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1 Introduction

Financial crises are in part propagated by disrupted enforcement and liquidation mechanisms in

credit markets. For example, during the 2007 financial crisis, the lack of timely enforcement has

been deemed central to the understanding of the U.S. foreclosure glut as well as the depressed

credit conditions in Italy and Spain.1 In fact, in all three countries the crisis resulted in a

groundswell of pending court cases that had a well-documented negative impact on the efficacy

of enforcement (Figure 1). The 2007 crisis is hardly an isolated episode. The role of enforcement

has long been stressed as important in propagating financial crises by public policy practitioners.2
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Figure 1: Default Cases Pending in Court (left axis) and Enforcement Delay (right axis)

Notes: The figure illustrates pending individual and corporate bankruptcies in the U.S., corporate property
executions in Italy, and commercial bankruptcies in Spain (See data sources in the Online Appendix). The
red line plots a popular aggregate measure of efficacy of court enforcement: Delayt =365*(Pending cases as of
the beginning of the year + pending cases as of the end of the year)/(new cases + closed cases). In stationary
equilibrium the measure returns the approximate number of days it takes to solve a case. A persistent increase
in this measure indicates lower efficacy of the court system.

A number of empirical studies provide direct evidence in support of causal linkages be-

1See Cordell et al. (2015) for a discussion of foreclosure delays in the U.S. during the great recession. In this
context, Chan et al. (2016) estimate that a foreclosure delay of nine months is associated with a 40% higher
default rate on underwater mortgages while controlling for a wide array of confounding factors. Zhu and Pace
(2015) find that a delay of three months increases the probability of default by 30%. Using a quantitative model,
Herkenhoff and Ohanian (2015) estimate that foreclosure delays added 25% to the delinquency rate during the
crisis. Carpinelli et al. (2016) document that judiciary backlogs were the primary factor behind the slower
resolution of non-performing loans during this time period in Italy. The Bank of Italy (2013) documents that
the average time to write off bad debt from banks’ balance sheets went up from less than 4 years to over 6 years
in Italy between 2007 and 2011.

2For example, Woo (2000), Enoch et al. (2001) and also Krueger and Tornell (1999).
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tween enforcement and credit market outcomes. For example, Schiantarelli, Stacchini and Stra-

han (2016) look at Italian firms that simultaneously owed loans both to banks in jurisdictions

with weak enforcement and to banks in jurisdictions with strong enforcement to conclude that

weaker enforcement induced strategic default.3 In a similar vein, Iverson (2017) uses variation

in bankruptcy court caseload to show that delayed enforcement has been associated with higher

creditor losses. Based on a natural experiment, Mayer et al. (2014) argue that strategic con-

siderations were an important factor fueling the U.S. subprime crisis. Finally, Ponticelli and

Alencar (2016) and Rodano et al. (2016) relate enforcement to the availability of credit, sup-

porting the well-documented cross-sectional correlations (Jappelli et al., 2005; La Porta et al.,

1998; Djankov et al., 2007, 2008; Bae and Goyal, 2009).

Despite renewed interest in the role of enforcement mechanisms in propagating financial

crises, and mouting empirical evidence, theoretical treatments of the issue remain scant. In

particular, the workhorse financial contracting model by Gale and Hellwig (1985), building

on the seminal work by Townsend (1979), and the modern applications of their framework to

macroeconomic modeling (e.g., Bernanke et al. (1999) and Christiano et al., 2014), all assume

that enforcement is a nondepletable resource. The few papers that do speak to the issue are too

specialized to provide ground for generalizations.4 As a result, theoretical mechanisms governing

the link between enforcement and credit markets are not well understood, and empirical studies

alone fall short of establishing the overall contribution of enforcement to shock propagation.

To fill this gap, we enrich the canonical model of credit-financed entrepreneurial activity à la

Gale and Hellwig (1985) by incorporating enforcement as a finite resource that is accumulated

ex ante by a benevolent government and hence subject to depletion ex post. We focus on debt

3Ippolito et al. (2016) study repayment of loans owed to European banks differentially affected by the crisis
and report similar findings. Favara, Schroth and Valta (2012) provide related cross-country evidence.

4There are two relevant studies. Bond and Rai (2009) study a micro-finance model featuring a population
of homogeneous borrowers. Arellano and Kocherlakota (2014) use a model with two firms to illustrate how
coordinated defaults in the private sector can trigger sovereign default when asset liquidation is exogenously
limited to one firm.
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contracts and use the model to study the equilibrium effect of the depletion of enforcement

resources on credit supply and debt repayment. In our model entrepreneurs invest loans on

risky projects that serve as collateral for the loans. Upon privately learning their project returns

they decide whether to repay the loan or default. The enforcement (liquidation) of collateral

is then determined by the amount of enforcement resources and by the aggregate default rate.

The depletability of enforcement via high default rates introduces a negative feedback loop

in which the expectation of weak enforcement incentivizes default among borrowers, which

further depletes enforcement resources, making repayment decisions strategic complements. This

amplifies shocks that initially deplete enforcement resources in the economy.

We study the equilibrium implications of our model under common knowledge of enforcement

fundamentals and show that strategic complementarities can lead to multiplicity of equilibria,

deeming the aggregate default rate undetermined. We overcome equilibrium indeterminacy by

introducing noisy signals about enforcement as is done in the global games literature (Carlsson

and van Damme, 1993; Morris and Shin, 1998, 2003). Specifically, we build on the equilibrium

selection approach of Frankel, Morris and Pauzner (2003) to show that a unique equilibrium

arises as signal noise vanishes. From a technical perspective, we tackle the challenges posed by

agent heterogeneity in global games by generalizing the results from Sákovics and Steiner (2012)

and Frankel, Morris and Pauzner (2003) to characterize equilibrium.

Substantively, we establish three key results. First, we pin down the necessary and sufficient

conditions for equilibrium multiplicity under common knowledge and characterize the resulting

equilibrium set. Second, in the absence of common knowledge, we find that equilibrium default

rates are fragile in the following sense: The equilibrium default rate discontinuously jumps

when enforcement resources fall below a certain threshold. This is due to a partial clustering of

default decisions in equilibrium. Importantly, in the context of the equilibrium under common

knowledge, the jump in default rates corresponds to a switch from the equilibrium with the
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lowest default rate and strongest enforcement to the equilibrium with the highest default rate

and weakest enforcement. Finally, since credit is the only tool lenders have to avoid a spike in

defaults caused by the worsening enforcement, we find that credit supply tightens in response

to shocks that deplete enforcement resources.

The discontinuous response of the aggregate default rate is driven by the contagion of default

decisions among entrepreneurs. Specifically, agents whose payoff from defaulting is relatively

low (i.e., those with high project returns), and hence have a relatively low intrinsic propensity

to default, rationally anticipate that, whenever they find default optimal, so must the agents

with a higher propensity to default (low project returns). As a result, agents who are less prone

to default also default because they expect the default rate to be higher and enforcement to

be weaker. This effect results in a formation of clusters of agents who have different intrinsic

propensities to default and yet follow the exact same strategy.

We assess the quantitative implications of our model for the propagation of shocks by cali-

brating it to the U.S. data. The calibrated model exhibits enforcement costs of about 0.3% of

total debt outstanding and implies that, in normal times, about 83% of enforcement resources

are used to liquidate projects. Nonetheless, enforcement resources are scarce in the sense that

even a small shock affects credit supply due to their proximity to the threshold associated to the

discontinuous jump in default rates. To demonstrate the magnitude of shock propagation in the

model, we consider both a large shock on enforcement equivalent to the surge in default rates

experienced by the U.S. in the great recession, and an average shock that resembles ordinary

recessions. We find that credit contracts by 30% in response to the large shock and by 5% due

to the average shock.

The mechanism we idenfity in this paper is relevant from a policy perspective. When enforce-

ment is depleted, the model implies that the most effective way to alleviate the shock might be

to prevent default by agents who are most prone to default, even if they impose the highest costs
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in terms of debt forgiveness. This is because such an intervention mitigates the aforementioned

snowballing effect and prevents other agents from defaulting as well.5 A recent example of a

policy in this spirit is the 2009 Home Affordable Modification Program (HAMP), which targeted

U.S. homeowners who could prove that they were underwater and had not yet defaulted. The

success of this program has been well-documented by Agarwal et al. (2017).

Related literature: The most closely related paper to ours is Bond and Rai (2009), who focus

a micro-finance model featuring a population of homogeneous borrowers. Their analysis shows

the possibility of a “borrower run” on a single lender driven by the link between the default

rate and the continuation value that the lender may be able to deliver after the run takes place

and depletes its funds. As in our model, they tackle equilibrium multiplicity by using global

games. However, whereas they focus on the survival of the lending institution as a function of

its financial health and the amount of credit in a homogeneous agent environment, our goal is to

characterize both default and credit supply decisions in an economy with heterogeneous agents.

Our model features stochastic returns to investment, which introduces private information due

to nonstrategic default, whereas in their model default is always strategic. In the context of

sovereign debt crises, Arellano and Kocherlakota (2014) use a related model with two firms

to illustrate how coordinated defaults in the private sector can trigger self-fulfilling sovereign

defaults when asset liquidation is exogenously limited to one firm.6

Independently, our paper complements the literature on fire sales and the propagation of

shocks (Shleifer and Vishny, 2011). Enforcement capacity in this context corresponds to the

ability of financial intermediaries to absorb widespread liquidation of collateral. The connection

between enforcement levels and default incentives then finds its parallel in the link between the

price of assets and incentives to sell collateral. Clustering loosely corresponds to fire sale of

5This result echoes a related result established by Sákovics and Steiner (2012) in their setup.
6Coordination problems arising from limited enforcement have also been studied in the crime (Bond and

Hagerty, 2010) and tax evasion literatures (Bassetto and Phelan, 2008).
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assets. The model by Dávila and Korinek (2018) provides a recent example of such a dynamic.

Our paper makes a technical contribution to the study of global games with agent hetero-

geneity. In particular, we extend the characterization result established by Sákovics and Steiner

(2012). They focus on a particular environment in which, by construction, all agents take the

same action in equilibrium. In contrast, we characterize the endogenous emergence of decision

clusters as a function of agent heterogeneity.7

Finally, our paper adds to the analysis of the impact of agent heterogeneity on coordination in

the presence of strategic complementarities, such as the currency speculation model of Corsetti

et al. (2004) and the analysis of bank bailouts by Dávila and Walther (2018).

2 Theory

This section lays out the baseline model and derives our main analytic results. We first derive

the conditions for equilibrium multiplicity and introduce the global games selection that obtains

uniqueness. We then characterize the equilibrium default rate and the link between enforcement

and credit supply. In Section 3 we study quantitative implications of these results.

2.1 Environment

The economy is populated by a large number of deep-pocketed lenders and a continuum (of

measure one) of risk-neutral and ex ante identical entrepreneurs who have an investment project.

The investment project yields a random return w ≥ 0, which is a continuously distributed i.i.d.

random variable with cdf F (w), with E(w) > 1 and density f with full support on [0,∞). (The

law of large numbers is assumed.)

Entrepreneurs seek to leverage their own equity y invested in the project by taking a loan

7In the class of games studied by Sákovics and Steiner (2012) payoff heterogeneity is restricted to guarantee
that all agents cluster on the same strategy.
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from lenders. Lenders are risk-neutral Bertrand competitors and effectively maximize ex ante

utility of entrepreneurs subject to a zero profit condition (in expectation).8

A loan is described by a tuple (b, b̄), where b is principal and b̄ is principal plus interest.

Accordingly, total investment in each project is y + b, and the output of a project with return

w is (y + b)w. Entrepreneur’s net payoff under repayment is (y + b)w− b̄ and hence the project

is profitable if w ≥ w̄ := b̄/(y + b).

Loans are defaultable and entrepreneurs use projects as a collateral to secure funding. In case

of default, the project is liquidated. The liquidation value of the project is µ(y+b)w, where µ < 1

is a parameter that determines the deadweight loss from liquidation. Importantly, liquidation

can be either enforced or non-enforced. If liquidation is enforced, the entire liquidation value

is taken over by the lender. If liquidation is not enforced, the entrepreneur retains a portion

0 < γ < 1 of the liquidation value at the lender’s expense. The distinction between enforced and

non-enforced liquidation is meant to convey the basic idea that entrepreneurs may extract rents

when liquidation is delayed or disrupted.9 The probability that a liquidation following default

is enforced, denoted by P (X,ψ), depends positively on the economywide enforcement capacity

X and negatively on the aggregate default rate ψ.

