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Abstract

In this paper, we advance the theory and computation of Eaton-Gersovitz style models of

sovereign debt by incorporating long-term debt and proving the existence of an equilibrium

price function with the property that the interest rate on debt is increasing in the amount

borrowed and implementing a novel method of computing the equilibrium accurately. Using

Argentina as a test case, we show that incorporating long-term debt allows the model to

match the average external debt-to-output ratio, average spread on external debt, the stan-

dard deviation of spreads and simultaneously improve upon the model’s ability to account

for Argentina’s other cyclical facts.



1 Introduction

Until recently, the existing literature on debt and default – both the consumer debt and

the sovereign debt parts – has considered only one-period debt. In reality, both consumers

and countries can and do borrow for more than one period. In this paper, we present a

new approach to incorporating long-term debt in equilibrium models of unsecured debt and

default in the style of Eaton and Gersovitz (1981).

We make four contributions. First, we show that there exists an equilibrium price function

for unsecured long-term debt with the property that the supply curve for credit is rising in

the interest rate. Thus, a key implication of the Eaton-Gersovitz framework is shown to

carry over to the case of long-term debt.1

Second, we contribute to the quantitative-theoretic literature on emerging market busi-

ness cycles by providing a more complete accounting of the facts. Specifically, we show that

our model can easily account for the observed high debt-to-output ratio, the average spread,

as well as the volatility of spreads in emerging markets without compromising the model’s

ability to account for emerging market business cycle facts.2 We show that the role of long-

term debt is critical in this accounting in that a model with one-period debt cannot match

the three key first and second moments without generating excessive cyclical volatility in

consumption and the trade balance and low correlations of these quantities with output.3

1The models of consumer bankrupcty analyzed in Chatterjee et al. (2007) and others bear a strong
resemblance to the Eaton-Gersovitz model. The model and the solution procedure developed in this paper
are thus relevant to the consumer bankruptcy literature as well.

2As documented in Neumeyer and Perri (2005), open emerging market economies display a high cyclical
volatility of consumption and a countercyclical trade balance. Aguiar and Gopinath (2006) and Arellano
(2008) showed that the Eaton-Gersovitz framework, with its rising supply curve for credit, can quantitatively
account for these patterns.

3We suspect that any endowment model that (i) has only one-period (i.e., quarterly) debt, (ii) matches a
high level of debt (70 percent of quarterly output on average, as in our case) and (iii) has a spread volatility
as high as in the data will tend to imply a counterfactually high consumption volatility. The reason is that
in such a model a large fraction of consumption must be financed by issuance of new debt and it would
take counterfactually small shifts in the Eaton-Gersovitz supply curve for credit to generate consumption
volatility of the magnitude we see in the data. To have a model consistent with realistic debt-to-output
ratios and observed volatilities of spreads and consumption we must recognize that only a small portion
of consumption is financed by new issuance of debt. This is precisely what a model with long-term debt
permits.
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Third, we investigate the optimal maturity length. Although long-term debt is a better

hedge against low realizations of output, the fact that the sovereign cannot commit to limit

its future borrowing makes long-term debt more expensive – the so-called “debt dilution

problem.” In our calibrated model, the cost imposed by the debt dilution problem turns out

to be the dominant effect and welfare is decreasing in maturity. However, we show that this

result is reversed when we modify our model to allow for a small probability of a self-fulfilling

rollover crisis. A sovereign that issues long-term debt is less vulnerable to a rollover crisis

than one that issues short-term debt.4 Indeed, we show that this additional source of shock

does not affect the properties of the baseline long-term debt model but affects the properties

of the one-period debt model significantly. Specifically, if debt is short-term, the sovereign

constrains its borrowing in order to reduce the likelihood of rollover crises. In our calibrated

model, this scaling back of debt makes one-period debt inferior to long-term debt.

Finally, we present a novel approach to accurately computing models with unsecured

long-term debt and default. Our approach relies on the presence of a low-variance i.i.d.

output shock drawn from a continuous CDF. As we explain later in the paper, continuity of

the CDF is key to avoiding a lack of convergence and the i.i.d nature of the shock is key to

developing an algorithm that can solve for the equilibrium accurately.

The paper is organized as follows. Section 2 provides a brief literature review. Section 3

introduces the sovereign debt environment. Section 4 gives the main theoretical results and

explains the computational challenge involved in solving this class of models and how this

challenge can be met. Section 5 presents all the quantitative results when the model is cali-

brated to Argentina’s experience in the 1990s. The three appendices contain results of a more

technical nature, including the proofs of the main propositions, the logic and performance

details of our computational algorithm, and robustness of results to pure computational

assumptions.

4A self-fulfilling rollover crisis is default resulting from a coordination failure, wherein if all lenders continue
to lend the sovereign will continue to repay but if each lender suspects that other lenders will not extend new
loans and therefore refuse to lend in anticipation of a default then the sovereign defaults. Cole and Kehoe
(2000) provide a theoretical demonstration that long-term debt can reduce the probability of rollover crisis
relative to short-term debt.
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2 Literature Review

There is a related literature on long-term sovereign debt. Hatchondo and Martinez (2009)

introduce consols with geometrically declining coupon payments. They show that having

long-duration debt considerably improves the cyclical volatility of spreads relative to a one-

period debt model.5 Nevertheless, the standard deviation of spreads in their model is very

low, at most 0.33 percent, compared to the data, which they report to be 2.51 percent.

Bi (2008a) examines maturity choice in a model of one- and two-period debt with rene-

gotiation on defaulted debt and shows that when default is likely in the near future, it is

relatively attractive for the sovereign to borrow short-term. Thus, the maturity structure

of debt shortens when approaching a crisis. Arellano and Ramanarayanan (2009) examine

maturity choice using the long-duration debt model of Hatchondo and Martinez. The fo-

cus of their paper is on the cyclical properties of the term spread and the duration of debt

(maturity).

There have been a number of recent additions to the quantitative sovereign debt literature

that extend the Eaton-Gersovitz framework in important directions while maintaining the

assumption that debt is one-period. Bi (2008a), D’Erasmo (2008), Benjamin and Wright

(2009) and Yue (2009) explicitly model the debt renegotiation process that follows sovereign

default. Cuadra and Sapriza (2008) examine the role of political uncertainty in affecting

the level and volatility of sovereign spreads. Mendoza and Yue (2009) endogenize the costs

of default by combining a production model featuring foreign working capital loans (as in

Neumeyer and Perri (2005) and Uribe and Yue (2006)) with the Eaton-Gersovitz framework.

Several of these extensions were motivated by the desire to generate debt-to-output ratios

that come closer to the high levels observed for emerging markets. However, with one

exception, these studies do not come close to generating the high debt-to-output ratios we

5They depart from the Eaton-Gersovitz framework in assuming that sovereigns do not lose access to
international capital markets upon default but simply suffer a one-period proportional output loss (up to 50
percent in the worst case).
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see in the data.6

3 Environment

3.1 Preferences and Endowments

Time is discrete and denoted t ∈ {0, 1, 2, ...}. The sovereign receives a strictly positive

endowment xt each period. The stochastic evolution of xt is governed by the following

process:

xt = yt +mt. (1)

Here mt ∈M = [−m̄, m̄] is a transitory income shock drawn independently each period from

a mean zero probability distribution with continuous cdf G(m), and yt is a persistent income

shock that follows a finite-state Markov chain with state space Y ⊂ R++ and transition law

Pr{yt+1 = y′|yt = y} = F (y, y′) > 0, y and y′ ∈ Y . As noted in the introduction, the i.i.d

shock m is included to make robust computation of the model possible. In the quantitative

analysis to follow, the endowment process (1) is estimated assuming a very small variance

for m.

The sovereign maximizes expected utility over consumption sequences, where the utility

from any given sequence ct is given by:

∞∑
t=0

βtu(ct), 0 < β < 1 (2)

The momentary utility function u(·) : [0,∞)→ R is continuous, strictly increasing, strictly

6Arellano (2008) obtained a mean debt-to-output ratio of 6 percent, Bi (2008a) 21.2 percent, Aguiar and
Gopinath (2006) 19 percent, Yue (2009) 10.1 percent, Cuadra and Sapriza (2008) 6.9 percent and Mendoza
and Yue (2009) 23.1 percent. Benjamin and Wright (2009) are able to generate a debt-to-output ratio of 65
percent but they do not compare the level and the standard deviation of spreads in their model to that in
the data.
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concave, and bounded above by the quantity U .

3.2 Option to Default and the Market Arrangement

The sovereign can borrow in the international credit market and has the option to default

on a loan. Default is costly in several ways. First, upon default, the sovereign loses access

to the international credit market – cannot borrow or save in the period of default – and

remains in financial autarchy for some random number of periods. Specifically, following

the period of default, the sovereign is let back into the international credit market with

probability 0 < ξ < 1. Second, during its sojourn in financial autarchy, the sovereign loses

some amount φ(y) > 0 of the persistent component of output y. Third, the sovereign’s

transitory component of income drops to −m̄ in the period of default.7 We assume that

y − φ(y)− m̄ > 0 (which ensures that y − φ(y) +m > 0 for all (y,m) ∈ (Y ×M)) and that

y − φ(y) is increasing in y.8

We analyze long-term debt contracts that mature probabilistically. Specifically, each unit

of outstanding debt matures next period with probability λ. If the unit does not mature,

which happens with probability 1 − λ, it gives out a coupon payment z. Note that, going

forward, a unit bond of type (z, λ) issued k ≥ 1 periods in the past has exactly the same

payoff structure as another (z, λ) unit bond issued k′ > k periods in the past. This means

that we need to keep track of the total number of (z, λ) bonds only. This cuts down on the

number of state variables.9 In what follows we assume that unit bonds are infinitesimally

7This technical assumption is made for the purpose of speeding up computation. It is not important that
m take the lowest value possible. As we verify in the sensitivity analysis section, setting m = 0 (the mean
value of the transitory shock) works just as well.

