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We employ a unique data set to examine the spatial clustering of about 1,700 private research 

and development (R&D) labs in California and across the Northeast corridor of the United 

States. Using these data, which contain the R&D labs’ complete addresses, we are able to more 

precisely locate innovative activity than with patent data, which only contain zip codes for 

inventors’ residential addresses. We avoid the problems of scale and borders associated with 

using fixed spatial boundaries, such as zip codes, by developing a new point pattern procedure. 

Our multiscale core-cluster approach identifies the location and size of significant R&D clusters 

at various scales, such as a half mile, one mile, five miles, and more. Our analysis identifies four 

major clusters in the Northeast corridor (one each in Boston, New York–Northern New Jersey, 

Philadelphia–Wilmington, and Washington, D.C.) and three major clusters in California (one 

each in the Bay Area, Los Angeles, and San Diego). 

 

 

 

 

 

Keywords: spatial clustering, geographic concentration, R&D labs, innovation 

JEL Codes: O31, R12 

                                                 
* We thank Kristian Behrens, Jim Bessen, Satyajit Chatterjee, Gilles Duranton, Vernon Henderson, Andy 

Haughwout, Jim Hirabayashi, Tom Holmes, Mark Schweitzer, Will Strange, Isabel Tecu, and Elisabet Viladecans-

Marsal for comments and suggestions. This paper has benefited from the contribution of outstanding research 

assistance by Cristine McCollum, Adam Scavette, Elif Sen, and Annette Swahala. The views expressed here are 

those of the authors and do not necessarily reflect the views of the Federal Reserve Bank of Philadelphia or the 

Federal Reserve System. This paper is available free of charge at www.philadelphiafed.org/research-and-

data/publications/working-papers.  

 



2 

 

1. INTRODUCTION 

Popular accounts suggest that research and development (R&D) facilities are highly spatially 

concentrated into comparatively few geographic locations such as Silicon Valley and the Route 

128 corridor outside Boston. That R&D labs are geographically concentrated is immediately 

evident from examining a national map of the locations of private R&D establishments (Figure 

1). What is not immediately clear from the map is whether the spatial concentration of R&D labs 

is significantly greater than economic activity in general. Are the clustering of R&D labs in the 

Silicon Valley and in Cambridge, MA, prominent examples, or are they simply exceptions to the 

rule? The primary purpose of the research addressed in this paper is to determine whether the 

spatial pattern of R&D laboratories observed in Figure 1 is somehow unusual; that is, is it 

different from what we would expect based on the spatial concentration of economic activity? 

We answer this question by using a new location-based data set of private R&D labs together 

with point-pattern methods to document and analyze patterns in the geographic concentration of 

U.S. R&D labs. 

A key issue addressed in this paper is how to measure the spatial concentration of R&D labs. A 

number of previous papers have used a spatial Gini coefficient to measure the geographical 

concentration of economic activity. Audretsch and Feldman (1996) were among the first to use a 

spatial Gini approach to show that innovative activity at the state level tends to be considerably 

more concentrated than is manufacturing employment. Ellison and Glaeser (1997) — hereafter, 

EG — extended the spatial Gini coefficient to condition not only on the location of 

manufacturing employment but also on an industry’s industrial structure. A number of recent 

studies have used the EG index to measure the geographic clustering of manufacturing 

employment at the zip code, county, metropolitan statistical area (MSA), and state levels (see, 
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for example, Ellison and Glaeser, 1997; Rosenthal and Strange, 2001; and Ellison, Glaeser, and 

Kerr, 2010). While the EG index accounts for the general tendency for economic activity to 

concentrate spatially, it nonetheless suffers from a number of important aggregation issues that 

result from using a fixed spatial scale. As has been pointed out by Duranton and Overman (2005) 

— hereafter, DO — EG indices transform points on a map (establishments) into units in boxes 

(such as zip codes, counties, MSAs, and states). While this aggregation of the data facilitates 

computation, this approach leads to a number of aggregation issues. The first is known as the 

modifiable areal unit problem (MAUP). These metrics depend upon the boundaries used to 

demarcate regions, and conclusions may differ if counties versus states, for example, are used as 

boundaries. The MAUP grows in severity as the level of aggregation increases. A related issue is 

referred to as “border effects”: each region is considered an exclusive zone, and the closeness of 

activity in neighboring regions is not factored in. While Philadelphia and Montgomery counties 

border each other and have activity spilling across them, in county level analyses they are treated 

as being as distant from each other as they are from Los Angeles County. These partitions often 

lead to underestimations of concentration. 

Rather than using discrete or fixed geographic units, such as counties or MSAs, we use 

continuous measures to identify the spatial structure of the concentrations of R&D labs. 

Specifically, we use point pattern methods to analyze locational patterns over a range of selected 

spatial scales (e.g., within a half mile, one mile, five miles, etc.). This approach allows us to 

consider the spatial extent of the agglomeration of R&D labs and to measure any attenuation of 

clustering with distance more accurately.1  

                                                 
1 Other studies that have used continuous measures of concentration include those by Marcon and Puech (2003) for 

French manufacturing firms; Arbia, Espa, and Quah (2008) for patents in Italy; and Murata, et al. (2015) for patent 
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Following DO, we look for geographic clusters of labs that represent statistically significant 

departures from spatial randomness using simulation techniques. We do not assume that 

“randomness” implies a uniform distribution of R&D activity. Rather, we focus on statistically 

significant departures of R&D lab locations at each spatial scale from the distribution of an 

appropriately defined measure of economic activity (such as manufacturing employment) at that 

scale. This is important because studies have shown that manufacturing activity is agglomerated 

at various spatial scales (e.g., Ellison and Glaeser, 1997; Rosenthal and Strange, 2001; and 

Ellison, Glaeser, and Kerr, 2010) and the large majority of R&D activity is performed by 

manufacturing firms. Our main results take manufacturing employment as the benchmark, but 

our findings are robust to alternative benchmarks such as manufacturing establishments and the 

total employment of science, technology, engineering, and math (STEM) workers. 

While this multiscale approach is similar in spirit to that of DO, our test statistics are based on 

Ripley’s (1976) K-function rather than the “K-density” approach of DO. While the DO approach 

can reveal the spatial scale at which concentration occurs, it does not tell us where in space the 

concentration occurs. K-functions can easily be disaggregated to yield information about the 

spatial locations of clusters of R&D labs at various spatial scales. We take advantage of this 

feature of K-functions to perform the local cluster analysis in Section 4. 

We begin the analysis by using global K-function statistics to test for the presence of significant 

clustering over a range of spatial scales. Our data set consists of almost 1,700 R&D labs in 

California and in a 10-state area in the Northeast corridor of the United States. We find strong 

evidence of spatial clustering at even very small spatial scales — distances as small as one-half 

                                                                                                                                                             
citations. Kerr and Kominers (2015) use continuous measures in a more general model, one application of which 

uses data on patent citations. See Carlino and Kerr (2015) for a recent review of this literature. 
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mile — and this clustering tends to exhibit rapid attenuation as scales increase. This pattern is 

consistent with empirical research on human capital spillovers and agglomeration economies. 

Next, we focus on the question of where clustering occurs using a more refined procedure based 

on local K-functions. We introduce a novel procedure called the multiscale core-cluster approach 

to identify the location of clusters and the number of labs in these clusters. Core clusters at each 

scale are identified in terms of those points with the most significant local clustering at that scale. 

By construction, core clusters at smaller scales tend to be nested in those at larger scales. Such 

core clusters generate a hierarchy that reveals the relative concentrations of R&D labs over a 

range of spatial scales. In particular, at scales of five and 10 miles, these core clusters reveal the 

presence of the major agglomerations visible on any map. Our analysis identifies four major 

clusters in the Northeast corridor (one each in Boston, New York–Northern New Jersey, 

Philadelphia–Wilmington, and Washington, D.C.,) and three major clusters in California (one 

each in the Bay Area, Los Angeles, and San Diego). 

Our work differs from past studies in a number of ways. Rather than looking at the geographic 

concentration of firms engaged in the production of goods (such as manufacturing), we use a 

new location-based data set that allows us to consider the spatial concentration of private R&D 

establishments. Rather than focusing on the overall concentration of R&D employment, we 

analyze the clustering of individual R&D labs. Our analytical approach also permits such 

clustering to be identified at a range of scales in continuous space rather than at a single 

predefined scale. Importantly, the use of the R&D lab data allows us to more accurately assign 

labs to locations since we have their complete addresses, an improvement on using patent data to 

measure the location of innovative activity. This allows us to implement tests for geographic 

concentration with very high precision at even the smallest of spatial scales. An important 
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limitation associated with patent data used in most past studies to analyze the spatial 

concentration of innovative activity is that only the zip codes of the inventors’ residential 

addresses are listed on the patent. With patent data, one can only consider the geographic 

clustering of innovative activity at the average size of zip codes, and this is subject to 

measurement error if inventors live and work in different zip codes. As shown in Table 1, the 

typical size of a zip code in the Northeast corridor is about 30 square miles, while the average 

size in California is almost 100 square miles. Use of the patent information is further 

complicated in that many patents have multiple inventors who often reside in different locations. 