Enforcement capacity X is fixed at the lending stage, and it is optimally chosen by a planner

before the lending market opens. When choosing enforcement capacity, the planner maximizes

the ex ante expected utility of entrepreneurs in the economy, net of capacity buildup costs.

The planner’s choice captures the idea that the enforcement infrastructure, e.g., the bankruptcy

8Debt financing is assumed. In particular, we do not explore optimality of debt contracts as Gale and Hellwig
(1985) do, given that enforcement is stochastic in our model, whereas they only consider deterministic monitoring.
On positive grounds, debt contracts are ubiquitous, which motivates our approach. In addition, an extensive
finance literature highlights reasons why debt contracts may prevail.

9For example, entrepreneurs may divert resources before the project is taken over by lenders. As a result,
delayed enforcement may eat up the value of the project that lenders receive, meanwhile serving the entrepreneur.
Alternatively, bargaining power in an out-of-court renegotiation settlement may depend on the threat-point of
legal enforcement, which depends on its expected efficacy. Favara, Schroth and Valta (2012) provide evidence
that weak enforcement indeed leads to a higher incidence of renegotiation between defaulting firms and creditors.
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court system or the number of judges, is typically established by the government, fixed ex post,

and costly to develop ex ante.

To analyze tractably how fluctuations in enforcement might affect credit supply, we introduce

a binary aggregate shock that randomly depletes enforcement capacity before the credit market

opens. This simplifies the analysis while capturing the essence of shock propagation through

the depletion of enforcement resources. Accordingly, enforcement capacity available to sustain

loans at the lending stage is X = Xo− s, where Xo is the ex-ante choice of the planner and s is

a random aggregate shock. The shock captures the idea that poor performance of pre-existing

loans in practice tangles enforcement infrastructure and diverts enforcement resources away

from the market for new loans. (We obtain qualitatively similar results if we instead introduce

a shock to the distribution of project returns.)

The timing of events is as follows: 1) the planner chooses initial capacity Xo and the shock

s is realized; 2) the credit market opens and lenders compete to extend loans to entrepreneurs

and investment takes place; 3) entrepreneurs privately observe their project returns and simul-

taneously decide whether to repay their loans or default; 4) projects are liquidated and enforced

with probability P.

2.2 Contract enforcement

We solve the model using backward induction and hence begin our analysis from the last stage.

We refer to this stage as the enforcement game. The solution to the enforcement game feeds into

the credit market and the optimal choice of enforcement capacity, which we analyze subsequently.

2.2.1 Enforcement technology

Liquidated projects are assumed to be randomly selected for enforcement until enforcement

capacity is fully exhausted (or there are not more projects to enforce). This is justified by the

8



fact that w is privately observed by entrepreneurs.10 Consequently, enforcement probability P

only depends on enforcement capacity X and the measure of agents who default ψ. Without

loss, we normalize the domain of X to be between 0 and 1 at the enforcement stage. Specifically,

if Xo − s < 0, we set X = 0. Analogously, if Xo − s > 1, we set X = 1.

For expositional purposes, we assume that enforcement capacity X represents the measure

of liquidated projects that can be enforced. In such a case, it is clear that

P (X,ψ) = min{1, X/ψ}. (1)

However, since our formal results do not require a specific functional form, we introduce the

notion of admissible enforcement probability in the definition below. We use it to state them

more generally.11

Definition 1. P (X,ψ) is an admissible enforcement technology if:

(i) P : [0, 1]2 → [0, 1] is a Lipschitz continuous function,

(ii) P (X,ψ) is increasing in X, and strictly so at any (X,ψ) such that P (X,ψ) < 1,

(iii) P (X,ψ) is decreasing in ψ, and strictly so at any (X,ψ) such that P (X,ψ) ∈ (0, 1),

(iv) P (0, ψ) = 0 for all ψ, and if ψ < 1, there exists X < 1 such that P (X ′, ψ) = 1 for all

X ′ ≥ X.

10Agents cannot be selected for enforcement based on payoff-irrelevant characteristics, such as the address,
names, etc. Such practices would violate nondiscrimination laws and hence we assume away such a possibility
(e.g., Code of Federal Regulations Title 12, Chapter V, Part 528, Section 528.9). Segmented enforcement is
beneficial in our environment and is known to unravel the complementarities. This has been shown by Carrasco
and Salgado (2014).

11Allowing for different functional forms of P can help study the impact of different enforcement technologies
on credit. For instance, to analyze the natural case in which the resources needed for liquidation go up with
project size (i.e., with returns w) we could assume that P is strictly concave and decreasing in ψ (for the interval
of ψ at which P (ψ,X) > 0). This is because, as we show below, the equilibrium default rate is given by F (w),
where w is the return associated with the largest project being liquidated, and hence a higher w is associated
with a higher use of enforcement resources per project. We thank our anonymous referee for suggesting this
generalization.
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2.2.2 Entrepreneur problem

In the enforcement game, loan terms (b, b̄) and the enforcement capacity X are given and

entrepreneurs simultaneously decide whether to pay back their loans or default after privately

observing their project return w. To define the entrepreneur problem formally, let a = 1 denote

repayment and a = 0 denote default. In addition, let m = 1 denote enforced liquidation and

m = 0 denote non-enforced liquidation. Furthermore, recall the following. Given contract terms

(b, b̄), the repayment amount b̄ corresponds to some minimum return w̄ = b̄/(y + b) necessary

to repay the loan. Accordingly, we can equivalently represent loans by a tuple (b, w̄), since an

agent with w < w̄ does not have enough funds to pay back the loan.

Formally, entrepreneur payoffs are

u(a, w,m, b, w̄) :=


(y + b)(w − w̄) a = 1

(1−m)γµ(y + b)w a = 0.

(2)

Since m is a random variable determined by the enforcement probability P , entrepreneurs choose

action a to maximize

max
a∈{0,1}

{E(P )u(a, w, 1, b, w̄) + (1− E(P ))u(a, w, 0, b, w̄)}, (3)

where E(P ) represents their individual expectation (belief) of enforcement probability P.

The linearity of the objective function implies that entrepreneurs’ repayment decision is a

cutoff rule with respect to expected enforcement probability E(P ). Specifically, as established in

Lemma 1, entrepreneurs repay their loans if E(P ) exceeds a cutoff θ(w, w̄). We refer to θ(w, w̄)

as the agent’s intrinsic propensity to default. (To streamline the exposition, we relegate all

proofs to the Appendix.)
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Lemma 1. The debt repayment decision of an entrepreneur with a contract (b, w̄) is given by12

a =


1 if E(P ) ≥ θ(w, w̄)

0 otherwise,

(4)

where

θ(w, w̄) := 1− 1

µγ

(
1− w̄

w

)
. (5)

Entrepreneurs’ repayment decisions determine the aggregate default rate in the economy,

which is given by

ψ :=

∫
{w:a=0}

dF (w). (6)

In turn, the default rate affects enforcement probability P (X,ψ). Accordingly, entrepreneurs’

repayment decisions are strategic complements, since a lower expected enforcement probability

incentivizes defaulting by Lemma 1.

Our next lemma establishes the key properties of the intrinsic propensity to default θ. The

first part of the lemma states that agents are less inclined to default when returns are higher

and when the repayment amount is lower (w̄ is increasing in b̄). This leads to the existence of

three types of agents: insolvent agents with low returns who always default (θ(w, w̄) > 1) and

act non-strategically; solvent high return agents who never default (θ(w, w̄) ≤ 0) and also act

non-strategically; and strategic agents with intermediate returns such that their default decision

depends on their expectation of enforcement probability (θ(w, w̄) ∈ (0, 1]). The latter agents

behave “strategically” in the sense that their incentives to default depend on their beliefs about

the behavior of other agents in the economy (i.e., the aggregate default rate ψ). The mass of

entrepreneurs who are strategic is F (w̄/(1 − γµ)) − F (w̄), and it determines the strength of

strategic complementary in repayment decisions. It depends on the loan contract (w̄), agent

12Given the continuity of F , we can assume without loss that an indifferent agent always repays.
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heterogeneity (F ) and parameters determining the attractiveness of non-enforced liquidation

(γµ). We denote the set of agent types who are strategic by W := (w̄, w̄/(1− γµ)).

Lemma 2. Given loan contract (b, w̄) with b, w̄ > 0, θ(w, w̄) is strictly decreasing in w and

strictly increasing in w̄. In addition, θ(w, w̄) ∈ (0, 1) if and only if w ∈ W . Agents with w < w̄

always default (θ(w, w̄) > 1) and agents with w ≥ w̄/(1− γµ) never default (θ(w, w̄) < 0).

2.2.3 Equilibrium enforcement under complete information

We begin our equilibrium analysis of the enforcement game by focusing on Nash equilibria under

complete information about enforcement capacity X, which implies that the default rate ψ and

enforcement probability P (X,ψ) are common knowledge in equilibrium. We show that the game

gives rise to multiple equilibria under fairly general conditions on the distribution of returns F.

We provide two different results regarding the multiplicity of equilibrium. The first one

focuses on enforcement probability given by (1) and on a specific family of return distributions

so that together they restrict the number of equilibria to at most three. Such a restriction

will lead to equilibrium default rates in the global game that exhibit a single discontinuity,

rather than multiple jumps. Our second result lifts such restriction by identifying the necessary

and sufficient condition for the existence of multiple equilibria for any admissible enforcement

technology in the sense of Definition 1.

Assumption 1. The elasticity of F , εF (w) := wf(w)
F (w)

, is decreasing on W and limw↓0 εF (w) > 1.

Intuitively, Assumption 1 requires that F be convex at zero and become gradually less elas-

tic.13 The family of distributions satisfying Assumption 1 includes commonly used distributions

13The first condition of Assumption 1 holds when the relative (percentage) increase in the fraction of returns
that are lower than some cutoff value is diminishing in that cutoff value. This condition is naturally satisfied at
w where the density f is decreasing or constant. For single-peaked densities f on [0,∞), such as the Pareto or
the log-normal distribution, the assumption places a restriction on the rate at which f can increase so that the
distribution function is not too convex.
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such as the log-normal or Pareto, although it does not hold for all distributions.14

The mechanism responsible for multiplicity of equilibria is standard. Since a higher de-

fault rate implies a lower enforcement probability, high default rate equilibria may become

self-fulfilling because entrepreneurs are incentivized to default by the expectation of weak en-

forcement. The interesting aspect is how agent heterogeneity factors into this mechanism and

which equilibria arise depending on the nature of agent heterogeneity, which we focus on next.

Nash equilibria under complete information can be summarized by a pivotal type w∗ such

that all agent types with w ≤ w∗ choose to default and those with w > w∗ choose to repay, since

the intrinsic propensity to default θ(w, w̄) is decreasing in w (for any fixed w̄) and the expected

enforcement probability E(P ) is common across agents and equal to P (X,F (w∗)). Accordingly,

any w∗ ≥ w̄ is a Nash equilibrium if the pivotal type w∗ is indifferent between defaulting and

repaying, which by Lemma 1 implies

P (X,F (w∗)) = θ(w∗, w̄). (7)

In particular, w∗ = w̄ is a Nash equilibrium if

P (X,F (w̄)) = θ(w̄, w̄) = 1, (8)

since agents with w < w̄ are insolvent and always default.

The Nash equilibrium with pivotal type w∗ = w̄ is of particular interest. This is because

this equilibrium is efficient in the sense of maximizing expected output, given that it minimizes

the deadweight loss from liquidation. Accordingly, both the planner and lenders would like

this equilibrium to be selected at the enforcement stage, since their respective problems involve

maximizing entrepreneurs’ payoffs. This is also the kind of equilibrium that would arise had

14E.g., the exponential distribution violates the second condition.
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enforcement not been fixed ex post, as is the case in Gale and Hellwig (1985). In contrast,

equilibria with w∗ > w̄ are inefficient because also some solvent agents default.

Since we consider shocks to enforcement capacity, and X corresponds to the after-shock value

of capacity, it is convenient to recast the above equilibrium condition by defining the smallest

enforcement capacity χ(w, w̄) such that an agent of type w is indifferent between defaulting

and repaying when she is a pivotal type; i.e., if she assumes all agents with returns higher than

w repay and all agents with returns lower than w default. Using this notion, w∗ ∈ W is an

equilibrium if X = χ(w∗, w̄) and w∗ = w̄ is an equilibrium if X ≥ χ(w∗, w̄), since agents with

w < w̄ always default.