8In this paper, a function f(x) is increasing (decreasing) in x if x′ > x implies f(x′) ≥ (≤)f(x) and is
strictly increasing (strictly decreasing) in x if f(x′) > (<)f(x).

9If bonds mature deterministically in T periods, the sovereign’s state vector will contain the vector
(b0, b1, b2, . . . , bT−1), where bτ is the quantity of bonds due for repayment τ periods in the future. Thus one
has to keep track of at least T state variables, each of which can take many values. Hatchondo and Martinez
(2009) use a similar trick of rendering outstanding obligations “memoryless.” In their setup, all bonds last
forever (consols) but each pays a geometrically declining sequence of coupon payments. Thus, a bond issued
in the current period promises to pay the sequence {1, δ, δ2, δ3, . . .}. This payoff structure is the same as that
of a unit random maturity bond with λ = 1−δ and z = 1. Our specification has the advantage that it allows
separate targeting of maturity length and coupon payments.
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small – meaning that if b unit bonds of type (z, λ) are outstanding at the start of next period,

the issuer’s coupon obligations next period will be z · (1−λ)b with certainty and the issuer’s

payment-of-principal obligations will be λb with certainty.

We assume that there is a single type of bond (z, λ) available in this economy. We assume

that lenders are risk-neutral and that the market for sovereign debt is competitive. The unit

price of a bond of size b is given by q(y, b). The price of a unit bond does not depend on the

transitory shock m because knowledge of current period m does not help predict either m or

y in the future and, therefore, does not inform the likelihood of future default. We assume

that the sovereign can choose the size of its debt from a finite set B = {bI , bI−1, . . . b2, b1, 0},

where bI < bI−1 < . . . < b2 < b1 < 0.10 As is customary in this literature, we will view debt

as negative assets.

3.3 Decision Problem

Consider the decision problem of a sovereign with b ∈ B of type (z, λ) bonds outstanding and

endowments (y, m). Denote the sovereign’s lifetime utility conditional on repayment by the

function V (y,m, b) : Y ×M ×B → R, its lifetime utility conditional on being excluded from

international credit markets by the function X(y,m) : Y ×M → R, and its unconditional

(optimal) lifetime utility by the function W (y,m, b) : Y ×M ×B → R.

Then,

X(y,m) = u(c) + β{[1− ξ]E(y′m′)|yX(y′,m′) + ξE(y′m′)|yW (y′,m′, 0)} (3)

s.t.

c = y − φ(y) +m

The sovereign’s lifetime utility under financial autarchy reflects the fact that it loses φ(y)

of its output and can expect to be let back into the international credit market next period

10For simplicity, we do not allow the sovereign to accumulate assets. In our application, the no-
accumulation constraint is never binding in the simulations.
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with probability ξ.

And,

V (y,m, b) = max
b′∈B

u (c) + βE(y′m′)|yW (y′,m′, b′) (4)

s.t.

c = y +m+ [λ+ (1− λ)z] b− q(y, b′) [b′ − (1− λ)b]

The above assumes that the budget set under repayment is nonempty, meaning there is at

least one choice of b′ that leads to nonnegative consumption. But it is possible that (y, b,m)

is such that all choices of b′ lead to negative consumption. In this case, repayment is simply

not an option, and the sovereign must default.

Finally,

W (y,m, b) = max{V (y,m, b), X(y,−m̄)}. (5)

Since W determines both X and V (via equations (3) and (4), respectively) equation (12)

defines a Bellman equation in W .

We assume that if the sovereign is indifferent between repayment and default, it repays.

Hence, the sovereign defaults if and only if X(y,−m̄) > V (y,m, b). This decision problem

implies a default decision rule d(y,m, b) (where d = 1 is default and d = 0 is repayment)

and, in the region where repayment is feasible, a debt decision rule a(y,m, b). We assume

that if the sovereign is indifferent between two distinct b′s, it chooses the larger one (i.e.,

chooses a lower debt level over a higher one).

3.4 Equilibrium

The world one-period risk-free rate rf is taken as exogenous. Given a competitive market

in sovereign debt, the unit price of a bond of size b, q(y, b′), must be consistent with zero
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profits adjusting for the probability of default. That is:

q(y, b′) = E(y′m′)|y

[
[1− d(y′,m′, b′)]

λ+ [1− λ][z + q(y′, a(y′,m′, b′))]

1 + rf

]
(6)

In the event of default, the creditors get nothing. In the event of repayment, the creditors get

λ, which is the fraction of a unit bond that matures next period, and on the remaining frac-

tion, (1−λ), the creditors get the coupon payment z. In addition, the fraction that remains

outstanding has some value that depends on the persistent component of the sovereign’s en-

dowment next period and on the sovereign’s debt next period. Since the right-hand side of

the equation depends directly and indirectly (through the decision rules d and a) on q(y, b′),

equation (6) defines a functional equation in q(y, b′), namely, q = H(q).

4 Theory and Computational Algorithm

4.1 Theory

This section states results regarding how default and borrowing decisions change with regard

to variations in b. These results are then used to establish the main theoretical result of this

paper, namely, that an equilibrium pricing function exists with the property that price is

increasing in b′ (proofs of all assertions are available either in Appendix A or the Web

Appendix).

Proposition 1 (Characterization of the Default Decision Rule): d(y,m, b) is

decreasing in b.

For one-period debt, Proposition 1 implies that the equilibrium pricing function is in-

creasing in b′, or, equivalently, that more credit is supplied at higher interest rates. In

the one-period case z = 0 and λ = 1 and the equilibrium pricing equation (6) reduces to

q(y, b′) = E(y′m′)|y[1 − d(y′,m′, b′)]/[1 + rf ]. Since the right-hand side of this equality is in-

creasing in b′ by virtue of Proposition 1, q(y, b′) is increasing in b′. But if λ < 1 (average
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maturity is greater than 1 period) the price function also depends on a(y,m, b). The behavior

of q(y, b′) with respect to b′ now depends on how a(y,m, b) varies with b. But the behavior

of a(y,m, b) with respect to b depends, in turn, on how q(y, b′) varies with b′. Proposition 2

states that if the price function is increasing in b′, the debt decision rule is increasing in b.

Proposition 3 then establishes that there always exists a solution to the pricing equation (6)

that is increasing in b′.

Proposition 2 (Characterization of Debt Decision Rule): If q(y, b′) is increasing

in b′ then a(y,m, b) is increasing in b.

Proposition 3 (Existence and Characterization of the Equilibrium Price Func-

tion): There exists an equilibrium price function q∗(y, b′) that is increasing in b′.

The existence of an equilibrium price function requires the presence of the random vari-

able m with continuous CDF. With this addition, the operator H is a continuous function

of q. The reason why m is needed to make H continuous is given in the next section.

4.2 Computation of the Equilibrium Price Function

In this section, we explain why computing the equilibrium price function can be chal-

lenging and how this challenge is met in our paper. The solution procedure is to it-

erate on (6) until convergence. More precisely, let k denote the iteration number, let

Zk(y, b′) = E(y′,m′|y)W
k(y′,m′, b′) be the expected lifetime utility conditional on y and b′and

let d(y,m, b; qk, Zk) and a(y,m, b; qk, Zk) be the default and debt decision rules when the price

function is qk and expected lifetime utility is Zk; with a slight abuse of notation, let H[qk, Zk]

denote the expectation on the r.h.s of (6) given d(y,m, b; qk, Zk) and a(y,m, b; qk, Zk) and

let ζ be a “relaxation parameter.” Then,

qk+1 = (1− ζ)H[qk, Zk] + ζqk, (7)

Zk+1 = Em max{X(y,−m̄;Zk)), V (y,m, b; qk, Zk)} (8)
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and the iteration is continued until max |H(qk, Zk) − qk| and max |Zk+1 − Zk| are both

sufficiently close to zero.

For the iterations to converge, a solution to (6) must exist. But if both y and b are

discrete and m is identically zero, there is no assurance that (6) will have a solution because

H(q) need not be continuous in q: For instance, for some q and (y, b, 0), the sovereign will

be indifferent between default and repayment and an infinitesimal change in q will cause a

switch in behavior and, therefore, a discrete change in the expectation on the r.h.s. of (6).

Similarly, even if the sovereign strictly prefers to repay, it may be indifferent between two

different choices of debt. Once again, an infinitesimal change in q can result in a discrete

change in behavior and a discrete change in the expectations term. Note that the scope

for getting jumps due to indifference is much greater for long-term debt than short-term

debt because of the fact that a(y,m, 0) appears in the pricing equation.11 This additional

complication of long-term debt cannot be attenuated by making the grid on B fine because

the points of indifference can be far apart on the grid. The budget set under repayment is

typically not convex. Figure 1 shows a portion of q(y, b′)[b′ − (1− λ)b] function for the case

in which b = 0 and m = 0 from our quantitative model presented later in the paper. Observe

the kink and the ensuing depression in the upward sloping portion of the function. Figure 2

displays the variation in total lifetime utility from different choices of b′ for b = 0 and m = 0.

