimable

empirical model. The solution itself generates the state transition equations. A set of mea-

surement equations can then be specified that links the state variables with the observables.

Because the model solution is nonlinear, so is the state-space representation. Thus, a non-

linear filter is required to compute the likelihood function. For instance, in the context of

DSGE models with a ZLB constraint, Gust et al. (2017) and Aruoba et al. (2018) use a par-

ticle filter in combination with a global solution to construct likelihood functions. Guerrieri

and Iacoviello (2017) use an EPFP solution for a model in which the number of observables
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equals the number of structural shocks and combine it with an inversion filter that essentially

solves for the innovations as a function of the observables conditional on an initial state.

The contribution of our paper is to construct an alternative model solution that (i) is able

to capture an important aspect of the decision rule nonlinearity generated by an occasionally

binding constraint, (ii) can be solved quickly, and (iii) allows us to derive an accurate and fast

filter for the evaluation of the likelihood function that exploits the structure of the solution.

This likelihood approximation can then be embedded into an estimation procedure. One of

our goals is to make the procedure efficient enough that it can be run on a desktop computer

in a reasonable amount of time. The small-scale New Keynesian model in our empirical

application is estimated using U.S. data from 1984 to 2018 in about 13.5 hours on a single

core.

The basic idea of the proposed solution method is to approximate agents’ decision rules

globally by piecewise-linear functions that are continuous but have a kink in the region

of the state space in which a constraint becomes binding. The decision rules account for

the fact that, in the next period, the constraint could either be binding or non-binding

and thus they capture precautionary behavior. Moreover, the decision rules only have to

be computed once (as opposed to for each period t separately as in the EPFP approach.)

Aruoba et al. (2018) used more flexible approximations for the decision rules, stitching

together higher-order Chebyshev polynomials along the locus in the state-space where the

ZLB constraint becomes binding. However, the decision rules on both sides of the kink

remained approximately linear. On the one hand, our solution generalizes the widely used

log-linearization techniques, which generate log-linear decision rules. On the other hand,

compared with higher-order Chebyshev polynomials, the piecewise-linearity and continuity

at the kink drastically reduce the number of coefficients that need to be determined and

hence simplify computations.

The resulting solution can be cast into a two-regime vector autoregressive representation

(VAR) with an endogenous regime switching that is triggered when structural shock inno-

vations cross a particular threshold. To solve the nonlinear filtering problem, we derive a

conditionally optimal proposal distribution for a particle filter. A particle filter approximates

the distribution of a vector of hidden states st conditional on the sequence of observations

Y1:t available in time t by a swarm of M particle values and weights {sjt ,W
j
t }Mj=1. The filter

operates recursively and turns the swarm {sjt−1,W
j
t−1}Mj=1 into a swarm {sjt ,W

j
t }Mj=1, which

requires a change in the particle values (mutation) and a change in the particle weights

(correction). It has been shown that conditionally on {sjt−1,W
j
t−1}Mj=1 it is optimal to sample
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sjt ∼ p(st|yt, sjt−1)—see Herbst and Schorfheide (2015) for a more detailed exposition. If

draws from this distribution can be obtained by direct sampling, the filter becomes very effi-

cient. We show that for state transitions that are piecewise-linear, the conditionally optimal

proposal is a mixture of truncated normal distributions that allows for direct sampling.

In a sequence of numerical illustrations based on a small-scale New Keynesian DSGE

model with a ZLB constraint, we document important properties of our solution algorithm

and the conditionally optimal particle filter (COPF) likelihood approximation. We show

that, compared to a naive bootstrap particle filter (BSPF), which samples sjt from the state-

transition density p(st|sjt−1), our COPF drastically reduces the variance of the likelihood

approximation holding the runtime fixed. In practice, this allows us to run the COPF

with far fewer particles than the BSPF (150 in our empirical application), which in turn

speeds up the computations. When we embed the more accurate COPF into a random

walk Metropolis–Hastings (RWMH) algorithm, we are able to significantly reduce the per-

sistence of the resulting Markov chain and therefore improve the accuracy of Monte Carlo

approximations of moments of the posterior distribution.

Using U.S. data from 1984 to 2018 on output growth, inflation, interest rates, and the

government-spending to GDP ratio, we estimate the small-scale DSGE model using our

proposed piecewise-linear and continuous (PLC) solution in combination with the COPF.

From the estimated model, we compute dollar-for-dollar government spending multipliers

associated with the increase in government spending that was part of the 2009 American

Recovery and Reinvestment Act (ARRA). The counterfactual output levels are computed

by lowering the exogenous government spending process in the model by an amount that

is commensurable to the ARRA intervention and keeping all other exogenous processes at

their historical levels. We find that the ex post ARRA multiplier, computed by comparing

realized output and government spending with counterfactual levels, is approximately 0.8.

Our paper is related to several strands of the literature. Global solutions for models

with occasionally binding constraints are computed, for instance, in Christiano and Fisher

(2000), Fernández-Villaverde et al. (2015), Maliar and Maliar (2015), Gust et al. (2017),

and Aruoba et al. (2018). The decision rules can also be obtained iteratively through value

function or policy function iteration. Examples of the latter methodology include Adam

and Billi (2007), Nakata (2016), and Atkinson et al. (2020). Mendoza and Villalvazo (2019)

propose a fixed-point iteration algorithm (FiPIt) that iterates on intertemporal equilibrium

conditions, which is faster than traditional global solution methods. Under all of these
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approaches, the decision rules only have to be computed once conditional on a vector of

model parameters and can then easily be used for multi-step model simulation.

EPFP solutions have been developed by Eggertsson and Woodford (2003), Christiano

et al. (2015), and Guerrieri and Iacoviello (2015), who provide a software package called

OccBin. The algorithms are typically designed for models in which the equilibrium condi-

tions, with the exception of the occasionally binding constraint, are linearized.1 Kulish et al.

(2017) focus on the ZLB application and treat the duration of the fixed-interest-rate regime

as a parameter to be estimated. Holden (2019) implements the EPFP method using endoge-

nous news shocks and provides a software called DynareOBC. Boehl (2019) transforms the

linearized equilibrium conditions into an extended reduced-form system that depends only on

the initial states and the expected number of periods at the constraint and allows for a more

efficient computation of the solution. In approaches that utilize EPFP, a multi-step simula-

tion requires running the shooting algorithm for every period, making the implementation

of a standard particle filter difficult and time consuming.

de Groot et al. (2019) compare the performance of local approximations and EPFP

methods with the global solution of open-economy models with incomplete markets and

occasionally binding borrowing constraints. Their results show that simulated moments from

local and EPFP methods can differ substantially from those obtained using global solutions

and advise in favor of solving this class of models using the original nonlinear equilibrium

conditions. Our methodology follows a similar strategy, with the approximated piecewise-

linear decision rules pinned down by the nonlinear system of the equilibrium conditions.

Our solution takes the form of an endogenous regime-switching VAR. Chen (2017) im-

poses the regime-switching structure in the model specification. In her setup, an exogenous

two-state Markov process determines two policy regimes: a normal regime in which the in-

terest rate is positive and follows a Taylor-type monetary policy rule, and a regime in which

the interest rate is constrained by the ZLB. Because the regimes are exogenous, the model

can be solved using the tools proposed by Farmer et al. (2011). Similarly, Bianchi and Melosi

(2017) use an exogenous regime-switching process to characterize the ZLB dynamics during

the Great Recession. Benigno et al. (2016) endogenize the regime-switching probability in

a model of financial crisis, but, unlike in our paper, the transition from one to the other

regime remains partly decoupled from the realization of the fundamental shocks.

1The resulting solution is often called piecewise-linear which is a bit misleading. It is the equilibrium
conditions that are piecewise-linear. In contrast, our approach generates piecewise-linear decision rules.
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A key feature of our paper is that it integrates model solution, likelihood approximation,

and Bayesian estimation. There are a few papers that assess the interplay of existing model

solution and likelihood evaluation techniques in Monte Carlo experiments. Cuba-Borda

et al. (2019) take a simple consumption-savings model subject to a borrowing constraint.

They illustrate that less accurate solution methods affect inference even when the inversion

filter is available. They also show that, as one increases the measurement error variance in

the BSPF, the likelihood misspecification becomes more problematic, making it harder to

retrieve the parameter values that govern the data generating process (DGP). In their setting,

measurement error and solution approximation error make it difficult for the econometrician

to identify the model regime that generates the data, and this incorrect classification of

regimes leads to a bias in parameter estimates. In our empirical application, one of the

observed time series allows us to exactly identify the regime, and we modify the COPF to

capture this feature.

Atkinson et al. (2020) compare the performance of a fully nonlinear solution and a variant

of the BSPF for estimation, with the approximated solution using OccBin and the inversion

filter. They simulate data from a DSGE model that includes more frictions and shocks than

the model used for estimation, and the latter is close to the model we use in this paper

in terms of size. As such, their estimated model is misspecified with respect to the DGP.

Their results show that the nonlinear approach performs slightly better than the OccBin

approach, but the differences are small. Moreover, relative to the pseudo-true parameters,

the estimates from both approaches show biases in some key parameters, such as the degree

of price rigidities. Since the OccBin-Inversion Filter approach can be scaled up easily and is

faster, they argue that building a bigger and less misspecified model using this approach may

be preferable. Similarly, our method offers scalability even without multicore processing or

distributed computing.

Boehl (2019) combines his model solution with a variant of an ensemble Kalman filter.

His paper does not focus on accuracy comparisons of solution and estimation methods.

Instead, it applies the proposed techniques to estimate a small-scale New Keynesian model

on U.S. data. Similarly, our paper uses U.S. data to estimate the parameters of a small-scale

New Keynesian model and quantifies the role of fiscal policy in the aftermath of the Great

Recession.

There is a large literature that studies fiscal spending multipliers using methodologies

ranging from DSGE models and structural vector autoregressions (SVARs) to more tradi-

tional macroeconometric models—see Batini et al. (2014) for a survey and references. Results
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from DSGE models tend to be quite sensitive to the size of the fiscal shock and modeling

assumptions with respect to monetary and fiscal policy rules and labor supply (Hills and

Nakata (2018)). A fairly robust finding across most studies using DSGE models is that mul-

tipliers are larger at the ZLB than away from the ZLB. See, for example, Eggertsson (2011)

and Christiano and Eichenbaum (2012). Using a fairly stylized New Keynesian model with

passive fiscal policy and preferences that are additively separable in terms of consumption

and leisure, we find that the ex post multiplier during the Great Recession, when the United

States was at the ZLB, was larger than in normal times when interest rates were positive.

One novel result we show through counterfactuals is that, in 2009 and 2010, there was very

little room for the Federal Reserve to stimulate the economy with conventional monetary

policy over and above what the policy rule implied, because adverse shocks kept the desired

interest rate near zero despite the large expansionary fiscal policy due to ARRA.

The remainder of the paper is organized as follows. Section 2 describes the small-scale

New Keynesian DSGE model with ZLB constraint used in the subsequent analysis. In

Section 3, we describe how to impose continuity on piecewise-linear decision rules and derive

a canonical form for the DSGE model solution. Section 4 discusses how the decision rule

coefficients are determined to approximately satisfy the model’s equilibrium conditions. The

COPF is derived in Section 5. Section 6 presents some numerical experiments to document

the accuracy of the likelihood approximation through the COPF, and Section 7 contains the

empirical analysis. Finally, Section 8 concludes. Derivations and further implementation

details are provided in the Online Appendix.

2 A Prototypical New Keynesian DSGE Model

We will illustrate our solution and filtering methods based on a prototypical New Keynesian

DSGE model. The model is identical to the one used in Aruoba et al. (2018). Variants

of this model have been widely studied in the literature, and its properties are discussed in

detail in Woodford (2003). The model economy consists of perfectly competitive final-goods-

producing firms, a continuum of monopolistically competitive intermediate goods producers,

a continuum of identical households, and a government that engages in monetary and fis-

cal policy. To make this paper self-contained and introduce some important notation, we

describe the preferences and technologies of the agents in Section 2.1 and summarize the

equilibrium conditions in Section 2.2.
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2.1 Preferences and Technologies

Households. Households derive utility from consumption Ct relative to an exogenous habit

stock and disutility from hours worked Ht. We assume that the habit stock is given by the

level of technology At, which ensures that the economy evolves along a balanced growth path.

We also assume that the households value transaction services from real money balances,

detrended by At, and include them in the utility function. The households maximize

Et

[
∞∑
s=0

βsdt+s

(
(Ct+s/At+s)

1−τ − 1

1− τ
− χH

H
1+1/η
t+s

1 + 1/η
+ χMV

(
Mt+s

Pt+sAt+s

))]
, (1)

subject to the budget constraint

PtCt + Tt +Mt +Bt = PtWtHt +Mt−1 +Rt−1Bt−1 + PtDt + PtSCt.

Here β is the discount factor, dt is a shock to the discount factor, 1/τ is the intertemporal

elasticity of substitution, η is the Frisch labor supply elasticity, and Pt is the price of the final

good. The shock dt captures frictions that affect intertemporal preferences in a reduced-form

way. Fluctuations in dt affect households’ patience and desire to postpone consumption. As

is commonly exploited in the literature, a sufficiently large negative shock to dt makes the

central bank cut interest rates all the way to the ZLB. The households supply labor services

to the firms in a perfectly competitive labor market, taking the real wage Wt as given. At

the end of period t, households hold money in the amount of Mt. They have access to a

bond market where nominal government bonds Bt that pay gross interest Rt are traded.

