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Conventional wisdom holds that the models used to stress test banks

should be kept secret to prevent gaming. We show instead that secrecy

can be suboptimal, because although it deters gaming, it may also deter

socially desirable investment. When the regulator can choose the mini-

mum standard for passing the test, we show that secrecy is suboptimal

if the regulator is sufficiently uncertain regarding bank characteristics.

When failing the bank is socially costly, then under some conditions,

secrecy is suboptimal when the bank’s private cost of failure is either
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1 Introduction

According to Federal Reserve officials, the models that are used to stress test

banks are kept secret to prevent banks from gaming them. Indeed, if a bank

knows that the Fed’s models underestimate the risks of some class of assets,

the bank can invest in those assets without fear of failing the test. However,

banks complain about this secrecy, claiming that even their best efforts to

prepare for a test could result in unexpected and costly failure.

Our main contribution is to present conditions under which, contrary to

conventional wisdom and the statements of some policymakers, fully reveal-

ing the stress model to banks is optimal.1 The results build on the idea that

hidden models make banks cautious about risky investment, which could have

two effects: banks may game less, but they may also invest less in socially

desirable assets. Revealing the model leads to a better social outcome if the

second effect dominates. This idea leads to three main results. First, if banks

are sufficiently cautious about risky investment or if failing the test is suf-

ficiently costly to them, revealing the regulator’s model is optimal because

it prevents underinvestment in socially desirable assets. Second, even if the

regulator can adjust the test to make it easier to pass, revealing may still be

optimal if uncertainty about the bank characteristics is sufficiently high, or if

the regulator is forced to apply the same test to sufficiently different banks.

Third, if there is some social cost when banks fail the test, then the optimal

disclosure policy may be nonmonotonic in bank characteristics. For example,

revealing could be optimal when the bank’s bias toward risky investment or

the bank’s private cost of failure is either sufficiently high or sufficiently low.

In our baseline model, the bank can invest in one of two portfolios: a safe

portfolio, which will surely pass the test, or a risky portfolio, which may or

may not pass the test. We assume that the bank always prefers to invest in

the risky portfolio, whereas the regulator prefers the risky portfolio only if its

1See former Fed Governor Tarullo’s speech for arguments against fully revealing the
model. https://www.federalreserve.gov/newsevents/speech/tarullo20160926a.htm
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value during a crisis is sufficiently high. This value is represented by the state

of nature. The bank knows more than the regulator about the value of the

risky portfolio, and for simplicity, we assume that the bank observes the state

with certainty.

We capture the idea of a hidden stress test model by assuming that the

regulator observes a noisy signal of the state, and that the regulator passes a

bank that invested in the risky portfolio if and only if the signal realization

is above some threshold. If the bank fails the test, the regulator forces the

bank to alter its portfolio, which we assume is costly for the bank. If the bank

passes the test, the regulator leaves the bank’s portfolio unchanged. Because

the regulator bases his decision on a noisy signal, he could err by passing a

bank that invested in a socially undesirable portfolio or by failing a bank that

invested in a socially desirable portfolio.

When the regulator’s model is hidden, the bank fears failure and is there-

fore cautious, investing only when its privately observed state exceeds some

threshold. We refer to this threshold as the bank’s cautious threshold. In con-

trast, when the regulator reveals his signal, and that signal exceeds the passing

threshold, the bank invests in the risky portfolio regardless of its privately ob-

served state. So the bank may invest in the risky portfolio even if it knows

that doing so is harmful to society. In other words, the bank may game the

test.

We compare between two disclosure regimes: a transparent regime under

which the regulator reveals his signal to the bank before the bank selects a

portfolio, and a secrecy regime in which the regulator’s signal is kept secret.

We focus on two cases. In the first case, the regulator must follow an exoge-

nously given threshold for passing or failing the bank.2 In the second case,

the regulator can choose the passing threshold optimally. So in the second

case, the regulator has two tools to influence the bank’s portfolio decision: the

disclosure regime and the standard to which the bank is held. In both cases,

2For example, the regulator must ensure that the bank’s capital during an adverse stress
scenario does not fall below some predetermined level.
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the regulator announces and commits to the passing threshold publicly before

the bank selects its portfolio.

In the first case with an exogenously given threshold, we show that re-

vealing is optimal if the bank’s cautious threshold is sufficiently high. This

happens, for example, if the bank’s cost of failing the test is sufficiently high.

Intuitively, in this case, the bank’s fear of failing the test leads to a signifi-

cant reduction in socially beneficial investment, and this reduction more than

offsets the benefits from a reduction in a socially harmful investment.

In the second case in which the regulator can choose the passing threshold

optimally, he can reassure an overly cautious bank by lowering the passing

threshold, thereby making the test easier to pass. However, the bank’s cau-

tious threshold depends not only on the difficulty of the test but also on the

bank’s characteristics (e.g., cost of failing the test). If the regulator is certain

about the bank characteristics, he can precisely calibrate the bank’s cautious

threshold by adjusting the passing threshold, so it is optimal to not reveal.

However, precise calibration is impossible when bank characteristics are un-

known. We show that, under some conditions, if the regulator is sufficiently

uncertain about the bank’s characteristics, then revealing is optimal.

Finally, we focus on another force that increases the benefit of revealing

the regulator’s model. Failing the test and the resulting change in the bank’s

portfolio might be costly not only for the bank but also for society. We show

that if the social cost of failing the test is sufficiently high, it is optimal to reveal

the regulator’s signal. If instead, the social cost of failing the test is low, the

optimal disclosure regime depends on the bank’s cautious threshold, and in

particular, on the bank’s cost of failing the test. Interestingly, the relationship

between the optimal disclosure policy and the bank’s cost of failure is not

necessarily monotone.

For example, under some conditions, revealing is optimal when the bank’s

private cost of failing the test is either sufficiently high or sufficiently low.

Intuitively, if the cost is high, then fear of failing the test deters the bank from

taking a socially desirable risk, and so it is optimal to reveal. If the cost is
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low, fear of failure does little to deter investment in socially harmful assets.

But then it is better to reveal to avoid the social cost of failing the bank. In

other words, in this case, providing incentives to the bank via model secrecy

is too costly for the regulator.

2 Related Literature

The existing literature has focused on disclosure of regulators’ stress test results

to investors.3 In contrast, we focus on disclosure of regulators’ stress test

models to banks. To our knowledge, we are the first paper to study this

problem.

Our setting is a principal-agent problem in which the principal (the regu-

lator) and agent (the bank) each have private information, the agent takes an

action, and the principal can take a follow up action, which is costly both to

the agent and to the principal. Our focus is on whether the principal should

reveal his private information before the agent takes the action. Levit (2016)

also considers a setting in which a principal can reverse the agent’s action. In

his basic setting, the principal is more informed than the agent, so intervention

can protect the agent from bad outcomes. His paper shows that in some cases

the principal can obtain a better outcome by recommending an action to an

agent and committing not to intervene. In our setting, however, intervention

is bad for the agent and is crucial for providing incentives; instead, the princi-

pal chooses whether or not to disclose information related to his intervention

policy.