Observe the many nonconcave segments in this function. These nonconcavities imply that,

given (y, b) and q, the sovereign may be indifferent between two widely separated values of

b′, which will make the r.h.s of (6) discontinuous in q.

In Appendix B we document that solving the model without the m shock leads to poor

convergence outcomes for the equilibrium pricing function. The points marked A (the global

maximum) and B (a local maximum) in Figure 2 illustrate what goes wrong. When the

variance of m is set to 0, it often happens that a point like A is the optimal choice for

some iteration k, but when that choice is incorporated in the price function, a point like B

11Exact indifference never happens in computations but changes in q from one iteration to the next are
not infinitesimal either. The point is that if two options are near-indifferent, very small changes in qk can
cause a discrete change in behavior and, therefore, a discrete change in qk+1.
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becomes the optimum choice for some iteration k′ > k; and when that choice is incorporated

in the price function, the point A re-emerges as the new optimum for some iteration k′′ > k′.

Thus, the asset decision rule meanders back and forth and (7) fails to converge. We suspect

that this lack of convergence occurs because there is, in fact, no solution to (6).12

We know from general equilibrium theory that nonexistence resulting from nonconvexities

can be avoided by allowing agents to randomize over decisions. Introducing m is like intro-

ducing randomization: There is now a probability that an action d or b′ is chosen given (y,b)

and q and this probability changes continuously with q. The nonconvexity of the budget set

and nonconcavity of the value function continue to imply that the decision rule a(y,m, b; q) is

a discontinuous function of q. But as long as the points of discontinuity are finite in number,

infinitesimal changes in q will not cause jumps in the expectation term (which is now an

integral over y′ and the continuous variable m′) since each jump point has probability zero.

In this way, a continuous CDF for m ensures the continuity of the r.h.s of the functional

equation (6) with respect to q and the existence of an equilibrium.13

However, the introduction of m brings its own computational issues. Since m is a con-

tinuous variable and non-convexities make a(y,m, b; qk, Zk) potentially discontinuous in m,

it is not obvious how this potentially discontinuous decision rule is to be computed. This is

where the assumption that m is i.i.d. plays an important role – it allows us to establish that

d(y,m, b) and a(y,m, b) are monotone with respect to m, which, in turn, allows us to devise

an algorithm to recover the decision rules near-exactly. We have:

12We consider an algorithm to have failed to converge if the maximum relative error between two successive
iterates of the price function does not fall below 10−5 within 3000 iterations. If the lack of convergence is
due to non-existence of an equilibrium then no matter how long we allow the program to run, it will not
converge. Given this, some stopping rule is needed and we chose 3000 (we have confirmed that the algorithm
without the iid shock does not converge for higher bounds as well).

13An alternative strategy to prove existence is to work with decision correspondences (as opposed to
decision rules). In this approach, if the decision-maker is indifferent between two (or more) actions then
each action is taken with some probability that is determined in equilibrium. The proof of existence of an
equilibrium relies on the Kakutani Fixed Point Theorem for compact and convex-valued correspondences.
While this approach solves the existence issue, it does not appear to be computationally tractable. In
particular, computing mixed strategies when the “support points” of the mixed strategy are not known in
advance – and the choice set is very large – seems to be a challenging task.
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Proposition 4: a(y,m, b) is increasing in m and d(y,m, b) is decreasing in m.

The task of computing the decision rules with respect to m thus boils down to (i) locating

the value of m at which d(y,m, b; qk, Zk) switches from 1 to 0 and (ii) the values of m at which

the a(y,m, b; qk, Zk) switches from one debt level to a lower debt level.14 Note that it is not

known in advance which lower value of debt the sovereign switches to as m increases because

a(y,m, b; qk, Zk) may be discontinuous in m and the lower debt level need not be the next

lower debt level on the grid. However, an algorithm exists, described in Appendix B, that

can check for these discontinuities and recover a(y,m, b; qk, Zk) correctly.15 Once behavior

with respect to m is known, max{Xk(y,−m̄), V k(y,m, b; qk, Zk)} = W k(y,m, b; qk, Zk) can

be integrated with respect to m accurately using the integration method also described in

Appendix B.

Another issue is that the iteration (7) may fail to converge if the variance of m is too

small. As q changes, the thresholds for m change. If the variance of m is very small, any

given change in thresholds will result in a large change in the choice probabilities. Setting

ζ very close to 1 can counteract this sensitivity (by making the change qk+1 − qk itself very

small) but at the expense of making the number of iterations needed to achieve convergence

much larger than our upper bound of 3000. Thus, to achieve convergence σm must not be

14The behavior of d(y,m, b) with respect to m is easy to characterize also because of the assumption that
the act of default resets m to −m̄. This assumption makes the payoff from default independent of m. If the
level of transitory income were to remain unaffected by the act of default, the payoff from default, X, would
also depend positively on m. As shown in Chatterjee et al. (2007), this would result in the default set being
characterized by two thresholds, mL and mU , with default occurring when m ∈ (mU ,mL). Since the role of
the transitory shock in this paper is to ensure convergence of (7), it is computationally efficient to eliminate
the dependence of X on m so that only one default threshold needs to be computed.

15For each (y, b) and q, the algorithm recovers {−m̄ < mK−1 < mK−2 < . . . < m1 < m̄} and {b′K <
b′K−1 < . . . < b′ 1} such that b′K is chosen for m ∈ [−m̄,mK−1), b′K−1 is chosen for m ∈ [mK−1,mK−2),
. . . , b′ 1 is chosen for m ∈ (m1, m̄] (K = 1 means the same debt level b′1 is chosen for all m ∈M). Note that
K− i need not be adjacent to K−(i+1) on the grid. Note also that it is not possible to apply these methods
to a continuous y because y is not i.i.d and, therefore, the debt decision rule and the default decision rule are
nonmonotonic in y. For instance, if current y is above its mean, the price of debt is low, and the sovereign
has an incentive to issue more debt. On the other hand, an above-mean y implies that the country will be
poorer in the future, which gives the sovereign an incentive to borrow less. These two effects pull in opposite
directions and result in nonmonotonic behavior of b′ with respect to y. In the absence of monotonicity, it is
unclear if an algorithm can be devised to locate the values of y at which there is a switch in debt levels or
default decision.
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too small.16 More generally, there is a tradeoff between σm and ζ with regard to achieving

convergence: The lower is σm, the higher must ζ be to achieve convergence (an example of

this tradeoff is given in the Web Appendix).

The final computational point is whether there are advantages to solving long-duration

debt models assuming that y and b are discrete as opposed to continuous. We believe there

are two advantages. First, if either y or b (or both) is a continuous variable, q(y, b′) is infinite-

dimensional and it is much harder to establish the existence of a solution to q = H(q). If

a solution is not guaranteed, and a computational algorithm fails to converge, it is not

possible to tell if this failure results from a lack of a solution or from a defective algorithm.

Second, with continuous y and/or b′, any computation scheme must involve interpolating

value functions and the price function. For the interpolations to be justified, the functions

must be smooth (i.e. differentiable) (see, for instance, Theorems 6.7.3 and 6.9.1 in Judd

(1998)). But for this class of models neither value functions nor the price function are

smooth everywhere.17

16Although we cannot prove that there is a unique equilibrium, we have not found instances of multiple
equilibria. We do know, theoretically, that given the price vector q(y, b′), and a tie-breaking rule in case of
indifference, the decision rules d(y,m, b) and a(y,m, b) are unique (see the Web Appendix for a proof).

17How well interpolation techniques work in practice is an open research question. Hatchondo, Martinez
and Sapriza (2010) show that for the one-period debt model, interpolation techniques can deliver accurate
results in the sense that interpolation methods give the same answer as the discrete state space method
with a very fine grid for the model described in Arellano (2008). They apply a variant of their method
to their long-duration bond model in Hatchondo and Martinez (2009) but they do not compare how well
their method performs in solving the pricing equation relative to the discrete state space method. Also, it
is not known if interpolation methods work well for the empirically relevant parameter space. In Arellano
(2008), Hatchondo, Martinez and Sapriza (2010) as well as in Hatchondo and Martinez (2009), the level and
volatility of spreads, as well as the level of debt, are quite low relative to the data.
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5 Maturity, Indebtedness, and Spreads: The Argen-

tine Case

5.1 Calibration

We apply the framework developed in the previous sections to Argentina. The main con-

tribution is to show that long-duration bonds, besides being a closer fit with reality, can

help account for the average level of spreads, the volatility of spreads, and the average level

of debt in Argentina without generating counterfactual implications regarding Argentina’s

business cycle facts. Thus, introducing long-duration bonds into the Eaton-Gersovitz model

significantly improves its quantitative performance. We focus on the 8-year period between

1993:Q1 and 2001:Q4 during which Argentina was on a fixed exchange rate vis-a-vis the

dollar and was borrowing in international credit markets via marketable bonds.18

For the quantitative work we make the following specific functional form or distributional

assumptions.