Definition 2. Let χ(w, w̄) denote the smallest enforcement capacity X satisfying P (X,F (w)) =

θ(w, w̄) for all w ∈ W .

Lemma 3. χ(w, w̄) is a real-valued continuous function on W for any admissible P and any

fixed w̄. Moreover, if P is given by (1) then χ(w, w̄) = F (w)θ(w, w̄), and, if F additionally

satisfies Assumption 1, then χ(w, w̄) is strictly quasi-concave on W .

As Lemma 3 shows, if P is given by (1) and F satisfies Assumption 1, χ(w, w̄) is given by

F (w)θ(w, w̄), which is a continuous single-peaked function, as illustrated in Figure 2. Accord-

ingly, if w̄ falls to the left of the peak of required capacity χ(·, w̄), which implies that χ(·, w̄) is

increasing at w̄, there are exactly three equilibria for intermediate values of enforcement capacity

between χ(w̄, w̄) and the peak of χ(w, w̄), as illustrated in the figure. The first equilibrium is

efficient and occurs at w∗ = w̄, while the other two equilibria, w2 and w3, exhibit higher default

rates.15 Proposition 1 summarizes this result formally.

Proposition 1. If P is admissible and χ(w, w̄) is increasing w = w̄ and strictly quasi-concave,

then the complete information enforcement game has: 1) a unique equilibrium at w∗ = w̄ for all

15It is worth noting that the equilibrium with pivotal type w2 is unstable in the sense that a small deviation
toward w̄ (resp. w3) would trigger all agents in (w̄, w2) to repay (resp. all agents in (w2, w3) to default).
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Figure 2: Multiplicity of Equilibria

Notes: The figure plots χ(w, w̄) = F (w)θ(w, w̄) and illustrates all Nash equilibria that arise under complete
information for χ(w, w̄) strictly quasi-concave and increasing at w̄. There is an efficient equilibrium at w̄ and
two inefficient equilibria w2 and w3. Their respective default rates are F (w̄), F (w2) and F (w3).

X > X := maxw∈W χ(w, w̄); 2) a unique equilibrium at some w∗ > w̄ for all X < X := χ(w̄, w̄);

3) three equilibria w∗i satisfying w̄ = w∗1 < w∗2 < w∗3 for all X in the non-degenerate set (X,X);16

and 4) two equilibria at w∗1 = w̄ and at some w∗2 > w̄ when X = X or X = X.

Multiplicity of equilibria plagues the enforcement game precisely when it matters. Note that

the planner would like to sustain the efficient equilibrium at the lowest cost possible, which

implies that in practice enforcement capacity is likely to be close to the multiplicity region

[X, X̄], especially when the probability of capacity being depleted by the shock s is low. This is

because, on the one hand, uniquely sustaining the efficient equilibrium requires X > X, but on

the other hand any excess above X that would not be utilized in normal times (s = 0) is costly.

We conclude this section by establishing the necessary and sufficient condition for equilibrium

multiplicity under any admissible enforcement technology. This result shows that indeterminacy

is a prevalent feature of the model and obtains whenever χ(w, w̄) is increasing around some w ∈
16By non-degenerate set we mean a set of positive Lebesgue measure.
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W . χ(w, w̄) being increasing at w requires that F exhibits some concentration of mass around

w. Intuitively, an increase in w has two effects on indifference condition P (X,F (w)) = θ(w, w̄):

a drop in P due to a higher default rate and a drop in θ. Hence, the required X would go up

when the first effect dominates, i.e., when F (w) grows fast enough with w. This can be the case,

for example, when the density function f is high at w.

Proposition 2. If P is admissible then the complete information enforcement game has multiple

equilibria for a non-degenerate set of values of X if and only if χ(w, w̄) is strictly increasing at

some w ∈ W .

2.2.4 Global games formulation of the enforcement game

Equilibrium indeterminacy motivates us to relax the assumption of common knowledge of en-

forcement capacity X by considering an economy in which agents instead receive a noisy signal

about X, which implies that neither ψ nor P (X,ψ) are common knowledge. From an economic

point of view the global games formulation of the enforcement game is of interest because in-

determinacy of equilibrium under complete information relies on the strong assumption that

entrepreneurs can perfectly observe X, and thus coordinate their beliefs about ψ and P. In

practice, borrowers may have a hard time knowing enforcement fundamentals with exact preci-

sion or, more generally, they may not be able to perfectly infer the equilibrium default rate or

the underlying enforcement probability.

Formally, we follow Frankel, Morris and Pauzner (2003) and assume that each agent receives

a signal x = X + νη, where ν > 0 is a scaling factor and η is an i.i.d. random variable with

continuous distribution H that has full support on [−1/2, 1/2]. That is, agents’ signals are cor-

related through X but their signal noise is i.i.d. To simplify the proofs, we assume agents’ prior

about X is uniformly distributed on [0, 1], albeit our results do not hinge on this assumption.

As Frankel, Morris and Pauzner (2003) show, equilibrium selection arguments work in the limit
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as signal error goes to zero, since any well-behaved prior will be approximately uniform over the

small range of X that are possible given an agent’s signal.

Importantly, we assume that the signal summarizes all available information to entrepreneurs.

In particular, we do not allow entrepreneurs to learn new information from observing loan terms

(b, w̄), even though they are contingent on enforcement capacity X. As we further discuss in

Section 4, this assumption is not essential for the results but it significantly simplifies the proofs.

In that section, we outline a generalization of the setup in which lenders do not directly observe

X, as they do here, but instead receive a public signal at the lending stage that is noisier than

the private signals borrowers receive when loans are due. Such a generalization is realistic, since

the available enforcement capacity evolves over time, that is, from the time the lenders issue

loans to the time repayment is due. As we argue in Section 4, the presence of a public signal at

the time of obtaining the loans merely changes the initial prior about X but does not undermine

the selection mechanism or change our characterization of the resulting equilibrium. As already

mentioned, Frankel, Morris and Pauzner (2003) show that the selection does not hinge on the

choice of the prior.

On a technical note, while our results from now on are stated for a continuous distribu-

tion of returns for ease of exposition, our proof technique relies on the use of discrete return

distributions. Specifically, we characterize the equilibrium associated to a sequence of discrete

distributions that in the limit converge to the continuous distribution F.17

2.2.5 Equilibrium enforcement in the global game

Our first result shows that the game has a unique equilibrium as signal noise vanishes in the

limit. In this equilibrium agents’ strategies are characterized by a type-specific cutoff k(w, w̄)

with respect to signal x such that an agent with w who receives a signal above the cutoff repays

17A discrete distribution is technically convenient to prove uniqueness in the global game version of the model.
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and otherwise defaults.

Proposition 3. For any admissible P , the enforcement game has a unique equilibrium as ν → 0.

Equilibrium strategies are characterized by a signal cutoff k(w, w̄) such that

• If x ≥ k(w, w̄), agents choose to repay (a = 1)

• If x < k(w, w̄), agents choose to default (a = 0), where k(w, w̄) satisfies the system of

limit indifference conditions

lim
ν→0

E(P |x = k(w, w̄)) = θ(w, w̄) for all w ∈ W . (9)

The intuition for why equilibrium is unique follows from standard arguments in the global

games literature. Even under infinitesimal uncertainty about enforcement capacity X, the lack

of common knowledge exposes agents to large strategic uncertainty about the actions of others,

hindering their ability to coordinate on a high default equilibria when X is low based solely on

a self-fulfilling belief. In other words, entrepreneurs use signals to learn about X rather than to

coordinate their choices.18,19

Our next results provide a complete characterization of the unique equilibrium cutoff k(w, w̄)

underlying Proposition 3. To ease notation, we now omit the explicit dependence of k(w, w̄),

χ(w, w̄) and θ(w, w̄) on w̄.

We begin with the most general characterization that applies to any admissible P in the

sense of Definition 1. Albeit technical in nature, this result shows that k(w) generally “irons”

18Intuitively, common knowledge no longer applies because, when an agent observes her idiosyncratic signal
x, she considers it possible that the true value X is ν/2 away from the signal x. As a result, she considers it
possible that other agents may get a signal as far as ν away from her own x, thus admitting a possibility that
other agents’ signals are as far as 2ν away from x and so on and so forth.

19Our formal proof uses the fact that games with strategic complementarities feature a smallest and largest
Nash equilibrium, both in cutoff strategies (Van Zandt and Vives, 2007), and shows that both must coincide.
Specifically, it shows that, given the noise structure, E(P |x = k(w, w̄)) goes up when k(·) is raised for all w,
implying that there can be only one profile of cutoffs at which E(P |x = k(w, w̄)) = θ(w, w̄) for all θ(w, w̄) ∈ (0, 1),
i.e., at which each strategic agent is indifferent between defaulting or not when she receives her cutoff signal.
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out any peaks of the function χ(w), resulting in clustering of types on the same equilibrium

strategy around its peaks.

Proposition 4. If P is admissible, there exists a unique partition of types with θ(w) ∈ (0, 1]

into intervals {(wj, w̄j]}Jj=1 s.t.:

(a) if k(w) is strictly decreasing in interval j then it is constant in intervals j − 1 and j + 1

and vice versa;

(b) if χ(w) is strictly decreasing in interval j then k(w) = χ(w) for all w ∈ (wj, w̄j];

(c) if χ(w) is not strictly decreasing in (wj, w̄j] then k(w) = kj for all w ∈ (wj, w̄j] with kj

satisfying kj = χ(w̄j) ≥ χ(wj) (with equality if wj > w̄) and

∫ F (w̄j)

F (wj)

P (kj, z)dz =

∫ w̄j

wj

θ(w)dF (w). (10)

To illustrate the implications of this clustering, we next consider χ(w) that is increasing at

w = w̄ and single-peaked, as is the case when P is given by (1) and Assumption 1 is satisfied

(see Lemma 3). Recall that under these assumptions the game of complete information exhibits

multiple equilibria for X ∈ [X, X̄], as illustrated in Figure 2 and established in Proposition 1.

In the context of Proposition 4 above, the single-peakedness of χ(w) leads to a single cluster of

types using the same (limit) signal cutoff in equilibrium.

Proposition 5. If P is admissible and χ(w) is increasing at w = w̄ and strictly quasi-concave,

then there exists w∗ > w̄ such that:

k(w) =


χ(w∗) for all w ∈ [w̄, w∗]

χ(w) for all w > w∗,
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where w∗ is the unique solution in W to

∫ F (w∗)

F (w̄)

P (χ(w∗), z)dz =

∫ w∗

w̄

θ(w)dF (w). (11)

Corollary 1. If, additionally, P is given by (1), then there exists w∗ > w̄ such that:

k(w) =


θ(w∗)F (w∗) for all w ∈ [w̄, w∗]

θ(w)F (w) for all w > w∗,

where w∗ = w̄ if w̄ ≥ wmax := argmaxw∈W χ(w) and, if w̄ < wmax, w∗ is the unique solution in

(wmax,∞) to

θ(w∗)F (w∗) (1− log θ(w∗))− F (w̄) =

∫ w∗

w̄

θ(w)dF (w). (12)

00 w

k(w)

w∗w̄

χ(w)

Figure 3: Equilibrium Default Cutoffs

Notes: The figure plots strategy profile k(w) as implied by Corollary 1 for single-peaked χ(w) (red solid line).
k(w) features a flat region for the cluster of returns [w̄, w∗]. When X is above k(w∗) the efficient equilibrium
with default rate ψ = F (w̄) is selected. The strategy profile follows χ(w) for w > w∗. The presence of the
cluster leads to fragility of the efficient equilibrium, as for any X lower than k(w∗) all entrepreneur types
between w̄ and w∗ default, resulting in a discontinuous jump of the default rate from F (w̄) to F (w∗).
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Proposition 5 and Corollary 1 show that under these assumptions the equilibrium cutoff

k(w) is as illustrated in Figure 3. That is, k(w) = k(w∗) is constant up to some w∗ > w̄, which

is the solution to (12), while k(w) tracks χ(w) for w > w∗. In particular, the flat region of k(w)

– over which different types of agents choose the same strategy k(w∗) – occurs between the

lowest-default equilibrium that maximizes output and the highest-default equilibria among the

multiple equilibria under complete information. Accordingly, the efficient equilibrium in which

only insolvent agents default is fragile in the following sense: If X is depleted below k(w∗), a

cluster of agents with returns between w̄ and w∗ defaults. This implies that, if there is enough

enforcement capacity in the economy, the default rate is at the lowest possible level. However,

if enforcement capacity is depleted below the level associated with the flat region, the default

rate discontinuously jumps by the measure of agents with returns in the cluster.