Furthermore, the households receive profits Dt from the firms and pay lump-sum taxes Tt.

SCt is the net cash inflow from trading a full set of state-contingent securities.

Firms. The final-goods producers aggregate intermediate goods, indexed by j ∈ [0, 1], using

the technology

Yt =

(∫ 1

0

Yt(j)
1−νdj

) 1
1−ν

.

The firms take input prices Pt(j) and output prices Pt as given. Profit maximization implies

that the demand for inputs is given by

Yt(j) =

(
Pt(j)

Pt

)−1/ν
Yt.

Under the assumption of free entry into the final-goods market, profits are zero in equilibrium,
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and the price of the aggregate good is given by

Pt =

(∫ 1

0

Pt(j)
ν−1
ν dj

) ν
ν−1

. (2)

We define inflation as πt = Pt/Pt−1.

Intermediate good j is produced by a monopolist who has access to the production

technology

Yt(j) = AtHt(j), (3)

where At is an exogenous productivity process that is common to all firms and Ht(j) is the

firm-specific labor input. Intermediate-goods-producing firms face quadratic price adjust-

ment costs of the form

ACt(j) =
φ

2

(
Pt(j)

Pt−1(j)
− π̄

)2

Yt(j),

where φ governs the price stickiness in the economy and π̄ is a baseline rate of price change

that does not require the payment of any adjustment costs. In our quantitative analysis, we

set π̄ = π∗, where π∗ is the target inflation rate of the central bank. Firm j chooses its labor

input Ht(j) and the price Pt(j) to maximize the present value of future profits

Et

[
∞∑
s=0

βsQt+s|t

(
Pt+s(j)

Pt+s
Yt+s(j)−Wt+sHt+s(j)− ACt+s(j)

)]
. (4)

Here, Qt+s|t is the time t value to the household of a unit of the consumption good in period

t+ s, which is treated as exogenous by the firm.

Government Policies. Monetary policy is described by an interest rate feedback rule.

Because the ZLB constraint is an important part of our analysis we introduce it explicitly

as follows:

Rt = max {1, R∗t eσRεR,t} . (5)

Here R∗t is the systematic part of monetary policy which reacts to the current state of the

economy

R∗t =

[
rπ∗

(
πt
π∗

)ψ1
(

Yt
γYt−1

)ψ2
]1−ρR

RρR
t−1,

where r is the steady-state real interest rate and π∗ is the target-inflation rate. εR,t is a

monetary policy shock. Provided that the ZLB is not binding, the central bank reacts to

deviations of inflation from the target rate π∗ and deviations of output growth from its
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long-run value γ.

The government consumes a stochastic fraction of aggregate output. We assume that

government spending evolves according to

Gt =

(
1− 1

gt

)
Yt (6)

where gt is an exogenous process. The government levies a lump-sum tax Tt (or provides a

subsidy if Tt is negative) to finance any shortfalls in government revenues (or to rebate any

surplus). Its budget constraint is given by

PtGt +Mt−1 +Rt−1Bt−1 = Tt +Mt +Bt. (7)

Exogenous shocks. The model economy is perturbed by four exogenous processes. Aggre-

gate productivity evolves according to

logAt = log γ + logAt−1 + log zt, where log zt = ρz log zt−1 + σzεz,t. (8)

Thus, on average, the economy grows at the rate γ, and zt generates exogenous stationary

fluctuations of the technology growth rate around this long-run trend. We assume that the

government spending shock follows the AR(1) law of motion

log gt = (1− ρg) log g∗ + ρg log gt−1 + σgεg,t. (9)

The shock to the discount factor evolves according to

log dt = ρd log dt−1 + σdεd,t (10)

The monetary policy shock εR,t is assumed to be serially uncorrelated. We stack the four

innovations into the vector εt = [εz,t, εg,t, εd,t, εR,t]
′ and assume that εt ∼ iidN(0, I).

2.2 Equilibrium Conditions

Because the exogenous productivity process has a stochastic trend, it is convenient to char-

acterize the equilibrium conditions of the model economy in terms of detrended consumption

ct ≡ Ct/At and detrended output yt ≡ Yt/At.
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It is well known that the New Keynesian model features multiple equilibria; see Aruoba

and Schorfheide (2016). In the remainder of the paper we focus on what the literature has

called the targeted-inflation equilibrium. This is essentially the equilibrium that arises in

linearized DSGE models, adjusted for the presence of the ZLB constraint. The corresponding

steady state is given by

π∗, r∗ =
γ

β
, R∗ = r∗π∗, y∗ =

(
1− ν
χH

gτ∗

) 1
τ+1/η

, c∗ =
y∗
g∗
.

Without loss of generality, for any variable xt we can define the percentage deviations from

the steady state as x̂t = lnxt− lnx∗. Using this notation we can substitute xt by x∗e
x̂t .2 Our

goal is to write the equilibrium conditions as a system of expectational difference equations

of the form

Et
[
R(ŷt, ĉt, π̂t, R̂t, ŷt+1, ĉt+1, π̂t+1, R̂t+1, . . .)

]
= 0, (11)

where R(·) captures residuals in the equilibrium conditions.

The residual function comprises of the following elements. The consumption Euler equa-

tion leads to

Rc(·) = d̂t+1 − d̂t − τ(ĉt+1 − ĉt) + R̂t − π̂t+1 − ẑt+1. (12)

In a symmetric equilibrium, in which all firms set the same price Pt(j), the price-setting

decision of the firms leads to

Rπ(·) = ln

[
1

ν

(
1

ν
+

(
1− 1

ν

)
eτ ĉt+ŷt/η

)
− φπ2

∗
(
eπ̂t − 1

) [(
1− 1

2ν

)
eπ̂t +

1

2ν

]
(13)

+φβπ2
∗

(
ed̂t+1−d̂t

) (
e−τ(ĉt+1−ĉt)

) (
eŷt+1−ŷt

) (
eπ̂t+1 − 1

)
eπ̂t+1

]
.

The aggregate resource constraint leads to

Ry(·) = ŷt − ĉt + ln

[
1

eĝt
− φ

2
g∗
(
π∗e

π̂t − π̄
)2]

. (14)

It reflects both government spending as well as the resource cost (in terms of output) caused

by price changes. The monetary policy rule generates the residual function

RR(·) = R̂t−max
{

(1−ρR)
[
ψ1π̂t+ψ2(ŷt− ŷt−1 + ẑt)

]
+ρRR̂t−1 +σRεR,t, − log(rπ∗)

}
. (15)

2Introducing x̂t does not imply that we are log-linearizing all of the equilibrium conditions. It is foremost
a reparameterization. However, in our model it happens to be the case that the consumption Euler equation
and (abstracting from the max operator) the monetary policy rule are log-linear.
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We do not use a measure of money in the subsequent analysis and therefore drop the equi-

librium condition that determines money demand. We stack the residual functions for the

exogenous shocks as follows:

Rexo(·) =


ẑt − ρz ẑt−1 − σzεz,t
d̂t − ρdd̂t−1 − σdεd,t
ĝt − ρgĝt−1 − σgεg,t
eR,t − σRεR,t

 . (16)

3 PLC Decision Rules and the Canonical Form

Throughout this paper, we consider solutions for models with a single occasionally binding

constraint. In this section, we show how we construct our piecewise-linear decision rules

and how we impose continuity at the kink, where the constraint changes from being slack to

being binding. In Sections 3.1 and 3.2, we do so using a generic notation that can be used

with any model with an occasionally binding constraint. We provide an illustration in the

context of the New Keynesian DSGE model in Section 3.3. In Section 3.4 we construct what

we call the canonical form of the model, which will make the subsequent discussion about

filtering and estimation easier.

3.1 PLC Decision Rules

Let X = [x1, X
′
2] ∈ X be an n× 1 vector of state variables. Here x1 is one particular element

of X and we assume that the vector of the remaining state variables, X2, also contains a

constant. Let y denote a k × 1 vector of control variables. We assume that there is a

linear(ized) function h
(
x1, X2, y

)
that determines whether the constraint is binding:

h
(
x1, X2, y

)
=

{
> 0 if constraint is non-binding (n)

≤ 0 if constraint is binding (b)
. (17)

The h(.) function may depend on the state variables (x1, X2) and some of the elements in y.

Because the function is assumed to be linear, we write it as

h(x1, X2, y) = γ1x1 + γ′2X2 + γ′yy. (18)
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The γ’s are not free coefficients. They are obtained from the equilibrium conditions of

the DSGE model. We define the kink function x1 = `(X2) such that [`(X2), X
′
2]
′ ∈ X

characterizes the locus of points in the state space for which h
(
`(X2), X2, y(`(X2), X2)

)
= 0—

that is, the constraint is just binding.

The linearity of h(·) in (18) and the assumed piecewise-linearity of the decision rules for

y imply that `(X2) is a linear function and we parameterize it as

`(X2) = δ′X2. (19)

Here δ is a (n − 1)-dimensional vector. The δ coefficients are currently free and will be

determined as functions of the decision rule coefficients and the coefficients of the constraint

function h(.) as we explain below. Note that so far we have not yet made a determination

whether the constraint is slack if x1 < δ′X2.

Returning to the control variables, we assume the decision rules for each yi are of the

piecewise-linear form

yi(x1, X2) =

{
αi1,1x1 + αi1,2

′
X2 if x1 ≥ `(X2)

αi2,1x1 + αi2,2
′
X2 if x1 < `(X2)

i = 1, . . . , k , (20)

where each decision rule has 2n unknown coefficients. The decision rules are exactly linear

if αi1,1 = αi2,1 and αi1,2 = αi2,2. The specification in (20) makes the benefit of using the kink

function `(.) clear: given the state variables x1 and X2, we can easily determine which side

of the constraint we need to be, even when the constraint contains some control variables.

3.2 Imposing Continuity on Piecewise-Linear Decision Rules

We now turn to imposing continuity on the decision rules at the kink, which means we

impose the restriction that the two parts of each decision rule are equal to each other along

the kink. Doing so will restrict a subset of the unknown α and δ coefficients.

More specifically, continuity at x1 = δ′X2 requires that for each i = 1, ..., k

αi1,1δ
′X2 + αi1,2

′
X2 = αi2,1δ

′X2 + αi2,2
′
X2 ∀X2,
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which generates (n− 1) restrictions for each i:

αi1,1δ
′ + αi1,2

′
= αi2,1δ

′ + αi2,2
′
. (21)

Next, we impose restrictions that make the `(.) and y(.) functions consistent with the

constraint in (17). The condition h[g(X2), X2, y
(
`(X2), X2

)
] = 0, which represents the kink

in terms of the h(.) function, can be written as

γ1δ
′X2 + γ′2X2 +

k∑
i=1

γiy(α
i
1,1δ

′X2 + αi1,2
′
X2) = 0 ∀X2,

which leads to another set of (n− 1) restrictions:

γ1δ
′ + γ′2 +

k∑
i=1

γiy(α
i
1,1δ

′ + αi1,2
′
) = 0. (22)

Counting all unknowns and restrictions, we have k(n+1) degrees of freedom.3 Let us assume

the coefficients αi1,1, α
i
1,2, and αi2,1 for each decision rule are free and collect them in the vector

ϑ of size k(n+ 1)

ϑ = [α1
1,1, . . . , α

k
1,1, α

1
1,2
′
, . . . , αk1,2

′
, α1

2,1, . . . , α
k
2,1]
′. (23)

In other words, we treat all the decision rule coefficients for the “1” regime and the coefficient

in front of x1 in the “2” regime as free. The remaining decision rule coefficients in the “2”

regime, αi2,2, i = 1, . . . , k, as well as all of the δ coefficients are determined as functions of

these free coefficients, which we now turn to.