As in the delegation literature initiated by Holmstrom (1984)4, we rule out

transfers between the two parties. The case in which the regulator reveals his

3See Goldstein and Leitner (2017); Williams (2015); Goldstein and Sapra (2014); Bou-
vard, Chaigneau, and Motta (2015); Faria-e Castro, Martinez, and Philippon (2016); Inos-
troza and Pavan (2017); Orlov, Zryumov, and Skrzypacz (2017); Gick and Pausch (2012).

4See also Dessein (2002); Amador and Bagwell (2013, 2016); Amador, Bagwell, and
Frankel (2017); Grenadier, Malenko, and Malenko (2016); Chakraborty and Yilmaz (2017);
Harris and Raviv (2005, 2006); Halac and Yared (2016).
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information corresponds to a standard delegation problem in which the prin-

cipal delegates partial authority to the agent. In particular, by revealing his

signal, the regulator effectively restricts the bank’s action space to those ac-

tions that will surely pass the test. In contrast, the case in which the regulator

does not reveal his information is new to this literature and can be thought

of as “delegation with hidden evaluation.” The regulator does not restrict

the set of actions that the bank can take (i.e., there is full delegation), but

the regulator responds to the bank’s action based on an evaluation process (a

model) that is hidden from the bank. Our paper provides conditions under

which hiding the evaluation process is preferred to revealing it.

The idea that uncertainty regarding the regulator policy can affect incen-

tives appears in other settings. For example, Lazear (2006) shows hidden tests

could be a way to induce a socially optimal action, such as studying or not

speeding. In his setting, the regulator knows what the socially optimal ac-

tion is, whereas in our setting the regulator does not know. The possibility

of wrongful punishment in our setting can create excessive caution in banks,

which is the driving force behind our results. Freixas (2000) offers some jus-

tification for “constructive ambiguity” of bank bailout policy by showing that

under some conditions, it is optimal for the regulator to use a mixed bailout

strategy. In our paper, the regulator follows a deterministic policy rule to pass

or fail a bank, but the rule is based on information that could be unknown to

the bank.

Finally, there is a large empirical literature that documents how political

and regulatory uncertainty can affect the real economy, including reducing in-

vestment.5 In particular, Gissler, Oldfather, and Ruffino (2016) offer evidence

which suggests that uncertainty about the regulation of qualified mortgages

caused banks to reduce mortgage lending. The literature is consistent with

5For example, Julio and Yook (2012) document that high political uncertainty causes
firms to reduce investment during election years. Fernández-Villaverde, Guerrón-Quintana,
Kuester, and Rubio-Ramı́rez (2015) document that temporarily high uncertainty about fiscal
policy reduces output, consumption, and investment. See also Pástor and Veronesi (2013)
and Baker, Bloom, and Davis (2016).
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the idea in our paper that hidden tests could induce the bank to invest less.

3 Model

There are two agents: a bank and a regulator. The bank can invest in either

a risky portfolio or a safe portfolio. The payoff from investing in the risky

portfolio depends on an unobservable state ω ∈ Ω ≡ [ω, ω̄] ⊂ R. The payoff

to the bank is u(ω) and the payoff to the regulator is v(ω). The payoff to the

regulator represents the payoff to society. The payoff from investing in the

safe portfolio does not depend on the state, and is normalized to zero for both

the bank and regulator. That is, u and v are the relative gains from investing

in the risky portfolio, compared to the safe portfolio.

For example, in the context of stress tests, the state ω could represent

the value of the risky portfolio in a crisis, and the functions u and v could

represent the bank and regulator’s expected payoffs, which take into account

the probability of a crisis, the resulting losses, the payoffs during normal times,

etc.

We assume that u and v are continuous and differentiable. We also assume

that:

Assumption 1. u and v are strictly increasing.

Assumption 2. For all ω ∈ Ω, u(ω) > v(ω).

Assumption 3. v(ω) < 0 < v(ω̄)

Assumption 1 implies that both the regulator and the bank prefer higher

value. Assumption 2 implies the risky portfolio is more valuable to the bank

than to the regulator. This assumption captures the idea that the bank does

not internalize the social cost associated with risk. Assumption 3 captures the

idea that the regulator may not know which portfolio is best for society. The

regulator prefers the risky portfolio only if its value during a crisis is sufficiently

high. For use below, we define ωr to be the unique zero of v.
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For simplicity, we assume that the bank always prefers to invest in the

risky portfolio.6

Assumption 4. For all ω ∈ Ω, u(ω) > 0.

The regulator and the bank begin with a common prior belief about the

state ω, which prior belief is summarized by a continuous distribution function

G(ω) with support Ω. Before the bank selects its portfolio, the regulator and

the bank receive private signals about ω. For simplicity, we assume that the

bank receives a perfect signal—i.e., it observes ω. The regulator, however,

receives a noisy signal s ∈ S ⊂ R that follows a continuous distribution con-

ditional on ω. We let F (s|ω) and f(s|ω) denote the cumulative distribution

function and density function of the signal s conditional on ω.

Assumption 5 (Monotone Likelihood Ratio Property). If ω′ > ω, then the

ratio f(s|ω′)/f(s|ω) is strictly increasing in s.

Assumption 5 implies that 1 − F (s|ω) is strictly increasing in ω.7 That

is, the regulator is more likely to observe higher signals when the state ω is

higher.

After the bank chooses its portfolio, the regulator assesses the value of

the bank’s portfolio—i.e., the regulator performs a stress test. If the bank

chooses a safe portfolio, we assume the regulator passes the bank. If the bank

chooses a risky portfolio, the regulator uses his private information s to decide

whether to pass the bank. We assume that the bank passes if the signal s

exceeds some threshold; we consider not only exogenous thresholds but also

the case in which the threshold is optimally chosen by the regulator. Passing

the test means the regulator leaves the bank’s portfolio unchanged, whereas

failing the test means the regulator requires the bank to replace the risky

portfolio with the safe portfolio. This replacement incurs a cost cb > 0 to the

6This assumption helps us focus on the main tradeoff in our paper. It is easy to relax
this assumption, but relaxing this assumption does not provide any interesting insights.

7See Milgrom (1981).
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bank and cs ≥ 0 to the regulator. For example, these costs could represent

the opportunity cost of delaying investment in the safe portfolio.8 We allow

that the regulator may be uncertain about the bank’s cost of failing the test,

and we let H(c) = P (cb ≤ c) be the cumulative distribution function which

describes the regulator’s beliefs about the distribution of cb.

The focus of the paper is whether the regulator should reveal or not reveal

his private signal s to the bank. The sequence of events is as follows.