To illustrate the key intuition behind this result, consider a simplified numerical example

with only three types of agents i = 1, 2, 3 of mass 1/3 each and default propensities θi satisfying

θ1 > 1 and 1/2 > θ2 > θ3 > 0. That is, the first type always defaults, and types 2 and 3 default

if they expect enforcement probability to be lower than θ2 and θ3 < θ2, respectively. P is given

by (1). To ease notation, ki denotes the signal cutoffs of each type i = 1, 2, 3.20

To see why clustering of types 2 and 3 forms in this case, observe first that ki must be

(weakly) decreasing in type, since propensity to default θi is decreasing in type. Hence, the

following two cases are possible: k2 > k3 or k2 = k3. Moreover, by Proposition 3 and the fact

that x = X in the limit, strategy cutoffs k2 and k3 must satisfy:

lim
ν→0

E(P |x = ki) = lim
ν→0

E(min{1, X/ψ}|x = ki) = E(min{1, ki/ψ}|x = ki) = θi, i = 2, 3. (13)

20Note that indeterminacy obtains in this example under complete information. For example, if X = 1/6,
there exists an equilibrium in which only agents of type-1 default. In this equilibrium P = (1/6)/(1/3) = 1/2,
and hence P ≥ θ2 > θ3. However, for θ2 > 1/4 > θ3, there is also an equilibrium in which agents of type-2 also
default, since P = 1/4 in such a case. Analogously, for θ3 > 1/6, there is an equilibrium in which all agents
default, since P = 1/6.
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That is, an agent of type 2 and 3 who receives a signal equal to signal cutoff ki must be indifferent

between defaulting and repaying. We now show how to solve for k2 and k3 and that it is possible

to have k2 = k3 despite θ2 > θ3.

To that end, consider what happens when k2 > k3. In such a case, when signal noise is

sufficiently small, we must have k2 − ν > k3, since all signals are within ν of each other by the

law of large numbers. This implies that a type-2 agent knows that, when her signal x is equal to

her strategy cutoff k2, all type-3 agents are receiving signals above k3, and hence they all repay.

Consequently, the only unknown from her perspective is the default rate among her own type,

since she does not know how many agents of type-2 might be receiving signals below k2. Let ψ2

be this random variable.

Determining the distribution of ψ2 is key to solving the indifference condition (13). In this

case the distribution is uniform, which is a standard result known as the Laplacian property

(Morris and Shin, 2003). To see why, note that, since all type-2 agents use the same cutoff k2,

when a type 2 receives signal x = k2, she understands that the rank of her signal among signals

of type-2 agents determines the default rate among type-2 agents. For example, a median signal

would imply default rate ψ = 1/2, a first quartile signal would imply default rate ψ = 1/4, and

so on and so forth. The key observation here is that the rank of any random variable is uniform,

and hence the default rate ψ2 is also uniform. Accordingly, in the limit we have

E(min{1, k2/ψ}|x = k2) =

∫ 1

0

k2

1
3

+ 1
3
ψ2

dψ2 = 3k2 log(1/3 + ψ2/3)
∣∣∣1
0

= θ2,

and hence k2 =
θ2

3 log 2
≈ 0.48θ2.21

We can analogously calculate k3 by using the fact that a type-3 agent receiving x = k3 must

believe that the default rate is ψ = 2/3 + (1/3)ψ3, where ψ3 pertains to the default rate among

21The min operator in P does not bind in this example, since k2 < 1/3 when θ2 < 0.5 and ψ = 1/3+ψ2/3 ≥ 1/3
given that all type-1 agents default.
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her own type, which type-3 deems uniformly distributed. Note that the belief about ψ of a

type-3 agent with x = k3 entails a distribution that is shifted upward relative to type-2 agent

receiving x = k2, which was 1/3 + (1/3)ψ2. This will become important for the emergence of a

cluster, as we shall see. Solving the indifference condition, we obtain k3 =
θ3

3 log(3/2)
≈ 0.82θ3.

When θ2 and θ3 are not too far apart, it is clear that k2 > k3 is not possible. Accordingly, the

two types must cluster on the same strategy profile despite having different intrinsic propensities

to default, which implies k2 = k3. The above disparity in beliefs about ψ is the key driver behind

clustering: a type-3 agent receiving x = k3 expects a higher default rate and hence a lower

enforcement probability than a type-2 agent, which incentivizes a type-3 agent receiving x = k3

to default.

Proposition 4 generalizes this result and provides a formula to solve for the common limit

threshold k∗ = k2 = k3. To derive this result, we build on the key property of beliefs in global

games with heteregeneous agents established by Sákovics and Steiner (2012) and known as the

belief constraint. They show that, even though the Laplacian property no longer holds when

signal cutoffs of different types are within ν of each other, it holds on average in the following

sense:22 If we randomly draw an agent of type 2 or 3, each receiving her respective cutoff signal,

the average belief about the distribution of the joint default rate of both types, denoted by ψ23,

will still be uniform. This is sufficient to solve for the limit equilibrium cutoff because k2 = k3

as signal noise vanishes in the limit, and hence we do not need to make a distinction between

individual beliefs across the two types. Specifically, instead of solving (13), we can use the

average indifference condition of types 2 and 3 and substitute out the average belief of the two

types by the uniform distribution as we integrate over ψ23:

22Although we rely on Sákovics and Steiner (2012), our characterization technique in the proof goes beyond
their specific framework and it determines when an endogenous cluster forms. While they restrict agent prefer-
ences to guarantee the emergence of a single limit cutoff for all agents, we characterize the endogenous emergence
of decision clusters as a function of agent heterogeneity, generalizing the applicability of the belief constraint to
games with asymmetric equilibria.
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1

2
(E(min{1, k∗/ψ}|x = k2) + E(min{1, k∗/ψ}|x = k3)) =

∫ 1

0

k∗

1
3

+ 2
3
ψ23

dψ23 =
1

2
(θ2 + θ3).

Applying this approach to our example, we obtain that the common limit threshold for both

types 2 and 3 is k∗ =
θ2 + θ3

3 log 3
.23

Importantly, the two types have different signal thresholds away from the limit, which leads

to differences in beliefs about P to offset differences in propensities to default θ. It is only in the

limit that the two cutoffs coincide. The key observation behind the belief constraint, which is

instrumental to derive the above result, is that when signal noise is small, the probability that

agents of type-2 receiving x = k2 assign to the event that signals generated for type-3 agents

fall in the interval between the two cutoffs exactly offsets the probability that agents of type-3

receiving x = k3 assign to the event that signals of type-2 agents fall into the same interval.

2.2.6 Policy implications of equilibrium clustering

Clustering turns out relevant from a policy perspective as it is driven by an externality, which

we refer to as the enforcement externality. This can be readily gleaned from our numerical

example. Note that if there is a cluster of agents who may default, the most effective policy

may be to prevent type-2 agents from defaulting by reducing their repayment amount, as this

automatically prevents agents of type-3 from defaulting. As long as θ2 and θ3 are not too far

apart, which is precisely when the cluster forms, it will be better than preventing type-3 from

defaulting. A recent example of a policy in this spirit is the 2009 Home Affordable Modification

Program (HAMP), which targeted homeowners in the U.S. who could prove that they were

underwater and had not yet defaulted.24

23The min operator in the average indifference condition does not bind, since θ2 + θ3 < 1 and thus k∗ < 1/3.
24Sákovics and Steiner (2012) derive a related result in the context of their model.

24



2.3 Provision of credit

Having characterized equilibrium in the enforcement game, we next turn to the analysis of the

model implications for the provision of credit. To this end, we lay out the lender’s problem and

analyze the equilibrium of the lending market, after Xo has been chosen and the shock s has

been realized. We focus on the case of a single default cluster to ease the exposition.

2.3.1 Lender problem

Lenders are risk neutral and rationally anticipate the outcome of the enforcement game. They

deal with a mass of entrepreneurs and must break even in expectation by the law of large

numbers. They compete in a Bertrand fashion. For convenience, we normalize their cost of

funds to zero.

Bertrand competition implies that lenders offer an equilibrium contract (b, w̄) that maximizes

entrepreneurs’ expected payoffs subject to a non-negative profit condition and to the repayment

behavior determined by capacity X and thresholds k(w).25 Profits from a loan (b, w̄), given

project return w, are

π(w,m, b, w̄) :=


(y + b)w̄ − b k(w) ≤ X(
m+ (1−m)(1− γ)

)
µ(y + b)w − b k(w) > X.

(14)

Accordingly, the lender problem is given by:

maxb,w̄

 ∫
{w:k(w)≤X}

(y + b)(w − w̄)dF + (1− P )γ

∫
{w:k(w)>X}

µ(y + b)wdF

 , (15)

25Payoff maximization subject to zero profits follows from the usual arguments. Since agents are ex-ante
identical, there is no profitable deviating contract for a lender: either such contract is less attractive to consumers
or yields negative profits. In addition, if the equilibrium contract does not maximize agent payoffs, a lender can
make positive profits by offering a contract arbitrarily close to the payoff-maximizing one and attract all agents.
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subject to

b ≤
∫

{w:k(w)≤X}

(y + b)w̄dF + (P + (1− P )(1− γ))

∫
{w:k(w)>X}

µ(y + b)wdF, (16)

and the enforcement capacity constraint P = P (X,ψ).

To ensure interior solution, we impose an assumption that the dead-weight loss from default-

ing (1−µ) is high enough so that arbitrarily large loans cannot be recouped through liquidation.

Assumption 2.
∞∫̄
w

w̄dF (w) + µ
w̄∫
0

wdF (w) < 1 for all w̄ ≥ 0.26

This assumption is needed because production technology is linear in our model and hence

it may pay to scale up projects ad infinitum and simply liquidate all of them ex post.

2.3.2 Equilibrium provision of credit

Proposition 6 states the main result, which applies to an initial situation when lenders choose

loan size b such that the default rate is minimal, i.e., equal to ψ = F (w̄). It shows that, if

enforcement capacity X falls to some level X ′ < k(w∗), there are only two possibilities: the

default rate jumps or b contracts. The immediate corollary of this result is that the price

schedule for loans as a function of their size is discontinuous. While larger loans may be offered,

they are offered at a disproportionately higher price.

Lemma 4. k(w∗) in Proposition 5 is strictly increasing with respect to w̄.

Proposition 6. Let (bX , w̄X) be the equilibrium loan size associated to X under the assumptions

in Proposition 5 and let ψX be the corresponding equilibrium default rate. If X = k(w∗) the

equilibrium contract (bX′ , w̄X′) and the default rate ψX′ associated to any X ′ < X satisfy either

bX′ < bX or ψX′ > F (w̄X′).

26The assumption guarantees that, as b goes to infinity and hence b/(y+ b) goes to one, there is no repayment
cutoff w̄ that would make lenders earn non-negative profits, even when P = 1.
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The intuition behind the above result is that larger loan sizes b are necessarily associated

with a higher equilibrium repayment cutoff w̄. This follows from the zero profit condition. A

higher repayment cutoff, in turn, increases default propensities of all agents by equation (5),

and raises cluster’s strategy threshold k(w∗) = χ(w∗) (as shown in Lemma 4).

Figure 4 provides the impulse-response analysis of a shock s that reduces enforcement ca-

pacity. Initially, enforcement capacity X is high and sustains the lowest default rate ψ = F (w̄)

for some value of b, which determines the initial position of the strategy profile k(w), which

corresponds to the line labeled “high credit.” After a shock lowers enforcement capacity to

some X ′, this equilibrium is no longer optimal because agents with returns between w̄ and ŵ

would choose to default – as implied by the original position of k(w) (“high credit”). As a

result, only two scenarios are possible. The first scenario involves a jump in the default rate to

F (ŵ), in effect raising the cost of credit and repayment cutoff w̄, and a downward shift of the

“high credit” line resulting in even more defaults. In the second scenario b falls so as to prevent

the jump in the default rate by shifting down the strategy profile k(w) to the position labeled

as “low credit”, which sustains the low default rate F (w̄′). As we show in the next section,

since defaults and liquidations are socially wasteful, preventing default is generally optimal for

reasonable parameterizations of the model.27 (In the Online Appendix, we provide a numeri-

cal example illustrating how credit reacts to a depletion of enforcement based on the previous

three-type setup.)