Conditional on ϑ, we can rewrite (22) as(
γ1 +

k∑
i=1

γiyα
i
1,1

)
︸ ︷︷ ︸

a(ϑ)

δ′(ϑ) +

(
γ2 +

k∑
i=1

γiyα
i
1,2

)
︸ ︷︷ ︸

−B′(ϑ)

= 0

and solve for δ as

δ′(ϑ) =
1

a(ϑ)
B′(ϑ), (24)

3There are 2n α coefficients for each decision rule and (n − 1) δ coefficients, which yield 2nk + n − 1
unknowns. With (n − 1) restrictions for each decision rule as derived in (21) and the (n − 1) restrictions
in (22), we get (k + 1)(n − 1) restrictions. Subtracting the number of restrictions from the number of
unknowns, we get k(n+ 1).
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where a(ϑ) is a scalar and b(ϑ) is a (n− 1)-dimensional vector. By combining (24) with (21)

we obtain an expression for the constrained decision rule coefficients αi2,2:

αi2,2
′
(ϑ) = (αi1,1 − αi2,1)

(
1

a(ϑ)
B(ϑ)

)
+ αi1,2

′
. (25)

The last step is to determine which part of the decision rule in (20) corresponds to the

part of the state space where the constraint is slack and which part where the constraint is

binding. Take h
(
x1, X2, y(x1, X2)

)
for some x1 and X2. Let us derive how its sign depends

on the sign of (x1 − δ(ϑ)′X2). First, assume x1 > δ′(ϑ)X2, then

h
[
x1, X2, y(x1, X2)

]
= γ1x1 + γ′2X2 +

k∑
i=1

γiy(α
i
1,1x1 + αi1,2

′
X2) (26)

=

(
γ1 +

k∑
i=1

γiyα
i
1,1

)
︸ ︷︷ ︸

c(ϑ)

x1 +

(
γ′2 +

k∑
i=1

γiyα
i
1,2

′
)

︸ ︷︷ ︸
D′(ϑ)

X2,

where c(ϑ) is a scalar and D(ϑ)′ is a (n − 1)-dimensional vector, which can be evaluated

given model parameters and free decision-rule coefficients. We can rewrite (22) as[
γ1 +

k∑
i=1

γiyα
i
1,1

]
δ′ +

[
γ′2 +

k∑
i=1

γiyα
i
1,2

′
]

= 0, (27)

or simply c(ϑ)δ′(ϑ) + D′(ϑ) = 0, which implies D′(ϑ) = −c(ϑ)δ′(ϑ). Using this on (26), we

get

h[x1, X2, y(x1, X2)] = c(ϑ)[x1 − δ′(ϑ)X2]. (28)

Since we assumed x1 > δ′(ϑ)X2 above in the derivations, we conclude that h(.) > 0 if and

only if c(ϑ) > 0. In other words, if c(ϑ) > 0, then the “1” regime in (20) corresponds to the

constraint being slack.

3.3 Example: New Keynesian Model

In this section we adapt the generic notation in the previous sections to the New Keynesian

model with the ZLB outlined in Section 2. We partition the state space as x1,t = R̂t−1
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and X2,t = [1, ŷt−1, ẑt, d̂t, ĝt, eR,t]
′, and we have n = 7.4 As for the choice of control vari-

ables to approximate, we have a few options. We approximate the decision rules π̂(x1, X2)

and ŷ(x1, X2) directly and let the remaining control variables ĉ and R̂ follow exactly from

the equilibrium conditions. Specifically, given x1, X2, ŷt = ŷ(x1, X2) and π̂t = π̂(x1, X2),

ĉ(x1, X2) follows from solving for ĉt in Ry(·) in (14) and R̂(x1, X2) follows from solving for

R̂t in RR(·) in (15). Thus, with a slight abuse of notation, we set y(·) =
[
ŷ(·), π̂(·)

]′
and

k = 2.

The constraint in this problem is the ZLB constraint which can be written in terms of

the variables defined so far as R̂t + log(r∗π∗) ≥ 0, which leads to the h(.) function

h
(
x1,t, X2,t, yt(·)

)
= (1− ρ)

[
ψ1π̂(·) + ψ2(ŷ(·)− ŷt−1 + ẑt)

]
+ ρR̂t−1 + eR,t + log(r∗π∗). (29)

Thus, the γ coefficients in (18) are

γ1 = ρ, γ′2 = [log(r∗π∗), −(1− ρ)ψ2, (1− ρ)ψ2, 0, 0] , γ′y = [(1− ρ)ψ1, (1− ρ)ψ2] ,

and we can write c(ϑ) in (26) as

c(ϑ) = ρ+ (1− ρ)ψ1α
π
1,1 + (1− ρ)ψ2α

y
1,1.

If απ1,1 and αy1,1 are both positive, then c(ϑ) is also positive because the remaining struc-

tural parameters are positive under standard parameterizations. Thus, we label the “1”

regime as the regime where the ZLB is slack, “n” (non-binding), and the “2” regime as the

“b” (binding) regime. The decision rules in the regime when the ZLB is slack are not iden-

tical but closely resemble the linear decision rules of the model linearized around the steady

state. These decision rules have the property that the coefficients on R̂t−1 in the π and y

decision rules are positive. In our implementation, we check that c(ϑ) is indeed positive

every time we solve the model.

4In principle, one of the other state variables could have been chosen as x1. However, we found it natural
to use the lagged interest rates, because all else being equal, higher lagged interest rates move the economy
away from the ZLB constraint.
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3.4 Canonical Form

The final step in preparing the model solution for filtering is to cast the solution in terms of

the following canonical form:

st =

{
Φ0(n) + Φ1(n)st−1 + Φη(n)ηt if η1,t < ζ(st−1)

Φ0(b) + Φ1(b)st−1 + Φη(b)ηt otherwise,
(30)

which is a vector autoregressive representation for a vector of model variables st. It will serve

as a transition equation in a state-space model. Thus, the vector st needs to include all vari-

ables (whether or not they are directly approximated) that are necessary for the construction

of the measurement equations and all variables necessary to determine the transition of such

variables, which are all the state variables. The canonical form resembles a regime-switching

VAR with a “binding” (b) and “non-binding” (n) regime. However, the regime transition is

not determined by an exogenous Markov process. Instead, it is determined by the realization

of the shock innovations. The vector ηt is a linear transformation of the structural shock

innovations of the DSGE model.

Because the definition of st is model and application specific, we outline the construction

of the canonical form in the context of the New Keynesian DSGE model with ZLB constraint.

Define the vectors st

st =
[
ŷt, π̂t, R̂t, ẑt, d̂t, ĝt, eR,t

]′
(31)

and recall that εt =
[
εz,t, εd,t, εg,t, εR,t

]′
. We will begin by expressing the law of motion of st

as a function of the innovations εt and then, later on, we transform the εt’s into η’s:

st = Φ0(·) + Φ1(·)st−1 + Φε(·)εt.

Rather than providing detailed algebraic expressions for the elements of the Φ(·) matrices,

we will provide an outline of how the expressions can be derived.

Output, inflation, and interest rates. We use the first three rows of the Φ(·) matrices

to represent the decision rules for ŷt and π̂t and the monetary policy rule that determines R̂t.

Note that the decision rules in (20) are expressed in terms of Xt = [R̂t−1, 1, ŷt−1, ẑt, d̂t, ĝt, eR,t]
′,

whereas the canonical form is written in terms of st—see (31). Thus, in order to generate

the equations for ŷt, π̂t, and R̂t for the canonical form, we have to express Xt as a linear

function of st−1 and εt.
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Exogenous shocks. The remaining four rows of the Φ(·) matrices reproduce the law of

motion of the exogenous shock processes in (16).

From εt’s to ηt’s and defining the threshold condition. To express the threshold

condition in the canonical form and transform the εt into ηt innovations, define

ζ(st−1) = log(r∗π∗) + φ0(n) + φ′1(n)st−1, η1,t = − 1

‖φε(n)‖
φ′ε(n)εt

such that the ZLB constraint is non-binding if and only if

η1,t < ζ(st−1)

as in (30). Let Null(x) be an orthogonal basis for the null space for the vector x. We define

the vector ηt as

ηt =

[
φ′ε(n)/‖φε(n)‖

Null
(
φε(n)/‖φε(n)‖

)′
]
εt.

The transformation has the property that, if E[εtε
′
t] = I, then E[ηtη

′
t] = I as well. The

definition of ηt as a function of εt allows us to convert the Φε(·) matrix into Φη(·) and

completes the derivation of the canonical form.

3.5 Measurement Equations

The key requirement for the conditionally optimal particle filter that is developed in Section 5

is that the conditional mean function (given st−1) of the observables is piecewise-linear.

This is guaranteed if the state-transition equation has the canonical form (30) and the

measurement equation is linear in st as in

yot = A0 + Asst + ut, ut ∼ N(0, ςΣu), (32)

where yot is the vector of observable variables, ut is a vector of measurement errors, and the

constant ς allows us to scale the measurement error covariance.

The small-scale New Keynesian DSGE model is typically estimated using output growth

yogr,t, inflation πot , and interest rates Ro
t . In addition, we will include a measure of the

consumption-output ratio. Starting from the definition of st given in (31), we define the

augmented vector s̃t = [s′t, ŷt−1]
′ and add the trivial equation ŷt−1 = ŷt−1 to the canonical
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form in (30). Because the ŷt−1 identity is linear, the structure of the canonical form is pre-

served. Assuming that output growth is measured in quarter-on-quarter percentages, and

inflation and interest rates are measured in annualized percentages, the system of measure-

ment equations is

yogr,t = 100 log(γ) + 100(ŷt − ŷt−1 + ẑt) + σu,yuy,t

πot = 400 log(π∗) + 400π̂t + σu,πuπ,t (33)

Ro
t = 400 log(R∗) + 400R̂t + σu,RuR,t.

We use data on government spending Gt to construct a measure of the consumption output

ratio: Ct/Yt = 1−Gt/Yt. We define cyot as linearly detrended 100 · log(1−Gt/Yt). Because

in our model 1−Gt/Yt = 1/gt, we obtain the additional measurement equation

cyot = −100 log g∗ − 100ĝt + σu,cuc,t. (34)

Thus, we are treating the exogenous process ĝt as observed in the estimation. Because the

law of motion of ĝt is linear, the PLC structure of the empirical model is maintained.

4 PLC Model Solution

In this section, we describe how the free coefficients ϑ in the PLC decision rules, as defined

in (23), are determined. In a generic global approximation, the decision rules are assumed to

be linear combinations of some known, flexible functions called basis functions, which are in

turn nonlinear functions of states. The decision rules are parameterized by some coefficients

that are the weights attached to each of the basis functions. There are two popular ways to

choose these coefficients. In the collocation approach, these coefficients are chosen such that

the residuals, the errors in equilibrium conditions, are set to exactly zero at some carefully

selected points in the state space. These points typically come from a grid that is constructed

using a tensor product of grids for each state variable, which in turn are constructed using

the roots of a set of complete polynomials.

It is well known that tensor product grids used to approximate the solution of nonlinear

models suffer from the curse of dimensionality. Maliar and Maliar (2014, 2015) propose a

series of techniques based on stochastic simulations to construct lower dimensional grids that

represent the ergodic distribution of the model. However, these simulation-based methods



This Version: April 6, 2020 19

require a time-consuming iterative procedure, and, in general, there does not seem to be a

guarantee for the convergence of the grid and the approximate solution.

For our application, where we need to solve the model with different parameters tens of

thousands of times, neither the collocation approach that uses tensor grids, nor the iterative

approach that uses the ergodic distribution seem feasible. Coleman et al. (2018) propose the

use of random and quasi-random grids on a fixed hypercube, because they are easier and

faster to construct but lack the dimensionality reduction. Smolyak grids (Krueger and Kubler

(2004), Malin et al. (2011), Judd et al. (2014)) offer a balance in this trade-off, combining

the advantages of a fixed and predetermined domain and the dimensionality reduction of

sparse grid methods. We follow this approach and build a sparse Smolyak grid and minimize

the sum of squared residuals over this grid to find the decision rule coefficients.5

Equilibrium Conditions. More formally, let us denote the generic equilibrium conditions

as

H [f0(·),X] = 0, ∀ X ∈ X , (35)

where f0(X) corresponds to the optimal decision rules. To simplify the notation, we dropped

the vector of DSGE model parameters θ from the conditioning set. For instance, for the

New Keynesian DSGE model (35) becomes

Et

 Rc

(
ŷ0(Xt), ĉ0(Xt), π̂0(Xt), R̂0(Xt), ŷ0(Xt+1), ĉ0(Xt), π̂0(Xt+1), R̂0(Xt+1), . . .

)
Rπ

(
ŷ0(Xt), ĉ0(Xt), π̂0(Xt), R̂0(Xt), ŷ0(Xt+1), ĉ0(Xt), π̂0(Xt+1), R̂0(Xt+1), . . .

)
 = 0,

where we explained how we construct the decision rules ŷ(.), ĉ(.), π̂(.), and R̂(.) in Section 3.3.

Expectations over Xt+1 can be evaluated by using the law of motion of the exogenous shocks

in (16) and noting that the first three elements of Xt+1, R̂t, 1, and ŷt, are known at time t.

Thus, the equilibrium conditions only depend on the two decision rules y0(.) and π0(.) and

the current states Xt, just like (35) requires.

We approximate f0(X) by PLC decision rules g(X;ϑ) ∈ G, where ϑ contains the free

coefficients that are necessary to characterize the PLC function and G is the set of all PLC

functions. To determine ϑ, we minimize the norm of the vector-valued functionH [g(X;ϑ),X]

5One interpretation of our approach is that we are using the sum squared residual over the Smolyak
grid as a proxy for integrating the squared residual function over the ergodic distribution. Monte Carlo
experiments in Heiss and Winschel (2008) in the context of the calculation of the likelihood function of a
mixed logit model, which also involves evaluating an integral without a closed-form expression, show that
using a Smolyak grid provides superior performance over simulation techniques.
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over a set of M grid points S obtained using a sparse Smolyak grid:

ϑ = arg min
ϑ

1

M

∑
X∈S

‖H [g(X;ϑ),X; θ] ‖2.

Solution Grid. In constructing the grid S, we follow Judd et al. (2014). The Smolyak grid

is a sparse grid defined on the interval [−1, 1]. To use it in an application, it has to be scaled

so that it represents the space of Xt. The scaling of the grid amounts to picking minimum

and maximum values for each state variable. The extrema correspond to −1 and 1 in the

original domain of the Smolyak grid, respectively. One of the properties of the Smolyak grid

is it places grid points at the edges of the domain – at −1 and 1. Thus, we recommend

picking values for the scaling that are not too extreme in order to have some mass on both

sides of the grid point.