Patents do contain information on the assignee (usually the company that first owned the patent), 

but researchers typically do not use the assignee address because this may not reflect the location 

where the research was conducted (e.g., it may be the address of the corporate headquarters and 

not the R&D facility). Finally, unlike the K-density approach, our local K-function method can 

be used to identify where in space clustering is occurring, something that is new to the 

agglomeration literature. 

We also use the global K-function technique to examine the concentration of R&D labs in 

specific two-digit Standard Industrial Classification (SIC) industries relative to the concentration 

of labs across all industries. This sets a higher bar in our tests of spatial concentration as well as 

avoids a potential measurement issue at very small spatial scales that may occur when we use a 

benchmark that is not point pattern data. We find at small spatial scales (such as within a two- to 

three-block area) that 37 percent of the industries in the Northeast corridor are significantly more 

concentrated compared with overall R&D labs and that none are significantly more dispersed. In 

California, 50 percent are significantly more localized than R&D labs in general. The rapid 

attenuation of significant clustering of labs for many individual industries is consistent with the 
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view that at least one important component of agglomeration economies must be highly 

localized. 

2. THEORY AND DATA  

2.1 Data 

We introduce a novel data set in this paper based on the 1998 edition of the Directory of 

American Research and Technology, which profiles the R&D activities of public and private 

enterprises in the United States. The directory includes virtually all nongovernment facilities 

engaged in any commercially applicable basic and applied research. For this paper, our data set 

contains the R&D establishments (“labs”) associated with the top 1,000 publicly traded firms 

ranked in terms of R&D expenditure in Compustat.2 These firms represent slightly less than 95 

percent of all R&D expenditures reported in the 1999 edition of Compustat for 1998.3 Thus, each 

lab in our data set is associated with its Compustat parent firm and information on its street 

address and a text description of its research specialization(s) to which we have assigned the 

corresponding four-digit SIC codes. Using the address information for each private R&D 

establishment, we geocoded the locations of more than 3,000 labs (shown in Figure 1). 

                                                 
2 We referenced several additional sources both to cross-check the information provided by this directory and to 

supplement it when we could not locate an entry for a Compustat listing. Dalton and Serapio (1995) provide a list of 

locations of U.S. labs of foreign-headquartered firms. In some cases, we found information about the location of a 

firm’s laboratories in the “Research and Development” section of the firm’s 10-K filings with the U.S. Securities 

and Exchange Commission. The following company databases were also used to supplement or confirm our main 

sources: Hoover’s Company Records database, Mergent Online, the Harris Selectory Online database, and the 

American Business and Service Directory. 

3Although we cannot know for sure the impact on the analysis of including smaller labs, if these labs tend to cluster 

near larger labs as is widely believed, then we will underestimate the significance of clustering of R&D labs. Some 

clusters that fail our tests of significance may indeed be significantly clustered in that case as well, and some cluster 

boundaries may be slightly different than what we identify.  
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In this paper, we analyze two major regions of the U.S.: the Northeast corridor and the state of 

California. There are 1,035 R&D labs in 10 states comprising the Northeast corridor 

(Connecticut, Delaware, Maryland, Massachusetts, New Hampshire, New Jersey, New York, 

Pennsylvania, Rhode Island, and Virginia, including the District of Columbia — the Washington, 

D.C., cluster). There are 645 R&D labs in California.  

Even at the most aggregate level, it is easy to establish that R&D activity is relatively 

concentrated in these two regions. For example, in 1998, one-third of private R&D labs and 29 

percent of private R&D expenditures were located within the Northeast corridor compared with 

22 percent of total employment (21 percent of manufacturing employment) and 23 percent of the 

population. California accounted for almost 22 percent of all private R&D labs and 22 percent of 

private R&D expenditures in 1998 compared with 12 percent of total employment (11 percent of 

manufacturing employment) and 12 percent of the population. Together, these two regions 

accounted for the majority of all U.S. private R&D labs (and private R&D expenditures) in 

1998.4 This concentration is consistent with Audretsch and Feldman (1996), who report that the 

top four states in terms of innovation in their data are California, Massachusetts, New Jersey, and 

New York. 

In our formal analysis that follows, we assess the concentration of R&D establishments relative 

to a baseline of economic activity as reflected by the amount of manufacturing employment in 

the zip code. These data were obtained from the 1998 volume of Zip Code Business Patterns. 

Given that the vast majority of our R&D labs are owned by manufacturing firms, manufacturing 

                                                 
4 Data for private R&D expenditures are from Table A.39 of National Science Foundation (2000). 
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employment represents a good benchmark.5 It is possible that owners of R&D labs locate these 

facilities using different factors than they use for locating manufacturing establishments. We 

address this concern by using total employment data at the census block level for 2002 from the 

Longitudinal Employer-Household Dynamics (LEHD) survey to identify feasible lab locations 

within each zip code.  

Table 1 presents summary statistics for zip codes in the Northeast corridor and in California for 

1998. The average zip code in the Northeast corridor in 1998 had about 29 square miles of land 

area with a radius of about two and a half miles in 1998. Since there were approximately 6,044 

zip codes in the Northeast corridor in 1998, there was, on average, one R&D facility for every 

six zip codes in this part of the country. The average zip code in the Northeast corridor had about 

4,300 jobs in 1998, 13 percent of which were in manufacturing. In California, the average zip 

code consisted of about 96 square miles of land area with an average radius of slightly less than 

four miles. The average zip code in California had almost 6,000 jobs in 1998, 14 percent of 

which were in manufacturing. Table 1 also provides descriptive statistics for those zip codes 

containing one or more R&D labs. These zip codes are physically smaller (with a radius of about 

two miles in each region) and contain three to four times more employment. 

2.2 Theory 

How do we account for the geographic concentration of R&D activity observed in this paper? 

Much of the theoretical literature on urban agglomeration economies has focused on externalities 

in the production of goods and services rather than on invention itself. Nevertheless, the three 

                                                 
5 In Section 5.1, we develop an alternative benchmark (or backcloth) for analyzing R&D clustering with respect to 

STEM workers. In Appendix A, we report results of our analyses using manufacturing establishments as an 

alternative benchmark. As we will see, our main findings are highly robust to the use of alternative backcloths. 
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formal mechanisms primarily explored in the literature —knowledge spillovers, sharing, and 

matching — are also relevant for innovative activity.6  

2.2.1 Knowledge Spillovers  

Spatial concentration of economic activity facilitates the spread of tacit knowledge. More than 

most types of economic activity, R&D depends on knowledge spillovers. A high geographic 

concentration of R&D labs creates an environment in which ideas move quickly from person to 

person and from lab to lab. Locations that are dense in R&D activity encourage knowledge 

spillovers, thus facilitating the exchange of ideas that underlies the creation of new goods and 

new ways of producing existing goods. 

2.2.2 Sharing and Matching  

Thick factor markets can arise when innovative activity clusters locally through the development 

of pools of specialized workers (e.g., STEM workers) and a greater variety of specialized 

business services (e.g., patent attorneys, commercial labs for product testing, and access to 

venture capital). As Helsley and Strange (2002) have shown, dense networks of input suppliers 

facilitate innovation by lowering the cost needed to bring new ideas to fruition. Thick labor 

markets also can improve the quality of matches in local labor markets (Berliant, Reed, and 

Wang 2006; Hunt 2007). Also, specialized workers can readily find new positions without 

having to change locations (i.e., job hopping).  

2.2.3 Connection Between Theory and Evidence  

                                                 
6 See Duranton and Puga (2003) for a more thorough discussion of the microfoundations of urban agglomeration 

economies. 
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In this paper, we do not attempt to identify the mechanism(s) underlying the geographic 

concentrations of labs we observe. We abstract from theoretical considerations and simply 

impose a statistical requirement on our tests for localization to determine whether R&D labs are 

clustered. This approach is based on a test of a simple location model (i.e., R&D locations are 

more clustered than would be expected from random draws from the distribution of overall 

manufacturing employment). 

3. GLOBAL CLUSTER ANALYSIS 

A key question is whether the overall patterns of R&D locations in the two regions we examine 

exhibit more clustering than would be expected from the spatial concentration of manufacturing 

in those regions. To address this question statistically, we start with the null hypothesis that R&D 

locations are mainly determined by the distribution of manufacturing employment within a zip 

code. Since the data are at the zip code level, it is necessary to assume that manufacturing 

employment is uniformly distributed within a zip code. This assumption is reasonable if zip 

codes are sufficiently small. Since we know the street addresses of the labs, then, at spatial scales 

smaller than the typical zip code size, these locations will tend to exhibit some degree of 

spurious clustering of labs relative to random locations.7 In our sample, the radius of a typical zip 

code is about two miles for zip codes containing at least one lab (Table 1). Since we are 

interested in possible clustering of R&D labs at scales below the average sizes of zip codes, it is 

necessary to refine our null hypothesis. To do this, we obtained total employment data at the 

census block level for 2002 from the LEHD survey8 and use these data to identify feasible lab 

                                                 
7 We thank Gilles Duranton for this observation. 

8 More specifically, the LEHD offers publicly available Workplace Area Characteristics (WAC) data at the census 

block level as part of the larger LEHD Origin-Destination Employment Statistics database. 
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locations within each zip code area.9 Blocks with zero employment are clearly infeasible (such as 

public areas and residential zones), and blocks with higher levels of total employment are 

hypothesized to offer more location opportunities. It is also implicitly hypothesized that 

accessibility to manufacturing within a given zip code area is essentially the same at all locations 

within that zip code. So, even in blocks where there is no manufacturing, locations are regarded 

as feasible as long as there is some type of employment present.10  

Our basic null hypothesis is the following: 

Hypothesis 1 

Lab locations are no more concentrated than manufacturing employment at the zip code 

level and then no more concentrated than total employment within each zip code.  