2.4 Accumulation of enforcement capacity

We close the model by assuming that before the lending market opens a benevolent planner

chooses the enforcement capacity to maximize the expected entrepreneur payoffs net of capacity

27If X is very low it is possible that the loan size b at which X = χ(w∗) is so small that the cluster contains
only a tiny mass of entrepreneurs. In such a case, it may be optimal to increase b and let the cluster default.
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Figure 4: Equilibrium Strategy in the Global Game

Notes: The figure plots equilibrium cutoff k(w) as implied by Corollary 1 for quasi-concave χ(w) and two
different values of b: high value (red line, labeled high credit) and a low value (blue line, labeled low credit).
The plot illustrates how a drop in enforcement capacity from X to X ′ leads to a contraction of credit.

costs c(Xo) :

max
Xo

[E(V (Xo − s))− c(Xo)], (17)

where V (X) denotes the expected payoff of agents from the equilibrium contract associated with

X, i.e., the loan that solves (15), and the expectation is taken over the distribution of shocks s.

3 Quantitative analysis

Here we calibrate our model to study its quantitative implications. To this end, we consider a

binary shock that hits with probability p ∈ [0, 1] and consider two shock sizes. In the first case,

we assume the shock is large, simulating a severe financial crisis. In the second case, we focus

on a smaller shock, simulating regular recessions.

For demonstrational purposes, we set the size of the stylized crisis shock to s = 0.018, which

corresponds to the difference in delinquency rates on commercial loans in the U.S. between the
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pre-crisis period 2000-07 (2.3% delinquency rate) and the crisis period 2008-09 (4.1%).28 We set

the stylized recessionary shock to 0.4% (s = 0.004), which is half the average absolute deviation

of the default rate on commercial loans between 2000 and 2007. Note that, when X corresponds

to the mass of liquidations that can be enforced, the size of the hike in default rate on existing

loans coincides with the magnitude of the decline in enforcement resources from the perspective

of the lending market.29 We are motivated by this basic logic in considering a direct shock to

capacity and using the spike in default rates on loans in the data as a measure of the size of the

shock to enforcement.

We choose the remaining parameters to ensure that, when the probability of the shock is nil

(p = 0), the model’s static implications are consistent with the U.S. data.

3.1 Parameterization

We independently select the value of average returns Ew, liquidation value µ, and the shape

of return distribution F following the quantitative business-cycle literature that focuses on

enforcement frictions (we also normalize equity y to one). In particular, the values of these

parameters are drawn from Bernanke, Gertler and Gilchrist (1999) and Christiano, Motto and

Rostagno (2014), two of the workhorse models of the business cycle literature on financial

frictions. We then jointly choose the volatility of returns σ, linear capacity costs c(Xo) = coXo,

and private benefit from lack of enforcement γ to match the average debt-to-equity ratio in

the U.S., the average delinquency rate on commercial loans, and the average bankruptcy costs

relative to pre-bankruptcy firm value in the U.S. Table 1 lists the value of the parameters and

the corresponding targets in the data and their values in the calibrated model.

28Source: Federal Reserve Bank of St. Louis.
29For example, if each default proceeding takes 100 hours of a judge’s time per year for a period of n years,

and there is a spike of 1000 new default cases in the economy from the usual level of 3000 cases, this event
subtracts 100,000 judge hours from the available court resources per year for the next n years. Hence, if initial
enforcement capacity was, say, 1,000,000 judge hours per year, the residual capacity from the perspective of new
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Table 1: Parameters and Statistics

Parameter Value Source

Independently selected parameters
y 1
Ew 1.02 Bernanke, Gertler and Gilchrist (1999)
µ 0.88 Bernanke, Gertler and Gilchrist (1999)

F Lognormal
Bernanke, Gertler and Gilchrist (1999),
Christiano, Motto and Rostagno (2014)

Jointly selected parameters
σ 3/8
c(X) 0.088X
γ 0.33

Statistic Model Data

Targeted moments

Debt-to-equity ( b
y
) 0.8 0.8a

Default rate (ψ) 2.2% 2.3%b

Enforcement cost/project value 12.7% 12.5%c

Other relevant moments

Capacity costs/debt (c(Xo)/b) 0.3%

Capacity utilization ( ψ
X

) 83.4%
Cluster size (F (w∗)− F (w̄)) 4.5%
% strategic agents (θ(w) ∈ (0, 1)) 11.2%

a Gomes, Jermann and Schmid (2016) report the average leverage ratio b
k in the U.S. between

1971 and 2012 of 0.42, which corresponds in our model to a debt-to-equity ratio of 0.84 (if k = y+ b).
The debt-to-equity ratio is 0.52 in Christiano, Motto and Rostagno (2014) and 1 in Bernanke, Gertler
and Gilchrist (1999).

b2000-2007 average delinquency rate on commercial and industrial loans. Source: Board of Gov-
ernors of the Federal Reserve System (US), Delinquency Rate on Commercial and Industrial Loans,
All Commercial Banks [DRBLACBS], retrieved from FRED, Federal Reserve Bank of St. Louis.

cAverage bankruptcy costs, relative to pre-bankruptcy firm value, of chapter 7 (8.1%) and chapter
11 (16.9%) bankruptcies in the U.S. (Bris et al., 2006).

As Table 1 shows, the calibrated model not only matches data targets but has sensible

predictions in several respects that we did not target. For example, capacity buildup costs

relative to debt are 0.3 percent. The cluster that arises in the calibrated model includes only

lending was 700,000 judge hours per year before the shock and 500,000 after the shock.
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4.5% of the agents, and the pool of strategic agents includes 11.2% of the population. This

is consistent with the notion that most agents in the economy are nonstrategic and hence not

sensitive to enforcement probability.

3.2 Quantitative findings

3.2.1 Static implications

Our model implies that in the steady state the utilization rate of enforcement capacity is 83

percent; that is, the steady state default rate ψ = F (w̄) uses up 83 percent of enforcement

resources. Yet, enforcement capacity is binding in the sense that any shock that depletes en-

forcement resources leads to a contraction of credit. This is because X = k(w∗), implying that

credit supply is the highest compatible with the low-default equilibrium for the given level of

enforcement resources. Furthermore, we note that credit supply would be 20 percent higher had

enforcement been freely available in this economy.

3.2.2 Dynamic implications

Figure 5 illustrates the impact of a sudden depletion of enforcement resources on the equilibrium

loan size b for each type of the shock and as a function of its ex ante probability p (rationally

anticipated by the planner). When p is very low, the crisis shock implies a contraction of credit

by as much as 30%. Under the average shock, credit goes down by 5%. Importantly, in neither

of the two cases is it optimal to let the cluster default and, hence, the enforcement constraint

X = χ(w∗) is always binding. This result underscores the strength of the endogenous link

between enforcement and credit supply predicted by our model.

Interestingly, although the gap b(s = 0)−b(s > 0) slightly shrinks as the shock becomes more

likely, it is still substantial for any p. The key reason is that, while higher shock probabilities
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Figure 5: Enforcement Capacity and Shock Propagation

Notes: The figure shows the impact of the shock on equilibrium loan size b. It plots loan levels for each
realization of the shock s (two levels) as a function of shock probability p.

induce the planner to accumulate precautionary capacity Xo to dampen the effect of the shock

on credit provision, this extra capacity also leads lenders to extend more credit in normal times

by relaxing the borrowing constraint imposed by X = χ(w∗). Accordingly, our model is capable

of generating large credit fluctuations in response to fluctuations in enforcement resources.

In Section A of the Appendix, we further discuss our choice of some key parameters of the

model, such as the variance of returns (σ) and the rents from lack of enforcement (γ), and relate

them to existing micro-level and cross-country evidence. There we show, for example, that

substantial heterogeneity is needed to match observed default rates and to obtain meaningful

enforcement utilization rates. We also discuss evidence that suggests our choice of the value

of the critical parameter γ is reasonable in light of the data. In addition, we illustrate in the

Online Appendix the role of strategic complementarities in the provision of credit by comparing

the credit supply under the assumption that the efficient equilibrium is always played to the

amount of credit under the assumption that the highest default-equilibrium is always selected.
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4 Robustness to Information Aggregation

We conclude the analysis by discussing how to extend the baseline setup to prevent borrowers

from perfectly inferring X from loan terms, which we ruled out by assumption.

The possibility of multiple equilibria in the presence of endogenous public signals in a global

games setup, such as prices (b, b̄ in our case), has been originally raised by Angeletos and Werning

(2006) and Angeletos et al. (2006) as a criticism of the global games methodology when applied

to environments in which markets aggregate information through publicly observed prices. The

basic idea is that market prices generate a public signal that is naturally more precise than the

idiosyncratic private signals they aggregate, serving as a coordination device that brings back

equilibrium multiplicity.

This criticism does not readily apply to our analysis for the following reason: In credit

markets, lenders extend credit before borrowers decide to default and hence their information,

however precise it may be at that time, becomes outdated when the loans are due and agents

decide whether to default or repay. This delay makes the earlier public signal potentially less

precise than later private signals, even if the public signal aggregates some earlier private signals.

According to the result established by Angeletos and Werning (2006) and Angeletos et al. (2006),

the presence of a less precise public signal is not enough to resuscitate indeterminacy.

To formalize this argument, we now sketch an extension of our model that allows agents to

infer information about X along the lines above and argue that it boils down to our setup in

the limit. We do not incorporate this extended setup in the paper because it would significantly

complicate our proofs. This alternative specification is based on the idea that lenders do not

perfectly observe X at the time the credit market opens but instead observe a public signal of

its true value. However, between the time credit is extended and loans are due, entrepreneurs

receive more precise information regarding enforcement resources.
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Specifically, consider the following change to the baseline model. After the planner chooses

Xo and the shock s is realized, lenders and entrepreneurs observe a public signal x̃ regarding

enforcement capacity X = Xo − s. Assume that x̃ is distributed according to continuous cdf

H̃(x̃|X) with full support on [0, 1] for all values of X. After observing this public signal, lenders

issue loan contracts to entrepreneurs, who then invest these funds in their projects. Next, project

returns are realized and agents receive, as in the benchmark model, idiosyncratic private signals

x = X + νη and simultaneously decide whether to repay or default.

The introduction of a public signal observed by lenders requires two modifications. First,

entrepreneur beliefs about X conditional on the public signal x̃ before receiving their idiosyn-

cratic signals are no longer uniform (recall that agents have uniform priors in the benchmark

model). However, given that H̃(x̃|X) is continuous and has full support, agents’ conditional

beliefs will also be continuous and have full support on [0, 1]. As Frankel et al. (2003) show, the

global games selection works whenever the prior belief satisfies these conditions. Intuitively the

reason is that, as ν → 0 any continuous prior with full support becomes roughly uniform in the

interval [X − ν,X + ν]. Second, the entrepreneurs problem must be changed to incorporate the

fact that lenders do not know X. Accordingly, lenders in this case solve

maxb,w̄ E

 ∫
{w:k(w)≤X}

(y + b)(w − w̄)dF + (1− P )γ

∫
{w:k(w)>X}

µ(y + b)wdF
∣∣∣x̃
 , (18)

subject to

b ≤ E

 ∫
{w:k(w)≤X}

(y + b)w̄dF + (P + (1− P )(1− γ))

∫
{w:k(w)>X}

µ(y + b)wdF
∣∣∣x̃
 , (19)

and the enforcement capacity constraint P = P (X,ψ).

It is clear that, if x̃ is sufficiently precise, the solution to (18) will be responsive to changes
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in X, and the relationship between credit and enforcement capacity will closely approximate

the one in the benchmark model where X is observed by lenders without noise.

5 Conclusions

We have analyzed capacity-constrained enforcement in a canonical model of debt-financed en-

trepreneurial activity. We have shown that shocks that deplete enforcement resources may lead

to a spike in the aggregate default rate and trigger credit rationing. We have identified policies

that can mitigate this outcome. We have also illustrated the quantitative implications of our

model when calibrated to the data. Although stylized in nature, this analysis shows that the

propagation mechanism we focus on is quantitatively relevant.