1. The regulator publicly commits to either reveal or not reveal his private

signal.

2. Nature chooses the state ω. The bank privately observes ω, and the

regulator privately observes the signal s.

3. In accordance with his prior commitment in step (1), the regulator either

reveals or does not reveal his signal.

4. The bank selects a portfolio: risky or safe.

5. The regulator conducts the test, passing or failing the bank.

6. Payoffs are realized.

• If the bank invested in the safe portfolio, both the bank and regu-

lator receive 0.

• If the bank invested in the risky portfolio, then if the bank passes

the test, the bank receives u(ω) and the regulator receives v(ω);

if the bank fails the test, the bank receives −cb and the regulator

receives −cs.
8We assume that investment in the risky portfolio is available only before the stress test.
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4 Exogenous Pass/Fail Rule

We begin our analysis with the case in which the regulator follows an ex-

ogenously given threshold rule for passing or failing the bank. So the only

decisions are in step (1) for the regulator and step (4) for the bank. In this

section, we focus on the special case in which: (i) the regulator has no uncer-

tainty regarding the bank’s private cost cb of failing the test, so the regulator’s

beliefs are a point mass at a particular cb > 0; and (ii) the social cost cs of

failing the bank is zero. In Section 6, we discuss the case in which cs > 0,

which will give us more results.

Let se be the exogenously given, publicly known threshold such that if

the regulator receives a signal s ≥ se, the bank passes the test. We first

characterize the bank’s investment decision. Then, we compare the regulator

payoffs under the two regimes: revealing the signal and not revealing. Assume

that if the bank is indifferent between investing and not investing, the bank

invests.

If the regulator reveals his signal s to the bank, the bank invests if and

only if it expects to pass the test—that is, the bank invests when s ≥ se,

irrespective of ω. This follows because the bank’s payoff from investing and

passing the test is positive for all states ω ∈ Ω, the payoff from not investing

is zero, and the payoff from investing and failing the test is negative. So when

the regulator reveals s, the bank uses its knowledge of the test to act in a way

that improves its payoff, regardless of the impact on society; i.e., the bank

games the test.

If, instead, the regulator does not reveal his signal, the bank’s action de-

pends only on the bank’s private information, the state ω. Conditional on ω,

the bank’s expected payoff from investing is [1−F (se|ω)]u(ω)−F (se|ω)cb. In

particular, with probability 1− F (se|ω), the bank passes the test and obtains

u(ω), and with probability F (se|ω), the bank fails the test and suffers a cost

cb. If the bank does not invest, its payoff is zero. Hence, the bank invests in
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state ω if and only if

[1− F (se|ω)]u(ω)− F (se|ω)cb ≥ 0. (1)

Next, we show that the bank follows a threshold investment policy: it

invests if and only if the state is sufficiently high. Specifically, if the left-hand

side of (1) is negative for all ω ∈ Ω, the bank never invests. Otherwise, denote

the lowest9 ω ∈ Ω that satisfies (1) by ωb(se). Because the left-hand side is

strictly increasing in ω, the bank invests if and only if ω ≥ ωb(se). We refer to

ωb(se) as the bank’s cautious threshold.

The cautious threshold can be found as follows. If the left-hand side is

positive at ω, then ωb(se) = ω; otherwise, ωb(se) is the unique zero of the left-

hand side, and by the implicit function theorem must be strictly increasing in

se. Intuitively, when the threshold for passing the test is higher, the bank is

less likely to invest because it is more afraid of failing the test.

The next lemma summarizes the results above:

Lemma 1. 1. When the regulator does not reveal his signal to the bank,

the bank invests if and only if ω ≥ ωb(se).

2. ωb(se) is increasing in se.

Given the bank’s equilibrium strategy, we compare the regulator’s payoff

under both regimes. If the regulator reveals his signal s to the bank, the bank

invests if and only if s ≥ se. So in state ω, the bank invests with probability

1 − F (se|ω). Taking the expectation across all states gives the regulator’s

expected payoff under the revealing regime:

Vr(se) ≡
∫
ω≥ω

[1− F (se|ω)]v(ω)dG(ω). (2)

If the regulator does not reveal his signal, the bank invests if ω ≥ ωb(se),

and if the bank invests in state ω, the bank passes the test with probability

9This exists because the left-hand side is continuous.
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1− F (se|ω). Hence, the regulator’s expected payoff is

Vn(se) ≡
∫
ω≥ωb(se)

[1− F (se|ω)]v(ω)dG(ω). (3)

Equations (2) and (3) show the effect of revealing the regulator’s signal s:

the bank invests for more states ω. That is, when the regulator reveals his

signal, the bank invests for all ω ∈ Ω, but when the regulator does not reveal

his signal, the bank invests only if ω ≥ ωb(se).

It is optimal for the regulator to reveal his signal if Vr(se) ≥ Vn(se). Rear-

ranging terms, we obtain that it is optimal to reveal if and only if∫ ωb(se)

ω

[1− F (se|ω)]v(ω)dG(ω) ≥ 0. (4)

Hence, whether it is optimal to reveal depends on whether the additional

investment in states [ω, ωb(se)] is socially beneficial. As we explain below, the

net effect from this additional investment on the regulator’s expected payoff

can be either positive or negative.

Specifically, if ωb(se) ≤ ωr, the left-hand side of (4) is negative, capturing

the idea that revealing the signal causes the bank to invest in socially unde-

sirable projects. On the other hand, if ωb(se) > ωr, the left-hand side can be

written as the sum of two terms:∫ ωr

ω

[1− F (se|ω)]v(ω)dG(ω) (5)

and ∫ ωb(se)

ωr

[1− F (se|ω)]v(ω)dG(ω). (6)

Expression (5) is negative and represents the cost of revealing the signal, as

mentioned above. We refer to this as the overinvestment effect of revealing

the signal. Expression (6) is positive and represents a benefit of revealing the

signal, which is that the bank invests in more states in which it is socially
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desirable to do so. Specifically, if the regulator does not reveal the signal,

the bank does not invest in states ω ∈ [ωr, ωb(se)), which would have given a

positive social payoff v(ω). Revealing the signal avoids this underinvestment

effect.

The discussion above suggests that it is optimal to reveal only if the un-

derinvestment effect (6) of not revealing the signal is sufficiently high or the

overinvestment effect (5) of revealing the signal is sufficiently low. The next

proposition formalizes this intuition.

Proposition 1. Given a passing threshold se such that Vr(se) > 0, there exists

ω̄I ∈ (ωr, ω̄) such that the regulator prefers to:
not reveal if ωb(se) ∈ (ω, ω̄I)

reveal if ωb(se) > ω̄I

either if ωb(se) ∈ {ω, ω̄I}.