In the context of the New Keynesian DSGE model, we proceed as follows. For the

exogenous state variables in Xt, we linearly scale the grid so that it starts from the 10th

percentile and goes to the 90th percentile of the distribution of each state variable. For the

endogenous state variable ŷt−1, we use the same scaling as the exogenous state ẑt, since we

have verified that they have similar dispersion when simulating the model. Finally, for R̂t−1,

we use the observed nominal interest rate data. Because we want to analyze the ZLB, the

grid is scaled so that its minimum value matches the ZLB with R̂t−1 = − log(r∗π∗), which

happens to be the 10th percentile. The maximum value is matched to the 90th percentile of

Rt in the data. For this variable in particular, we scale the grid so that the middle of the

Smolyak grid coincides with the steady state at R̂t−1 = 0.

Integration and Minimization. Expectations in the residual functions as in (11) are

computed using the monomial integration rule M2 as in Judd et al. (2010). For a generic ex-

pression Et[v(xt+1)], our implementation with four random variables requires computing v(.)

at 33 nodes and taking a weighted average. In our experience, this method produces results

that are very similar to using a Gauss-Hermite integration for each random variable. As an

example, with 5 nodes per random variable, the latter approach would make it necessary to

evaluate v(.) at 625 nodes and increase running time considerably.

To minimize the objective function, we utilize a gradient-based nonlinear solver with

Jacobians evaluated analytically. As an initial guess for the solver, we use the log-linear

approximation. Because the log-linear decision rules are a special case of the PLC decision

rules—recall that we defined the model variables in log-deviations from the steady state—we
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can denote them by g(0)(X). We find the free coefficients ϑ0 (with αi11 = αi21 and αi12 = αi22 for

all i = 1, ..., k) that generate the same decision rules and use this to initialize the minimization

algorithm.

Interpretation of PLC Decision Rules. We offer two interpretations of the PLC decision

rules. First, they can be viewed as an approximation to the optimal decision rules f0(X).

In fact, our motivation for constructing PLC rules was that the decision rules computed in

Aruoba et al. (2018) with Chebyshev polynomials for a New Keynesian DSGE model that is

essentially identical to the model in Section 2, appeared to be almost piecewise-linear. While

in any given model, the PLC decision rules may or may not provide accurate approximations

of the optimal decision rules, there is no sense in which the PLC rules become more accurate

“asymptotically.”

Second, the PLC rules can be viewed as describing the behavior of boundedly rational

agents. In principle, bounded rationality can take many forms. The basic notion is that

decision making is constrained by agents’ abilities to gather, retain, and process decision-

relevant information. Boundedly rational agents may also be unable to solve a complicated

mathematical problem. Under this interpretation, the PLC rules can be viewed as more

easily computable decisions that have the additional benefit of being linear, except when the

constraint in the model becomes binding.

5 Particle Filters for PLC Models

Econometric inference is based on the state-space representation that comprises the nonlinear

transition equation (30) and the linear measurement equation (32). In the following formulas,

we write yt instead of yot and represent the transition and measurement equations through

the densities p(st|st−1, θ) and p(yt|st, θ), respectively. We will subsequently use Yt1:t2 and

St1:t2 to denote the sequences yt1 , . . . , yt2 and st1 , . . . , st2 . Moreover, we use θ to denote the

vector of model parameters.

The state-space model provides a joint density for the states st and the observations yt:

p(Y1:T , S1:T |θ) =
T∏
t=1

p(yt|st, θ)p(st|st−1, θ). (36)
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Of particular interest are the sequence of estimates p(st|Y1:t) of the state vector and the

likelihood function, which is defined as

p(Y1:T |θ) =
T∏
t=1

p(yt|Y1:t−1, θ) =
T∏
t=1

∫ ∫
p(yt|st, θ)p(st|st−1, θ)p(st−1|Y1:t−1, θ)dstdst−1. (37)

These objects can be obtained from a nonlinear filter. We will use an algorithm that belongs

to the class of sequential Monte Carlo filters to approximate p(st|Y1:t, θ) and p(yt|Y1:t−1, θ),
also known as particle filters.

In Section 5.1, we present a generic particle filtering algorithm that can be configured in

many different ways by choosing a proposal density that mutates particles representing the

state st−1 into particles representing st. If the mutation is based on forward simulation of

the state-transition equation, one obtains the bootstrap particle filter (BSPF) described in

Section 5.2. Our key contribution is to derive the proposal density that is tailored toward

the piecewise-linear canonical form of the state-space model and leads to the conditionally

optimal particle filter discussed in Section 5.3.

5.1 Generic Particle Filter

There exists a large literature on particle filters. Surveys and tutorials can be found, for

instance, in Arulampalam et al. (2002), Cappé et al. (2007), Doucet and Johansen (2011), and

Creal (2012). Kantas et al. (2014) discuss using particle filters in the context of estimating the

parameters of state-space models. A particle filter represents the density p(st|Y1:t, θ) through

a swarm of particles {sjt ,W
j
t }Mj=1 with the property that posterior expectations E[h(st)|Y1:t, θ]

can be approximated by Monte Carlo averages of the form

1

M

M∑
j=1

h(sjt)W
j
t .

The approximation typically holds in the form of a Law of Large Numbers or a Central Limit

Theorem. Textbook treatments of the statistical theory underlying particle filters can be

found in Cappé et al. (2005), Liu (2001), and Del Moral (2013). By following the exposition

in Herbst and Schorfheide (2015), the particle filter can be implemented using the following

algorithm:
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Algorithm 1 (Generic Particle Filter)

1. Initialization. Draw the initial particles from the distribution sj0
iid∼ p(s0|θ) and set

W j
0 = 1, j = 1, . . . ,M .

2. Recursion. For t = 1, . . . , T :

(a) Forecasting st. Draw s̃jt from density gt(s̃t|sjt−1, θ) and define the importance

weights

ωjt =
p(s̃jt |s

j
t−1, θ)

gt(s̃
j
t |s

j
t−1, θ)

. (38)

(b) Forecasting yt. Define the incremental weights

w̃jt = p(yt|s̃jt , θ)ω
j
t . (39)

The predictive density p(yt|Y1:t−1, θ) can be approximated by

p̂(yt|Y1:t−1, θ) =
1

M

M∑
j=1

w̃jtW
j
t−1. (40)

(c) Define the normalized weights

W̃ j
t =

w̃jtW
j
t−1

1
M

∑M
j=1 w̃

j
tW

j
t−1

. (41)

(d) Selection. Resample the particles, for instance, via multinomial resampling. Let

{sjt}Mj=1 denote M iid draws from a multinomial distribution characterized by sup-

port points and weights {s̃jt , W̃
j
t } and set W j

t = 1 for j =, 1 . . . ,M . An approxi-

mation of E[h(st)|Y1:t, θ] is given by

h̄t,M =
1

M

M∑
j=1

h(sjt)W
j
t . (42)

3. Likelihood Approximation. The approximation of the log-likelihood function is

given by

ln p̂(Y1:T |θ) =
T∑
t=1

ln

(
1

M

M∑
j=1

w̃jtW
j
t−1

)
. (43)
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The most important choice in the configuration of the algorithm is the proposal density

gt(s̃t|sjt−1, θ). Different choices of the proposal density lead to different versions of the particle

filter.

5.2 Bootstrap Particle Filter

The BSPF was originally proposed by Gordon and Salmond (1993). It uses the state-

transition equation as the proposal density, that is, gt(s̃t|sjt−1, θ) = p(s̃t|sjt−1, θ). This choice

is attractive because it is straightforward to implement the forecasting step by forward

simulation of the transition equation and the importance weights simplify to ωjt = 1. A

well-known disadvantage is that the proposal distribution is blind and hence ignores infor-

mation about st contained in the current observation yt. This can lead to a large variance

of the incremental weights ω̃jt . This problem is exacerbated if the measurement error vari-

ance is small and p(yt|s̃jt) has thin tails or if the model is inappropriately parameterized or

misspecified and therefore has difficulties predicting yt one step ahead. Because the BSPF

has been used in the DSGE model literature (see Fernández-Villaverde and Rubio-Ramı́rez

(2007), An and Schorfheide (2007) and Herbst and Schorfheide (2015)), we will include it as

a benchmark.

5.3 Conditionally Optimal Particle Filter

The proposal density for the COPF utilizes information in yt with the goal of minimizing

the variance of the incremental weights ω̃jt . It is given by

g∗t (s̃t|s
j
t−1, θ) = p(s̃t|yt, sjt−1, θ) ∝ p(yt|s̃t, θ)p(s̃t|sjt−1, θ). (44)

Combining the formula for g∗t (s̃t|s
j
t−1, θ) with the expressions for the importance weights ωjt

in (38) and the incremental weights ω̃jt in (39), we obtain

ω̃jt =
p(yt|s̃jt , θ)p(s̃

j
t |s

j
t−1, θ)

p(s̃jt |yt, s
j
t−1, θ)

= p(yt|sjt−1). (45)

The second equality follows from Bayes Theorem. It can be shown that conditional on

{sjt−1} the proposal density g∗t (s̃t|s
j
t−1, θ) minimizes the variance of the incremental weight

w̃jt in (39).
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While direct sampling from the conditionally optimal proposal density is elusive for

most nonlinear state-space models, we can derive a convenient formula for the piecewise-

linear state-transition equation (30). Note that, conditional on st−1, the current state st is

determined by ηt. It turns out, that it is more convenient to derive a conditionally optimal

proposal density for ηt, denoted by g∗t (ηt|s
j
t−1, θ).

In order to state the result, we have to define the following objects:

νjt (·) = yt − A0 − As
(
Φ0(·)− Φ1(·)sjt−1

)
(46)

η̄jt (·) =
(
ςI + Φ′η(·)A′sΣ−1u AsΦη(·)

)−1
Φ′η(·)A′sΣ−1u νjt (·)

Ω̄(·) = ς
(
ςI + Φ′η(·)A′sΣ−1u AsΦη(·)

)−1
.

We use the argument (·) to indicate that the expressions are obtained either based on(
Φ0(n),Φ1(n),Φη(n)

)
or
(
Φ0(b),Φ1(b),Φη(b)

)
. Here νjt (·) is the error made in forecasting

yt based on sjt−1. η̄jt (·), and Ω̄(·) are the posterior mean vector and covariance matrix of

ηt|(yt, sjt−1) absent any truncation—that is, for ζ(sjt−1) being +∞ or −∞. Moreover, let

Dj
t (n) = (2π)−ny/2|Σu|−1/2|ςI + Φη(n)′A′sΣ

−1
u AsΦη(n)|1/2 (47)

× exp

{
−1

2
νjt (n)′(ςΣu + AsΦη(n)Φ′η(n)A′s)

−1νjt (n)

}
×ΦN

(
(ζ(st−1)− η̄j1,t(n)/

√
Ω̄11(n)

)
,

Dj
t (b) = (2π)−ny/2|Σu|−1/2|ςI + Φη(b)

′A′sΣ
−1
u AsΦη(b)|1/2

× exp

{
−1

2
νjt (b)

′(ςΣu + AsΦη(b)Φ
′
η(b)A

′
s)
−1νjt (b)

}
(

1− ΦN

(
(ζ(st−1)− η̄j1,t(b))/

√
Ω̄11(b)

))
.

It can be shown that p(yt|sjt−1) = Dj
t (n) +Dj

t (b).

The characterization of the conditionally optimal proposal density is summarized in

Proposition 1. A proof of the proposition is provided in the Online Appendix.

Proposition 1 Suppose the state-transition equation is given by (30), ηt ∼ N(0, I), η1,t is a

scalar, and the measurement equation is given by (32). Draws from the conditionally optimal

proposal densities g∗t (s̃t|s
j
t−1, θ), j = 1, . . . ,M , defined in (44) can be generated as follows:
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1. Let

ξjt =

{
‘n’ with prob. λjt

‘b’ with prob. 1− λjt
, where λjt =

Dj
t (n)

Dj
t (n) +Dj

t (b)
.

2. If ξjt = ‘n’ then generate ηt from the distribution

ηj1,t ∼ N
(
η̄j1,t(n), Ω̄11(n)

)
I{ηj1,t ≤ ζ(sjt−1)}, ηj2,t|η

j
1,t ∼ N(η̄j2|1(n, η

j
1,t), Ω̄2|1(n)) (48)

and let

s̃jt = Φ0(n) + Φ1(n)sjt−1 + ηjt .

If ξjt = ‘b’ then generate ηjt from the distribution

ηj1,t ∼ N
(
η̄j1(b), Ω̄11(b)

)
I{ηj1,t > ζ(sjt−1)}, ηj2,t|η

j
1,t ∼ N

(
η̄j2|1(b, η

j
1,t), Ω̄2|1(b)

)
(49)

and

s̃jt = Φ0(b) + Φ1(b)s
j
t−1 + ηjt .

3. The incremental particle weight is ω̃jt = D(n) +D(b). �

Vanishing Measurement Errors. It is instructive to examine what happens as ς −→∞.