 

In order to test whether the observed R&D lab locations are agglomerated relative to the 

benchmark identified in Hypothesis 1, we generate counterfactual locations consistent with 

Hypothesis 1 using a three-stage Monte Carlo procedure. In this procedure, (i) zip code locations 

are randomly selected in proportion to manufacturing employment levels, (ii) census block 

locations within these zip codes are selected in proportion to total employment levels, and (iii) 

point locations within blocks are selected randomly. It should be mentioned that actual locations 

are almost always along streets and cannot, of course, be random within blocks. But, as 

discussed in Section 3.2, blocks themselves are sufficiently small to allow such random effects to 

be safely ignored at the scales of most relevance for our purposes.  

                                                 
9 There are two exceptions that need to be mentioned. First, the state of Massachusetts currently provides no data to 

LEHD. So, here we substituted 2011 ArcGIS Business Analyst Data for Massachusetts, which provides both 

geocoded locations and employment levels for more than 260,000 establishments in Massachusetts. These samples 

were aggregated to the census block level and used to approximate the LEHD data. While the time lag between 1998 

and 2011 is considerable, we believe that the zoning of commercial activities is reasonably stable over time. Similar 

problems arose with the District of Columbia, where only 2010 WAC data were available. 

10 An additional advantage of using total employment levels at scales as small as census blocks is that they are less 

subject to censoring than finer employment classifications. 
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By repeating this procedure separately for the Northeast corridor (with 1,035n  location 

choices) and for California (with n = 645 location choices), one generates a pattern, 

( ( , ) : 1,.., )i i iX x r s i n   , of potential R&D locations that is consistent with Hypothesis 1, 

where ( , )i ir s represents the latitude and longitude coordinates (in decimal degrees) at point i. 

This process is repeated many times for each R&D location in the data set. In this way, we can 

test whether the observed point pattern, 0 0 0 0( ( , ) : 1,.., )i i iX x r s i n   , of R&D locations is 

“more clustered” than would be expected if the pattern were randomly drawn according to the 

distribution of manufacturing employment.  

3.1 K-Functions  

The most popular measure of clustering for point processes is Ripley’s (1976) K-function, ( )K d , 

which (for any given mean density of points) is essentially the expected number of additional 

points within distance d of any given point.11 In particular, if ( )K d  is higher than would be 

expected under Hypothesis 1, then this may be taken to imply clustering of R&D locations 

relative to manufacturing at a spatial scale, d. For testing purposes, it is sufficient to consider 

sample estimates of ( ).K d  If for any given point i in pattern ( : 1,.., )iX x i n  , we denote the 

number (count) of additional points in X within distance d of i by ( )iC d ; then the desired sample 

estimate, ˆ ( )K d , is given simply by the average of these point counts:12 

 
1

1ˆ ( ) ( )
n

i

i

K d C d
n 

  .  (1)            

                                                 
11 The term “function” emphasizes the fact that values of ( )K d depend on distance, d. 

12 These average counts are usually normalized by the estimated mean density of points. But since this estimate is 

constant for all point patterns considered, it has no effect on testing results. 
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As described in Section 3, we draw a set of N point patterns, ( : 1,.., ) , 1,..,s s

iX x i n s N   , and 

for a selection of radial distances, 1( ,.., )kD d d , we calculate the resulting sample K-functions, 

ˆ{ ( ) : }, 1,..,sK d d D s N  . For each spatial scale, d D , these values yield an approximate 

sampling distribution of ( )K d  under Hypothesis 1.  

Hence, if the corresponding value, 0ˆ ( ),K d  for the observed point pattern, 
0 ,X  of R&D locations 

is sufficiently large relative to this distribution, then this can be taken to imply significant 

clustering relative to manufacturing. More precisely, if the value 0ˆ ( )K d is treated as one 

additional sample under 0H ,13 and if the number of these 1N   sample values at least as large as 

0ˆ ( )K d  is denoted by
0( )N d , then the fraction 

 
0 ( )

( )
1

N d
p d

N



  (2)  

is a (maximum likelihood) estimate of the p-value for a one-sided test of Hypothesis 1. 

For example, if 999N   and 
0( )N d  = 10 so that ( ) 0.01P d  , then under Hypothesis 1, there is 

estimated to be only a one-in-a-hundred chance of observing a value as large as 0ˆ ( )K d . Thus, at 

spatial scale d, there is significant clustering of R&D locations at the 0.01 level of statistical 

significance.  

 3.2 Test Results for Global Clustering 

                                                 
13 At this point it should be noted that, since all sample K-functions are subject to the same “edge effects” as the 

observed sample, the presence of edge effects should not influence our test results. 
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Our Monte Carlo test for clustering was carried out with 999N   simulations at radial distances, 

{0.25,0.5,0.75,1,2,...,99,100}d D   (i.e., at quarter-mile increments up to a mile and at one-

mile increments from one to 100 miles). Before discussing these results, it should be noted that 

quarter-mile distances are approximately the smallest scale at which meaningful clustering can 

be detected within our present spatial framework. Recall that since locations consistent with the 

null hypothesis are distributed randomly within each census block, they cannot reflect any 

locational constraints inside such blocks. For example, if all observed lab locations are street 

addresses, then, at scales smaller than typical block sizes, these locations will tend to exhibit 

some degree of spurious clustering relative to random locations. If relevant block sizes are taken 

to be approximated by their associated (circle-equivalent) radii, then, since the average radius of 

the LEHD blocks with positive employment is 0.15 miles in the Northeast corridor (ignoring 

Massachusetts) and 0.13 miles in California, this suggests that 0.25 miles is a reasonable lower 

bound for tests of clustering. In fact, the smallest radius used in most of our subsequent analyses 

is 0.5 miles.14 

Given this range of possible spatial scales, our results show that clustering in the Northeast 

corridor is so strong (relative to manufacturing employment) that the estimated p-values are 

0.001 for all scales considered. The results are the same for California up to about 60 miles, and 

they remain below 0.05 up to about 90 miles. Thus, our conjecture that private R&D activities 

exhibit significant agglomeration is well supported by these data.15  

                                                 
14 Since mean values can sometimes be misleading, it is also worth noting that only 6.2 percent of all the LEHD 

block radii exceed 0.5 miles in the Northeast corridor. This percentage is about 4 percent for California. 

15 In addition, it should be noted that, since 0.001 is the smallest possible p-value obtainable in our simulations (i.e., 

1 ( 1)N   with 999N  ), these results actually underestimate statistical significance in many cases. While N could, 

of course, be increased, this sample size appears to be sufficiently large to obtain reliable estimates of sampling 

distributions under Hypothesis 1. 
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3.3 Variations in Global Clustering by Spatial Scale 

Further analysis of these sampling distributions (both in terms of Shapiro and Wilk (1965) tests 

and normal quintile plots (not shown)) showed that they are well approximated by normal 

distributions for all the spatial scales tested. So, to obtain a sharper discrimination between 

results at different spatial scales, we calculated the z-scores for each observed estimate, 0ˆ ( )K d , 

as given by 

 
0ˆ ( )

( ) , {0.25,0.5,0.75,1,2,...,99,100}d

d

K d K
z d d

s


   , (3) 

where 
dK  and ds  are the corresponding sample means and standard deviations for the 1N   

sample K-values.  

The z-scores for the Northeast corridor are depicted in Figure 2a and those for California are 

shown in Figure 2b. Significance levels decrease nearly monotonically for California, while in 

the Northeast corridor, we see a hump-shaped pattern. The high z-scores are consistent with the 

significance of the Monte Carlo results noted previously but add more detailed information about 

the patterns of significance.16 Observe that, in both figures, clustering is most significant at 

smaller scales but exhibits rapid attenuation as scales increase. This pattern is consistent with 

empirical research on human capital spillovers and agglomeration economies mentioned in 

Section 2.2.17  

3.4 Relative Clustering of R&D Labs by Industry 

                                                 
16 The benchmark value of 1.65z  , shown as a dashed line in both Figures 2a and 2b, corresponds to a p-value of 

0.05 for the one-sided tests of Hypothesis 1in expression (2). 

17 See Carlino and Kerr (2015) for a review of the literature on the localization of knowledge spillovers. 
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We believe that the distribution of manufacturing employment provides a reasonably objective 

basis for assessing patterns of clustering by private R&D facilities. Nevertheless, the reasons for 

establishing an R&D lab in a particular location may differ from those that determine the 

location of manufacturing establishments. For example, R&D labs may be drawn to areas with a 

more highly educated labor force than would be typical for most manufacturing establishments. 

Some R&D labs may co-locate not because of the presence of spillovers but rather because of 

subsidies provided by state and local governments (e.g., when technology parks are partially 

subsidized).  