The Proposition shows that whether it is optimal for the regulator to reveal

his signal depends on the bank’s cautious threshold ωb. When ωb is sufficiently

high, it is optimal to reveal because not revealing induces the bank to invest

too little in socially desirable projects. In contrast, if the cautious threshold

ωb is sufficiently low, but still above ω, it is optimal to not reveal because then

the bank invests less in socially undesirable projects.

Using Proposition 1, we can derive comparative statics as to how the regu-

lator’s optimal disclosure policy changes when model parameters change. For

example, consider ωb. Observe that the cautious threshold ωb is increasing in

the bank’s cost cb of failing the test. Hence, we have the following.

Corollary 1. Given a passing threshold se such that Vr(se) > 0, there exists
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c̄b ∈ (0,∞) such that the regulator prefers to:
not reveal if cb ∈ (0, c̄b)

reveal if cb > c̄b

either if cb ∈ {0, c̄b}.

In general, the bank’s cautious threshold ωb, which reflects the bank’s re-

luctance to invest when the regulator’s signal is hidden, depends not only on

the bank’s cost cb of failing the test, but also on the bank’s utility function

u. Particular functional forms for u could include parameters that describe

various other features, such as risk aversion or the extent of conflict of interest

u(·)−v(·) with the regulator. If such parameters have a monotonic relationship

to ωb, they would produce comparative statics similar to Corollary 1.

5 Optimal Pass/Fail Rule

The message of Proposition 1 is that revelation is optimal when the bank is

too cautious about investment otherwise. However, if the regulator can choose

and commit to an optimal se, then he has two ways to reassure an overly cau-

tious bank: he can reveal the signal s, as in the previous section, and he can

also make the test easier to pass by decreasing se. It is natural to ask whether

the freedom to choose the passing threshold se obviates signal revelation al-

together. In this section, we show that the answer to that question depends

on how certain the regulator is about cb. Intuitively, the more certain the

regulator is about cb, the more precisely he can calibrate the bank’s cautious

threshold ωb by adjusting se, making revelation unnecessary.

So in contrast to the previous section, suppose the passing threshold se can

be optimally chosen by the regulator, and recall that the regulator’s beliefs

about cb follow cumulative distribution H.
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5.1 Optimal passing thresholds

If the regulator reveals his signal, the bank can perfectly avoid test failure,

so its investment behavior is independent of cb. Hence, the regulator’s payoff

Vr(s) under revealing is identical to (2) in the previous section.

We can show that Vr(s) is strictly quasiconcave and therefore has a unique

maximum sr ∈ S. That is,

sr = arg max
s∈S

Vr(s).

To see why, observe that

V ′r (s) = −
∫

Ω

f(s|ω)v(ω)dG(ω) = −f(s)

∫
Ω

f(ω|s)v(ω)dω = −f(s)E[v(ω)|s],

so V ′r (s) has the same sign as −E[v(ω)|s], which by Assumption 5 is strictly

decreasing in s.10

To simplify the exposition, we focus on the case in which E[v(ω)|s] <
0 < E[v(ω)|s̄]. Then sr is interior and is the unique value which satisfies

E[v(ω)|sr] = 0.11 This condition says that when the regulator observes sr, he

is indifferent between having the bank invest in all states and having the bank

not invest at all.

Now suppose the regulator does not reveal the signal and selects passing

threshold s. Then by (1), the bank invests if and only if cb ≤ [F (s|ω)−1 −
1]u(ω). So, the probability that the bank invests in state ω is

k(s, ω) ≡ H([F (s|ω)−1 − 1]u(ω)).

Hence, the regulator’s payoff under not revealing is

Vn(s) ≡
∫

Ω

[1− F (s|ω)]k(s, ω)v(ω)dG(ω). (7)

10See Milgrom (1981).
11If sr ∈ {s, s̄}, not revealing weakly dominates revealing, for all parameter values.
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Observe that in the special case in which the regulator knows the bank’s type

(i.e., H has all of the mass on a particular cb), k(s, ω) is a step function, and

(7) reduces to (3).

Let sn denote an optimal passing threshold if the regulator chooses to not

reveal. That is,

sn ∈ arg max
s∈S

Vn(s).

Then it is optimal to reveal if and only if Vr(sr) ≥ Vn(sn).

5.2 Regulator knows cb

As a benchmark, we start with the case in which the regulator knows the

bank’s cost of failing the test. The next lemma shows that in this case, it is

optimal to reveal the test.

Lemma 2. If the regulator can optimally choose with commitment the passing

thresholds sr and sn, the regulator has no uncertainty about cb, and cs = 0,

then for all cb ≥ 0 it is weakly optimal to not reveal.

Intuitively, suppose the regulator used the optimal revealing threshold un-

der both disclosure regimes. If not revealing were worse than revealing, it must

be due to underinvestment. But then, the regulator could simply reduce the

not-revealing threshold to eliminate underinvestment without inducing over-

investment, and also pass the bank more frequently than under revealing.

5.3 Regulator does not know cb

Now suppose the regulator does not know the bank’s cost of failing the test. In

this case, the regulator cannot eliminate underinvestment without increasing

overinvestment, as he did in Lemma 2, because a test that eliminates underin-

vestment for one type of bank increases overinvestment for other types. When

types are very similar to one another, the regulator can still increase his payoff

above Vr(sr) by making the test easier and not revealing it. So, not revealing
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is optimal. However, when types are very different from one another, the reg-

ulator cannot reach the payoff Vr(sr) by making the test easier. In this case,

revealing becomes optimal.

Hence, one might expect that if the regulator is sufficiently uncertain re-

garding the bank’s cost of failure cb, it is optimal to reveal, and otherwise, it

is optimal not to reveal. In the following example, this intuitive prediction is

confirmed.

Example 1. Suppose Ω = [0, 1], G(ω) = ω (i.e., uniform), f(s|ω) = 2[(1 −
s)(1−ω) + sω], u(ω) = ω+ 0.5, and v(ω) = ω− 0.5. So investment is socially

desirable when ω > 0.5 and socially undesirable when ω < 0.5. Assume that

the distribution H over cb is lognormal with parameters µ = ln 2 and various

values of σ. This amounts to fixing the median of H at 2 and changing the

variance.

Figure 1 illustrates the density function of cb for several values of σ. The

figure shows that when σ is low, most of the mass is concentrated at the median

of the distribution. When σ is high, the distribution puts a high mass on very

low types and very high types.

Figure 2 illustrates the regulator’s payoffs Vr(sr) and Vn(sn), as a function

of various degrees of uncertainty σ about cb. The payoff from revealing Vr(sr)

does not depend on the level of uncertainty, whereas the payoff from not re-

vealing Vn(sn) is strictly decreasing in the level of uncertainty. For a very low

level of uncertainty, not revealing is strictly optimal. For a very high level of

uncertainty, revealing is strictly optimal.