For the conditional density of yt|st−1 to be nonsingular in the limit, it has to be the case

that the number of rotated structural innovations is at least ny. Formally, the covariance

matrices AsΦη(·)Φ′η(·)A′s have to be non-singular. For expositional purposes, we consider the

case in which ny = nη and (AsΦη(·)) are invertible ny × ny matrices. This means, ignoring

the truncation, under the invertibility assumption, we can solve for the innovations ηt as a

function of (yt, s
j
t−1):

ηjt∗(·) = (AsΦη(·))−1(yt − As(Φ0(·) + Φ1(·)st−1)).

Now consider what happens if we let the measurement error variance converge to zero.

First, the expressions in (46) remain well defined in the limit:

η̄jt −→ ηjt∗(·), Ω̄(·) −→ 0.

The posterior variance converges to zero and the posterior mean converges to the innovation

ηjt∗(·) that generates the observed yt conditional on sjt−1. For the limit behavior on Dj
t (n),
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the crucial term is

lim
ς−→0

ΦN

(
(ζ(sjt−1)− η̄

j
1,t(n))/

√
Ω̄11(n)

)
=

{
1 if ζ(sjt−1)− η̄

j
1,t(n) ≥ 0

0 otherwise
.

This term measures whether it is possible to explain yt using the (n) coefficients, accounting

for the fact that the n regime is only active if η̄j1,t(n) ≤ ζ(sjt−1). A similar analysis can

be conducted for the term Dj
t (b). Thus, for each particle j, there are four possible cases

(ignoring equalities):

Case 1 : η̄j1,t(n) < ζ(sjt−1), η̄j1,t(b) < ζ(sjt−1)

Case 2 : η̄j1,t(n) ≥ ζ(sjt−1), η̄j1,t(b) ≥ ζ(sjt−1)

Case 3 : η̄j1,t(n) < ζ(sjt−1), η̄j1,t(b) ≥ ζ(sjt−1)

Case 4 : η̄j1,t(n) ≥ ζ(sjt−1), η̄j1,t(b) < ζ(sjt−1).

In Case 1 Dj
t (b) = 0 and λjt = 1. Here, only the (n) decision rules can rationalize the

data conditional on sjt−1. Case 2 is the opposite: Dj
t (n) = 0, λjt = 0, and only the (b)

decision rules can rationalize the data. Under Case (3), both Dj
t (n) and Dj

t (b) are strictly

positive, 0 < λjt < 1, and both decision rules could explain the data. Finally, in Case 4

yt is inconsistent with sjt−1, and none of the decision rules can explain the data. If each

j = 1, . . . ,M falls into Case 4, then the particle-filter based likelihood approximation for this

particular parameterization of the DSGE model will be zero. Note that, if the measurement

error variance is strictly greater than zero, (potentially very large) measurement errors could

also rationalize the data under Case 4.

The previous calculations highlight that, unlike for the BSPF, the weights of the COPF

do not degenerate if one decreases the measurement error variance. In this case, if AsΦη(·) is

a square matrix, the COPF specializes to the inversion filter that solves for the innovations

as a function of yt and sjt−1. Because our model is piecewise-linear, this inversion may have

one, two, or no solution(s).

Perfectly Observed Regimes. Our ZLB application has the special feature that the

observation yt identifies the regime. Let yt = [y′1,t, y2,t]
′, where y2,t corresponds to the nominal

interest rate. Suppose the ZLB is binding in the b regime and non-binding in the n regime.

Then, the ex post regime probability λj is independent of sjt−1 and given by the indicator

function.

λj = I{y2,t > c}. (50)
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While the distribution of yt is continuous in the n regime, for the binding regime the con-

tinuous part of the distribution concentrates in the lower-dimensional subspace defined by

y2,t = c. Thus, the formulas for Dj
t (b) in (47) and the moments of the distribution of ηjt in

Proposition 1 in the b regime have to be adjusted to account for the reduced dimensionality

of the continuous part of the yt distribution. Further details are provided in the Online

Appendix.

6 Numerical Illustrations

We now illustrate the proposed filtering method based on data simulated from the DSGE

model of Section 2. In Section 6.1, we compare the accuracy of log-likelihood approximations

obtained with the proposed COPF and a naive bootstrap particle filter (BSPF). In Section 6.2

we embed the particle-filter approximations of the DSGE model likelihood function into an

otherwise standard random walk Metropolis-Hastings (RWMH) algorithm and assess the

improvements attainable with the COPF.

6.1 Accuracy of Likelihood Approximation

We simulate a sample of 1, 000 observations from the DSGE model loosely parameterized

based on the empirical estimates reported in Section 7 and select a subsample of T = 140

observations, which is the sample size in the empirical application in Section 7. In order to

increase the likelihood of hitting the ZLB in the simulation, we lower the target inflation

rate π∗ to an annualized rate of 0.5%. In the selected subsample, the ZLB binds 22% of

the periods, which is roughly consistent with our actual sample. The parameter values are

summarized in the second column of Table 1.

We begin by comparing the accuracy of the particle-filter-based likelihood approximation

using the same parameter values that were used to generate the data. For the COPF, we set

M = 250, and, for the BSPF, we consider M = 1, 000 and M = 10, 000. The average run

times for a likelihood evaluation on a single core are 2.6, 1.8, and 18.3 seconds, respectively.

While the data are generated without measurement errors, the likelihood evaluation imposes

non-zero measurement errors to facilitate the application of the BSPF. The measurement

error captures the discrepancy between model and data. The smaller the measurement errors

are, the larger the penalty for deviations between model-predicted and actual observations.
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Table 1: DGP and Prior

Parameter DGP Prior Distribution
Density P(1) P(2) HPD Low HPD High

τ 2.00 G 2.00 0.20 1.67 2.32
κ 0.13 B 0.10 0.05 0.02 0.17
ψ1 2.60 fixed at 2.60
ψ2 0.98 fixed at 0.98
ρR 0.80 B 0.80 0.10 0.65 0.96
ρg 0.97 B 0.80 0.10 0.65 0.96
ρd 0.91 B 0.80 0.10 0.65 0.96
ρz 0.37 B 0.40 0.20 0.08 0.73
σR 0.0019

√
IG 0.005 4.00 0.003 0.010

σg 0.0025
√
IG 0.005 4.00 0.003 0.010

σd 0.017
√
IG 0.01 4.00 0.005 0.020

σz 0.0058
√
IG 0.01 4.00 0.005 0.020

η 0.72 fixed at 0.72
ν 0.10 fixed at 0.10
χH 1.00 fixed at 1.00
g∗ 1.27 G 1.20 0.20 0.88 1.63
rAnet 0.22 G 1.00 0.40 0.39 1.64
gamQnet 0.33 N 0.50 0.25 0.09 0.91
piAnet 0.50 N 2.50 1.00 0.87 4.14

Notes: G is Gamma distribution; B is Beta distribution; IG is Inverse Gamma distribution; and N
is Normal distribution. P(1) and P(2) are mean and standard deviations for Beta, Gamma, and Nor-
mal distributions. The IG distribution is parameterized as scaled inverse χ2 distribution with density
p(σ2|s2, ν) ∝ (σ2)−ν/2−1 exp[−νs2/(2σ2)], where P(1) is

√
s2 and P(2) is ν. The density of σ is obtained

by the change of variables σ =
√
σ2. HPD(Low,High) refers to the boundaries of 90% highest prior density

intervals. We use the following parameter transformations: β = exp{−rANet/400}, γ = exp{gamQnet/100},
and π∗ = exp{piAnet/400}.

Thus, small measurement errors can be provided as a stress test for the filter in case the

model (or its parameterization) is at odds with the data.

The likelihood evaluation is conditional on a vector of initial states which we take to be

the “true” initial states associated with the simulated observations. When we subsequently

estimate the model, we treat the initial states as unknown parameters included in the vector

θ. The prior distribution for the initial states captures the uncertainty about the level of the

states in period t = 0.

As discussed in detailed in Section 5, particle filters are stochastic algorithms. We run

the COPF and the BSPF Nrun = 100 times, respectively. Holding the parameter value θ

constant each time we run the filter, we obtain a slightly different log-likelihood approxi-
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Figure 1: Density of Log-Likelihood Approximations
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Notes: Density plots are based on Nrun = 100 runs of the BSPF (M = 1, 000 is red solid and M = 10, 000
is red dashed) and COPF (M = 250, blue solid), respectively.

mation log p̂(Y |θ). From repeated runs of the filter, we construct kernel estimates of the

likelihood, which are depicted in Figure 1. We consider two values for the scaling parameter

for the measurement errors, ς: 0.2 and 0.1.

Because the BSPF ignores the information in yt when generating the proposal draws

s̃jt , the variance of the particle weights increases as ς falls. This, in turn, translates into

an increase in the variance of the log-likelihood approximation, which is clearly visible by

comparing the solid red densities across panels for the two different values of ς. The precision

of the COPF, on the other hand, increases as ς falls. When ς −→ 0, it is possible to

uniquely determine the innovations ηjt conditional on sjt−1 during non-ZLB periods, because

the number of observables equals the number of shocks. In order to achieve similar accuracy

to the COPF, the number of particles for the BSPF has to be increased to M = 10, 000,

which implies that the BSPF likelihood evaluation takes roughly seven times as long as the

COPF likelihood evaluation.

Figure 2 depicts standard deviations of log-likelihood approximations as a function of

the mean log-likelihood value across Nrun = 100 runs of the filter for ς = 0.1 and ς = 0.05.

Each dot (or asterisk) in the two scatter plots corresponds to a parameter value θi generated

from the particle Markov chain Monte Carlo (PMCMC) algorithm in Section 6.2. Two

important findings emerge. First, as we have seen already from Figure 1, the COPF likelihood

approximation is less dispersed than the BSPF approximation. The accuracy gain from the
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Figure 2: Comparison of Log-Likelihood Approximations
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Notes: Standard deviations of log-likelihood approximations are based on Nrun = 100 runs of the two filters.
Each dot (or asterisk) corresponds to a particular θi. We are using M = 1, 000 particles for the BSPF (red
asterisks) and M = 250 particles for the COPF (blue dots).

conditionally optimal proposal density increases as the measurement error variance decreases,

because the BSPF performance deteriorates. Second, while the accuracy of the COPF is

independent of the log-likelihood value associated with the posterior draw θi, the accuracy

of the BSPF approximation deteriorates the further the θi draw is in the tails of the posterior

distribution.

6.2 Particle MCMC

We now embed the particle filter likelihood approximations in a standard single-block RWMH

algorithm. A textbook treatment of this algorithm can be found in Herbst and Schorfheide

(2015). The particle RWMH algorithm operates on an enlarged probability space that in-

cludes all the random variables that are generated when running the particle filter. Write

the particle filter approximation of the likelihood function as

p̂(Y |θ) = g(Y |θ, U),

where U represents the random variables associated with the particle filter implementation.

The sampler operates on an enlarged probability space that includes U and generates draws
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from the joint posterior distribution

p(θ, U |Y ) ∝ g(Y |θ, U)p(θ)p(U).

Because particle filter approximations of likelihood functions are unbiased, we deduce that

the marginal posterior of θ is identical to the posterior that obtains if the exact likelihood is

available:

p(θ|Y ) =

∫
p(θ, U |Y )dU ∝

∫
g(Y |θ, U)p(θ)p(U)dU = p(Y |θ)p(θ).

A formal analysis of PMCMC algorithms is provided in Andrieu et al. (2010). Unfortunately,

there is no free lunch. The use of an enlarged probability space leads to an increase in the

persistence of the Markov chain generated by the posterior sampler. This in turn, leads to

less precise Monte Carlo approximations of posterior moments. In a nutshell, the higher the

variance of the likelihood approximation, the larger the persistence of the resulting Markov

chain. If the variance is too high, sampling from the posterior distribution will fail. The use

of an accurate particle filter such as the COPF can alleviate this problem.

The RWMH algorithm requires a covariance matrix for the proposal distribution (we

use a multivariate normal distribution) that is constructed as follows. We start from a log-

linearized version of the DSGE model that ignores the ZLB constraint. For this version, the

likelihood function can be evaluated with the Kalman filter (KF). We conduct a prelimi-

nary MCMC run based on a diagonal covariance matrix with scaled prior variances on the

diagonal. Based on the output of the preliminary run, we compute the posterior variance

covariance matrix for the linearized model that ignores the ZLB constraint, denoted by ˆ̄Vθ.

A version of this matrix that is scaled by c is used for all subsequent calculations.

We set the scale of the measurement error variance to ς = 0.1. Thus, according to the left

panel of Figure 2, the standard deviation of the log-likelihood approximation of the COPF

is around 1 whereas the standard deviation for the COPF ranges from 3 to 5. We keep

the number of particles for the BSPF at M = 1, 000 and reduce the number of particles to

M = 150 for the COPF to lower the runtime. The scale factor for the proposal covariance

matrix of the RWMH algorithm is set to c = 0.1. This leads to an overall run time of 7.7

hours for the COPF-RWMH algorithm on a single core with an acceptance rate of 30%.6

6Herbst and Schorfheide (2015) documented that for the estimation of small-scale linearized DSGE
models, an acceptance rate between 15% and 30% is associated with the most accurate Monte Carlo approx-
imations of posterior means.
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Figure 3: Posterior Draws: Density and Autocorrelation
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Notes: BSPF configuration: number of particles M = 1, 000, ME scale ς = 0.1, proposal covariance scale
c = 0.1, run time is 10:10:27 (hh:mm:ss). COPF configuration: number of particles M = 150, ME scale
ς = 0.1, proposal covariance scale c = 0.1, run time is 7:39:20 (hh:mm:ss). Top row: kernel density estimates
of posterior distributions based on MCMC output. Vertical lines indicate true parameter values. Center
row: autocorrelation functions of posterior draws based on COPF and BSPF. Bottom row: scatter plots of
autocorrelations BSPF vs. COPF for various lags. Solid line is 45 degree line.