To explore such differences, we begin by grouping all labs in terms of their primary industrial 

research areas at the two-digit SIC level.18 With respect to this grouping, our null hypothesis is 

simply that there are no relevant differences between the spatial patterns of labs in each group 

(i.e., the spatial distribution of labs in any given industry is statistically indistinguishable from 

the distribution of all labs). The simplest formalization of this hypothesis is to treat each group of 

labs as a typical random sample from the distribution of all labs. More precisely, if n is the total 

number of labs (where 1035n   for the Northeast corridor and 645n   for California) and if jn  

denotes the number of these labs associated with industry j , our null hypothesis for industry j is:  

Hypothesis 2 

The spatial distribution of R&D labs in industry j  is not statistically distinguishable 

from that of a random sample of size jn  from all n labs.  

                                                 
18 We assign labs to an industry based on information contained in the Directory of American Research and 

Technology. In the Northeast corridor, there are 19 industrial groupings corresponding to SIC codes 10, 13, 20–23, 

26–30, 32–39, and 73. In California, there are 16 industrial groupings corresponding to SIC codes 13, 16, 20, 26, 

28–30, 32–39, and 73. The industry names of these SIC codes are included in Tables 2a and 2b. 
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Such random samples are easily constructed by randomly permuting (reordering) the lab indices 

1,..,n  and choosing the first jn  of these (as is also done in DO). With respect to clustering, one 

can then compare the ˆ ( )K d  values for the observed pattern of labs in industry j  with those for a 

set of N  randomly sampled patterns and derive both p-values, ( )jP d
,
 and z-scores, ( )jz d

,
 

comparable with those in expressions (2) and (3), respectively. If ( )jP d  is sufficiently low (or 

( )jz d  is sufficiently high), then it can be concluded that there is significantly more clustering at 

scale d for labs in industry j  than would be expected under the null hypothesis that the 

probability of finding a randomly selected R&D lab associated with a particular industry is 

proportional to the total number of R&D labs in that area. 

This approach has two benefits. First, it sets a much higher bar in our tests of spatial 

concentration. Second, we can implement these tests with very high precision at even the 

smallest of spatial scales. Using this counterfactual method, we find the strongest evidence for 

the spatial concentration of R&D labs occurring at very small spatial scales (such as within a 

two- to three-block area). Before reporting the results of these (random permutation) tests, it 

must be stressed that such results are only meaningful relative to the population of all R&D labs 

and, in particular, allow us to say nothing about the clustering of R&D labs in general. But the 

benefits of this approach are two-fold. First, since the pattern of all R&D labs has already been 

shown to exhibit significant clustering relative to manufacturing employment (at all scales 

tested), the present results help to sharpen these general findings. Moreover, while this 

sharpening could in principle be accomplished by simply repeating the global tests above for 

each industry, the present approach avoids all issues of location feasibility at small scales. In 
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particular, since the exact locations of all labs are known, we can use this information to compare 

relative clustering among industries at all scales.  

Turning now to the test results, the p-values for each of the 19 two-digit SIC industries in the 

Northeast corridor are reported in Table 2a for selected distances. As stated previously, we are 

able to analyze relative clustering at all scales, regardless of how small. In particular, at the 

quarter-mile scale, we find that seven of these 19 industries (37 percent) are significantly more 

localized (at the 0.05 percent level) than are R&D labs in general.19 Moreover, none are 

significantly more dispersed.20 Table 2b reports the p-values for each of the 16 two-digit SIC 

industries in California for selected distances. We find that, at a distance of a quarter-mile, eight 

of these 16 industries (50 percent) are significantly more localized (at the 0.05 percent level) than 

are R&D labs in general.21 Again, none are significantly more dispersed.  

A graphical representation of these results is presented in Figure 3, where the z-scores for each of 

the seven industries with the most significant clustering in the Northeast corridor are shown in 

Figure 3a, and those for seven of the eight most significant California industries are shown in 

Figure 3b.22 Because we are especially interested in the attenuation of z-scores at small scales, 

these z-scores are calculated in increments of 0.25 miles up to five miles. For all but one of these 

industries in the Northeast corridor, the clustering of R&D labs is by far most significant at very 

                                                 
19 The seven industries are Textile Mill Products; Stone, Clay, Glass, and Concrete Products; Fabricated Metal 

Products; Chemicals and Allied Products (this category includes drugs); Measuring, Analyzing, and Controlling 

Instruments; Miscellaneous Manufacturing Industries; and Business Services.  

20 With respect to dispersion, two of the 19 industries are found to be significantly more dispersed starting at a 

distance of five miles, and a third industry exhibits some degree of relative dispersion at 50 miles.  

21 The eight industries are Chemicals and Allied Products; Rubber and Miscellaneous Plastics Products; Primary 

Metal Industries; Industrial and Commercial Machinery; Electronic and Other Electrical Equipment; Transportation 

Equipment; Measuring, Analyzing, and Controlling Instruments; and Business Services. 

22 To conserve space, the graph of the z-scores for Rubber Products is not shown in Figure 3b since the labs doing 

R&D in this industry accounted for less than 1 percent of all labs in California.  
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small spatial scales — a quarter mile or less. The lone exception is Miscellaneous Manufacturing 

Industries (SIC 39), where the highest z-score occurs at a distance of just under two miles. In 

California, the clustering of R&D labs is most significant at very small spatial scales for four of 

the seven industries shown in Table 3b. Two of the other industries, Electronic and Other 

Electrical Equipment and Business Services, have local peaks at one-half mile and at one mile, 

respectively. 

In addition, Figure 3a shows rapid attenuation of z-scores at small scales for all seven industries 

in the Northeast corridor. Moreover, for most of these industries, there is essentially a monotonic 

decline in z-scores at all scales shown. While degrees of significance at larger scales vary among 

industries, the relative clustering of labs in both the Chemicals and Allied Products and Business 

Services industries continues to be significant at all scales shown. (For Business Services in 

particular, all but one of these labs are associated with firms engaged in the computer 

programming or data processing subcategories.) Turning to California, Figure 3b shows rapid 

attenuation of z-scores at small scales for four of these seven industries. The other three 

industries, Industrial and Commercial Machinery, Electronic and Other Electrical Equipment, 

and Business Services (mostly in the computer programming and data processing subcategory), 

exhibit an opposite trend in which relative clusters become more significant at larger scales. 

Finally, it is of interest to note that three industries are among the most significantly clustered 

industries in both the Northeast corridor and California, namely Chemicals and Allied Products, 

Business Services, and Measuring, Analyzing, and Controlling Instruments. The Chemical and 

Allied Products industry (SIC 28) merits some special attention, if for no other reason than this 

category includes labs engaged in pharmaceutical R&D, a very important segment of the U.S. 

economy. In our data, this category of labs accounts for about 40 percent of all labs in the 
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Northeast corridor, a share more than twice as large as any other two-digit SIC industry. In 

California, the Chemicals and Allied Products industry accounts for about 16 percent of the labs 

we study. Thus, at least within the geographic area under study, this industry is seen to be a 

major contributor to the overall clustering pattern of R&D shown in Figures 2a and 2b. But it 

should be equally clear from Figures 3a and 3b that significant clustering occurs in many other 

industries as well. So, clustering of R&D labs is by no means specific to drugs and chemicals. 

4. LOCAL CLUSTER ANALYSIS  

While the above global analysis can identify spatial scales at which clustering is most 

significant, it does not tell us where clustering occurs. In this section, we use a variation of our 

techniques to identify clustering in the neighborhood of specific R&D labs. The main tool for 

accomplishing this is the local version of sample K-functions for individual pattern points (first 

introduced by Getis (1984)).23 This local version at each point i  in the observed pattern is simply 

the count of all additional pattern points within distance d of i . In terms of the notation in 

expression (1), the local K-function, ˆ
iK , at point i  is given for each distance, d, by 

 ˆ ( ) ( )i iK d C d . (4)   

Hence, the global K-function, K̂ , in expression (1) is simply the average of these local functions.  

It should be noted that the original form proposed by Getis (1984) involves both an “edge 

correction” based on Ripley (1976) and a normalization based on stationarity assumptions for the 

                                                 
23 The interpretation of the population local K-function, ( )

i
K d , for any given point i is simply the expected number 

of additional pattern points within distance d of point i. Hence, ˆ ( )
i

K d is basically a single-sample (maximum 

likelihood) estimate of ( )
i

K d . For a range of alternative measures of local spatial association, see Anselin (1995).  
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underlying point process. However, in the present Monte Carlo framework, these refinements 

have little effect on tests for clustering. Hence, we choose to focus on the simpler and more 

easily interpreted “point count” version in Equation 4. 

4.1 Local Testing Procedure 

For the local testing procedure, we use Hypothesis 1 from Section 3: R&D labs are distributed in 

a manner proportional to manufacturing employment at the zip code level and proportional to 

total employment at the block level.24 The only substantive difference from the procedure used in 

that section is that the location, ix , of point i  is held fixed. The appropriate simulated values, 

ˆ ( ), 1,..,s

iK d s N , under 0H  are obtained by generating point patterns, 

( : 1,.., 1) , 1,..,s s

jX x j n s N    , representing all 1n  points other than i . The resulting p-

values for a one-sided test of Hypothesis 1 with respect to point i  then take the form  

 
0 ( )

( ) , 1,..,
1

i
i

N d
P d i n

N
 


,  (5) 

where 0( )iN d  is again the number of these 1N   draws that produce values at least as large as 

0ˆ ( )iK d .  