To obtain more intuition for the result in Example 1, observe that from

Equation (7), the regulator’s payoff Vn(s) depends on the product of two func-

tions: the probability k(s, ω) that the bank invests in state ω and the prob-

ability 1 − F (s|ω) that the regulator passes the bank in state ω. Making the

test easier by reducing s shifts both functions upward, which leads to more

investment. However, the overall effect is ambiguous because investment in-

creases both in socially desirable states [ωr, ω̄] and socially undesirable states
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Figure 1: The distribution of cb is lognormal, with fixed µ = ln 2, which implies
a fixed median of 2. For fixed µ, the variance [exp(σ2) − 1] exp(2µ + σ2) is
increasing in σ.
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Figure 3: Panels a, b, and c plot k(sn, ω), which is the probability that the
bank invests in state ω, for increasing values of σ (i.e., increasing regulator
uncertainty about cb).

[ω, ωr].

Figure 3 illustrates the function k(s, ω) under different levels of uncertainty.

To see why not revealing is optimal when uncertainty about cb is very low,

consider panel 3a. When uncertainty is close to zero, the regulator can predict

with near certainty whether a bank that observes a particular ω will invest

or not. This closely approximates the situation in Lemma 2. So k(sn, ω) is

approximately a step function with step at ωb(sn), calculated when cb = 2

(the median of the distribution). In this case, the bank’s investment is very

sensitive to the bank’s private information ω, and so, the regulator can adjust

se so that the bank almost certainly does not invest in bad states [ω, ωr] and

almost certainly invests in good states [ωr, ω̄].

To see why revealing is optimal when uncertainty about cb is very high,

consider panel 3c. In this case, the function k(sn, ω) is nearly horizontal.

That is, the probability that the bank invests is very insensitive to the state

ω. Intuitively, when a large fraction of types have a very low cost of failure

and a large fraction of types have a very high cost, those with the low cost

invest in all states ω, those with high cost invest in no states, and only a very

small fraction of types with intermediate cost favor higher states. Therefore,

by adjusting the passing threshold, the regulator doesn’t change the relative
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likelihood of investment in good states ω versus bad states ω; instead he simply

scales the probability of investment, which is roughly constant across ω. For

example, by lowering the passing threshold s, the regulator can induce some

additional types with low cost to invest, but he cannot induce them to invest

only when it is socially optimal to invest. So, instead of essentially avoiding

investment in all states, these types invest in almost every state, which means

that when the regulator reduces underinvestment, he increases overinvestment.

In this case, if the regulator wanted to scale up the investment level, he would

need to reduce the passing threshold significantly, ending up passing the bank

in almost every state. But then revealing the regulator’s signal is optimal

because the regulator sets a high threshold for passing the test and uses its

information to eliminate some socially undesirable investment.

6 Social Cost of Failing the Bank

In this section, we examine whether it is optimal to reveal or not reveal the

regulator’s signal s when the social cost cs of failing the bank is strictly posi-

tive. We illustrate our result for the case in which the passing threshold se is

exogenous and the regulator knows the bank’s cost cb of failure.

If the regulator reveals his signal, the bank invests only if it observes a

passing signal s ≥ se. Consequently, under revealing, the regulator never fails

the bank, so regulator’s payoff Vr(se) under revealing is independent of cs and

identical to (2).

If the regulator does not reveal his signal, the bank invests if ω ≥ ωb(se),

and if the bank invests in state ω, the bank passes the test with probability

1− F (se|ω). Hence, the regulator’s expected payoff is

Vn(se) ≡
∫
ω≥ωb(se)

[1− F (se|ω)]v(ω)dG(ω)− cs
∫
ω≥ωb(se)

F (se|ω)dG(ω). (8)

The first term represents the case in which the bank invests and the regulator
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passes the bank. The second term represents the case in which the bank invests

and fails the test.

It is optimal for the regulator to reveal his signal if Vr(se) ≥ Vn(se). Rear-

ranging terms, we obtain that it is optimal to reveal if and only if∫ ωb(se)

ω

[1− F (se|ω)]v(ω)dG(ω) + cs

∫
ω≥ωb(se)

F (se|ω)dG(ω) ≥ 0. (9)

Comparing (9) to (4), revealing the signal now has two effects on the regula-

tor’s payoff: not only does it cause the bank to invest in more states [ω, ωb(se)],

but it also avoids the social cost cs of failing the bank. This suggests that if

the social cost cs of failing the bank is sufficiently high, it is optimal to reveal

the signal. Otherwise, it is optimal to reveal only if the underinvestment effect

(6) of not revealing the signal is sufficiently high or the overinvestment effect

(5) of revealing the signal is sufficiently low. The next proposition formalizes

this intuition.

Proposition 2. Given a passing threshold se and regulator signal distribution

F (s|ω), such that Vr(se) > 0, there exists a social cost of failure c̄s > 0 such

that:

1. If cs > c̄s, revealing is strictly preferred to not revealing.

2. If cs ≤ c̄s, then there exist ωI , ω̄I ∈ Ω, with ωI ≤ ω̄I (with strict inequal-

ity if cs < c̄s), such that:

(a) If ωb(se) ∈ (ωI , ω̄I), not revealing is strictly preferred to revealing.

(b) If ωb(se) < ωI or ωb(se) > ω̄I , revealing is strictly preferred to not

revealing.

(c) If ωb(se) = ωI or ωb(se) = ω̄I , the regulator is indifferent between

revealing and not revealing.

3. As cs decreases from c̄s to 0, ωI strictly decreases to ω and ω̄I strictly

increases to a value strictly less than ω̄.
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Part 1 captures the idea that when the social cost of failure is high, the

regulator would like to prevent failure by revealing the signal. In part 2, the

social cost of failure is low, and whether revealing is optimal depends not

only on the cost of failure but also on how not revealing affects the bank’s

investment decision. There are two circumstances in which it is optimal to

reveal. The first case is when not revealing the signal does very little to prevent

investment in bad projects—i.e., ωb(se) is very low. In that case, revealing the

signal induces only slightly worse investment behavior but avoids the cost of

failure. The second case is when not revealing the signal deters not only bad

investment but also much good investment—i.e., ωb(se) is very high. In that

case, revealing the signal permits this good investment and also avoids the

cost of test failure.

Because ωb(se) is increasing in cb, we obtain the following immediate corol-

lary, which is illustrated in Figure 4.

Corollary 2. Given passing threshold se, if cs > c̄s, revealing is optimal for

all cb ≥ 0. If cs ≤ c̄s, there exist cb, c̄b ∈ R+, with cb ≤ c̄b (strict inequality if

cs < c̄s) such that the regulator’s optimal policy is to
Reveal if cb ∈ [0, cb) ∪ (c̄b,∞]

Not reveal if cb ∈ (cb, c̄b)

Either if cb ∈ {cb, c̄b}.