• Endowment processes:

ln yt = ρ ln yt−1 + εt, where 0 < ρ < 1 and εt ∼ N
(
0, σ2

ε

)
mt ∼ trunc N

(
0, σ2

m

)
with points of truncation − m̄ and m̄

• Utility function: u(c) = c1−γ/(1− γ).

• The loss in the persistent component of output in the event of default or exclusion:

φ(y) = max{0, d0y + d1y
2}, d1 ≥ 0.

The specification for φ(y) allows for a variety of cost functions. If d0 > 0 and d1 = 0, the

18This is also the time period analyzed in Arellano (2008).
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cost is proportional to output; if d0 = 0 and d1 > 0, the cost rises more than proportionately

with output; if d0 < 0 and d1 > 0, the cost is 0 for 0 ≤ y ≤ −d0/d1 and rises more than

proportionately with output for y > −d0/d1. This last case resembles the cost function in

Arellano (2008).19 The reasons for choosing this flexible form are discussed in the findings

section.20 With these assumptions, the numerical specification of the model requires giving

values to 11 parameters. These are (i) three endowment process parameters, σm, ρ and

σ2
ε ; (ii) two preference parameters, β and γ; (iii) two parameters describing the bond, the

maturity parameter λ, and the coupon payment z; (iv) two default output loss parameters,

d0 and d1, (v) the probability of re-entry following default, ξ; and (vi) the risk-free rate rf .

The parameters of the endowment process are estimated on linearly detrended quarterly

real GDP data for the period 1980:1-2001:4.21 As noted earlier, convergence of (7) requires

that the standard deviation of the i.i.d. shock m be not too low. Experimentation shows that

σm = 0.003 is a good lower bound for our purposes – meaning that convergence is achieved

within 3000 iterations for a wide range of parameter values. Thus, the endowment process

is estimated assuming that σm = 0.003. The estimated value of ρ and σε are 0.948503 and

0.027092, respectively.22 In the computations, we approximate the y process by a 200-state

Markov chain and set m̄ = 2σm = 0.006.23 Of the preference parameters, the value of γ is

set equal to 2, which is the standard value used in this literature.

19In Arellano, φ(y) = max{0, y − ȳ}. Thus, cost is 0 for 0 ≤ y ≤ ȳ and rises linearly at rate 1 beyond ȳ.
Thus, default costs as a proportion of y, namely, (1− ȳ/y), increase strongly with y.

20With this specification, the cost can exceed y for large y This situation never arises in our application
but could be formally ruled out by setting φ(y) = min{y,max{0, d0y + d1y

2}}.
21The quarterly data series on real GDP, real aggregate consumer expenditure, real exports, real imports

and the (nominal) interest rate on Argentine sovereign debt is taken from Neumeyer and Perri (2005). All
the quantity variables were deseasonalized using the multiplicative X-12 routine in EViews.

22If the process is estimated without the transitory shock, the estimates of ρ and σε are 0.930139 (0.038395)
and 0.027209 (0.001577), respectively, where the values in parenthesis are standard errors. Note that the
values of ρ and σε used in the calibration are well within 1 standard deviation of these AR1 estimates and
statistically indistinguishable from them. Note also that adding m to the AR1 equation is equivalent to
assuming that log GDP is measured with some noise. Since the standard deviation of log GDP in the sample
is 0.076107, setting σm = 0.003 implies that σ2

m is 0.16 percent of the variance of log GDP. This is small
compared with the standard deviation of measurement errors assumed in estimation of DSGE models (see,
for instance, Ireland (2004); see Del Negro and Schorfheide (2010, p. 53 ) for a discussion of this practice).

23The value of m̄ is small enough that the requirement y −max{0, d0y + d1y
2} − m̄ > 0 is satisfied for all

values of y in the Markov chain and for all d0 and d1 used in the computations.
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The parameters describing the bond were determined to match the maturity and coupon

information for Argentina reported in Broner, Lorenzoni, and Schmukler (2007). The median

maturity of Argentine bonds is 20 quarters so λ = 1/20 = 0.05. We set z = 0.03, corre-

sponding to an annual coupon rate of 12 percent. In the data, the value-weighted average

coupon rate is about 11 percent.24

We set ξ = 0.0385, which gives an average period of exclusion of 26 quarters, or 6.5 years.

One measure of the exclusion period is the time it took to reach settlement on the defaulted

debt. Beim and Calomiris (2000, Table A) report that for the 1982 Argentine default,

settlement did not occur until 1993. For the 2001 default, Argentina reached settlement

with a majority of its creditors in 2005. Benjamin and Wright (2009, Figure 15) also report

Argentina as being in a state of default between 1982 and 1993 and between 2001 and 2005.

By these measures, the average exclusion period for Argentina is 7.5 years. Gelos, Sahay

and Sandleris (2008) measure exclusion as the years between default and the date of the

next issuance of public and publicly guaranteed bonds or syndicated loans. By this measure,

exclusion following the 1982 default lasted only 4 years (Table A7). They do not report the

exclusion period for the 2001 default. In our calibration, we give somewhat more weight to

the settlement-date measures of the exclusion period and set the average exclusion period

to 6.5 years.

The risk-free rate, rf , was set at 0.01, which is roughly the real rate of return on a

3-month (one quarter) U.S. Treasury bill.

The three remaining parameters β, d0, and d1 are selected to match (i) an average external

debt-to-output ratio of 0.7, which is 70 percent of the average external debt-to-output ratio

for Argentina over the period 1993Q1-2001:Q4; (ii) the average default spread over the same

period of 0.0815; and (iii) the standard deviation of the spread of 0.0443.25 We seek to

24We chose 12 percent because with an annual risk-free rate of 4 percent and an average spread of around
8 percent, a bond with coupon of 12 percent will trade roughly at par. So, whether the debt is recorded at
face value (which is the accounting practice) or at market prices (which is economically more sensible) will
not matter for the calibration of the model.

25Debt is total long-term public and publicly guaranteed external debt outstanding and disbursed
and owed to private and official creditors at the end of each year, as reported in the World Bank’s
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match only a portion of debt because we do not model repayment. In reality, sovereign debt

that goes into default eventually pays off something. In Argentina’s case, the repayment on

debt defaulted on in 2001 has been around 30 cents to the dollar. Thus, we treat only 70

cents out of each dollar of debt as the truly unsecured portion of the debt. But, as part of

our sensitivity analysis, we also examine the case in which we fully match average external

debt-to-output ratio.

Finally, we need to specify the model analogs of the external debt-to-output ratio and

spreads. In the GDF database, the external commitments of a country are reported on a

cash-accounting basis, which means that commitments are recorded at their face value, i.e.,

they are recorded as the undiscounted sum of future promised payments of principal.26 The

coupon payments agreed to do not figure directly in this accounting because they are not

viewed as obligations until they are past due. Given this valuation principle, the model

analog of debt as reported in the data is simply b, and the external debt-to-output ratio is

simply b/y.27 The default spread in the model is calculated as in the data. We compute

an internal rate of return r(y, b′)which makes the present discounted value of the promised

sequence of future payments on a unit bond equal to the unit price, that is, q(y, b′) =

[λ + (1 − λ)z]/[λ + r(y, b′)]. The difference between (1 + r(y, b′))4 − 1 and (1 + rf )
4 − 1 is

the annualized default spread in the model.28

The parameter selections are summarized in the following two tables. Table 1 lists the

Global Development Finance Database (series DT.DOD.DPPG.CD). The average debt-to-output ratio is
the average ratio of debt to GNP measured at a quarterly rate. The spread was calculated as the
difference between the interest rate data reported in Neumeyer and Perri (which is the same as the
EMBI data) and the 3-month T-bill rate. The T-bill rate series used is the TB3MS series available at
http://research.stlouisfed.org/fred2/categories/116. Both the interest rate data and the T-bill
rate are reported in annualized terms.

26See “Coverage and Accounting Rules” in Section 3 of the World Bank Statistical Manual on External
Debt (also available at http://go.worldbank.org/6FB4093970).

27The reason for this is that each bond can be viewed as a combination of unit bonds with varying
maturities. For instance, a measure λ of unit bonds is due next period, a measure (1−λ)λ is due in 2 periods,
. . . , a measure (1− λ)j−1λ is due in j periods, and so on. Since each of these obligations has a face value of
1, each would be recorded as a unit obligation. Thus, the total obligation is simply

∑
j=1 λ(1− λ)j−1 = 1.

28If there is no possibility of default, the unit price would be a constant q̄ such that q̄ = [λ+ (1− λ)(z +
q̄)]/[1 + rf ],which implies q̄ = [λ + (1 − λ)z]/[λ + rf ]. Since q(y, b) ≤ q̄, it follows that r(y, b′) ≥ rf .
Furthermore, the higher is the probability of default, the lower is q(y, b′) and higher is r(y, b′).
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values of the parameters that are selected directly without solving for the equilibrium of the

model. Table 2 lists the parameter values that are selected by solving the equilibrium of

the model and choosing the parameters so as to make the model moments come as close as

possible to the three data moments mentioned above.