Replacing the COPF with the commonly used BSPF increases the run time of the RWMH

algorithm to 10.2 hours and lowers the acceptance rate to 4%, drastically increasing the
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persistence of the Markov chain. Under some regularity conditions, the sequence of posterior

draws generated from a RWMH algorithm satisfies a Central Limit Theorem (CLT) for

dependent processes. The numerical accuracy of the Monte Carlo approximation of posterior

means depends on the long-run covariance matrix of the sequence of parameter draws θi,

i = 1, . . . , N . The larger the autocorrelation of these draws, the less precise the Monte Carlo

approximation.

The first row of Figure 3 compares posterior densities constructed from the output of

the COPF- and BSPF-RWHM algorithms for two representative parameters: τ and σd. The

posterior densities look very similar and both peak near the “true” parameter values depicted

by the solid vertical lines. The second row shows the autocorrelation functions for the τ i

and σid sequences. Here, stark differences emerge. While under the BSPF-based sampler,

the autocorrelation at lag 100 is still around 0.9; it is approximately 0.2 for draws from the

COPF-RWMH.

The last row of the figure compares autocorrelations for lags 10, 20, 30, and 40 for

all estimated parameters. The solid lines are 45-degree lines. The two panels show that

the COPF is able to reduce the autocorrelation for all estimated parameters, and hence

it drastically improves the performance of the MCMC algorithm. Because the COPF can

deliver accurate likelihood approximations with a relatively small number of particles, M =

150 in our numerical illustration, it is possible to accurately estimate a DSGE model with

occasionally binding constraint without supercomputing capabilities in a relatively short

amount of time.

7 Empirical Application

We now estimate the small-scale New Keynesian DSGE model based on quarterly U.S. data

and conduct a fiscal policy experiment. The estimation results are summarized in Section 7.1,

and the fiscal policy analysis appears in Section 7.2.

7.1 Estimation

The DSGE model is estimated based on data on GDP growth (q-o-q %), the log consumption-

GDP ratio (scaled by 100), GDP deflator inflation (annualized %), and nominal interest rates
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(annualized %) with data from 1984:Q1 to 2018:Q4. The data for the estimation was ex-

tracted from the FRB St. Louis FRED database (vintage 2019-10-30). Output growth is

defined as real gross domestic product (GDPC1) growth converted into per capita terms.

Our measure of population is Civilian Noninstitutional Population (CNP16OV). We com-

pute population growth rates as log differences and apply an eight-quarter backward-looking

moving average filter to the growth rates to smooth out abrupt changes in the population

growth series. In constructing a measure of the consumption-GDP ratio, we define con-

sumption as the difference between output and government spending. Thus, our measure of

consumption includes investment and net exports. Government spending is constructed as

real government consumption expenditures and gross investment (GCEC1). We remove a

linear trend from the log consumption-GDP ratio to correct for different time trends in the

price deflators of the GDP components. Inflation is defined as the log difference in the GDP

deflator (GDPDEF), and the interest rate is the average effective federal funds rate (FED-

FUNDS) within each quarter. During the period 2009:Q1 to 2015:Q4, when the effective

federal funds rate was between 0 and 25 basis points, we set the interest rate exactly equal

to zero and regard the ZLB as binding.

The prior distribution used for the estimation is identical to the one in Table 1. We

absorb the initial values of the latent state variables into the parameter vector and specify

prior distributions over the initial states; see Table A-1 in the Online Appendix.7 We fix a

number of parameters prior to estimation. Because our sample does not include observations

on labor market variables, we fix the Frisch labor supply elasticity. Based on Ŕıos-Rull et al.

(2012), who provide a detailed discussion of parameter values that are appropriate for DSGE

models of U.S. data, we set η = 0.72. The parameter ν, which captures the elasticity of

substitution between intermediate goods, is not separately identifiable from the slope of the

Phillips curve κ which in turn determines the adjustment cost parameter φ. We set ν = 0.1,

which generates a markup of 10%. We fix the preference parameter at χH = 1. It determines

steady-state hours worked and is neither relevant for the model dynamics nor identifiable

based on our observables. We also fix the monetary policy coefficients ψ1 and ψ2 at 2.60 and

0.98, respectively, which are values estimated in Aruoba and Schorfheide (2016).

We start out by estimating the log-linearized version of the DSGE model that ignores the

ZLB constraint, setting the measurement error variances of the state-space model to zero.

Draws from the posterior are generated by a single-block RWMH algorithm. In an initial

7This approach has the advantage that uncertainty about the initial state does not add to the variability
of the particle-filter-based likelihood approximation conditional on a parameter θi.
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Table 2: Posterior Distribution (PLC / COPF)

Parameter Mean MAP HPD Low HPD High
τ 2.08 2.20 1.75 2.39
κ 0.12 0.17 0.08 0.17
ρR 0.82 0.82 0.79 0.85
ρg 0.982 0.987 0.967 0.997
ρd 0.95 0.97 0.93 0.97
ρz 0.32 0.30 0.18 0.47
σR 0.0018 0.0019 0.0016 0.0021
σg 0.0026 0.0024 0.0023 0.0028
σd 0.0270 0.0361 0.0170 0.0370
σz 0.0060 0.0063 0.0052 0.0068
g∗ 1.27 1.28 1.25 1.29
rAnet 0.64 0.83 0.27 1.04
gamQnet 0.36 0.32 0.23 0.48
piAnet 2.94 3.34 2.48 3.36

Notes: The estimation period is 1984:Q1 to 2018:Q4. The following parameters are fixed during the es-
timation: ψ1 = 2.6, ψ2 = 0.98, η = 0.72, ν = 0.10, and χH = 1.00. We use the following parameter
transformations: β = exp{−rANet/400}, γ = exp{gamQnet/100}, and π∗ = exp{piAnet/400}. MAP refers
to the maximum posterior probability estimate. HPD(Low,High) refers to the boundaries of 90% highest
posterior density intervals. COPF configuration: number of particles M = 150, ME scale ς = 0.001, proposal
covariance scale c = 0.2, N = 55, 000 draws (drop first 10%), acceptance rate is 25%, run time is 13:27:23
(hh:mm:ss).

run, we use a diagonal matrix with the prior variances to configure the covariance matrix of

the proposal distribution. In the main run, we use the estimated posterior covariance matrix
ˆ̄V from the initial run to construct a proposal covariance matrix Σ with the scaling factor

c = 0.2. We generate N = 110, 000 draws, discarding the first 10,000.

To estimate the DSGE model with PLC decision rules, we generate N = 55, 000 draws

from the posterior distribution of θ using the particle RWMH algorithm, discarding the

first 5,000 draws. We use a scaling of c = 0.2 for the covariance matrix of the proposal

distribution. The scale factor for the measurement error variances is set to ς = 0.001. The

likelihood function is approximated using the COPF with M = 150 particles. We assume

that, conditional on observing the nominal interest rate, it is known whether the ZLB is

binding; see (50). The resulting acceptance rate of the particle RWMH algorithm is 25%,

and the run time is 13.5 hours on a single core, which comes to about 0.9 seconds per draw.

The parameter estimates are summarized in Table 2. The table reports lower and upper
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endpoints of highest posterior density (HPD) sets as well as posterior means.8 The parameter

estimates are similar to the ones reported elsewhere in the literature for variants of the

small-scale New Keynesian DSGE model. The estimated slope of the Phillips curve is κ̂ =

0.12. The government spending shock is close to a unit-root process (ρ̂g = 0.982), and

the estimated autoregressive parameter of the discount factor shock is ρ̂d = 0.95. Thus,

innovations to these processes will have a long-lasting effect. One of the outputs of the

estimation is the set of filtered values for the exogenous variables. We use these explicitly in

our policy experiment and discuss them in the next section.

7.2 Fiscal Policy Analysis

The recent literature has emphasized that the effects of expansionary fiscal policies on output

may be larger if the economy is at or near the ZLB. In the absence of the ZLB, a typical

interest rate feedback rule implies that the central bank raises nominal interest rates in

response to rising inflation and output caused by an increase in government spending. This

monetary contraction raises the real interest rate, reduces private consumption, and overall

dampens the stimulating effect of the fiscal expansion. If, however, the economy remains

at the ZLB despite the expansionary fiscal policy, then the increase in inflation that results

from the fiscal expansion reduces the real rate. In turn, current-period demand is stimulated,

amplifying the positive effect on output. We will use our model to provide a quantitative

assessment of this effect.

ARRA Government Spending. Because our model solution is nonlinear, the effect of a

fiscal intervention depends on the initial condition and the size of the intervention. We use

the Great Recession and the subsequent period in the U.S. as our laboratory and consider

a fiscal intervention that is calibrated to a portion of the ARRA of February 2009 as we

explain below. Our analysis is conducted from an ex post perspective, where we extract the

historical shocks that make our model match the realized U.S. data, which include both a

fiscal and monetary intervention, and ask what would have happened if one or both of the

policy interventions were not implemented.

8We compare these estimates with those obtained from a linearized model using the Kalman Filter and
data that exclude the ZLB episode. The most noteworthy differences are in ρd and σd, both of which need
to be larger when the ZLB episode is used in order to deliver large (negative) and persistent shocks that
take the economy to the ZLB. We also find that rAnet and gamQnet estimates are somewhat smaller in the
full sample, both of which are consistent with related results in the literature.
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Figure 4: Ex Post Policy Analysis

07Q4 08Q4 09Q4 10Q4
-2

-1

0

1

2
Intervention
No Intervention

07Q4 08Q4 09Q4 10Q4
-2

0

2

4
Intervention
No Intervention

07Q4 08Q4 09Q4 10Q4
-1

0

1

2

07Q4 08Q4 09Q4 10Q4

-4

-2

0

2

07Q4 08Q4 09Q4 10Q4
-3

-2

-1

0

07Q4 08Q4 09Q4 10Q4
-6

-4

-2

0

07Q4 08Q4 09Q4 10Q4
-1

0

1

2

3

4

07Q4 08Q4 09Q4 10Q4

0

1

2

3

4

5

Notes: The vertical red line corresponds to 2009:Q2, which is the date of the ARRA intervention. Intervention
(black) versus no-intervention paths (blue). Along the no-intervention path, we set monetary policy shocks
to zero and lower the innovation to the government spending shock in 2009:Q2 by the size of the ARRA
intervention. Red dashed lines represent paths in the absence of exogenous shock innovations from 2009:Q2
onwards. The level processes in the second row of the figure are standardized by the unconditional standard
deviations of the corresponding AR(1) processes. Inflation and the interest rate are expressed in terms of
annualized percentage rates.

ARRA of February 2009 consisted of a combination of tax cuts and benefits; entitlement

programs; and funding for federal contracts, grants, and loans. We focus on the third

component, because it can be interpreted as an increase in gt. We model the ARRA spending

as a one-period positive shock of δARRA to the demand shock process, where we calibrated

δARRA = 0.0077 using data on the disbursement of ARRA funds, as we explain in the Online

Appendix. This one-time shock is roughly 3.2σg, and, since ĝt is highly serially correlated,

the effect of the shock will slowly decay over time. We assume that the ARRA innovation

to government spending took place in the second quarter of 2009.

Ex Post Policy Analysis. We use the COPF to obtain estimates of the exogenous shock
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processes for the period 2009:Q2 through 2011:Q1. The subsequent results are based on

the maximum posterior probability (MAP) estimator of the DSGE model parameters. The

panels in the first two rows of Figure 4 show the filtered monetary policy and government

spending innovations and the levels of the government spending, technology growth, and

discount factor shock processes. Recall that, in the model εR,t and εg,t are N(0, 1) ran-

dom variables. The level processes in the second row of the figure are standardized by the

unconditional standard deviations of the corresponding AR(1) processes. For the govern-

ment spending and the monetary policy shocks, we distinguish between intervention and

no-intervention paths.

According to the estimated model, the drop in output during the Great Recession is gen-

erated by drastic falls in the technology growth and discount factor shock processes. Because

of the stylized structure of the DSGE model, these two shocks also absorb the contribution

of financial shocks and financial accelerator effects. While the technology shock is not very

persistent (ρ̂z = 0.32) and reverts back to zero by the end of 2009, the mean reversion of the

discount factor shock is very slow, and it remained below 2 standard deviations until the end

of 2010. Meanwhile the government spending process is positive, indicating that fiscal policy

started to become expansionary (relative to the historical average) in 2008. The filtered mon-

etary policy innovations ε̂R,t|t turn out to be negative past 2009:Q2, which captures an effort

by the Federal Reserve to keep the policy rate lower than what the policy rule implies. This

is how our model that abstracts from explicitly modeling unconventional monetary policies

implemented in this period (quantitative easing, forward guidance) handles the existence of

these policies in the data.