APPENDIX

A Discussion of key parameters and sensitivity analysis

Here we relate more closely the key parameters of the model to the data and discuss how they
affect our results. For additional analysis see the Online Appendix.

Heterogeneity of returns (σ). Heterogeneity of returns affects equilibrium outcomes in
our model by modulating the degree of strategic complementarity. As returns become more
concentrated, so do agents’ propensities to default, leading to a larger default cluster. This
leads to unrealistically large default waves if capacity falls below the cluster threshold. For
instance, when X = 0.05, the cluster size is 4.5% for σ = 3

8
, while it is 75% for σ = 1

16
.

It is worth mentioning that our selection of σ = 3/8 represents the midpoint between the
value of σ = 1/4 in Christiano, Motto and Rostagno (2014) and σ = 1/2 in Bernanke, Gertler
and Gilchrist (1999).

Heterogeneity is essential to deliver the targeted default rate and leverage. To illustrate
the necessity of having heterogeneous returns, Figure 6 depicts the relationship between X
and both b (left) and ψ (right), assuming different variance of returns. As is clear from the
figure, the default rate hardly rises above zero for σ = 1

16
in normal times. This is because

more concentrated return distributions have a thinner lower tail; hence, as b and w̄ go up with
capacity, the default rate barely changes. Having a concentrated distribution of returns (σ = 1

16
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Figure 6: Model-implied Relationship between Enforcement, Credit Supply and Default Rate

Notes: The figure shows the relationship between enforcement capacity X and loan size b (left) and default rates
ψ (right), for log-normal distributions of returns F (w) with different variances for the calibrated parameters.

or 1
8
) also leads to counterfactually high debt-to-equity ratios (b/y) and to low enforcement

capacity utilization (ψ/X).

Capacity costs (co). Our choice of unit capacity costs co = 0.088 represents 12.7% of the
pre-liquidation value of the projects subject to liquidation in equilibrium, which we consider
reasonable. This is roughly the midpoint of the two estimates reported by Bris, Welch and Zhu
(2006), who use bankruptcy data from Arizona and New York State and estimate that direct
bankruptcy costs represent 8.1% of the firm’s pre-bankruptcy value in Chapter 7 bankruptcies
(liquidation) and 16.9% in Chapter 11 (restructuring). Djankov et al. (2008) estimate that legal
enforcement costs in the U.S. are 7% of the pre-bankruptcy value of a generic firm filing for
bankruptcy. These include court and attorney fees, as well as other fees such as bankruptcy
administrator, notification and accountant fees. These studies do not include indirect costs
such as government funding of the bankruptcy court system not covered by court fees, thus
underestimating overall enforcement costs. The value of this parameter is crucial, as it limits
the ability of the planner to accumulate precautionary enforcement capacity. For these values,
as we have shown, ex post enforcement capacity is a scarce resource.

Rents from the lack of enforcement (γ). The parameter γ is set equal to 33%, which
in the model determines the recovery rates on defaulted loans when X falls below the critical
threshold χ(w∗), i.e., when enforcement is imperfect (P < 1). To relate this aspect of the model
to the data, we use the cross-country database on credit enforcement constructed by Djankov
et al. (2008) to estimate the drop in recovery rates associated with an increase in enforcement
delays illustrated in Figure 1. To do so, we focus on the sub-sample of 20 countries with English
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legal origin in their dataset and run an OLS regression of the average recovery rate (arecov in
the dataset) on the time lag in years between default and receiving a payment (atimepay) and
GDP per capita, which we include as a control for the level of economic development.30 The
regression predicts a 3.7 percentage point drop in recovery rates (from 85% to 81%) associated
with the 38% increase in bankruptcy timelines experienced in the U.S. between 2008 and 2015.
In the model, recovery rates drop about 4 percentage points (from a value of 77%) as X falls
below χ(w∗).

B Proofs

We first prove equilibrium multiplicity under common knowledge and then present the proofs
of the global games version of the model. First we prove Lemmas 1 and 2.

Proof of Lemma 1. Given the maximization problem (3), an entrepreneur with returns w finds
it is optimal to repay if

u(1, w, 1, b, w̄)) ≥ E(P )u(0, w, 1, b, w̄) + (1− E(P ))u(0, w, 0, b, w̄).

Substituting for u(a, w, 1, b, w̄)), a = 0, 1, using (3), we get that repayment is optimal if

(y + b)(w − w̄) ≥ (1− E(P ))γµ(y + b)w.

Solving for E(P ) yields

E(P ) ≥ 1− 1

µγ

(
1− w̄

w

)
=: θ(w, w̄).

Proof of Lemma 2. The first part of the Lemma is a direct consequence of the functional form
of θ. To prove the second part, note that θ(w̄, w̄) = 1. Also note that θ(w, w̄) = 0 if

1− 1

µγ

(
1− w̄

w

)
= 0⇒ w = w̄/(1− µγ).

Since θ(w, w̄) is strictly decreasing in w for all w̄ > 0, the set of returns for which θ(w, w̄) ∈ (0, 1)
is the interval (w̄, w̄/(1−µγ)). For w < w̄ the condition for repayment cannot be satisfied since
P ∈ [0, 1] but θ(w, w̄) > 1. Similarly, when w > w̄/(1− µγ) the condition for default cannot be
satisfied since θ(w, w̄) < 0.

Proof of Lemma 3. We simplify notation by writing χ(w) instead of χ(w, w̄) (same for θ). The
existence and uniqueness of χ(w) directly follows from Assumption 1, given that P (·, ψ) is
continuous, has full range in [0, 1] and is strictly increasing at any X such that P (X,ψ) <

30We obtain a coefficient on atimepay equal to −9.42, significant at the 1% level, with an adjusted R2 of 0.84.
The estimate is robust to introducing additional controls.
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1. Hence, χ is a well-defined, continuous mapping from returns in W = (w̄, w̄/(1 − γµ)) to
enforcement capacity.

If P is given by (1) then it trivially follows that χ(w) = F (w)θ(w) from the equilibrium
condition (8). F (w)θ(w) is a continuous and real-valued function. The derivative of θ(w)F (w)
is given by (

1− 1

µγ

(
1− w̄

w

))
f(w)− w̄

w2

1

µγ
F (w),

which has the same sign as

1− w

w̄
(1− µγ)− F (w)

wf(w)
.

If
F (w)

wf(w)
is increasing, which follows from the first condition in Assumption 1, this expression

is strictly decreasing. Now, since the second term is zero at w = 0 and
F (w)

wf(w)
is increasing and

since the second condition in Assumption 1 implies limw↓0
F (w)

wf(w)
< 1, the expression —and

hence the slope of θ(w)F (w)— is initially positive and eventually negative for high enough w.
That is, θ(w)F (w) is single-peaked, i.e., it is strictly quasi-concave on W .

Proof of Proposition 1. Note that under the stated assumption χ(w) is single-peaked onW . Let
wmax = argmaxw≥w̄ χ(w). First, consider the case of X < X := χ(w̄). If w̄ < wmax, it must be
that the equilibrium condition χ(w) = X has only one solution w∗ > wmax onW . The existence
of this solution follows from the fact that χ is continuous, increasing at w = w̄ and single-peaked,
and it is equal to zero at w̄/(1− γµ). The latter is due to the fact that θ(w̄/(1− γµ)) = 0 and
hence the smallest capacity X satisfying P ((X,F (w̄/(1 − γµ))) = 0 is X = 0 given property
(iv) of admissible P in Definition 1. Accordingly, the equilibrium is unique in this case. The
same argument applies when w̄ ≥ wmax. If X = X then w1 = w̄ is also an equilibrium.

Second, let X > X̄. In this case, χ(w) lies below X, implying that, for any given P such
that all agents with default propensity less than P default, there is enough capacity so that the
enforcement probability is higher than P, i.e., χ(w) < X for all w. Thus, equilibrium is unique
at w∗ = w̄ and implies ψ = F (w̄). If X = X̄ then wmax is a solution of equilibrium condition
χ(w) = X, representing a second equilibrium.

Finally, if X ∈ (X, X̄) there are three equilibria, given that the quasi-concavity of χ yields
two solutions on W to χ(w) = X, and that there is an equilibrium at w∗ = w̄ with ψ = F (w̄)
since χ(w̄) = X < X.

Proof of Proposition 2. The “only if” part follows from the following argument. When χ is
decreasing only three things can happen. If χ(w̄) ≤ X then χ(w) < X for all w > w̄ and
the unique equilibrium involves ψ = F (w̄). If χ(w) = X has a unique solution ŵ, then neither
χ(w̄) ≤ X nor χ(w̄/(1− γµ)) ≥ X hold, so the unique equilibrium implies ψ = F (ŵ). Finally, if
χ(w̄/(1−γµ)) ≥ X then χ(w) > X for all w < w̄/(1−γµ) and ψ = F (w̄/(1−γµ). To complete
the argument, consider the case in which χ(·) is constant on some interval of returns. Any such
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interval is associated with a value of capacity X for which there exists a continuum of equilibria.
However, since χ is monotone there are at most a countable number of such intervals, and thus
the set of capacities at which there exists multiple equilibria has Lebesgue measure zero.

Now consider the “if” part. If χ(·) is strictly increasing in some interval (w1, w2) ⊆ (w̄, w̄/(1−
γµ)) then, the interval (χ(w), χ(w′)) is non-degenerate, and for any X ∈ (χ(w1), χ(w2)) the
following is true by the continuity of χ: (a) there exists w ∈ (w1, w2) such that χ(w) = X;
(b) either there is w′ ∈ (w̄, w1) such that χ(w′) = X or χ(w̄) ≤ X; and (c) either there is
w′′ ∈ (w2, w̄/(1 − γµ)) such that χ(w′′) = X or χ(w̄/(1 − γµ)) ≥ X. Fact (a) implies there is
always an equilibrium with ψ = F (w). Fact (b) implies that there is at least another equilibrium
with either ψ = F (w′) or ψ = F (w̄). Finally, fact (c) involves at least a third equilibrium with
ψ = F (w′′) or ψ = F (w̄/(1− γµ)).

B.1 Equilibrium of the global game

To prove the results, we proceed as follows. First, we present equilibrium existence, selection,
and characterization results for the model with a generic discrete distribution of returns. Then,
we provide the proofs of the results in the paper by deriving the limit equilibrium of sequence
of games with discrete distributions that uniformly converge to F.

B.1.1 General discrete distribution of returns

In this economy, W ⊂ [0,∞) is a finite set of possible returns, each with a positive mass, that
are distributed according to the commonly known discrete distribution F , with probability mass
function f.

Given contract (b, w̄), we make the following assumption about agent payoffs.

Assumption 3. For all w ∈ W,

(i) u(0, w, 0) 6= u(1, w, 0); and

(ii) u(0, w, 1) 6= u(1, w, 1).

Condition (i) says that no agent is indifferent between paying back the loan and defaulting
when P = 0, i.e., there is no agent with θ(w) = 0. Similarly, (ii) says that no agent is indifferent
at P = 1, that is, there is no agent with θ(w) = 1. This assumption is made for technical
convenience, since it simplifies the proof of uniqueness by implying the existence of dominance
regions for ν sufficiently small. It is not needed as F approximates a continuous distribution,
since the mass of agents for which it is violated becomes arbitrarily small.

Note that agents with w < w̄ (θ(w) > 1) and those with θ(w) < 0 behave in a non-strategic
fashion: The former agents always choose a = 0, and the latter choose a = 1, regardless of P.
Hence, our focus is on pinning down the behavior of types in the set W∗ := {w ∈ W : θ(w) ∈
(0, 1)}, with its lowest and highest elements respectively denoted wl and wh.

Abusing notation, let χ(w,w′) be the enforcement capacity X satisfying P (X,F (w′)) = θ(w).
Note that χ(w,w′) is strictly decreasing in w and increasing in w′ for all w,w′ ∈ (w̄, w̄/(1−γµ)).
Notice also that Assumption 1 implies that χ(wh, w̄) > 0 since P (0, ψ) = 0 but θ(wh) > 0.
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Similarly, χ(wl, w̄/(1− γµ)) < 1 since P (1, ψ) = 1 by the continuity of P and condition (iii) in
Assumption 1, but θ(wl) < 1.

To prove existence and characterize equilibrium with discrete distributions we assume that
the noise scale factor satisfies 0 < ν < ν̄ := min {χ(wh, w̄), 1− χ(wl, w̄/(1− γµ))} .31

We first establish that there exists a unique equilibrium of the game with finite types, fea-
turing cutoff strategies.