An attractive feature of these local tests is that the resulting p-values for each point i  in the 

observed pattern can be mapped as in Figures 4a and 4b. This allows one to check visually for 

regions of significant clustering. In particular, groupings of very low p-values serve to indicate 

not only the location but also the approximate size of possible clusters. Such groupings based on 

                                                 
24 We replace manufacturing employment with STEM workers in Section 5.1 and with manufacturing 

establishments in Appendix A as robustness checks. 
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p-values necessarily suffer from “multiple testing” problems, which we address in later sections 

and more systematically in Appendix B. 

4.2 Test Results for Local Clustering  

For our local cluster analyses, simulations were again performed using 999N   test patterns of 

size 1n  for each of the n (=1,035 in the Northeast corridor and 645 in California) R&D 

locations in the observed pattern, 0X . The set of radial distances (in miles) used for the local 

tests was {0.25,0.5,0.75,1,2,5,10,11,12..,100}D  . But, unlike the global analyses previously in 

which clustering was significant at all scales, there is considerable variation in significance levels 

across labs located at different points in space. For example, it is not surprising to find that many 

isolated R&D locations exhibit no local clustering whatsoever. Moreover, there is also 

considerable variation in significance at different spatial scales. At very large scales (perhaps, 50 

miles), one tends to find a few large clusters associated with those mega regions containing most 

of the labs (within the Washington–Boston corridor or the San Francisco Bay Area). At very 

small scales (say, 0.25 miles), one tends to find a wide scattering of small clusters, mostly 

associated with locations containing multiple labs (such as industrial parks). In our present 

setting, the most meaningful patterns of clustering appear to be associated with intermediate 

scales between these two extremes. 

A visual inspection of the p-value maps generated by our test results showed that the clearest 

patterns of distinct clustering can be captured by the three representative distances, {1,5,10}D  . 

Of these three, the single best distance for revealing the overall clustering pattern in the entire 

data set appears to be five miles, as illustrated for the Northeast corridor and California in 

Figures 4a and 4b, respectively. As seen in the legend, those R&D locations, i , exhibiting 
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maximally significant clustering — (5) 0.001iP  — are shown as black, and those with p-values 

not exceeding 0.005 are shown as dark gray. Here, it is evident that essentially all of the most 

significant locations occur in four distinct groups in the Northeast corridor, which can be roughly 

described (from north to south) as the “Boston,” “New York City,” “Philadelphia,” and 

“Washington, D.C.” agglomerations.25 In California, there are again three distinct groups, 

roughly described (from north to south) as the “San Francisco Bay Area,” “Los Angeles area 

(mainly Irvine),” and “San Diego.” While these patterns are visually compelling, it is important 

to establish such results more formally. 

5. IDENTIFYING SPATIAL CLUSTERS: THE MULTISCALE CORE-CLUSTER 

APPROACH 

The global cluster analysis in Section 3 identified the scales at which clustering is most 

significant (relative to manufacturing employment). The local cluster analysis in Section 4 

provided information about where clustering is most significant at each spatial scale. But neither 

of these methods formally identifies or defines specific “clusters” of labs. In this section, we 

apply some additional techniques to identify clusters, which we call the multiscale core-cluster 

approach.  

As discussed in Appendix B, a number of cluster-identification techniques have been developed 

to identify sequences of clusters that are individually “most significant” in an appropriate 

sense.26 The present approach is based more directly on the K-function methods and, in 

particular, focuses on the multiscale nature of local K-functions. More specifically, this 

                                                 
25 Two exceptions are the small but significant agglomerations identified in the analysis — one in Pittsburgh and 

one in Buffalo. 

26 This sequential approach is designed specifically to overcome the problem of “multiple testing,” as discussed 

further in Appendix B. 
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clustering procedure starts with the local point-wise clustering results in Section 4.1 and seeks to 

identify subsets of points that can serve as “core” cluster points at a given selection of relevant 

scales, d. Here, we again focus on the three scales, {1,5,10}D  , used in Section 4.1. At each 

scale, d D , we define a core point to be a maximally significant R&D lab (i.e., with a local K-

function p-value of 0.001 using the 999 simulations of K at distance d in Section 4). In order to 

exclude “isolated” points that simply happen to be in areas with little or no manufacturing, we 

also require that there be at least four other R&D labs within this d-mile radius. Finally, to 

identify distinct clusters of such points, we create a d-mile-radius buffer around each core point 

(in ArcMap). We designate the set of points (labs) in each connected component of these buffer 

zones as a core cluster of points at scale d. Hence, each such cluster contains a given set of 

“connected” core points along with all other points that contributed to their maximal statistical 

significance at scale d. These concepts are best illustrated by examples. 

We begin with the single most striking example of multiscale core-clustering in our data set, 

namely the San Francisco Bay Area in California shown in Figure 5. Starting at the 10-mile 

level, we see one large cluster (represented by dashed gray curve) that essentially covers the 

entire Bay Area. At the five-mile level (represented by solid gray curves), the dominant core 

cluster is seen to be perfectly nested in its 10-mile counterpart, corresponding almost exactly to 

what is typically regarded as Silicon Valley. The smaller secondary cluster of labs is 

approximately centered around the Lawrence Livermore National Laboratory complex. Finally, 

at the one-mile level (represented by black curves), the heaviest concentration of core clusters 

essentially defines the traditional “heart” of Silicon Valley, stretching south from the Stanford 

Research Park area to San Jose. In short, this statistical hierarchy of clusters is in strong 

agreement with the most well-known R&D concentrations in the San Francisco Bay Area. 
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A second example, from the Northeast corridor, is provided by the hierarchical complex of R&D 

clusters in the Boston area, shown in Figure 6a. Here again, the entire Boston area is itself a 

single 10-mile cluster. Moreover, within this area, there is again a dominant five-mile core 

cluster containing the five major one-mile clusters in the Boston area. The largest of these is 

concentrated around the university complex in Cambridge, while the others are centered at points 

along Route 128 surrounding Boston. This is seen more clearly in Figure 6b,27 which also shows 

that most R&D labs in the Boston area are located in close proximity to major transportation 

routes, including Interstate Routes 90, 93, 95, and 495.  

Note, finally, that while the clusters in both Figures 5 and 6a tend to be nested by scale, this is 

not always the case.28 For example, the five-mile “Livermore Lab” cluster in Figure 5 is seen to 

be mostly outside the major 10-mile cluster. Here, there is a concentration of six R&D labs 

within two miles of each other, although Livermore is relatively far from the Bay Area. So, while 

this concentration is picked up at the five-mile scale, it is too small by itself to be picked up at 

the 10-mile scale. 

These examples illustrate the attractive features of the multiscale core-cluster approach. First and 

foremost, this approach adds a scale dimension not present in other clustering methods. In 

essence, it extends the multiscale feature of local K-functions from individual points to clusters 

of points. Moreover, this approach helps to overcome the particular limitations of significance-

maximizing approaches mentioned previously. First, the shapes of individual core clusters are 

seen to be more sensitive to the actual configuration of points than those found in significance-

                                                 
27 For visual clarity, only core cluster points (and not their associated buffers) are shown in Figure 6b. 

28 The area of five-mile clusters in the Northeast corridor is on average 277 square miles, while the area of 10-mile 

clusters in the Northeast corridor is on average 2,498 square miles. In California, the corresponding areas for five- 

and 10-mile clusters are 319 and 1,326 square miles, respectively. 
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maximizing methods.29 In addition, since all core clusters are determined simultaneously, the 

path-dependency problem of sequential methods does not arise.  

In summary, an overall depiction of core clusters for both the Northeast corridor and California 

(at scales, 5,  10d  ) is shown in Figures 7a and 7b, respectively. Figure 7a shows the four major 

clusters identified for the Northeast corridor (one each in Boston, New York–Northern New 

Jersey, Philadelphia–Wilmington, and Washington, D.C.), while Figure 7b shows the three major 

clusters in California (one each in the Bay Area, Los Angeles, and San Diego).  

It should be stressed that this multiscale approach is not a substitute for more standard 

approaches such as significance-maximizing. While it does yield a meaningful hierarchy of 

statistically significant clusters, it provides no explicit method for rank ordering clusters in terms 

of statistical significance. In particular, this approach by itself cannot be used to gauge the 

relative statistical significance of clusters (such as determining whether clustering in Boston is 

more significant than in New York). Moreover, such representational schemes presently offer no 

formal criteria for choosing the key parameter values by which they are defined (the d-scales to 

be represented, the p-value thresholds and d -neighbor thresholds for core points, and even the 

connected-buffer approach to identifying distinct clusters).30 Thus, the primary objective of this 

more heuristic procedure is to produce explicit representations of clusters that capture both their 

relative shapes and concentrations in a natural way.  

                                                 
29 This point is demonstrated in Appendix B. 

30 It should be noted that certain, more systematic procedures may be possible. For example, the selection of “best 

representative” d-scales could be in principle accomplished by versions of k-means procedures in which the within-

group versus between-group variations in patterns are minimized.  
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Finally, in Buzard et al. (2016), we document that patent citations are more highly geographically 

localized within these clusters of R&D labs than outside them. We argue that this demonstrates that 

these clusters are associated with economically meaningful outcomes. 