Table 1: Parameters Selected Directly

Parameter Description Value

γ risk aversion 2

m̄ bound on m 0.006

σm standard deviation of m 0.003

σε standard deviation of ε 0.027092

ρ autocorrelation 0.948503

ξ probability of reentry 0.0385

rf risk-free return 0.01

λ reciprocal of avg. maturity 0.05

z coupon payments 0.03

Table 2: Parameters Selected by Match-
ing Moments

Parameter Description Value

β discount factor 0.95402

d0 default cost parameter −0.18819

d1 default cost parameter 0.24558

5.2 Findings

The results of the moment matching exercise are reported in Table 3. The first column

of numbers shows the data for Argentina. The second column reports the moments in the

model. All model moments are (sample) averages calculated by simulating the economy
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over many periods but always discarding the first 20 periods after re-entry following each

default.29 Evidently, the matching exercise is fully successful.30 Figure 3 shows the path

of the model-simulated spreads for 1993-2001 if the initial level of debt is chosen to exactly

match the spread in 1993:Q1. The close correspondence between the model-implied spreads

and the data is striking.

For comparison purposes, the last column reports the corresponding model statistics of

Arellano’s one-quarter debt model. Although Arellano did not target these statistics, the

fact remains that there are significant deviations between her model and the data: The debt-

to-output ratio is very low, the average spread is about 50 percent lower and the volatility

of spreads is about 44 percent higher.

Table 3: Results and Comparison

Data Baseline Arellano

(β = 0.95, d0 = −0.19, d1 = 0.25) (2008, Table 4, p.706)

Avg. Spread 0.0815 0.0815 0.0358

Std Dev of Spread 0.0443 0.0443 0.0636

Debt-to-Y 1.00 0.70 0.06

Table 4 reports some key cyclical properties of Argentine data and corresponding model

moments.31 Since we did not target these moments, the results are informative about the

performance of our model.

29We do this because the model economy re-enters capital markets without any debt, whereas Argentina
emerged from each default/restructuring episode with debt. By ignoring the first five years following re-entry,
we ignore years with counterfactually low debt in our model.

30For the record, the average debt-to-output ratio in the baseline model when debt is measured at its market
value is 0.703. So, it is only slightly higher than its face value. The reason is that the average interest rate
on debt, 0.0292 percent per quarter, is only slightly larger than the 0.0285 (= (1−λ)z = 0.95×0.03)) coupon
payment on each unit of debt.

31Second moments for consumption and output were computed using logged and linearly de-trended series.
Since net exports (NX) can be negative, it was expressed as a proportion of output and then linearly de-
trended. The spread series was also linearly detrended, although the trend component is negligible.
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Table 4: Cyclical Properties, Data and Models

Variable Data (93Q1-01Q4) Baseline Model 1-period Debt Model Arellano (2008)

σ(c)/σ(y)∗ 1.09 1.11 1.59 1.10

σ(NX/y)/σ(y) 0.17 0.20 1.06 0.26

corr(c, y)∗ 0.98 0.99 0.73 0.97

corr(NX/y, y) −0.88 −0.44 −0.16 −0.25

corr(r − rf , y) −0.79 −0.65 −0.55 −0.29

Avg. Debt Service# 0.053 0.055 0.699 0.056

Default Freq∗∗ 0.125 0.068 0.073 0.030

∗Sample period: 1980:Q1-2001:Q4; ∗∗Sample period:1975-2001

# Principal and interest payments as a fraction of output

The first column of numbers is the data for Argentina. Several features of the data stand

out. First, the relative volatility of consumption is about the same as output – in stark

contrast to small, open, developed economies. Second, the trade balance is countercyclical,

which is also in contrast to small, open, developed economies. Third, spreads on sovereign

debt are countercyclical and Argentina displayed a high propensity to default during the

1975-2001 period.32 The following column reports the same statistics for the model. The

model gets the qualitative patterns of the data right: Model consumption and trade balance

have about the right level of volatility relative to output, and the trade balance and spreads

are countercyclical while consumption is highly procyclical. The forces in the model that

lead to these patterns are the ones emphasized in Aguiar and Gopinath (2006) and Arellano

(2008).33 The average probability of default in the model is lower than the observed frequency

32The frequency of default is the number of default episodes as a fraction of the number of years Argentina
was in good standing with international creditors in the 27 years between 1975-2001. Argentina defaulted
in August 1982 and re-gained access in March 1993. We assume that Argentina was in default for 11 years.
Thus it defaulted twice in a 16-year period of good standing. We chose 1975 as the start date because that
is when Argentina began accumulating significant amounts of debt. If we start in 1946 and use the “years
in restructuring” reported in Beim and Calomiris (2000, Table A), Argentina would show three defaults in
a 35-year period of good standing. This would give a default frequency of 0.086. If we start in 1800 and use
Beim and Calomiris again, the default frequency would drop to 0.03. But it is questionable if our model is
the right framework to address such a long sweep of history.

33When output is below trend, the probability of default on new loans rises. If this rise is sharp enough,
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of default; but default is a rare event and it is hard to estimate its frequency accurately from

relatively short data series.

The second column reports results if debt is assumed to be one period and (β, d0, d1) are

chosen to match the same three statistics as in the baseline model. The parameter vector

that achieves this match is (0.67,−0.46, 0.57). Aside from the implausibility of such a low

value of β, the match generates serious anomalies with respect to business cycle statistics.

The relative volatility of consumption and the trade balance is now much higher than in the

data and the correlations of consumption, the trade balance and spreads with output are

much lower. Incorporating long-term debt moves virtually every model moment in Table 4

closer to the data, a clear indicator of the superior performance of the long-term debt model.

Why does the one-period debt model imply such a high volatility of consumption? The

reason is simple: If there are b dollars of debt outstanding, the debt service obligation is

b and the sovereign must refinance all of b at the new price q(y, b) to maintain its debt

level. Thus, changes in q(y, b) will tend to imply large changes in consumption and the trade

balance because b is large relative to output. In contrast, with long-term debt, the debt

service obligation is only [λ + (1 − λ)z]b and the sovereign can maintain its debt level by

refinancing the much smaller quantity λb at the new price q(y, b). Thus, for a given volatility

of spreads, the long-term debt model can match the average level of debt without creating

a counterfactually high volatility of consumption and the trade balance.

The last column reports the results for the benchmark model in Arellano (2008, Table 4).

Even ignoring the frequency of default, the model with long-term debt comes substantially

closer to accounting for the cyclical moments. In Arellano’s model, the (negative) correlations

between net exports and output and spreads and output are, on average, about 33 percent

as large as in the data. In contrast, in the model with long-term debt these correlations,

respectively, are 50 percent and 82 percent as large as in the data.

it is optimal for the sovereign to reduce debt rather than to increase it (which is what would be optimal
holding interest rates constant). Thus, there is a tendency for consumption to decline more than the decline
in output and for the trade balance to improve with a fall in output.
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5.3 Model Mechanics

5.3.1 Role of the Default Cost Function

Since the calibrated values d0 and d1 are negative and positive, respectively, our specification

shares the feature that Arellano introduced in her specification of default costs, namely, that

the default cost as a proportion of output declines with output and becomes zero for low

enough output levels.

It is now well-understood that this structure of default punishment is important in gen-

erating higher default rates, whether the default cost function is endogenous or exogenous

(see, for instance, the discussion in Mendoza and Yue (2009)). The key is the asymmetry

in default costs: The country is punished much more severely for default when income is

high than when income is low. The severe punishment for default in high-income periods

implies that investors do not expect the sovereign to default in the near future (given the

persistence in output). This results in low spreads, and the (impatient) sovereign borrows

aggressively. But when output declines, the punishment from default declines as well. This

raises the likelihood of default and spreads rise. The high spreads make debt servicing more

onerous, and, eventually, if income stays low, the sovereign defaults. Without the asymme-

try, it is impossible to generate a significantly positive default frequency without making the

sovereign very impatient.34

What appears not to have been appreciated in the literature is that the structure of

default costs is also important for the volatility of spreads. For Arellano’s specification,

the default cost as a proportion of output is 1 − ȳ · y−1 (where ȳ is the level of output

below which costs are zero), which is very sensitive to changes in y. Consequently, the

probability of default is correspondingly sensitive to fluctuations in y and so is the spread

(recall that Arellano’s model predicted a higher volatility of spread than the data). With

34For instance, with a proportional default cost, the cost does not vary much with the level of output
and spreads remain relatively high over a wide range of output and debt levels. Consequently, the sovereign
rarely borrows enough to enter into regions where the probability of default is measurably positive (unless
the sovereign is very impatient).
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our specification, we can match both the level and the volatility of spreads. The larger d1

is, the more volatile the spreads are likely to be. This intuition is verified in Table 5 which

shows the results of varying d1 while choosing d0 and β to match the targets for average

debt-to-output ratio and the average spreads. Notice that the volatility of spreads rises with

d1.

Table 5: Role of Default Cost Parameters

d1 d0 β σ(r − rf ) avg. (r − rf ) avg. b/y

0.15 −0.098 0.93696 0.0264 0.0815 0.70

0.25 (baseline) −0.188 0.95402 0.0443 0.0815 0.70

0.35 −0.288 0.96195 0.0577 0.0815 0.70

The accompanying changes in β and d0 are informative about the economics of the model

and are worth commenting on. The higher is d1 the more sensitive spreads are to variation

in output and the easier it is for the model to achieve a higher frequency of default. Since

higher default frequency and high spreads are easier to achieve with a higher d1, the sovereign

needs to be more patient in order for it to willingly hold the level of debt that implies the

observed probability of default. This explains why the value of β rises with d1. We also see

that d0 falls as d1 rises. This is because an increase in d1 shifts up the default cost function

which expands the maximum amount of debt the sovereign can carry without defaulting. As

long as β is sufficiently less than 1/(1 + rf ), the sovereign will gravitate to this maximum

and that will increase the average level of debt. To keep the average debt level constant, the

overall default punishment should remain roughly constant. Thus, d0 falls to counterbalance

the increase in d1.