Theorem 1. The game has an essentially unique equilibrium.32 Equilibrium strategies are
characterized by cutoffs k(w) on signal x, such that all agents of type w ∈ W∗ choose action
a = 1 if x ≥ k(w) and a = 0 otherwise.

Proof. The proof logic is as follows. First, we argue that the set of equilibrium strategy profiles
has a largest and a smallest element, each involving monotone (cutoff) strategies. Second, we
show that there is at most one equilibrium in monotone strategies (up to differences in behavior
at cutoff signals). But this implies that the equilibrium is essentially unique.

The existence of a smallest and a largest equilibrium profile in monotone strategies follows
from existing results on supermodular games by Milgrom and Roberts (1990), Vives (1990) and
Van Zandt and Vives (2007). Consider the game in which we fix the profile x of signal realizations
and agents choose actions {0, 1} after observing their own signals. It is straightforward to
check that the game satisfies the conditions of Theorem 5 in Milgrom and Roberts (1990),
which states that the game has a smallest and a largest equilibrium. That is, there exist
two equilibrium strategy profiles, a(x) and ā(x) such that any equilibrium profile a(x) satisfies
a(x) ≤ a(x) ≤ ā(x). Moreover, if we fix the action profile of all agents, the difference in expected
payoff from choosing a = 0 versus a = 1 for any given agent is increasing in x since default rates
are the same across signal profiles while X is higher (in expectation) at higher signal profiles,
thus implying a higher expected enforcement probability. That is, expected payoffs exhibit
increasing differences w.r.t. x, and Theorem 6 in Milgrom and Roberts (1990) applies: a(x) and
ā(x) are nondecreasing functions of x. But, because an agent’s strategy can only depend on her
own signal, all agents must be following cutoff strategies.

To show that there is at most one equilibrium in monotone strategies, we make use of the
next two lemmas. The first lemma shows that equilibrium cutoffs are bounded away from zero
and one. The second lemma uses these bounds to establish the following translation result:
When all cutoffs are shifted by the same amount ∆, expected enforcement probabilities go up.
Equipped with such results we will show that enforcement probabilities go up as we move from
the smallest to the largest equilibria, implying that there must be a unique profile of cutoffs at
which indifference conditions (20) are satisfied.

Let k + ∆ = (k(w) + ∆)w∈W∗ , while k and k̄ represent the profile of cutoffs associated with
the smallest and largest equilibrium, respectively. Abusing notation, let E[P |k;x] represent the
expected enforcement probability of an agent receiving signal x when agents use cutoff profile
k.

31This upper bound on ν is helpful to show uniqueness of equilibrium by ensuring that boundary issues
associated with signals close to 0 or 1 only arise when capacity is such that all agents have a dominant strategy.

32In the sense that equilibrium strategies may differ in zero probability events.
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Lemma 5. If k is a profile of equilibrium cutoffs then k(w) ∈ [χ(w, w̄)−ν/2, χ(w, w̄/(1−γµ))+
ν/2] for all w ∈ W∗.

Proof. Note that k is an equilibrium if it solves the following set of indifference conditions:

E[P |k; k(w)] = θ(w) ∀w ∈ W∗. (20)

Note also that the value of X conditional on x is at least x− ν/2 and that ψ ≤ F (w̄/(1− γµ)).
Given this and the fact that P is increasing in X and decreasing in ψ we have that

E[P (X,ψ)|k; k(w)] ≥ P (k(w)− ν/2, F (w̄/(1− γµ))).

But this implies that E[P |k; k(w)] > θ(w) when k(w) > χ(w, w̄/(1− γµ)) + ν/2, violating the
indifference condition of type w. This is because P (χ(w, w̄/(1−γµ)), F (w̄/(1−γµ))) = θ(w) and,
by Assumption 1, P is strictly increasing at (χ(w, w̄/(1− γµ)), F (w̄/(1− γµ))) since θ(w) < 1.
Likewise, the value of X conditional on x is at most x+ ν/2 and ψ ≥ F (w̄). Accordingly,

E [P (X,ψ)|k; k(w)] ≤ P (k(w) + ν/2, F (w̄)),

which yields the above lower bound on k(w) when we replace E[P |k; k(w)] with θ(w).

Lemma 6. If k is a profile of equilibrium cutoffs then E[P |k; k(w)] < E[P |k + ∆; k(w) + ∆]
for all ∆ > 0 and all w ∈ W∗ such that k(w) + ∆ ≤ k̄(w).

Proof. First, note that the density of X conditional on an agent receiving signal x ∈ [ν/2, 1−ν/2]
is given by h

(
x−X
ν

)
. Also notice that an agent of type w defaults if she receives a signal x <

k(w), and thus, that the fraction of type-w agents defaulting when capacity is X is given by

H
(
k(w)−X

ν

)
. Since ν ≤ χ(wh, w̄) ≤ χ(w, w̄) and, by Lemma 5, k(w) ≥ χ(w, w̄) − ν/2, we

have that k(w) ≥ ν/2. Likewise, k(w) + ∆ ≤ k̄(w) ≤ 1 − ν/2 by Lemma 5 and the fact that
ν ≤ 1−χ(wl, w̄/(1−γµ)) ≤ 1−χ(w, w̄/(1−γµ)). Hence, we can obtain the following inequality
by a well-defined change of variables:

E[P (X)|k; k(w)] =∫ k(w)+ν/2

k(w)−ν/2
P

(
X,F (w̄) +

∑
w′

H

(
k(w′)−X

ν

)
f(w′)

)
h

(
k(w)−X

ν

)
dX

<

∫ k(w)+ν/2

k(w)−ν/2
P

(
X + ∆, F (w̄) +

∑
w′

H

(
k(w′)−X

ν

)
f(w′)

)
h

(
k(w)−X

ν

)
dX

=

∫ k(w)+∆+ν/2

k(w)+∆−ν/2
P

(
X ′, F (w̄) +

∑
w′

H

(
k(w′) + ∆−X ′

ν

)
f(w′)

)
h

(
k(w) + ∆−X ′

ν

)
dX ′

= E[P |k + ∆; k(w) + ∆].
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The inequality is strict because k being an equilibrium profile means that E[P |k; k(w)] = θ(w) <
1 for all w ∈ W∗. Accordingly, enforcement probabilities, conditional on x = k(w), are less than
1 for a positive measure of X ∈ [x−ν/2, x+ν/2], and hence, expected enforcement probabilities
go up strictly when capacity increases by ∆ by Assumption 1.

Equipped with Lemma 6, we can argue that k = k̄. Assume, by way of contradiction, that
k(w) < k̄(w) for some w ∈ W∗. Denote ŵ = arg maxw∈W∗(k̄(w)− k(w)) and ∆̂ = k̄(ŵ)− k(ŵ).
By Lemma 6, we have that

θ(ŵ) = E[P |k; k(ŵ)] < E[P |k + ∆̂; k̄(ŵ)] ≤ E[P |k̄; k̄(ŵ)] = θ(ŵ),

where the last inequality comes from the fact that default rates at k̄ are lower than at k + ∆̂ ≥ k̄,
and thus, the expected enforcement probability conditional on x = k̄(ŵ) is higher.

Next, we proceed to characterize the limit equilibrium as ν → 0. First, note that for threshold
profile k(·) to be an equilibrium profile, it must satisfy the set of indifference conditions (20).

To solve this system of equations, we need to pin down agent beliefs when they receive their
threshold signals. To do so, we make use of a generalized version of the original belief constraint
(Sákovics and Steiner, 2012): On average, conditional on x = k(w), agents with types in a
subset W ′ ⊆ W∗ believe that the default rate of agents in W ′ is uniformly distributed in [0, 1].
The default rate in W ′ when capacity is X is given by

ψ(X,W ′) =
1∑

W ′ f(w)

∑
W ′

H

(
k(w)−X

ν

)
f(w). (21)

Lemma 7 (belief constraint). For any subset W ′ ⊆ W∗ and any z ∈ [0, 1],

1∑
W ′ f(w)

∑
W ′

Pr
(
ψ(X,W ′) ≤ z

∣∣x = k(w)
)
f(w) = z, (22)

where Pr
(
·
∣∣x = k(w)

)
is the probability assessment of ψ(W ′, X) by an agent receiving x = k(w).

Proof. See the Online Appendix.

The previous result is instrumental in characterizing equilibrium thresholds as ν goes to zero.
In particular, it allows us to derive closed-form solutions for the above indifference conditions
from which we can obtain k. In stating this result, we refer to a partition Φ = {W1, · · · ,WI}
of W∗ as being monotone if maxWi < minWi+1, i = 1, · · · , I − 1, and denote the lowest and
highest elements of Wi by wi and w̄i, respectively. Also, let F−(w) =

∑
w′<w f(w′) and χ−(w)

the capacity X satisfying P (X,F−(w)) = θ(w).

Theorem 2. In the limit, as ν → 0, the equilibrium cutoff strategies are given by a unique
monotone partition Φ = {W1, · · · ,WI} and a unique vector (k1, · · · , kI) satisfying the following
conditions:

(i) k(w) = k(w′) = ki for all w,w′ ∈ Wi.
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(ii) ki > ki+1 for all i = 1, · · · , I − 1.

(iii) χ−(wi) ≤ ki ≤ χ(w̄i) for all i = 1, · · · , I.

(iv)
∫ F (w̄i)

F−(wi)
P (ki, z)dz =

∑
Wi
θ(w)f(w) for all i = 1, · · · , I.

Proof. From Theorem 1 we know that for each ν > 0, there exists essentially a unique equilib-
rium, which is in monotone strategies. Let kν(w) represent the equilibrium threshold of type-w
agents associated with ν > 0, with kν denoting the equilibrium cutoff profile. The first step of
the proof is to show that kν uniformly converges as ν → 0, and to identify the set of indifference
conditions that pin down the limit equilibrium. Let

Aw(z|kν ,W ′) := Pr
(
ψ(X,W ′) ≤ z

∣∣x = kν(w)
)

denote the strategic belief of an agent of type w ∈ W ′ when she receives her threshold signal
x = kν(w).

Lemma 8. There exist a unique partition {W1, · · · ,WI} and a set of thresholds k1 > k2 > · · · >
kI such that, as ν → 0, for all w ∈ Wi, i = 1, · · · , I, kν(w) uniformly converges to ki. Moreover,
thresholds k = (k1, · · · , kI) solve the system of limit indifference conditions

1∫
0

P

ki, F (w̄) +
∑
∪j<iWj

f(w′) + z
∑
Wi

f(w′)

 dAw(z|k,Wi) = θ(w), ∀w ∈ Wi, ∀i, (23)

where Aw(z|k,Wi) represents the strategic beliefs of type-w agents in the limit and satisfies the
belief constraint (22).

Proof. See the Online Appendix.

Equipped with this set of indifference conditions, we next prove that the partition of types
is monotone and that thresholds satisfy (iii) and (iv) in the theorem.

We show that the partition of types must be monotone by way of contradiction. Assume
that there are two types w > ŵ such that w ∈ Wi and ŵ ∈ Wm with m > i. First note
that the LHS in (23) is bounded below by P (ki, F (w̄) +

∑
∪j≤iWj

f(w′)) and bounded above by

P (ki, F (w̄) +
∑

∪j<iWj

f(w′)). Given this, since θ(ŵ) < 1 the enforcement probability when all

agents with types in Wm default is strictly less than 1, i.e., P (km, F (w̄) +
∑

∪j≤mWj

f(w′)) < 1.

Otherwise, (23) would be violated. In addition, m > i implies that km < ki by the above lemma
and that

∑
∪j<iWj

f(w′) <
∑

∪j≤mWj

f(w′). Combining all this, we arrive at the following contradiction

θ(w) ≥ P

ki, F (w̄) +
∑
∪j<iWj

f(w′)

 > P

km, F (w̄) +
∑
∪j≤mWj

f(w′)

 ≥ θ(ŵ).