Furthermore, cb and c̄b are respectively strictly increasing and strictly decreas-

ing functions of cs.
12

12The appendix works out the case in which the passing threshold may be optimally
chosen and cs > 0, but we omit it in the text because the intuition is similar to Lemma 2.
In that case, for any positive cs, not revealing is optimal for high enough cb, because the
optimal cautious threshold ωb may be induced with a low passing threshold and therefore a
low probability of costly test failure.
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Figure 4: The regulator’s optimal policy for the bank cost cb and social cost cs
of stress test failure. For social cost cs < c̄s, the optimal policy is nonmonotonic
in the bank’s private cost cb of test failure.

7 Conclusion

We present conditions under which it is socially optimal for a regulator to

reveal his stress testing model to the bank. The framework we present allows

that banks may game a publicly known model, the chief concern underlying the

Federal Reserve’s policy of model secrecy. We show that despite the possibility

of gaming, revealing the model may still be optimal, because uncertainty about

the regulator’s model may prevent banks from investing in socially valuable

assets. In addition, even when the regulator can reassure cautious banks by

relaxing the minimum standard to which they are held, revealing may be

optimal if the regulator is sufficiently uncertain about bank characteristics.

Finally, we show that if causing the bank to fail a stress test is socially costly,

the optimal disclosure policy may be nonmonotonic in bank characteristics;
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that is, revealing may be optimal for banks that have very high or very low

private cost of failure.

We are currently working on understanding optimal partial disclosure rules.

For example, the regulator may commit to identifying an interval in which his

private signal falls. Alternately, the regulator may commit to a stochastic map

from his privately observed signal to an arbitrary message space, in the manner

of Bayesian persuasion à la Kamenica and Gentzkow (2011). Relatedly, if

particular asset classes are more relevant to the stress test model than others,

the regulator may make distinct disclosure decisions regarding different classes

of assets.
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Appendix

7.1 Optimal Rule, Positive cs

The regulator will choose to reveal if Vr(sr) < Vn(sn). We show this is true

for sufficiently low bank cost of failure cb.

Proposition 3. If the regulator can optimally choose with commitment the

passing thresholds sn and sr, then for all cs ≥ 0, there exists a cb > 0 such

that the regulator’s optimal policy is to
Reveal if cb < cb and cs > 0

Not reveal if cb > cb

Either otherwise.

Furthermore, as cs increases to infinity, cb strictly increases to infinity.

7.2 Proofs

Proof of Proposition 1. Let J(ωb) =
∫ ωb

ω
[1 − F (se|ω)]v(ω)dG(ω). By (4), re-

vealing is strictly preferred if J(ωb) > 0, strictly not preferred if J(ωb) < 0,

and the regulator is indifferent if J(ωb) = 0. Observe that J ′(ωb) = [1 −
F (se|ωb)]v(ωb)dG(ω), which has the same sign as v(ωb). So by Assumptions 1

and 3, as ωb increases from ω to ωr to ω̄, J strictly decreases from J(ω) = 0

to J(ωr) < 0 and then strictly increases to J(ω̄) = Vr(se) > 0. Let ωI be the

unique ωb ∈ (ωr, ω̄) for which J(ωb) = 0, and the proposition follows.

Proof of Corollary 1. Note that Vr(se) > 0 implies se < s̄. So given ω ∈ Ω,

1 − F (se|ω) ∈ [0, 1), and because cb/(u(ω) + cb) is strictly increasing in cb,

there exists a unique cb(ω) ∈ R+ satisfying 1 − F (se|ω) = cb/(u(ω) + cb).

Furthermore, cb(ω) is strictly increasing in ω. Let c̄b ≡ cb(ω̄I), and apply

Proposition 1.
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Proof of Lemma 2. If Vn(sr) ≥ Vr(sr), then Vn(sn) ≥ Vn(sr) ≥ Vr(sr), so

not revealing is weakly optimal. On the other hand, if Vn(sr) < Vr(sr),

then
∫
ωb(sr)

[1 − F (sr|ω]v(ω)dG(ω) <
∫
ω
[1 − F (sr|ω)]v(ω)dG(ω), which im-

plies that 0 <
∫ ωb(sr)

ω
[1−F (sr|ω)]v(ω)dG(ω), so ωb(sr) > ωr. If so, there exists

ŝ ∈ S such that ŝ < sr and ωb(ŝ) = ωr. Then Vn(sn) ≥ Vn(ŝ) =
∫
ωb(ŝ)

[1 −
F (ŝ|ω]v(ω)dG(ω) =

∫
ωr

[1−F (ŝ|ω]v(ω)dG(ω) >
∫
ωb(sr)

[1−F (sr|ω]v(ω)dG(ω) =

Vr(sr).

Proof of Proposition 2. For fixed se and F (s|ω), denote

J(cs, ωb) = cs

∫
ω≥ωb

F (se|ω)dG(ω) +

∫ ωb

ω

[1− F (se|ω)]v(ω)dG(ω).

By Equation (9), revealing is strictly preferred if J(cs, ωb(se)) > 0, not reveal-

ing is strictly preferred if J(cs, ωb(se)) < 0, and the regulator is indifferent if

J(cs, ωb(se)) = 0.

Note that

∂J(cs, ωb)

∂ωb

=
(

[1− F (se|ωb)]v(ωb)− csF (se|ωb)
)
dG(ωb),

which has the same sign as

[1− F (se|ωb)]v(ωb)− csF (se|ωb), (10)

(Part 1): We first show that J(cs, ·) is strictly quasiconvex and, therefore,

has a unique minimizer in [ω, ω̄]. If cs = 0, then by Assumption 1, (10) is

strictly decreasing when ω < ωr and strictly increasing when ω > ωr. (By

Assumption 5, F (se|ω) > 0 for every ω > ω.) If cs > 0, then if ωb ≤ ωr,

(10) is strictly negative, and if ωb > ωr, (10) is strictly increasing in ωb,

crossing zero at most once. So J(cs, ·) is strictly quasiconvex. We denote the

unique minimizer in [ω, ω̄], as ωm(cs). If (10) is negative for all ω ∈ Ω, then

ωm(cs) = ω̄. Otherwise, ωm(cs) is the unique zero of (10), and so, ωm(cs) ≥ ωr.