5.3.2 The Role of Long-term Debt

In this section, we explain the role of long-term debt in our model. One way to understand

its role is to compute the equilibrium of the baseline model with short-term debt, i.e., all
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parameter values are held fixed at their baseline values but the sovereign is permitted to

issue only one-period debt. The results of this exercise are shown in the last column in Table

6. The equilibrium has stark differences. The average spread, the volatility of spreads, and

the default frequency are minuscule compared with the long-term bond case.

Table 6: Role of Long-term Debt

Moment Data Baseline Baseline Model w/ λ = 1

Avg. (r − rf ) 0.0815 0.0815 0.0026

σ(r − rf ) 0.0443 0.0443 0.0037

Avg. b/y 1 0.70 0.81

σ(c)/σ(y) 1.09 1.11 1.14

σ(NX/y)/σ(y) 0.17 0.20 0.34

corr(c, y) 0.98 0.99 0.95

corr(NX/y, y) −0.88 −0.44 −0.24

corr(r − rf , y) −0.79 −0.65 −0.42

Debt Service 0.053 0.055 0.812

Def Freq 0.075 0.068 0.002

This raises the question as to why increasing the maturity length beyond one period in-

duces the sovereign to willingly extends its borrowing into the region where the probability of

default is significantly positive. The answer lies in the differing incentives to issue additional

debt in the two cases. Treating b′ as a continuous variable, the marginal gain from borrowing

is given by:

(
−q(y, b′)− ∂q(y, b′)

∂b′
[b′ − (1− λ)b]

)
u′ (y +m+ [λ+ (1− λ)z]b− q(y, b′) [b′ − (1− λ)b])

(9)

When the sovereign issues an extra unit of debt, it gets revenue from that extra unit but

faces a decrease in the price of the bond, which decreases the revenue on all bonds being
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currently issued. In the case of short-term debt, the decrease in price applies to the entire

stock of debt b′, whereas with long-term debt it applies to [b′− (1−λ)b]. Thus, the sovereign

faces a much greater disincentive to borrow when default probabilities become positive in

the short-term case.

In addition, |∂q(y, b′)/∂b′| is larger for short-term debt in the region where default prob-

abilities are positive, as shown in Figures 4 and 5, which plot how spreads and the default

probability vary with debt in the two cases. The reason why spreads rise faster with short-

term debt is that servicing one-period debt becomes onerous more quickly than servicing

long-term debt. Although debt levels are not perfectly comparable across the two cases

(they involve different future obligations), the fact that spreads rise faster for short-term

bonds is another reason the sovereign is less willing to extend borrowing into the region

where default probability is positive when debt is short-term.35

5.4 The Welfare Cost of Debt Dilution

In this section, we examine the welfare effects in the baseline model of moving from one-

period debt (λ = 1) to long-term debt (λ = 0.05). We assume that the b and m are both zero

and compute ΣyVλ(y, 0, 0)Π(y), where Π(y) is the invariant distribution of the Markov chain

for y. Rather than report utilities, we report the value of c that makes c1−σ/[(1− β)(1− σ)]

equal to ΣyVλ(y, 0, 0)Π(y) (the flow certainty equivalent consumption). The results are given

in Table 7.

35It is worth noting that spreads on long-term debt start out positive and rise even though the probability
of default next period may be zero. Even when the sovereign borrows a very small amount in the current
period (so the default probability for next period is 0), lenders understand that the sovereign’s optimal
decision next period is to take on a significant amount of debt. And since q(y, b′) is decreasing in b′, lenders
rationally expect to suffer a capital loss on the nonmaturing portion of the debt. This depresses the current
price of debt and leads to a positive spread from the start. And, initially, the spread rises with debt simply
because the a(y′,m′, b′) is increasing in b′ (Proposition 3), and the expected capital loss is increasing. This
shows that it is not necessary to invoke risk-aversion on the part of lenders to account for gaps between
spreads and default probabilities. With long-term debt, a gap can arise (and vary) because of the dynamics
of debt accumulation. A gap can also arise if there is repayment on defaulted debt, which we have ruled out.
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Table 7: Welfare Comparison Across Maturity Length

(Quarters, λ) Cert. Eqv. Cons Avg. Spread Avg. b/y Def Freq

(1, 1) 1.0175 0.0026 0.81 0.0024

(2, 0.5) 1.0174 0.0049 0.81 0.0047

(4, 0.25) 1.0169 0.0102 0.79 0.0096

(6, 0.167) 1.0161 0.0166 0.76 0.0156

(8, 0.125) 1.0150 0.0241 0.74 0.0224

(10, 0.1) 1.0139 0.0327 0.73 0.0298

(12, 0.083) 1.0129 0.0420 0.71 0.0375

(14, 0.071) 1.0118 0.0519 0.70 0.0455

(16, 0.063) 1.0108 0.0619 0.70 0.0534

(18, 0.056) 1.0099 0.0719 0.70 0.0608

(20, 0.05) 1.0092 0.0815 0.70 0.0675

Welfare is highest for short-term debt and declines monotonically as λ falls toward 0.05.

Thus, the sovereign is best off issuing short-term (one-quarter) debt. The difference in

consumption equivalent in going from 20-quarter maturity to 1-quarter maturity is 0.81

percent, which is significant by the standards of welfare comparisons.

Why is short-term debt better than long-term debt? If the sovereign can commit to not

default, the (implicit) interest rate on short-term and long-term debt would be the risk-free

rate and maturity length would make no difference to welfare or consumption. Evidently,

the risk of default makes a difference. But the reason for the difference is subtle. It turns

out that if lenders insist that the sovereign compensate them for declines in the market

value of outstanding debt and, conversely, the sovereign insists that the lenders compensate

the sovereign for improvements in the value of outstanding debt, long-term debt becomes

equivalent to short-term debt even in the presence of the default risk. This equivalence result

is formally demonstrated in Appendix C. Thus, freezing the value of future outstanding debt

at its current market value makes long-term and short-term debt equivalent.

26



If the future value of outstanding debt is fixed at its value at issue, the sovereign cannot

dilute the future value of outstanding debt by issuing more debt in the future. This arrange-

ment, therefore, solves the debt dilution problem and reduces the interest rate on debt. On

the other hand, the future market value of debt can also change due to changes in y and

these exogenous fluctuations in the market value of outstanding debt lead to corresponding

fluctuations in disposable income of the risk-averse sovereign.36 For our calibration, the

welfare-reducing effect of a more volatile disposable income is dominated by the welfare-

enhancing effect of lower borrowing costs, making short-term debt better than long-term

debt.37

5.5 Rollover Crises and the Superiority of Long-Term Debt

The results of the previous section lead to the awkward conclusion that even though long-

term debt improves model performance, in the model itself the sovereign would prefer to

issue one-period debt. In this section we extend the baseline model to allow for a small

probability of a rollover crisis (self-fullfilling default) and show that this small additional

source of shocks makes long-term debt better than short-term debt without affecting the

superior performance of the long-term debt model emphasized earlier.

This extension is motivated by the following two observations. First, if the sovereign

issues short-term debt in our model, it issues a large amount of it – on average 81 percent of

mean output. Thus, the sovereign rolls over a very large fraction of current consumption each

period, on average. Second, many observers have noted that a large volume of short-term

debt exposes a borrower to the possibility of a “run equilibrium” wherein lenders’ refusal to

roll over maturing debt can force the borrower into default, thereby justifying the lenders’

36When the market value falls, the sovereign makes a payment to lenders and when the market value rises
the sovereign receives a payment from lenders.

37In an earlier version of the paper, we showed that if we give the sovereign a choice between short-
term and long-term debt each period, and we match the same three statistics as in the baseline model, the
sovereign always chooses to issue short-term debt in every state. These results are available in the working
paper version of this paper. Note, however, that to solve this model in reasonable time we employed a much
coarser grid for Y and b than in the baseline model.
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refusal to lend. Cole and Kehoe (2000) provide a theoretical foundation for this view in the

context of sovereign borrowing. Importantly for our purposes, they also show that the “run

equilibrium” is less likely if the sovereign issues long-term debt. Even with a large stock of

long-term debt, the maturing portion of debt can be small, so lenders’ refusal to roll over is

of little consequence to the borrower. Knowing this, lenders do not run and runs fail to be

an equilibrium outcome.

Cole and Kehoe assumed that the level of debt is given. In our model, the sovereign

gets to choose the level of debt. As in Cole and Kehoe, it is also the case for us that the

probability of rollover crisis is higher for short-term debt when the level of debt is high. But,

given the higher probability of a crisis, the sovereign chooses to borrow less when debt is

short term and, in equilibrium, the probability of rollover crises is low for short-term debt

also. But the reduction in borrowing leads to a reduction in welfare relative to long-term

debt.