43



The monotonicity of the type partition implies that F (w̄) +
∑

∪j≤iWj

f(w′) = F (wi) and that

F (w̄) +
∑

∪j<iWj

f(w′) = F−(wi). Given this, it is straightforward to check that the above bounds

on the LHS in (23) lead to condition (iii) in the theorem.
Finally, to obtain condition (iv) from (23), we make use of the belief constraint in the limit,

which can be written as
1∑

Wi

f(w)

∑
Wi

Aw(z|k,Wi)f(w) = z. (24)

Multiplying both sides of (23) by f(w)∑
Wi

f(w)
and summing over w ∈ Wi we get

1∫
0

P

(
ki, F

−(wi) + z
∑
Wi

f(w′)

)
d

 1∑
Wi

f(w)

∑
Wi

Aw(z|k,Wi)f(w)

 =

∑
Wi
θ(w)f(w)∑
Wi
f(w)

.

Using the belief constraint (24) to substitute for the last term in the LHS, we obtain∫ 1

0

P

(
ki, F

−(wi) + z
∑
Wi

f(w′)

)
dz =

∑
Wi
θ(w)f(w)∑
Wi
f(w)

. (25)

Note that F−(wi) + z
∑
Wi

f(w′) ∼ U [F−(wi), F (w̄i)] with density 1∑
Wi

f(w)
since z ∼ U [0, 1]. Hence,

we can rewrite (25) as

1∑
Wi

f(w)

∫ F (w̄i)

F−(wi)

P (ki, z)dz =

∑
Wi
θ(w)f(w)∑
Wi
f(w)

,

yielding condition (iv).

B.1.2 Continuous distribution of returns

We next prove Propositions 3 and 4 by showing that, for any sequence of discrete distributions
that converges to F , the limit equilibrium converges to the unique equilibrium characterized by
Proposition (4).

Proof of Propositions 3 and 4. To prove both propositions we show that (uniform) convergence
of discrete return distributions to F implies that the equilibrium characterization in Theorem
2 leads to the limit characterization in Proposition 4. Since Theorem 2 pins down the unique
equilibrium satisfying agents’ indifference conditions E(P |k, k(w)) = θ(w) while P and θ are
Lipschitz continuous and bounded in [w̄, w̄/(1−γµ)], the sequence of equilibrium thresholds must
converge, with its limit being the solution to the limit equilibrium conditions in Proposition 4.

Let {F n}∞n=1 be any sequence of discrete distributions satisfying Assumption 3 that uniformly
converges to F and thus limn→∞ F

n(w) = F (w) and limF n−(w) = F (w) for all w ∈ [0,∞). This
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implies that χ−(w,w′)→ χ(w,w′) for all w,w′ since P (·) and χ(·) are continuous and bounded.
The limit characterization in Proposition 4 is derived as follows. Part (a) follows from

conditions (i)-(ii) in Theorem 2, meaning that k is decreasing, so we can partition the space
of types into a collection of successive intervals in which k alternates between being strictly
decreasing and constant. Part (b) follows from (ii)-(iii): a strictly decreasing k in a given
interval of types is approximated by a (growing) collection of consecutive, singleton Wi in the
discrete economy since χ−(w) → χ(w) and thus wi → wi in condition (iii) whenever χ(·) is
strictly decreasing in (wi, wi). But then, as the mass associated with each of these singletons
goes to zero, F− approximates F , and condition (iii) implies that k converges to χ(w).

Part (c) follows from parts (a) and (b) and conditions (iii) and (iv). Since χ(w) is continuous
and bounded, parts (a) and (b) imply that k(w) = χ(w) at the boundaries of an interval in
which k is constant, except possibly when wi = w̄, in which case condition (iii) requires that
kj ≥ χ(wj). Expression (10) is the limit of (iv).

Proof of Proposition 5. We now argue that χ(w) being increasing at w̄ and quasi-concave leads
to a partition consisting of two intervals, the first one in which k is constant and the second one
in which it is strictly decreasing.

First, notice that k decreasing implies that there must be at least one pooling threshold
because χ(w) is initially increasing. To show why there is only one, we use the fact that
condition (c) requires that k1 = χ(w̄1) ≥ χ(w1). First notice that χ(w̄/(1 − γµ)) = 0 since
θ(w̄/(1− γµ)) = 0 but P (X,F (w̄/(1− γµ))) > 0 for X > 0 by Assumption 1. Hence, χ(w) has
a single peak in [w̄, w̄/(1 − γµ)], given that it is initially increasing and strictly quasi-concave.
Accordingly, we must have that χ(w) is increasing at w1 and decreasing at w̄1. Otherwise,
either χ(w) is decreasing at w1 or χ(w) is increasing in (w1, w̄1). The former case implies that
χ(w̄1) < χ(w1), violating (c). The latter case implies that k1 = maxw∈[w1,w̄1] χ(w). But then
condition (10) is violated since∫ F (w̄1)

F (w1)

P (k1, z)dz >

∫ F (w̄1)

F (w1)

P (χ(F−1(z)), z)dz =

∫ w̄j

wj

θ(w)f(w)dw,

where the last equality comes from the change in variable w = F−1(z) (dz = f(w)dw) and thus
P (χ(F−1(z), z) = P (χ(w), F (w)), which is equal to θ(w) by the definition of χ(w).

Accordingly, by single peakedness, if χ(w) is increasing at w1 and decreasing at w̄1 we cannot
find another interval satisfying the same condition that does not intersect with [wi, wi]. Thus,
there must be a unique interval of returns at which k is constant. Finally, since χ(w) is increasing
in [w̄, w1], the monotonicity of k(w) requires that w1 = w̄.

We finish the proof by showing that w̄1 = w∗, where w∗ is the unique solution to (11) in
(w̄, w̄/(1− γµ)). To do so, given the above change of variable, we write (11) as follows:∫ F (w∗)

F (w̄)

P (χ(w∗), z)dz −
∫ F (w∗)

F (w̄)

P (χ(F−1(z)), z)dz = 0. (26)

We show that this equation must have a unique solution by arguing that the LHS is equal to
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zero and strictly increasing at w∗ = w̄, strictly quasi-concave in (w̄, w̄/(1 − γµ)), and negative
at w∗ = w̄/(1− γµ).

Denote wmax the unique maximizer of χ(·) in (w̄, w̄/(1 − γµ)). Since χ(w) is increasing in
(w̄, wmax) and F−1(z) < w∗ for all z < F (w∗), the difference P (χ(·), z) − P (χ(F−1(z)), z) is
positive and increasing in (w̄, wmax). Accordingly, the LHS of (26) is increasing in [w̄, wmax)
from an initial value of zero. Similarly, χ(·) being decreasing in (wmax, w̄/(1− γµ)) implies that
the LHS is decreasing in that interval. To see why, express the LHS of (26) as∫ F (wmax)

F (w̄)

[
P (χ(w∗), z)− P (χ(F−1(z)), z)

]
dz +

∫ F (w∗)

F (wmax)

[
P (χ(w∗), z)− P (χ(F−1(z)), z)

]
dz.

Both integrals are decreasing in w∗ for w∗ > wmax since P (χ(·), z)−P (χ(F−1(z)), z) is decreasing
in (wmax, w̄/(1− γµ)). In addition, the second integral is negative since χ(w∗) < χ(F−1(z)) due
to the fact that F−1(z) < w∗ and χ(·) is decreasing in (wmax, w̄/(1 − γµ)). Finally, notice that
P (χ(w∗), z) = 0 when w∗ = w̄/(1 − γµ) for all z ≤ F (w∗), implying that the LHS of (26) is
strictly negative at w∗ = w̄/(1− γµ).

Proof of Corollary 1. We prove the corollary by showing that, when w̄ < wmax, w
∗ is the unique

solution to (12). Obviously, if w̄ ≥ wmax then θ(w)F (w) is strictly decreasing for w > w̄, and
conditions (a)-(c) in Proposition 4 lead to k(w) = θ(w)F (w), i.e., to w∗ = w̄.

Condition (c) in Proposition 4 implies that k1 ≥ θ(w̄)F (w̄) = F (w̄). Hence, solving the
integral and substituting for k1 = θ(w∗)F (w∗) and w1 = w̄, we can express the LHS of (11) as∫ F (w∗)

ki

ki
z
dz +

∫ ki

F (w̄)

dz = ki log

(
F (w∗)

ki

)
+ ki − F (w̄) = θ(w∗)F (w∗)(1− log θ(w∗))− F (w̄).

Equating the RHS of the last expression to the RHS of (11) yields (12).

We next prove Proposition 6. Before that, we establish that the lenders’ problem has an
interior solution.

Lemma 9. The solution to (15) involves finite b for all X ∈ [0, 1].

Proof. To prove that lenders always set b <∞, first note that Proposition 5 implies the existence
of a type ŵ ≥ w̄ such that a = 0 if w < ŵ and a = 1 otherwise. Therefore, we can express the
budget constraint (16) as follows:

b

y + b
≤
∫ ∞
ŵ

w̄dF (w) + µ (P + (1− γ)(1− P ))

∫ ŵ

0

wdF (w). (27)

The LHS converges to one as b→∞. Hence, we need to show that the RHS is strictly less than
1 for all w̄. Since ŵ ≥ w̄ and the RHS is increasing in P for fixed ŵ, the RHS is bounded above
by ∫ ∞

ŵ

ŵdF (w) + µ

∫ ŵ

0

wdF (w), (28)
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which is strictly less than one for all ŵ by Assumption 2.

Proof of Lemma 4. We need to show that χ(w∗) is increasing in w̄. Note that the propensity to
default θ goes up with w̄ and that χ(w) is decreasing at w∗. Given this, if we can show that w∗

goes down after an increase in w̄ then we would have proven that χ(w∗) increases with w̄.
In the proof of Proposition 5, we showed that the LHS of indifference condition (26) is

decreasing in [wmax, w̄/(1 − γµ)] and thus differentiable almost everywhere w.r.t. w∗ in that
interval of returns. In addition, we argued that P (χ(·), z) − P (χ(F−1(z)), z) is positive in
(w̄, wmax). Hence, the partial derivative of the LHS w.r.t. w̄ is negative, since the only effect of
an infinitesimal increase in w̄ < wmax is to increase the lower limit of the integral of P (χ(·), z)−
P (χ(F−1(z)), z). Given this, we can implicitly differentiate (26) to obtain

∂LHS

∂w∗
dw∗

dw̄
+
∂LHS

∂w̄
= 0.

Since both ∂LHS
∂w∗

and ∂LHS
∂w̄

are negative, it must be that dw∗

dw̄
< 0.

Proof of Proposition 6. Having shown that χ(w∗) is increasing in w̄ (Lemma 4), we just need
to prove that the equilibrium w̄ is strictly increasing in b when X = χ(w∗). This is because in
such a case, a drop from X to X ′ < X must lead to either a drop in b so that X ′ ≥ χ(w∗

′
) in

the new equilibrium, or the equilibrium default rate necessarily satisfies ψ′ > F (w∗
′
) > F (w̄′)

because X ′ < χ(w∗
′
).

To do so, we first note that the budget constraint (27) must hold with equality when X =
χ(w∗). To see why, notice that the propensity to default θ(·) and hence k(·) does not depend on b
by Proposition 1. Accordingly, for any given w̄, the objective function (15) is strictly increasing
in b since P , {w : a = 0} and {w : a = 1} are constant for all b, whereas payoffs under both
repayment and default are strictly increasing in b. Hence, since the LHS of budget constraint
(27) is strictly increasing in b, for any given w̄, lenders choose b so that the budget constraint
binds.

Given that the budget constraint holds with equality and the LHS of (27) is increasing in
b, we only need to show that the RHS of (27) is increasing in w̄ at the equilibrium w̄ when
X = χ(w∗). We do so by contradiction. Assume that the RHS is strictly decreasing in w̄ at
the equilibrium contract associated with X. Since X = χ(w∗), we must have that all agents
with w < w̄ default and those with w ≥ w̄ repay, implying that ŵ = w̄. In this context,
lowering w̄ while increasing b is feasible, since lenders’ revenue goes up after a reduction in w̄
(the RHS is strictly decreasing by assumption) while the cluster threshold goes down since χ(w∗)
is decreasing in w̄, so X ≥ χ(w∗) is still satisfied at the new contract. But notice that such an
alternative contract strictly increases agents’ expected payoffs since it raises gross returns while
reducing the deadweight loss of defaults, which are reverted back to agents’ payoffs given that
the zero profit condition binds. Accordingly a lender can deviate and offer a contract close to
this alternative contract and make positive profits, contradicting that the original contract is an
equilibrium.33 Hence, the equilibrium w̄ must go up with b when X = χ(w∗).

33Formally, note that the enforcement probability in equilibrium is P (χ(w∗), F (w̄)) = 1, given that χ(w∗) ≥
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