5.1. Alternate Cluster Boundaries: Employment in STEM Industries as Benchmark 

Firms’ desires to take advantage of knowledge spillovers is one mechanism that could explain 

spatial clustering of innovative activity, and the specific clusters identified in this paper are 

consistent with a knowledge spillover explanation. It is also possible that R&D activity is 

geographically concentrated to take advantage of labor market pooling. As we have shown, one 

important concentration of R&D labs is found in Cambridge, MA, and another important 

clustering is found in the Silicon Valley. These labs are close to large pools of STEM graduates 

and workers, the very workers R&D activity requires. Manufacturing activity tends to employ a 

more general workforce than does innovative activity and may therefore be more geographically 

dispersed compared with innovative activity. 

To address this concern, we first develop a measure of STEM workers by location. For our 

backcloth, we replace the number of manufacturing employees in each zip code area with an 

estimate of the number of STEM workers. This is constructed using the proportion of STEM jobs 

in each four-digit North American Industry Classification System (NAICS) industry multiplied 

by the number of jobs in each industry reported in the Zip Code Business Patterns data. 

Hypothesis 1 becomes: 

Hypothesis 3 

Lab locations are no more concentrated than STEM worker employment at the zip code 

level and then no more concentrated than total employment within each zip code.  
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We report the results of this alternative test for five- and 10-mile clusters in the Northeast 

corridor (Figure 8a) and in California (Figure 8b). The clusters identified using STEM workers 

as a reference are in remarkable agreement with the clusters obtained when using manufacturing 

employment as the backcloth. The four major clusters in the Northeast corridor (Boston, New 

York–Northern New Jersey, Philadelphia–Wilmington, and Washington, D.C.),) previously 

identified in Figure 7a resurface when using the STEM worker backcloth. Similarly, the three 

major clusters identified in Figure 7b for California (one each in the Bay Area, Los Angeles, and 

San Diego) reemerge using the STEM worker backcloth. 

However, there are certain differences between the results using the different backcloths. Notice 

first that the STEM worker clusters appear to be larger than those found when using the 

manufacturing employment backcloth. This is true for the clusters in the Northeast corridor and 

in California. In addition, a number of additional smaller clusters emerge under the STEM 

worker backcloth. Five additional 10- mile clusters are found in the Northeast corridor (one each 

in Lancaster, PA; Hagerstown, MD; Binghamton, NY; Syracuse, NY; and Rochester, NY) and 

also in Richmond, VA. Three additional 10-mile clusters are found in California (one each in 

Santa Rosa, Santa Barbara, and Malibu).  

6. CONCLUDING REMARKS  

In this paper, we use a new data set on the location of R&D labs and several distance-based 

point-pattern techniques to analyze the spatial concentration of the locations of more than 1,700 

R&D labs in California and in a 10-state area in the Northeast corridor of the United States. 

Rather than using a fixed spatial scale, we describe the spatial concentration of labs more 

precisely, by examining spatial structure at different scales using Monte Carlo tests based on 
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Ripley’s K-function. Geographic clusters at each scale are identified in terms of statistically 

significant departures from random locations reflecting the underlying distribution of economic 

activity. We present robust evidence that private R&D labs are indeed highly concentrated over a 

wide range of spatial scales.  

We introduce a novel way to identify the spatial clustering of labs called the multiscale core-

cluster approach. The analysis identifies four major clusters in the Northeast corridor (one each 

in Boston, New York–Northern New Jersey, Philadelphia–Wilmington, and Washington, D.C.,) 

and three major clusters in California (one each in the Bay Area, Los Angeles, and San Diego). 

Work by Buzard et al. (2016) demonstrates that these clusters are associated with economically 

meaningful outcomes such as patenting. 
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Table 1: Summary Statistics  

Northeast Corridor (10-State) 

Variable Mean Std. Dev. Median Minimum Maximum 

  All Zip Codes (6,044) 

Land Area, miles2 29.10 37.61 16.87 0.01 468.16 

Radius* 2.55 1.66 2.32 0.06 12.21 

Total Employment 4,307.22 8,994.78 1,001.00 0.00 194,114.00 

Manufacturing Employment 557.20 1,213.46 76.30 0.00 22,808.31 

Total Establishments 250.36 370.76 97.00 1.00 6,962.00 

Manufacturing Establishments 11.39 16.65 4.00 0.00 132.00 

Labs 0.17 0.74 0.00 0.00 13.00 

  Zip Codes with 1 or More Labs (549) 

Land Area, miles2 20.95 29.46 12.04 0.06 361.79 

Radius* 2.21 1.34 1.96 0.14 10.73 

Total Employment 15,736.22 17,620.83 11,072.00 39.00 194,114.00 

Manufacturing Employment 2,057.08 2,166.38 1,356.30 0.00 22,808.31 

Total Establishments 697.51 574.58 568.50 6.00 6,962.00 

Manufacturing Establishments 32.40 23.49 26.00 0.00 132.00 

Labs 1.89 1.68 1.00 1.00 13.00 

California 

Variable Mean Std. Dev. Median Minimum Maximum 

  All Zip Codes (1,646) 

Land Area, miles2 95.56 256.33 17.34 0.01 3,806.05 

Radius* 3.84 3.96 2.35 0.06 34.81 

Total Employment 5,989.95 9,758.35 1,700.00 0.00 79,766.00 

Manufacturing Employment 858.14 2,394.39 64.50 0.00 27,186.00 

Total Establishments 467.19 555.17 262.50 0.00 3,527.00 

Manufacturing Establishments 30.18 61.83 8.00 0.00 776.00 

Labs 0.39 2.01 0.00 0.00 33.00 

  Zip Codes with 1 or More Labs (204) 

Land Area, miles2 18.78 37.75 8.19 0.07 385.98 

Radius* 2.02 1.38 1.61 0.15 11.08 

Total Employment 19,482.47 17,300.91 15,088.00 0.00 79,766.00 

Manufacturing Employment 3,607.79 5,188.27 1,569.00 0.00 27,186.00 

Total Establishments 1,173.13 677.45 1,065.50 0.00 3,527.00 

Manufacturing Establishments 94.52 96.32 62.00 0.00 636.00 

Labs 3.16 4.90 1.50 1.00 33.00 

Sources: Author’s calculations using the 1998 editions of the Directory of American Research and Technology and Zip 

Code Business Patterns 

* Calculated assuming a zip code of circular shape with an area as reported in the data 
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Table 2a: Concentration of Labs by Industry in the Northeast Corridor (P-values)† 

 Miles 

INDUSTRY SIC LABS 0.25 0.5 0.75 1 5 20 50 

Metal Mining 10 4 0.5021 0.5029 0.5044 0.5052 0.5227 0.1674 0.4149 

Oil and Gas Extraction 13 3 0.5011 0.5019 0.5026 0.5034 0.5137 0.0906 0.2286 

Food and Kindred Products 20 25 0.5825 0.6278 0.6750 0.7081 0.0984 0.2097 0.0480 

Textile Mill Products 22 14 0.0267 0.0465 0.0690 0.0859 0.3468 0.7839 0.6446 

Apparel and Other Finished Products 23 5 0.5036 0.5063 0.5082 0.5101 0.5399 0.7230 0.9088 

Paper and Allied Products 26 28 0.6029 0.6596 0.7103 0.7460 0.4685 0.2833 0.3058 

Printing, Publishing, and Allied 

Industries 

27 3 0.5009 0.5012 0.5019 0.5024 0.5111 0.5837 0.7040 

Chemicals and Allied Products 28 420 0.0001 0.0001 0.0001 0.0001 0.0001 0.0020 0.0001 

Petroleum Refining and Related 

Industries 

29 24 0.0844 0.1380 0.1980 0.2425 0.3012 0.0079 0.0358 

Rubber and Miscellaneous Plastics 

Products 

30 38 0.6728 0.7493 0.8135 0.8544 0.5710 0.7974 0.9965 

Stone, Clay, Glass, and Concrete 

Products 

32 36 0.0002 0.0008 0.0032 0.0011 0.1041 0.7385 0.6886 

Primary Metal Industries 33 36 0.6555 0.7284 0.7921 0.8327 0.7848 0.2592 0.4881 

Fabricated Metal Products 34 44 0.0004 0.0026 0.0101 0.0200 0.0911 0.6985 0.8571 

Industrial and Commercial Machinery 

and Computer Equipment 

35 140 0.6024 0.7659 0.4192 0.4052 0.9910 0.9898 0.9867 

Electronic and Other Electrical 

Equipment  

36 242 0.1958 0.5789 0.5825 0.7329 0.7058 0.8030 0.7423 

Transportation Equipment 37 40 0.2277 0.3575 0.4867 0.5711 0.9594 0.9989 0.9744 

Measuring, Analyzing, and Controlling 

Instruments 

38 243 0.0334 0.1509 0.3838 0.3983 0.8171 0.8937 0.8778 

Miscellaneous Manufacturing Industries 39 18 0.0468 0.0789 0.1126 0.1380 0.0378 0.1672 0.1093 

Business Services 73 137 0.0004 0.0052 0.0166 0.0055 0.0004 0.0001 0.0022 

†Concentration is conditional on the location of overall R&D labs. Bold type indicates significantly more 

concentrated than overall labs at the 5 percent level of significance. Light gray type indicates significantly more 

dispersed than overall labs at the 5 percent level of significance. 