To proceed, consider the following static coordination game played by the sovereign and a

single new lender at the start of any period in which the sovereign has some outstanding debt

and, conditional on meeting its current obligations, desires to issue new loans. The columns

give the strategies of the sovereign and the rows give the strategies of the lender. If the lender

makes the new loan (L) and the sovereign repays its existing debt (R), the sovereign receives

the payoff from repaying the loan and borrowing, denoted V +(y,m, b), and the lender earns

a net return of 0 (i.e, the lender earns the risk-free return – in expectation – which is also

the opportunity cost of its funds). If the lender lends and the sovereign defaults (D), we

assume that the new loan is returned to the lender without it earning any interest – hence

the (discounted) loss of interest earnings (rf/(1 + rf ))∆, where ∆ is the amount of new

lending.38 If the lender does not lend (N) and the sovereign repays but cannot borrow, the

sovereign receives V −(y,m, b) ≤ V +(y,m, b) and the lender earns 0. Finally, if the lender

38In Cole and Kehoe, the game is sequential with the sovereign deciding on default after lenders have made
their lending decisions. If we had followed Cole and Kehoe, the payoff from default conditional on having
received new loans would take into account the additional consumption afforded by the new loan. And, if
lenders lend and the sovereign defaults lenders would lose not only the interest but the entire loan as well.
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does not lend and the sovereign defaults, the payoffs are 0 and X(y,−m̄) for the lender and

sovereign, respectively.

R D

L 0, V +(y,m, b) −(rf/1 + rf )∆, X(y,−m̄)

N 0, V −(y,m, b) 0, X(y,−m̄)

.

Under the tie-breaking rule that if the sovereign is indifferent between repaying and

defaulting it always repays and if the lender is indifferent between lending and not lending

it always lends, this game has the following set of Nash equilibria, depending on the value of

X(y,−m̄). When X(y,−m̄) ≤ V −(y,m, b) ≤ V +(y,m, b), the unique equilibrium is (L,R).

Similarly, if V −(y,m, b) ≤ V +(y,m, b) < X(y,−m̄), the unique equilibrium is (N,D). But

when V −(y,m, b) < X(y,−m) ≤ V +(y,m, b), both (L,R) and (N,D) are equilibria of the

game. In this case, we assume that the equilibrium selected depends on the realization of

a sunspot variable, denoted ω : If ω = 0, the (L,R) equilibrium is selected and if ω = 1,

the (N,D) equilibrium is selected. The latter case corresponds to a self-fulfilling “rollover

crisis”: The lender refuses to lend because it believes that the sovereign will default and the

sovereign defaults because it believes that the lender will refuse to lend.39

In what follows, we modify the model presented in earlier sections in light of this game.

First, we need to be precise about the values V +(y,m, b) and V −(y,m, b) and X(y,−m̄). Let

W (y,m, b, ω) denote the lifetime utility of the sovereign, which now depends on the sunspot

variable ω in addition to the other state variables. Then,

V +(y,m, b) = max
b′∈B

u (c) + βE(y′m′)|y[(1− π)W (y′,m′, b′, 0) + πW (y′,m′, b′, 1)]

s.t. (10)

c = y +m+ [λ+ (1− λ)z] b− q(y, b′) [b′ − (1− λ)b] ,

39In Cole and Kehoe, the game is played between the sovereign and many lenders acting independently.
The multiplicity of lenders makes the coordination failure implicit in a rollover crisis more plausible. For
simplicity, we assume that a coordination failure may occur between the sovereign and a single lender.
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where we assume that ω is i.i.d and takes the value 1 with probability π. If there is no b′ for

which consumption is non-negative, then we set V +(y,m, b) to −∞. And

V −(y,m, b) = max
b′∈B

u (c) + βE(y′m′)|y[(1− π)W (y′,m′, b′, 0) + πW (y′,m′, b′, 1)]

s.t. (11)

c = y +m+ [λ+ (1− λ)z] b− q(y, b′) [b′ − (1− λ)b]

b′ ≥ (1− λ)b.

Again, if there is no b′ for which consumption is non-negative, we set V −(y,m, b) to −∞.

Evidently, V −(y,m, b) ≤ V +(y,m, b). If the sovereign desires to issue new loans (conditional

on meeting its current obligations), V −(y,m, b) < V +(y,m, b). The value under exclusion

has the same structure as in the rest of the paper, specifically, X(y,m) solves X(y,m) =

u(y−φ(y) +m) +β{[1− ξ]E(y′m′ω′)|yX(y′,m′) + ξE(y′m′ ω′)|yW (y′,m′, 0, ω′)} which then pins

down the value under default, X(y,−m̄).

The functional equation that determines W (y,m, b, ω) is given by

W (y,m, b, ω) (12)

=



V +(y,m, b) if X(y,−m̄) ≤ V −(y,m, b) and ω ∈ {0, 1}

X(y,−m̄) if V +(y,m, b) < X(y,−m̄) and ω ∈ {0, 1}

V +(y,m, b) if V −(y,m, b) < X(y,−m̄) ≤ V +(y,m, b) and ω = 0

X(y,−m̄) if V −(y,m, b) < X(y,−m̄) ≤ V +(y,m, b) and ω = 1

To see why (12) holds, observe that when X(y,−m̄) ≤ V −(y,m, b) the unique equilibrium

of the game is (L,R). Therefore, regardless of the value of ω, the (equilibrium) lifetime

utility of the sovereign is V +(y,m, b). Similarly, when V +(y,m, b) < X(y,−m̄), the unique

equilibrium of the game is (N,D) and the lifetime utility of the sovereign is X(y,−m̄),

regardless of the value of ω. When V −(y,m, b) < X(y,−m̄) ≤ V +(y,m, b), the equilibrium

of the game depends on the value of ω. If ω = 0, the equilibrium is (L,R) and lifetime
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utility is V +(y,m, b), but if ω = 1 the equilibrium is (N,D) and lifetime utility is X(y,−m̄).

Correspondingly, the default decision rule, denoted d(y,m, b, ω), takes the value 1 in those

cases where lifetime utility is X(y,−m̄) and 0 otherwise; the asset decision rule conditional

on repayment, denoted a(y,m, b, ω), is one that solves (10). Finally, the pricing equation

now solves the functional equation

q(y, b′) = E(y′m′,ω′)|y

[
[1− d(y′,m′, b′, ω′)]

λ+ [1− λ][z + q(y′, a(y′,m′, b′, ω′))]

1 + rf

]
.

Before we turn to the quantitative results, we note that the model analyzed in the rest of

the paper corresponds to the case where ω = 0 with probability 1. In this case, the “rollover

crisis” equilibrium is never played and the sovereign defaults only if V +(y,m, b) < X(y,−m̄).

Note also that if V −(y,m, b) = V +(y,m, b) (which happens if the sovereign does not wish to

issue new loans or if the budget sets are empty) then the bottom two branches ofW (y,m, b, ω)

are not relevant and, once again, the sovereign defaults only if V +(y,m, b) < X(y,−m̄).

Table 8 reports the results for long-term and short-term debt for values of sunspot

probabilities ranging from 0 to 10 percent. For long-term debt, the rising sunspot prob-

ability leaves the average spread, the average b/y and the default frequency essentially

unchanged, although it does marginally lower welfare (the drops are in the order of 10−5

percent). The reason the sunspot probability has so little additional effect is that the gap

between V +(y,m, b) and V −(y,m, b) is positive only when the sovereign wishes to increase

its debt to more than 0.95b. Generally, the gap will be positive if borrowing costs are

low, which happens when output is high. During such times the default cost is high and

X(y,−m̄) is low. Thus, the conditions for a sunspot-driven default (which require that

V −(y,m, b) < X(y,−m̄) ≤ V +(y,m, b)) rarely occur and the randomness introduced by ω is

of little consequence. In contrast, if the sovereign is carrying a large amount of one-period

debt, the gap between V +(y,m, b) and V −(y,m, b) will be very large since fully paying down

a large amount of debt is likely to be very costly. Thus, it is much more likely that the

conditions for a sunspot-driven default will be satisfied. Thus, the extraneous uncertainty
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matters more for short-term debt.

The effects can be seen in Panel B of Table 8. When the probability of a sunspot is half

a percent, the sovereign reduces its average level of short-term debt to about 70 percent of

output.40 As the sunspot probability is raised to 1 percent, the sovereign responds by cutting

debt back to 43 percent of output, on average. The reason for the strong response is twofold.

Most importantly, with a lot of short-term debt outstanding the sovereign is vulnerable to

a rollover crisis whenever ω = 1. Furthermore, default triggered by ω = 1 tends to be more

costly than default triggered by poor fundamentals because the sunspot shock is independent

of fundamentals and can happen when output is high (recall that in our model the cost of

default as a proportion of output is increasing in output). In sum, even though ω = 1 with

low probability, its occurrence is sufficiently painful for the sovereign that it wants to avoid

any crisis that might ensue. It does so by limiting its borrowing and thereby eliminating

the bad “run” equilibrium. Importantly, the scaling back of debt reduces welfare, and for a

sunspot probability of 1 percent or higher, the sovereign is better off issuing long-term debt

than short-term debt.