Next, we show that the minimum J(cs, ωm(cs)) is increasing in cs, and that
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there is a unique cs > 0 such that J(cs, ωm(cs)) = 0. By the envelope theorem,

dJ(cs, ωm(cs))

dcs
=
∂J(cs, ωm(cs))

∂cs
=

∫
ω≥ωm(cs)

F (se|ω)dG(ω) ≥ 0,

and the inequality is strict whenever ωm(cs) < ω̄

Consider the value of J(cs, ωm(cs)) at the extreme point cs = 0. If cs = 0,

(10) reduces to [1− F (se|ω)]v(ω) and therefore ωm(0) = ωr, so J(0, ωm(0)) =

J(0, ωr) < 0. Now consider the value of J(cs, ωm(cs)) as cs →∞. For ωm(cs) ∈
[ωr, ω̄), applying the implicit function theorem to (10) gives

ω′m(cs) =
F (se|ω)

[1− F (se|ω)]v′(ω) + (cs + v(ω))(∂[1− F (se|ω)]/∂ω)

∣∣∣∣
ω=ωm(cs)

≥ 0,

so ωb(cs) is weakly increasing in cs, and must therefore converge to some limit

L ∈ [ω, ω̄] as cs → ∞. There are two cases. Case 1: L = ω̄. Then since

Vr(se) > 0, it must be that limcs→∞ J(cs, ωm(cs)) ≥ Vr(se) > 0. Case 2: L < ω̄.

Then limcs→∞
dJ(cs,ωm(cs))

dcs
=
∫
ω≥L F (se|ω)dG(ω) > 0, so limcs→∞ J(cs, ωm(cs)) =

∞.13 In either case, J(cs, ωm(cs)) > 0 for high enough cs.

By the intermediate value theorem, there exists a cs > 0 for which J(cs, ωm(cs)) =

0. To show uniqueness, suppose there exist two zeros c′s and c′′s , with c′s < c′′s .

That J(cs, ωm(cs)) is weakly increasing gives dJ(cs, ωm(cs))/dcs = 0 for all cs ∈
[c′s, c

′′
s ], which implies ωm(cs) = ω̄, and therefore J(cs, ωm(cs)) = J(cs, ω̄) =

Vr(se) > 0, a contradiction.

Denote by c̄s the unique zero of J(cs, ωm(cs)). We have that cs > c̄s if

and only if J(cs, ωm(cs)) > 0. So cs > c̄s if and only if for all ωb(se) ∈ Ω,

J(cs, ωb(se)) ≥ minω∈Ω J(cs, ω) = J(cs, ωm(cs)) > 0, and Part 1 is proved.

(Part 2): If cs < c̄s, then by the proof of Part 1, J(cs, ωm(cs)) < 0. As ω

increases from ω to ω̄, the strict quasiconvexity of J(cs, ·) implies that J(cs, ·)
strictly decreases from J(cs, ω) ≥ 0 to J(cs, ωm(cs)) < 0 and then strictly

increases to J(cs, ω̄) > 0. So there exist exactly two zeros of J(cs, ·) in Ω: a

13If limx→∞ h′(x) > 0, then limx→∞ h(x) =∞.
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unique ωI ∈ [ω, ωm(cs)) and a unique ω̄I ∈ (ωm(cs), ω̄) which satisfy

J(cs, ωb(se))


< 0 ωb(se) ∈ (ωI , ω̄I)

> 0 ωb(se) ∈ [ω, ωI) ∪ (ω̄I , ω̄]

= 0 ωb(se) ∈ {ωI , ω̄I}.

Finally, if cs = c̄s, then J(cs, ωm(cs)) = 0. The value ωm(cs) is the unique

minimizer of J(cs, ·), so ωm(cs) is the only zero of J(cs, ·), and for all ωb(se) 6=
ωm(cs), J(cs, ωb(se)) > 0.

(Part 3): From above, ωI and ω̄I satisfy 0 = J(cs, ωI(cs)) = J(cs, ω̄I(cs)).

Applying the implicit function theorem gives ω′I(cs) = − ∂J
∂cs
/ ∂J
∂ωb

∣∣
(cs,ωI(cs))

. Be-

cause ωm(cs) is the unique zero of (10) and ωI(cs) < ωm(cs), it must be that
∂J
∂cs

< 0 at (cs, ωI(cs)). Furthermore, ∂J
∂ωb

is strictly positive unless ωI = ω,

which occurs only if cs = 0. So ω′I(cs) < 0 for all cs ∈ (0, c̄s). Similarly,

ω̄′I(cs) = − ∂J
∂cs
/ ∂J
∂ωb

∣∣
(cs,ω̄I(cs))

. Because ω̄I(cs) > ωm(cs) ≥ ωr > ω, it must be

that ∂J
∂cs

> 0 and ∂J
∂ωb

> 0 at (cs, ωI(cs)), so ω̄′I(cs) > 0 for all cs ∈ [0, c̄s).

Finally, if cs = 0 and ω̄I = ω̄, then J = Vr(se) > 0, a contradiction. So if

cs = 0, ω̄I < ω̄.

Proof of Corollary 2. Note that Vr(se) > 0 implies se < s̄. So given ω ∈ Ω,

1 − F (se|ω) ∈ [0, 1), and because cb/(u(ω) + cb) is strictly increasing in cb,

there exists a unique cb(ω) ∈ R+ satisfying 1 − F (se|ω) = cb/(u(ω) + cb).

Furthermore, cb(ω) is strictly increasing in ω. Let cb ≡ cb(ωI) and c̄b ≡ cb(ω̄I),

and apply Proposition 2.

Proof of Proposition 3. Since sr ∈ (s, s̄), it follows that Vr(sr) > Vr(s̄) = 0.

Fix some cs > 0. Suppose cb = 0. Then for all s ∈ S, ωb(s, 0) = ω. If

s = s, then F (s|ω) = 0, so Vn(cs, 0, s) =
∫
ω
v(ω)dG(ω) = Vr(s) < Vr(sr). If

s > s, then F (s|ω) > 0, so Vn(cs, 0, s) < Vr(s) ≤ V (sr). So for all s ∈ S,

Vn(cs, 0, s) < Vr(sr), and therefore Vn(cs, 0, sn) < Vr(sr).

Next, we show that there exists a cb > 0 such that Vn strictly dominates Vr.

Note that
∫
ωr
v(ω)dG(ω) > Vr(sr). By the continuity of F (s|ω), there exists an
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s ∈ (s, s̄) such that
∫
ωr

([1− F (s|ω)]v(ω)− F (s|ω)cs)dG(ω) > Vr(sr). Because

s is interior, the image of (0,∞) under ωb(s, ·) is [ω, ω̄], so there exists a cb > 0

such that ωb(s, cb) = ωr. Therefore, Vn(cs, cb, sn) ≥ Vn(cs, cb, s) > Vr(sr).