Source: Author's calculations using the 1998 edition of the Directory of American Research and Technology.
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Table 2b: Concentration of Labs by Industry in California (P-values)† 

 Miles 

INDUSTRY SIC LABS 0.25 0.5 0.75 1 5 20 50 

Oil and Gas Extraction 13 2 0.5015 0.5025 0.5040 0.5060 0.5455 0.6275 0.7010 

Heavy Construction 16 2 0.5010 0.5015 0.5035 0.5055 0.5330 0.6210 0.1910 

Food and Kindred Products 20 3 0.5055 0.5100 0.5150 0.5185 0.5990 0.7700 0.4925 

Paper and Allied Products 26 2 0.5020 0.5035 0.5045 0.5080 0.5340 0.6175 0.1970 

Chemicals and Allied Products 28 129 0.0025 0.0100 0.0170 0.0705 0.9670 0.9920 0.9480 

Petroleum Refining and Related 

Industries 
29 2 0.5005 0.5025 0.5040 0.5065 0.5385 0.6105 0.6875 

Rubber and Miscellaneous Plastics 

Products 
30 8 0.0235 0.0535 0.0980 0.1320 0.4020 0.3660 0.1630 

Stone, Clay, Glass, and Concrete 

Products 
32 6 0.5125 0.5290 0.5515 0.5695 0.7950 0.7075 0.4215 

Primary Metal Industries 33 11 0.0435 0.1130 0.1780 0.2455 0.8770 0.7235 0.2865 

Fabricated Metal Products 34 16 0.5925 0.6840 0.7670 0.8235 0.9890 0.4555 0.1765 

Industrial and Commercial Machinery 

and Computer Equipment 
35 99 0.0140 0.0100 0.0105 0.0120 0.0020 0.0010 0.0205 

Electronic and Other Electrical 

Equipment 
36 211 0.0450 0.0030 0.0075 0.0030 0.0010 0.0030 0.1040 

Transportation Equipment 37 36 0.0010 0.0030 0.0030 0.0030 0.4635 0.2635 0.1570 

Measuring, Analyzing, and Controlling 

Instruments 
38 134 0.0010 0.0480 0.2165 0.4610 0.8845 0.9960 1.0000 

Miscellaneous Manufacturing Industries 39 8 0.5285 0.5620 0.5980 0.6280 0.9000 0.7310 0.7205 

Business Services 73 147 0.0300 0.0150 0.0105 0.0045 0.0020 0.0010 0.0010 

†Concentration is conditional on the location of overall R&D labs. Bold type indicates significantly more 

concentrated than overall labs at the 5 percent level of significance. Light gray type indicates significantly more 

dispersed than overall labs at the 5 percent level of significance. 

Source: Author's calculations using the 1998 edition of the Directory of American Research and Technology. 
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Source: The 1998 edition of the Directory of American Research and Technology and authors’ 

calculations 

Each dash on the map represents the location of a single R&D lab. In areas with a dense cluster 

of labs, the dashes tend to sit on top of one another, representing a spatial cluster of labs.

Figure 1: Location of R&D Labs 
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Figure 2a: Z-scores for Northeast Corridor 

Dotted line Z = 1.65 

 

Figure 2b: Z-scores for California 

Dotted line Z = 1.65 
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Figure 3a: Northeast Corridor Industry Z-Scores 
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Figure 3b: California Industry Z-Scores 
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Figure 5: Multiscale Core Clusters in the San Francisco Bay Area 
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Figure 6b: Proximity to Major Routes in Boston 

Figure 6a: Multiscale Core Clusters in Boston 
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Figure 7a: Northeast Corridor Core Clusters  

d = 5, 10 

Figure 7b: California Core Clusters 

d = 5, 10 

= 5-mile cluster 

= 10-mile cluster 
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Figure 8a: Northeast Corridor Core Clusters  

                          d = 5, 10 (STEM Workers) 

Figure 8b: California Core Clusters    

                    d = 5, 10 (STEM Workers) 

= 5-mile cluster 

= 10-mile cluster 
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 Appendix A: Robustness of Global K-Cluster Results 

For completeness, we have analyzed R&D clustering with respect to manufacturing 

establishments as well as manufacturing employment. To do so, the number of manufacturing 

employees in each zip code area was simply replaced with the number of manufacturing 

establishments. In both the Northeast corridor and California, the only substantive differences in 

global clustering with respect to these two reference distributions was due to certain anomalies 

arising from clusters of small establishments in industries not closely related to R&D activity.  

The single most dramatic example is in the Northeast corridor, where the Garment District in 

South  Manhattan is so strongly concentrated (more than 2,000 establishments in two adjacent 

zip codes, 10018 and 10001) that it far outweighs the clustering of establishments in all other 

Northeast corridor manufacturing industries combined. Figure A1 shows the comparison of 

typical counterfactual lab patterns in the lower half of Manhattan generated by the manufacturing 

establishment distribution on the left with the manufacturing employment distribution on the 

right (where zip codes 10018 and 10001 are the darkest pair in the left panel). So, while 

manufacturing employment appears to be quite concentrated in this area, it is clear that 

manufacturing establishments are relatively far more concentrated. Because this area constitutes 

such an extreme outlier in our data, we have run the simulation analyses both with and without 

the lower half of Manhattan (where the latter excludes the 20 R&D labs in the lower half of 

Manhattan as well). T he resulting global Z-scores are shown in Figures A2 and A3, respectively.  

Notice first that the overall shape of the curve in Figure A2 is qualitatively very similar to that 

for manufacturing employment in Figure 2a of the text. But the values of the curve in Figure A2 

are drastically lower and fail to yield significant clustering for essentially all scales less than 20 
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miles. But in Figure A3, it is seen that, by removing only the small area of the lower half of 

Manhattan in Figure A1, the patterns of clustering significance for both manufacturing 

establishments and employment are now qualitatively similar and that, indeed, clustering at small 

scales is more significant with respect to the distribution of establishments. So, the influence of 

the garment industry is seen to be quite dramatic. Moreover, since it is reasonable to assume that 

the location of manufacturing R&D labs is relatively insensitive to this particular industry, the 

removal of this outlier seems reasonable.  

Turning next to California, a similar anomaly was found with respect to the Jewelry District in 

central Los Angeles, which again represents a strong clustering of small manufacturers not 

closely related to R&D. But because the effect of this cluster is much smaller in scope, we 

present only the full set of results for all manufacturing establishments in Figure A4. Here it is 

evident that, except for small scales up to about three miles, the shape and levels of significance 

for both manufacturing establishments and manufacturing employment in Figure 2b of the text 

are remarkably similar. 

Finally, it should be mentioned that a similar analysis was done using total employment as the 

reference distribution. Clustering anomalies for this distribution were even more severe than for 

manufacturing stablishments, and the anomalies appear to have little relation to manufacturing 

R&D. So, results for this distribution are deemed to have little relevance for the present analysis 

and are not reported. 
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Appendix B: Robustness of Core-Cluster Results 

As discussed in Section 4 of the paper, our method of identifying core clusters is, by 

construction, based on the results of local K-function analyses. Because such analyses involve 

separate tests at multiple locations (some nearby) and at multiple scales (some quite large), we 

must address certain aspects of the well-known “multiple testing” problem.31 In this Appendix, 

we first discuss the multiple-testing problem itself and then compare our multiscale core-cluster 

approach with significance-maximizing approaches to resolving this problem. 

To motivate the multiple-testing problem in the setting of Section 5 in the text, we start by 

supposing that there is no discernible local clustering of R&D labs (i.e., that the observed pattern 

0X of R&D locations cannot be distinguished statistically from the patterns generated under our 

null hypothesis). In addition, suppose that all local K-function tests were in fact statistically 

independent of one another. Then, by construction, we should expect 5 percent of our resulting 

test statistics to be statistically significant at the 0.05 percent level. So, when many such tests are 

involved (there are 1,035 tests at each scale, d D , in the Northeast corridor and 645 tests at 

each scale in California), one is bound to find some degree of significant clustering using such 

testing procedures. As is well known, this type of false positive rate can be mitigated by reducing 

the p-value threshold level deemed to be significant. In fact, that is one reason why we focused 

only on p-values no greater than 0.005 in Figure 4 of the text. 

But such adjustments are by themselves not sufficient in instances in which the assumption of 

statistical independence is violated. This is quite likely when radial neighborhoods around 

different test points are large enough to intersect and thus contain common points (either 

                                                 
31 While global cluster analyses may also suffer from multiple testing over a range of spatial scales, this problem is 

particularly severe when conducting tests of local clustering that spatially overlap. 
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observed or counterfactual). In such cases, the resulting p-values at these test points must 

necessarily exhibit positive spatial autocorrelation, much in the same way that kernel smoothing 

of spatial data induces autocorrelation.32  

 

Several statistical approaches have been developed for resolving such problems. Most prominent 

among these are the Kulldorff (1997) SaTScan approach and that of Besag and Newell (1991) 

approach. Both methods employ sequential testing procedures, in which only single maximally 

significant clusters are identified in each step. To describe this sequential procedure in the 

present setting, we now focus on zip code areas (cells) and replace individual locations with 

counts of R&D labs in each area (cell counts). Using centroid distance between cells, candidate 

clusters are then defined as unions of m-nearest neighbors to given “seed” cells, and a test 

statistic is constructed to determine the single most significant cluster. In both of these 

significance-maximizing procedures, the notion of “significance” is defined with respect to tests 

that are based essentially on Hypothesis 1, namely that R&D labs are distributed (at the zip code 

level) in a manner proportional to manufacturing employment. One key difference is that 

counterfactual locations are implicitly assumed to be randomly distributed inside each zip code 

(i.e., are distributed proportional to area rather than total employment at the block level). To 

determine a second most significant cluster, the zip code areas in the most significant cluster are 

removed, and the same procedure is then applied to the remaining zip code areas. This procedure 

is typically repeated until some significance threshold (such as a p-value exceeding 0.05) is 

reached.  