Because the actual path of the government spending shock already contains the effect

of fiscal expansion due to ARRA, we compute the counterfactual path by subtracting the

effect of ARRA from the filtered demand shock ĝt|t using

ĝCt|t = ĝt|t − ρt−T∗g δARRA for t = T∗, T∗ + 1, ..., T∗ + 7, (51)

where T∗ corresponds to 2009:Q2, the period the ARRA intervention is implemented in. The

magnitude of the ARRA intervention is reflected in the difference between the intervention

(black) and no-intervention (blue) government spending innovation depicted in the top left

panel of Figure 4. The ARRA intervention shifts ĝt persistently downward as shown in the

center left panel of the figure. To measure the effect of the combined fiscal and monetary

policy, we set the counterfactual monetary policy shocks to zero.
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Table 3: Ex Post Multipliers

Intervention 1Q 4Q 8Q
Fiscal Only 0.79 0.76 0.73
Fiscal + Monetary 0.76 0.81 0.86

Notes: Ex post analysis is conditional on filtered 2009:Q2 - 2011:Q1 shocks. The pure fiscal multipliers are
obtained by setting the monetary policy shocks to zero, whereas the combined fiscal and monetary multipliers
are based on leaving the monetary policy shocks at their filtered values.

The main finding is depicted in the bottom panels. The ex post effect of the intervention

is defined as Xo −XC , where Xo is the observed value of a generic variable and XC is the

counterfactual path along which the policy intervention is removed.9 In the figure, the ex

post effect is given by the gap between the no intervention and the intervention path. In

the absence of the ARRA and monetary interventions, output and inflation would have been

persistently lower than they actually were. In particular, annualized inflation would have

been 40 basis points lower, and annualized output growth would have been 28 basis points

lower, on average, over these eight quarters.

Based on the output and government spending paths, we can also compute cumulative

dollar-for-dollar multipliers

µH =

∑H
τ=1(Y

o
T∗−1+τ − Y

C
T∗−1+τ )∑H

τ=1(G
0
T∗−1+τ −G

C
T∗−1+τ )

where H = 1, ..., 8,

which are reported in Table 3. The pure fiscal multipliers are obtained by setting the

monetary policy shocks to zero, whereas the combined fiscal and monetary multipliers are

based on leaving the monetary policy shocks at their filtered values. The ex post multipliers

are around 0.8 according to our estimated model. We started out this section providing an

explanation for why fiscal multipliers tend to be higher when the economy is at the ZLB. If

we compute fiscal multipliers conditional on the economy being in a state in which the central

bank would respond to rising output and inflation with an increase in interest rate, then the

fiscal multipliers would be around 0.65, which is indeed lower than our ex post multiplier.

However, the presence of the ZLB only generates a modest increase in the multiplier.

The difference between the two types of multipliers reported in Table 3 is small, because

as the no-intervention path of the nominal interest rate indicates, the adverse discount factor

9Details on the algorithm to compute the effects of the policy interventions are reported in the Online
Appendix.
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shock kept the economy close to the ZLB, leaving very little room for conventional monetary

policy interventions ex post.

The red dashed lines in the second-row panels of Figure 4 represent the post-2009:Q1

path of the exogenous shock processes in the absence of further innovations, which is the

expected path conditional on 2009:Q1 innovation. Subsequent technology and discount factor

innovations had only small effects on the path of the respective exogenous processes, keeping

them roughly in line with expectations. Thus, the low level of the discount factor shock also

implied very low interest rates from an ex ante perspective, leaving little scope for the Fed

to boost the effects of a fiscal expansion through a zero-interest-rate policy.

8 Conclusion

Likelihood-based estimation of nonlinear DSGE models is computationally challenging. While

it is becoming easier for economists to access powerful computer clusters that enable mas-

sive parallel computation, the ability to solve and estimate models on a desktop computer

remains useful and desirable. Computations can often be simplified and accelerated consid-

erably by taking shortcuts in regard to model solution or estimation techniques. The goal

of this paper has been to develop a new solution method that captures important aspects of

the nonlinearity generated by occasionally binding constraints and, at the same time, allows

for efficient filtering and likelihood-based estimation. The piecewise-linearity of the deci-

sion rules allows us to solve the model faster and to derive a conditionally optimal proposal

distribution for a particle filter. This filter delivers a much more accurate likelihood approx-

imation than a standard bootstrap particle filter and enables us to estimate a nonlinear New

Keynesian DSGE model with a ZLB constraint in a relatively short amount of time on a

single core processor.
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Online Appendix to “Piecewise-Linear Approximations
and Filtering for DSGE Models with Occasionally

Binding Constraints”

S. Borağan Aruoba, Pablo Cuba-Borda, Kenji Higa-Flores, Frank Schorfheide,

and Sergio Villalvazo

This Appendix consists of the following sections:

A. Equilibrium Conditions for the Model of Section 2

B. Proofs and Derivations for Section 5

C. Additional Details for the Empirical Application
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A Equilibrium Conditions for the Model of Section 2

In this section we sketch the derivation of the equilibrium conditions presented in Section 2.

A.1 Households

The representative household solves

max
{Ct+s,Ht+s,Bt+s,Mt+s}

Et

[
∞∑
s=0

βsdt+s

(
(Ct+s/At+s)

1−τ − 1

1− τ
− χH

H
1+1/η
t+s

1 + 1/η
+ χMV

(
Mt+s

Pt+sAt+s

))]
,

subject to:

PtCt + Tt +Bt +Mt = PtWtHt +Mt−1 +Rt−1Bt−1 + PtDt + PtSCt.

Consumption and bond holdings. Let βsdt+sλt+s be the Lagrange multiplier on the

household budget constraint. Then the first-order condition with respect to consumption

and bond holdings are given by:

Ptλt =

(
Ct
At

)−τ
1

At

λt = β
dt+1

dt
Rtλt+1.

Combining the two equations leads to the consumption Euler equation:

1 = βEt

[
dt+1

dt

(
Ct+1/At+1

Ct/At

)−τ
1

γzt+1

Rt

πt+1

]
,

where γzt+1 = At+1/At. We define the stochastic discount factor as:

Qt+1|t =
dt+1

dt

(
Ct+1/At+1

Ct/At

)−τ
1

γzt+1

.

Labor-Leisure Choice. Taking first-order conditions with respect toHt yields the standard

intratemporal optimality condition for the allocation of labor

Wt

At
= χH

(
Ct
At

)τ
H

1/η
t .
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A.2 Intermediate Goods Firms

Each intermediate goods producer buys labor services Ht(j) at the real wage Wt. Firms

face nominal rigidities in terms of price adjustment costs. The adjustment cost, expressed

as a fraction of firms’ real output, is given by the function Φp

(
Pt(j)
Pt−1(j)

)
. We assume that the

adjustment cost function is twice-continously differentiable, weakly increasing and weakly

convex, Φ′p ≥ 0 and Φ′′p ≥ 0. The firm maximizes expected discounted real profits with

respect to Ht(j) and Pt(j):

Et
∞∑
s=0

βsQt+s|t

(
Pt+s(j)

Pt+s
At+sHt+s(j)− Φp

(
Pt+s(j)

Pt+s−1(j)

)
At+sHt+s(j)−Wt+sHt+s(j)

)
,

subject to

AtHt(j) =

(
Pt(j)

Pt

)−1/ν
Yt.

We use µt+sβ
sQt+s|t to denote the Lagrange multiplier associated with this constraint. In

equilibrium, the firms use the households’ stochastic discount factor to discount future prof-

its.

Price setting decision. Setting Qt|t = 1, the first-order condition with respect to Pt(j) is

given by:

0 =
AtHt(j)

Pt
− Φ′p

(
Pt(j)

Pt−1(j)

)
AtHt(j)

Pt−1(j)
− µt
ν

(
Pt(j)

Pt

)−1/ν−1
Yt
Pt

+βEt
[
Qt+1|tΦ

′
p

(
Pt+1(j)

Pt(j)

)
At+1Ht+1(j)

Pt+1(j)

P 2
t (j)

]
.

Firms’ labor demand. Taking first-order conditions with respect to Ht(j) yields

Wt =
Pt(j)

Pt
At − Φp

(
Pt(j)

Pt−1(j)

)
At − µtAt.

Symmetric equilibrium. We restrict attention to a symmetric equilibrium where all firms

choose the same price Pt(j) = Pt ∀j. This assumption implies that in equilibrium all firms

face identical marginal costs and demand the same amount of labor input. Combining the

firms’ price setting and labor demand first order conditions and assuming that the price
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adjustment costs are quadratic, i.e.,

Φp

(
Pt(j)

Pt−1(j)

)
=
φ

2

(
Pt(j)

Pt−1(j)
− π̄

)2

,

we obtain:

(1− ν)− χH
(
Ct
At

)τ
H

1/η
t − φ

2

(
Pt
Pt−1

− π̄
)2

+

νφ

(
Pt
Pt−1

− π̄
)

Pt
Pt−1

= νβEt
[
Qt+1|t

Pt+1

Pt
Φ′p

(
Pt+1

Pt

)
Yt+1

Yt

]
.

A.3 Equilibrium Conditions

Resource constraint. The derivation of the aggregate resource constraint is straightfor-

ward. In equilibrium real profits by intermediate producers is given by:

Dt = Yt − Φp (πt)Yt −WtHt.

Substituting this into the household budget constraint we obtain:

Ct +

[
Tt
Pt

+
Mt

Pt
+
Bt

Pt
− Mt−1

Pt
− Rt−1Bt−1

Pt

]
= WtHt + Yt − Φp (πt)Yt −WtHt.

From the government budget constraint in (7) we can see that the term in square brackets

corresponds to real government expenditure Gt. Simplifying yields:

Ct +Gt = [1− Φp (πt)]Yt.

The technology process introduces a long-run trend in the variables of the model. To

make the model stationary we use the following transformations: yt = Yt/At, ct = Ct/At,

and note that Yt/Yt−1 = yt
yt−1

γzt. We also define the gross inflation rate πt = Pt/Pt−1. The

equilibrium conditions shown in Section 2.2 of the main text follow immediately.
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Steady States and Reparameterizations. Let

r = γ/β, φ =
τ(1− ν)

νπ∗κ
, b =

1

2ν
.

The steady states are given by

c∗ =

[
1− ν + φν(1− β)π∗(π∗ − π̄)− 0.5φ ∗ (π∗ − π̄)2

χH((1/(g∗))− 0.5φ(π∗ − π̄)2)−1/η

](1/(τ+1/η))

y∗ =
c∗

1/g∗ − 0.5φ(π∗ − π̄)2

R∗ = π∗r.
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B Derivations for Section 5

We provide a proof of Proposition 1, which contains the formulas for the terms λt, η̄1,1(·),
Ω̄11(·), η̄2|1,t(·), and Ω̄2|1(·) that appear in the proposition. Throughout this section we set

the intercept in the measurement equation A0 = 0 and we drop the subscript from the matrix

As.

Proof of Proposition 1. Conditional on st−1 the current state st is determined by ηt. In

order to derive g∗t (s̃t|s
j
t−1) (we are omitting θ from the conditioning set), we will work in the

(ηt, st−1) space and derive (also omitting tildes and j superscripts) the conditionally optimal

proposal distribution

g∗t (ηt|yt, st−1) = p(ηt|yt, st−1) ∝ p(yt|ηt, st−1)p(ηt)

and the incremental particle weights

ω̃jt = p(yt|st−1) =

∫
p(yt|ηt, st−1)p(ηt)dηt.

Define

ŷt|t−1(·) = A(Φ0(·) + Φ1(·)st−1) + AΦη(·)ηt, νt(·) = yt − ŷt|t−1(·).

We will denote the density of a N(µ,Σ) random variable Y by pN(y;µ,Σ). Using this

notation, we write

p(yt|ηt, st−1)p(ηt) (A.1)

= pN
(
yt; ŷt|t−1(n), ςΣu

)
pN(η1,t; 0, 1)pN(η2,t; 0, I)I{η1,t ≤ ζ(st−1)}

+pN
(
yt; ŷt|t−1(b), ςΣu

)
pN(η1,t; 0, 1)pN(η2,t; 0, I)I{η1,t > ζ(st−1)}

= I + II.
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We will begin by manipulating term I(n). Omitting the (n) arguments we obtain:

I = I{η1,t ≤ ζ̃(st−1)}(2π)−ny/2|ςΣu|−1/2(2π)−nη/2

× exp

{
−1

2
(νt − AΦηηt)

′(ςΣu)
−1(νt − AΦηηt)

}
exp

{
−1

2

(
η21,t + η′2,tη2,t

)}
= I{η1,t ≤ ζ̃(st−1)}(2π)−ny/2|ςΣu|−1/2(2π)−nη/2 exp

{
−1

2
ν ′tΣ

−1
u νt

}
× exp

{
−1

2
η′tΦ

′
ηA
′(ςΣu)

−1AΦηηt + ν ′t(ςΣu)
−1AΦηηt

}
exp

{
−1

2

(
η21,t + η′2,tη2,t

)}
.

Note that term I takes the form of a product between “likelihood function” and “prior.”