By the continuity of Vn(cs, ·, sn(cs, ·)), there exists at least one cb > 0

such that Vn(cs, cb, sn(cs, cb)) = Vr(sr). We now show that Vn(cs, ·, sn(cs, ·))
is strictly increasing at any cb, which implies cb is unique. By the envelope

theorem,

dVn(cs, cb, sn(cs, cb))

dcb

∣∣∣∣
cb

=
∂Vn(cs, cb, sn(cs, cb))

∂cb

∣∣∣∣
cb

= −∂ωb(sn, cb)

∂cb

(
[1− F (sn|ωb)]v(ωb)− F (sn|ωb)cs

)
dG(ωb)

∣∣∣∣
cb

,

(11)

where we have abbreviated sn(cs, cb) and ωb(sn(cs, cb), cb) with sn and ωb, re-

spectively. If ωb ∈ {ω, ω̄}, then Vn(cs, cb, sn(cs, cb)) < Vr(sr), a contradiction,

so ωb ∈ (ω, ω̄), and therefore ∂ωb(sn,cb)
∂cb

∣∣
cb
> 0. To sign the second factor of

(11), consider

∂Vn(cs, cb, s)

∂s

∣∣∣∣
(cb,sn)

= −
∫
ωb(s,cb)

f(s|ω)(v(ω) + cs)dG(ω)

− ∂ωb(s, cb)

∂s

(
[1− F (sn|ωb)]v(ωb)− F (sn|ωb)cs

)
dG(ωb)

∣∣∣∣
(cb,sn)

.

(12)

Note that because ωb(sn(cs, cb), cb) ∈ (ω, ω̄), it must be that ∂ωb(s,cb)
∂s

∣∣
(sn,cb)

> 0

and sn(cs, cb) ∈ (s, s̄). If [1 − F (s|ωb)]v(ωb) − F (s|ωb)cs
∣∣
(cb,sn)

≥ 0, then

v(ωb) ≥ 0, so ωb(sn(cs, cb), cb) ∈ [ωr, ω̄), which implies the first term of

(12) is strictly negative, and the second term is weakly negative. But

then ∂Vn(cs,cb,s)
∂s

∣∣
(cb,sn)

< 0, contradicting the optimality of sn ∈ (s, s̄). So(
[1 − F (s|ωb)]v(ωb) − F (s|ωb)cs

)∣∣
(cb,sn)

< 0, and therefore from (11) we have

that dVn(cs,cb,sn(cs,cb))
dcb

∣∣
cb
> 0. So wherever Vn(cs, cb, sn) = Vr(sr), Vn must be
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strictly increasing in cb; together with the continuity of Vn(cs, ·, sn), this implies

that Vn(cs, ·, sn) must cross Vr(sr) exactly once, namely at cb.

Suppose cs = 0. If cb = 0, then for all s ∈ S, ωb(s, 0) = ω, V (0, 0, s) =

Vr(s), so sn = sr, and therefore Vn(sn) = Vr(sr). Using an identical argument

to the case of cs > 0, there exists a cb > 0 such that Vn strictly dominates Vr.

Now consider (11) for cs = 0 and cb > 0. First note that ωb < ω̄ and therefore

sn < s̄, as otherwise Vn = 0, which is strictly dominated by selecting some

s < s̄ such that ωb(s, cb) = ωr. Next, note that if [1 − F (sn|ωb)]v(ωb) ≥ 0,

then ωb ∈ [ωr, ω̄) and sn ∈ (s, s̄), which implies the first term of (12) is

strictly negative and the second term is weakly negative, contradicting the

optimality of sn > s. So ([1 − F (sn)]|v(ωb) < 0, and since ∂ωb(s,cb)
∂cb

≥ 0, (11)

implies Vn(0, cb, sn(0, cb)) is weakly increasing in cb. So for cs = 0, let cb be the

smallest cb such that Vn(0, cb, sn(0, cb)) = Vr(sr).

To show that for cs = 0, cb > 0, we show that there exists a cb > 0 such that

Vn(0, cb, sn) = Vr(sr). Let ŝ(cb) be the highest s ∈ S such that ωb(s, cb) = ω.

Then given cb > 0, s ≤ ŝ(cb) implies ωb(s, cb) = ω, so Vn(0, cb, s) = Vr(s).

Note that limcb→0 ŝ(cb) = s̄, and limŝ→s̄ Vr(ŝ) −
∫ ωr

ω
[1 − F (ŝ|ω)]v(ω)dG(ω) =

0. So there exists a δ > 0 such that cb < δ implies ŝ > sr and Vr(ŝ) −∫ ωr

ω
[1 − F (ŝ|ω)]v(ω)dG(ω) < Vr(sr). Given cb < δ, maxs≤ŝ(cb) Vn(0, cb, s) =

maxs≤ŝ(cb) Vr(s) = Vr(sr), whereas maxs>ŝ(cb) Vn(0, cb, s) = maxs>ŝ(cb) Vr(s) −∫ ωb(s,cb)

ω
[1− F (s|ω)]v(ω)dG(ω) ≤ Vr(ŝ)−

∫ ωr

ω
[1− F (ŝ|ω)]v(ω)dG(ω) < Vr(sr).

So for all cb < δ, Vn(0, cb, sn(0, cb)) = maxs∈S Vn(0, cb, s) = Vr(sr). Therefore,

cb ≥ δ > 0.

To show that cb is a strictly increasing function of cs, apply the implicit

function theorem to Vr(sr) = Vn(cs, cb(cs), sn(cs, cb(cs))) and the envelope the-

orem to get

0 =
dVn(cs, cb(cs), sn(cs, cb(cs)))

dcs
=
∂Vn
∂cs

+
∂Vn
∂cb

c′b(cs)

∣∣∣∣
(cb,sn)

.

At cb = cb, ωb and sn are interior, so ∂Vn

∂cs
= −

∫
ωb
F (sn|ω)dG(ω) < 0, and from
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above, ∂Vn

∂cb
> 0, which gives c′b(cs) > 0.

Finally, to show that limcs→∞ cb(cs) = ∞, We first show that

limcs→∞ Vn(cs, cb, sn(cs, cb)) exists and is strictly less than Vr(sr). Note that
dVn(cs,cb,sn(cs,cb)

dcs
= ∂Vn

∂cs
= −

∫
ωb
F (sn|ω)dG(ω) ≤ 0, so the optimized Vn is weakly

decreasing in cs and therefore the limit exists. If lim infcs→∞ sn(cs, cb) = s,

then lim infcs→∞ ωb(sn, cb) = ω, and so limcs→∞ Vn(cs, cb, sn(cs, cb)) = Vr(s) <

Vr(sr). If lim infcs→∞ ωb(sn, cb) = ω̄, then limcs→∞ Vn(cs, cb, sn(cs, cb)) = 0 <

Vr(sr). If lim infcs→∞ sn(cs, cb) > s and lim infcs→∞ ωb(sn, cb) < ω̄, then

limcs→∞ Vn(cs, cb, sn(cs, cb)) = −∞ < Vr(sr). So regardless of the limit be-

havior of sn and wb, limcs→∞ Vn(cs, cb, sn(cs, cb)) < Vr(sr). Therefore, given

ε > 0, there exists a δ > 0 such that Vn(δ, ε, sn(δ, ε)) < Vr(sr), which implies

cb(δ) > ε. Because cb is strictly increasing in cs, for all cs > δ we must have

cb(cs) > cb(δ) > ε, and therefore limcs→∞ cb(cs) =∞.
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