  

                                                 
32 For a full discussion of these issues in a spatial context, see, for example, de Castro and Singer (2006). 
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While this repeated series of tests might appear to reintroduce multiple testing, such tests are by 

construction defined over successively smaller spatial domains and hence are not directly 

comparable. Notice also that at each step of this procedure, the cluster identified has an explicit 

form, namely, a seed zip code area together with its current nearest neighbors. So, both the 

multiple-testing and cluster-identification problems raised for K-function analyses noted 

previously are at least partially resolved by this significance-maximizing approach.  

We applied both the Besag and Newell procedure and Kulldorff’s SaTScan procedure to our data 

and found them to be in remarkable agreement with each other. Thus, we present only the results 

of the (more popular) SaTScan procedure. In this setting, we ran the maximum of 10 iterations 

allowed by the SaTScan software, and the results from the union of these 10 clusters are plotted 

in Figure B1 for labs in California and in Figure B2 for labs in the Northeast corridor. By 

comparing these results with Figures 4a and 4b in the text, it is evident that both procedures are 

identifying essentially the same areas. These comparisons thus serve as one type of robustness 

check on our core-cluster results. 

However, there are certain differences between these results. Notice first that the SaTScan 

clusters appear to be more circular in form than the corresponding core clusters. This is 

particularly evident in the Northeast corridor, where isolated clusters such as Boston, 

Philadelphia, and Washington, D.C. appear to be very circular. As mentioned previously, this 

particular SaTScan procedure only considers circular (nearest-neighbor) clusters when 

identifying a most significant one. While it is possible to extend this restriction to certain classes 

of elliptical clusters, the key point is that prior restrictions must be placed on the set of potential 

clusters to keep search times within reasonable bounds. By way of contrast, our present core-
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cluster approach involves no prior restrictions on cluster shapes and, in this sense, is more 

flexible in nature.  

A second limitation of these significance-maximizing approaches that is less evident by visual 

inspection is the path-dependent nature of cluster formation. As mentioned previously, the zip 

code areas defining clusters created at each step of the procedure are removed before considering 

each new cluster. When clusters are very distinct (such as Boston, Philadelphia, and Washington, 

D.C., in Figure B1), this removal process creates no difficulties. But when subsequent clusters 

are in the same area as previous clusters (such as the Bay Area in Figure B2 and the New York 

area in Figure B1), the formation of early clusters modifies the neighborhood relations among 

the remaining zip codes at later stages. So, at a minimum, these modifications require careful 

conditional interpretations of all clusters beyond the first cluster. Thus, a second advantage of the 

present core-cluster approach is the simultaneous formation of all clusters, which naturally 

avoids any type of sequential constraints. 

For Online Publication 

Appendix C: Description of the Major Areas of Agglomeration33  

C.1 Northeast Corridor 

Of the 1,035 R&D labs in the Northeast corridor, 34 percent conduct research in chemicals; 17 

percent conduct research in electronic equipment except computer equipment; 16 percent do 

research in measuring, analyzing, and control instruments; 9 percent conduct research in 

                                                 
33 In addition to the four major areas of agglomeration discussed in what follows, there are two smaller 

agglomerations: one in Pittsburgh and another in Buffalo.  
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computer programming and data processing; and another 9 percent do research in industrial, 

commercial machinery, and computer equipment. 

The Boston Agglomeration 

There are 182 R&D labs within Boston’s single 10-mile cluster, as shown in Figure 6a.34 Most of 

these labs conduct R&D in five three-digit SIC code industries — computer programming and 

data processing, drugs, lab apparatus and analytical equipment, communications equipment, and 

electronic equipment. The largest five-mile cluster shown in Figure 8a contains 109 labs, which 

accounts for 60 percent of all labs in the larger 10-mile cluster. At the one-mile scale, Boston has 

five clusters, all of which are centered in the largest five-mile cluster. The largest of these one-

mile clusters contains 27 labs, half of which conduct research on drugs. 

The New York City Agglomeration 

The single largest cluster identified within our 10-state study area is the 10-mile cluster above 

New York City (shown in Figure C1) that stretches from Connecticut to New Jersey. This cluster 

contains a total of 287 R&D labs. There are 134 labs (47 percent) in this cluster that conduct 

research on chemicals and allied products, 62 of which focus on drugs. Labs in this cluster also 

conduct research based on electrical equipment and industrial machinery. Within this highly 

elongated 10-mile cluster, four distinct five-mile clusters were identified. Most of the 

concentration is seen to occur in the two clusters west of New York City, which, in particular, 

contain five of the nine one-mile clusters identified. Among these one-mile clusters, the largest is 

the Central Park cluster shown in Figure A1. About two-thirds of the 17 labs in this cluster are 

                                                 
34 The map legend in Figure 7 in the text applies to all map figures in this section. 
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conducting research on drugs, perfumes, and cosmetics, or computer programming and data 

processing. 

The Philadelphia Agglomeration 

As seen in Figure C2, there is a large 10-mile cluster mostly to the west of Philadelphia (the city 

of Philadelphia is shown in darker gray) where there are a total of 44 labs. Of these 44 labs, 16 

conduct research on drugs, and another 15 labs conduct research in the areas of computers, 

electronics, and instruments and related products. This cluster, in turn, contains a five-mile 

cluster centered in the King of Prussia area directly west of Philadelphia, in which there are 29 

labs, with 40 percent doing research on drugs. There is a second five-mile cluster, containing 17 

labs, centered in the city of Wilmington, DE, to the southwest. Here, 88 percent of the labs are 

doing research on chemicals and allied products. 

The Washington, D.C., Agglomeration  

The final area of concentration in the Northeast corridor is the 10-mile cluster around 

Washington, D.C., which contains 74 R&D labs as shown in Figure C3 (with the city of 

Washington, D.C., in darker gray), where one five-mile cluster can also be seen. About one-

quarter of the labs in the 10-mile cluster do research in the areas of computer programming and 

data processing. Furthermore, another 20 percent of the labs conduct research on 

communications equipment. In turn, this cluster contains two one-mile clusters, the largest of 

which (to the north) contains 16 labs with one-half conducting research on drugs. 

C.2 California 

Turning to California, 27 percent of 645 private R&D labs in the state conduct research in 

electronic equipment except computers, 18 percent do research in computer and data processing 
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services, another 18 percent carry out research in chemicals, and 16 percent perform R&D in 

measuring, analyzing, and controlling instruments. 

California’s Bay Area 

Of the 645 labs in California, 340 (slightly more than 50 percent) are located in the single 10-

mile cluster in the Bay Area. This cluster stretches from Novato in the north to San Jose in the 

south and from Dublin–Pleasanton in the east to the Pacific Ocean in the west (Figure 5). 

Research in these labs is concentrated in three SIC industries: electronic equipment except 

computers; computer and data processing services; and chemicals and allied products. The Bay 

Area has two five-mile clusters, the most prominent of which is in the Palo Alto–San Jose area, 

consisting of 282 labs. The 10-mile cluster also contains seven one-mile clusters. The most 

prominent one-mile cluster is in the Silicon Valley and consists of 138 labs (accounting for 41 

percent of all labs in the Bay Area), with 30 percent conducting research in computer and data 

processing services. 

San Diego 

The largest five-mile cluster in Southern California consists of 56 labs found in San Diego. Of 

these 56 labs, 20 conduct research on chemicals, 11 perform research in computer and data 

processing services, and 10 do research in measuring instruments. This cluster, in turn, contains a 

five-mile cluster consisting of 44 labs, and within it is a one-mile cluster consisting of 33 labs.  

The Los Angeles Area 

The most prominent cluster of labs in the Los Angeles area consists of 51 labs located in the 

Irvine–Santa Ana–Newport Beach area. Within this five-mile cluster, there are two separate one-

mile clusters, one comprising 20 labs and the other consisting of 10 labs. Electronic equipment 
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except computers is the main area of research for these labs followed by measuring, analyzing, 

and controlling instruments; and transportation equipment. In addition, there are two separate 

one-mile clusters to the north of the 10-mile cluster. One of the clusters is in Torrance with nine 

labs, and the other in Santa Monica has seven labs.  
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Figure A2: Z-scores Relative to Manufacturing Establishments for 

the Northeast Corridor Including the Lower Half of Manhattan 

 

Figure A1: Manufacturing Establishment Counterfactuals (left panel) and 

Manufacturing Employment Counterfactuals (right panel) in Lower Half of 

Manhattan 
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Figure A3: Z-scores Relative to Manufacturing Establishments for 

the Northeast Corridor Excluding the Lower Half of Manhattan 

Figure A4: Z-scores Relative to Manufacturing 

Establishments for California 
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Figure B2: SaTScan Clusters for 

California 

Figure B1: SaTScan Clusters for 

the Northeast Corridor 
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Figure C1: New York City Core 

Clusters 
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Figure C2: Philadelphia Core Clusters 
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Figure C3: Washington, D.C. Core 

Clusters 
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