The prior covariance matrix of ηt is Ω = I, and the negative Hessian and the maximum of

the “log-likelihood” function are

Ω̂−1 = Φ′ηA
′(ςΣu)

−1AΦη, η̂t = Ω̂Φ′ηA
′(ςΣu)

−1νt. (A.2)

With this notation we can write

I = I{η1,t ≤ ζ(st−1)}(2π)−ny/2|ςΣu|−1/2(2π)−nη/2|Ω|−1/2 exp

{
−1

2
ν ′tΣ

−1
u νt

}
× exp

{
−1

2

(
η′tΩ̂

−1ηt − 2η̂′tΩ̂
−1ηt

)}
exp

{
−1

2
η′tΩηt

}
.

Now define the quasi posterior mean and covariance matrices for ηt|(yt, st−1)

Ω̄ =
(
Ω−1 + Ω̂−1

)−1
, η̄t = Ω̄Ω̂−1η̂t. (A.3)

This leads to

I = (2π)−ny/2|ςΣu|−1/2|Ω|−1/2|Ω̄|1/2 exp

{
−1

2
ν ′tΣ

−1
u νt

}
exp

{
1

2
η̄′tΩ̄

−1η̄t

}
×I{η1,t ≤ ζ(st−1)}(2π)−nη/2|Ω̄|−1/2 exp

{
−1

2
(ηt − η̄t)′Ω̄−1(ηt − η̄t)

}
.

We now decompose the kernel of the “posterior” of ηt|(yt, st−1) in the second line of the

preceding equation into a conditional and a marginal distribution. We use the “1” subscript

to indicate the marginal posterior of η1 and the “2|1” subscript to indicate the conditional



This Version: April 6, 2020 A-8

mean and variance associated with the posterior of η2,t given η1,t:

η̄2|1,t(η1,t) = η̄2,t + Ω̄21Ω̄
−1
11 (η1,t − η̄1,t), Ω̄2|1,t = Ω̄22 − Ω̄21Ω̄

−1
11 Ω̄12. (A.4)

Thus,

I = (2π)−ny/2|ςΣu|−1/2(2π)−nη/2|Ω|−1/2|Ω̄|1/2 exp

{
−1

2
ν ′tΣ

−1
u νt

}
exp

{
1

2
η̄′tΩ̄

−1η̄t

}
×(2π)−(nη−1)/2|Ω̄2|1|−1/2 exp

{
−1

2
(η2,t − η̄2|1,t)′Ω̄−12|1(η2,t − η̄2|1,t)

}
(A.5)

×I{η1,t ≤ ζ(st−1)}(2π)−1/2|Ω̄11|−1/2 exp

{
−1

2
(η1,t − η̄1,t)′Ω̄−111 (η1,t − η̄1,t)

}
.

This is the final form for term I in (A.1).

Integrating I in (A.5) with respect to (η1,t, η2,t) and re-introducing the (n) arguments

yields

D(n) =

∫ ∫
I(η1,t, η2,t)dη2,tdη1,t (A.6)

= (2π)−ny/2|ςΣu|−1/2|Ω|−1/2|Ω̄(n)|1/2ΦN

(
(ζ(st−1)− η̄1,t(n)/

√
Ω̄11(n)

)
× exp

{
−1

2
νt(n)′Σ−1u νt(n)

}
exp

{
1

2
η̄′t(n)Ω̄−1(n)η̄t(n)

}
.

The analysis of term II proceeds in almost identical manner, with the understanding that

term I depends on Φ0(n), Φ1(n), and Φη(n), whereas term II depends on Φ0(b), Φ1(b), and

Φη(b). As a consequence the posterior coefficient matrices η̂, Ω̂, η̄, and Ω̄ should also be

indexed by either (n) or (b). Because for term II the inequality in the indicator function is

reversed, we obtain

D(b) = (2π)−ny/2|ςΣu|−1/2|Ω|−1/2|Ω̄(b)|1/2
(

1− ΦN

(
(ζ(st−1)− η̄1,t(b))/

√
Ω̄11(b)

))
× exp

{
−1

2
νt(n)′Σ−1u νt(n)

}
exp

{
1

2
η̄′t(b)Ω̄

−1(b)η̄t(b)

}
. (A.7)

Using the formulas for I, II, D(n), and D(b), we can write the posterior density of ηt as

follows:

p(ηt|yt, st−1) =
p(yt|ηt, st−1)p(st−1)∫
p(yt|ηt, st−1)p(st−1)dηt

=
I(n) + II(b)

D(n) +D(b)
. (A.8)
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Thus, the resulting conditionally optimal proposal is given by the following mixture. Define

λ =
D(n)

D(n) +D(b)
. (A.9)

Then, with probability λ

η1,t ∼ N(η̄1,t(n), Ω̄11(n)I{η1,t ≤ ζ(st−1)}, η2,t|η1,t ∼ N(η̄2|1,t(n, η1,t), Ω̄2|1(n)) (A.10)

and with probability 1− λ

η1,t ∼ N
(
η̄1,t(b), Ω̄11(b)

)
I{η1,t > ζ(st−1)}, η2,t|η1,t ∼ N

(
η̄2|1,t(b, η1,t), Ω̄2|1(b)

)
. (A.11)

The incremental weight is constant and given by the following formula:

ω̃jt = p(yt|sjt−1) = D(n) +D(b). (A.12)

This completes the proof of the proposition. �

In the remainder of this section we consider two special cases: (i) yt identifies the regime

without error. This is the case, for instance, for a DSGE model with ZLB constraint if the

interest rate is observed without error, at least when it hits the ZLB. (ii) Measurement errors

that are zero or very close to zero.

(i) Known Regime. Let yt = [y′1,t, y2,t] and partition A′ = [A′1, A
′
2] so that the partitions

of A conform with the partitions of yt. Assume that the n-regime is active if and only if

y2,t > c. In the b-regime y2,t = c. Moreover, let δ(y2t; c) denote the Dirac delta function with

the property that δ(y2t; c) = 0 for y2t 6= c and
∫
δ(y2t; c)dy2t = 1. Using the above notation,

we can rewrite (A.1) as

p(yt|ηt, st−1)p(ηt)

= pN
(
yt; ŷt|t−1(n), ςΣu

)
pN(η1,t; 0, 1)pN(η2,t; 0, I)I{η1,t ≤ ζ(st−1)}

+pN
(
y1t; ŷ1t|t−1(b), ςΣu,11

)
δ(y2t; c)pN(η1,t; 0, 1)pN(η2,t; 0, I)I{η1,t > ζ(st−1)}

= I + II.

The formula for D(n) in (A.6) remains unchanged. The formula for D(b) in (A.7) changes

to

D̃(b) = δ(y2t; c)D(b)
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with the understanding that Σu in D(b) needs to be replaced by Σu,11. After having observed

yt we know whether y2,t = c so that we can define

λ = I{y2,t > c}.

Conditional on λ, we can simulate [η1,t, η
′
2,t]
′ from (A.10) and (A.11), respectively. Finally,

ω̃jt = p(yt|sjt−1) =

{
D(n) if y2,t > c

D(b) if y2,t = c
,

where here D(b) corresponds to (A.7) and does not include the Dirac function δ(y2t; c).

(ii) Zero Measurement Errors. Consider a linear state-space model without regimes:

yt = Ast + ut, st = Φ0 + Φ1st−1 + Φηηt.

Ignoring the censoring and dropping the regime indicator, note that D = p(yt|st−1). We can

write

yt = A(Φ0 + Φ1st−1) + AΦηηt + ut.

Note that

AΦηηt + ut ∼ N
(
0, AΦηΦ

′
ηA
′ + ςΣu

)
.

Thus, we can deduce that the term D(n) in (A.6) can be rewritten as

D(n) = (2π)−ny/2|AΦηΦ
′
ηA
′ + ςΣu|−1/2

× exp

{
−1

2
(yt − A(Φ0 + Φ1st−1))

′[AΦηΦ
′
ηA
′ + ςΣu

]−1
(yt − A(Φ0 + Φ1st−1))

}
× ΦN

(
(ζ(st−1)− η̄1)/

√
Ω̄11

)
.

A similar adjustment can be made to the term D(b) in (A.6). The advantage of this alter-

native expression is that we can take the limit ς −→ 0. The argument of the Gaussian CDF
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behaves as follows:

η̄ = Ω̄Ω̂−1η̂t

=
(
Ω−1 + Ω̂−1

)−1
Φ′ηA

′(ςΣu)
−1νt

= ς−1
(
Ω−1 + ς−1Φ′ηA

′Σ−1u AΦη

)−1
Φ′ηA

′Σ−1u νt

=
(
ςΩ−1 + Φ′ηA

′Σ−1u AΦη

)−1
Φ′ηA

′Σ−1u νt,

−→
(
Φ′ηA

′Σ−1u AΦη

)−1
Φ′ηA

′Σ−1u νt

which eliminates divisions by ς. Moreover,

Ω̄ = ς
(
ςΩ−1 + Φ′ηA

′Σ−1u AΦη

)−1 −→ 0.

Thus,

lim
ς−→0

ΦN

(
(ζ(st−1)− η̄1)/

√
Ω̄11

)
=

{
1 if ζ(st−1)− η̄1 ≥ 0.

0 otherwise

Because the posterior covariances matrices are zero in the limit, the sampling in (A.10) and

(A.11) is replaced by setting η1,t and η2,t equal to their means.
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C Additional Details for the Empirical Application

Prior. Table A-1 summarizes the prior distribution for the initial states used in the empirical

analysis.

Table A-1: Prior Distributions for Initial States

Parameter Density P(1) P(2)
εR,0 N 0.00 .002
ĝ0 N 0.00 .012
ẑ0 N 0.00 .008

d̂0 N 0.00 .170
π̂0 N 0.00 .030
ĉ0 N 0.00 .030

R̂0 + 0.01 G 0.01 .008

Notes: N is Normal distribution; G is Gamma distribution. P(1) and P(2) are mean and standard deviations
for Normal and Gamma distributions. We set ŷ0 = ĉ0 + ĝ0 and ŷ−1 = ŷ0.

Calibration of ARRA. Table A-2 summarizes the award and disbursements of funds for

federal contracts, grants, and loans. We translate the numbers in the table into a one-period

location shift of the distribution of εg,t below.

Table A-2: ARRA Funds for Contracts, Grant, and Loans

Awarded Received Nominal GDP
2009:2 158 36 3488
2009:3 17 18 3533
2009:4 26 8 3568
2010:1 16 24 3603
2010:2 33 26 3644
2010:3 9 21 3684
2010:4 4 19 3704
2011:1 4 20 3751
2011:2 8 17 3791
2011:3 0 12 3830
2011:4 3 9 3870
2012:1 0 8 3899

Notes: Data were obtained from www.recovery.gov.
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Note that a one-time innovation εARRAg,t generates a response

ĝARRAt+h = ρhgσgε
ARRA
g,t .

We use the log-linear approximation

ζ̂ARRAt =
1

g∗ − 1
ĝARRAt ,

where ζt = Gt/Yt. We connect ζ̂ARRAt to the data in Table A-2 using the relationship

ζ̂ARRAt = log

(
GARRA
t /Yt
G∗/Y∗

)
.

Figure A-2 compares the time path of ĝARRAt constructed from the impulse response to a

εARRAg,t = 0.0077 (the red solid line) and the time path constructed from the disbursements

in Table A-2 (the blue dashed line).10

Figure A-1: Calibration of Fiscal Policy Intervention

09Q2 09Q4 10Q2 10Q4 11Q2 11Q4

0.0050

0.0080

0.011

0.014
Received Simulated

Computational Details for Fiscal Policy Experiment. The following algorithm de-

scribes how we compute the effect of a combined fiscal and monetary intervention.

10Recall that σg = 0.0024, hence the ARRA impulse in our experiment is equal to 3.2× σg.
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Algorithm 2 (Effect of Combined Fiscal and Monetary Policy Intervention)

1. Initialize the simulation by setting (R0, y0, z0, g0, d0) equal to the mean estimate obtained

with the particle filter.

2. Generate a baseline trajectory that includes the intervention based on the sequence of

innovations obtained from the COPF: {εz,T ∗+s, εg,T ∗+s, εd,T ∗+s, εR,T ∗+s}Hs=0.

3. Generate the innovation sequence for the counterfactual trajectories without interven-

tion according to

εg,T ∗ = εIg,T ∗ − δARRA; εg,T ∗+s = εIg,T ∗+s for s = 1, . . . , H;

εz,T ∗+s = εIz,t for s = 0, . . . , H;

εd,T ∗+s = εId,t for s = 0, . . . , H;

εR,T ∗+s = 0 for s = 0, . . . , H.

4. Conditional on (R0, y0, z0, g0, d0), compute {RT ∗+s, yT ∗+s, πT ∗+s}Hs=0 and

{RI
T ∗+s, y

I
T ∗+s, π

I
T ∗+s}Hs=0 based on {εT ∗+s} and {εIT ∗+s}, respectively, and let

IRF (xt|εIt , εt) = (ln xIt − lnxt). (A.13)

We report results for δARRA = 0.0077 and H = 7 in the main text. When we consider only

a fiscal policy, we set εIR,t = 0 for t = T ∗, ..., T ∗ + 7 as well.
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