40Even with this reduced level of debt, spreads rise to 2.40 percent and default frequency to 2.23 percent.
The strong response of default frequency to a small probability of a sunspot occurs because V +(y,m, b) −
X(y,−m̄) also declines with a rise in spreads so that the likelihood of default when ω = 0 also goes up.
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Table 8: Maturity Length and the Effects of Sunspot
Probability

Pr[ω = 1] Cert. Eqv. Cons Avg. Spread Avg. b/y Def Prob

Panel A: Maturity Length 5 Years (λ = 0.05)

0.00 1.0092 0.0815 0.70 0.0676

0.005 1.0092 0.0815 0.70 0.0675

0.01 1.0092 0.0815 0.70 0.0674

0.02 1.0092 0.0815 0.70 0.0675

0.05 1.0092 0.0815 0.70 0.0677

0.1 1.0091 0.0816 0.70 0.0676

Panel B: Maturity Length 1 Quarter (λ = 1)

0.00 1.0175 0.0026 0.81 0.0024

0.005 1.0108 0.0240 0.71 0.0223

0.01 1.0079 0.0066 0.43 0.0062

0.02 1.0074 0.0029 0.40 0.0027

0.05 1.0071 0.0024 0.39 0.0021

0.1 1.0069 0.0022 0.38 0.0021

These results provide one possible explanation for why emerging market economies choose

to issue longer-term debt despite the fact that the debt dilution problem makes longer-term

debt expensive. The benefit of longer-term debt is that it allows the sovereign to credibly

commit to service the debt in the event of a sudden stop in lending even when the level of

outstanding debt is large relative to output. This commitment in turn reduces the likelihood

of such crises. If the sovereign is impatient, it may prefer to issue longer-term debt and borrow

a large amount rather than issue cheaper short-term debt but constrain its borrowing so as

to limit the likelihood of rollover crises. It is worth noting that even when the probability of

a crisis is 10 percent, the gain in welfare from issuing long-term debt is only 0.002 percent

of consumption. This is a rather small gain but it is in line with the common finding that

the welfare costs of fluctuations tend to be quite small (Lucas (1987).
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6 Conclusion

In this paper, we developed a novel and computationally tractable model of long-term un-

secured debt and default. We showed that the model shares the key insight of Eaton and

Gersovitz’s original contribution, namely, that the option to default implies that the sovereign

faces a rising supply schedule for credit. We established the existence of an equilibrium pric-

ing function with this property and developed a novel and very accurate computational

approach to compute it. Using Argentina as a test case, we showed that the model with

long-term debt can easily match key first and second moments related to sovereign debt and

improves model performance with regard to cyclical facts. We also investigated the welfare

properties of maturity length and showed that if the possibility of self-fulfilling rollover crises

is taken into account, long-term debt is superior to short-term debt.
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8 Appendix A: Proofs of Propositions 1-4

Proposition 0 (Existence, Continuity and Monotonocity of Value Functions):

Given any q(y, b′) ≥ 0, there exists a unique, bounded function W (y,m, b) continuous in

m that solves the functional equation (12). Furthermore, X(y,m) is strictly increasing and

continuous in m; in the region where repayment is feasible, V (y,m, b) is strictly increasing

in b and m and continuous in m; and Z(y, b′) = E(y′,m′)|y)W (y′,m′, b′) is strictly increasing

in b′, provided there is positive probability of repayment for every debt level.

Proof: See Web Appendix

Proof of Proposition 1: Suppose, to get a contradiction, that for some (y,m) we have

d(y,m, b0; q) < d(y,m, b1; q). Then d(y,m, b0; q) = 0 and d(y,m, b1; q) = 1. The former

implies that V (y,m, b0) ≥ X(y,−m̄) and the latter implies X(y,−m̄) > V (y,m, b1). But

these inequalities imply V (y,m, b0) > V (y,m, b1), which contradicts Proposition 0. Hence,

d(y,m, b0) ≥ d(y,m, b1).

Proof of Proposition 2: Fix m and y. Denote a(y,m, b0) by b′ 0 and the associated

consumption level by c0. Let b̂′ be some other feasible choice greater than b′ 0 and let ĉ be

the associated consumption level. Then, by optimality and the tie-breaking rule that if the

sovereign is indifferent between two b′s it always chooses the higher one, we have

u(c0) + βZ(y, b′ 0) > u(ĉ) + βZ(y, b̂′). (13)

Since Z(y, b̂′) > Z(y, b′ 0) (Proposition 0), (13) implies c0 > ĉ. Let ∆(b0) = c0− ĉ > 0. Thus,

∆(b0) is the loss in current consumption from choosing b̂′ over b′ 0 when the beginning-of-

period debt is b0. From the budget constraint we have that ∆(b0) + q(y, b′ 0)b′ 0− q(y, b̂′)b̂′ =

[1 − λ](−b0)[q(y, b̂′) − q(y, b′ 0)]. Holding fixed b̂′ and b′ 0, let ∆(b1) be the value of ∆ that

solves ∆(b1) + q(y, b′ 0)b′ 0 − q(y, b̂′)b̂′ = [1 − λ](−b1)[q(y, b̂′) − q(y, b′ 0)]. Then ∆(b1) is the

change in current consumption from choosing b̂′ over b′ 0 when the beginning-of-period debt

is b1. Since, by assumption, [q(y, b̂′)−q(y, b′ 0)] ≥ 0, b1 < b0 implies ∆(b1) ≥ ∆(b0). Thus the
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loss in current consumption from choosing b̂′ over b′ 0 is at least as large when the beginning-

of-period debt is b1 compared with b0. Next, note that since [λ+(1−λ)z] > 0 and q(y, b′) ≥ 0,

b1 < b0 implies [λ + (1 − λ)z]b1 + (1 − λ)q(y, b′0)b1 < [λ + (1 − λ)z]b0 + (1 − λ)q(y, b′0)b0.

Therefore, from the budget constraint it follows that if the beginning-of-period debt is b1,

choosing b′ 0 implies consumption c̃ strictly less than c0. To complete the proof, observe that

the strict concavity of u implies u(c̃)− u(c̃−∆(b1)) > u(c0)− u(c0 −∆(b0)) = u(c0)− u(ĉ).

Therefore, (13) implies that u(c̃)+βZ(y, b′ 0) > u(c̃−∆(b1))+βZ(y, b̂′). Since b̂′ is any feasible

b′ greater than b′ 0, the optimal choice of b′ under repayment when beginning-of-period debt

is b1 cannot be greater than b′ 0. Therefore, a(y,m, b1) ≤ a(y,m, b0).

Proof of Proposition 3: Let q̄ = [λ+[1−λ]z]/[λ+rf ]. Then q̄ is the present discounted

value of a bond with coupon payment z and probability of maturity λ on which there is no

risk of default. Let S be the set of all nonnegative functions q(y, b′) defined on Y × B and

let Q ⊂ S be the subset of functions that are increasing in b′ and bounded above by q̄.

Define the H(q)(y, b′) : Q→ S as

E(y′m′)|y

[
[1− d(y′,m′, b′; q)]

λ+ [1− λ][z + q(y′, a(y′,m′, b′; q))]

1 + rf

]
,

where d(y,m, b; q) and a(y,m, b; q) are the default and debt decision rule, given q. Then H

has the following properties:

(i) H(q)(y, b′) ∈ Q. Nonnegativity is obvious. We will show that H(q)(y, b′) ≤ q̄. Observe

that q̄ satisfies the equation q̄ = [λ+ (1−λ)[z+ q̄]]/(1 + rf ). Then, since 1− d(y′,m′, b′) ≤ 1

and q(y′, a(y′,m′, b′; q)) ≤ q̄ for every (y′,m′, b′), it follows that

[
[1− d(y′,m′, b′; q)]

λ+ [1− λ][z + q(y′, a(y′,m′, b′; q))]

1 + rf

]
≤ q̄ for every y′,m′, b′.

Hence H(q)(y, b′) ≤ q̄. Next, we will show that H(q)(y, b′) is increasing in b′. Fix y′ and

m′. Since q(y, b′) ∈ Q, q(y, b′) is increasing in b′ and, by Proposition 2, a(y′,m′, b′; q) is

increasing in b′. Thus, q(y′, a(y′,m′, b′; q)) is increasing in b′. And, by Proposition 2 again,
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[1− d(y′,m′, b′; q)] is increasing in b′. Hence H(q)(y, b′) is increasing in b′.

(iii) H(q)(y, b′) is continuous in q (see the Web Appendix for proof).

To complete the proof, note that Q is a compact and convex set. Since H(q) is continuous,

by Brouwer’s Fixed Point Theorem there exists q∗ ∈ Q such that q∗(y, b′) = H(q∗)(y, b′).

This establishes the existence of an equilibrium price function that is increasing in b′.

Proposition 4: a(y,m, b) is increasing in m and d(y,m, b) is decreasing in m

Proof: To prove a(y,m, b) is increasing in m, fix y and b and let m1 > m0. Assume

also that repayment is feasible for both m1 and m0. Denote a(y,m1, b) by b′ 1 and the

associated consumption by c1. Let b̂′ > b′ 1 be some other feasible choice of b′ greater than

b̂′ 1 and denote the associated consumption by ĉ. Then, by optimality u(c1) + βZ(y, b′ 1) >

u (ĉ) + βZ(y, b̂′). Since Z(y, b̂′) > Z(y, b′1) (Proposition 0), the above inequality implies

c1 > ĉ. Let ∆ = c1− ĉ denote the loss in current consumption from choosing b̂′ over b′1 when

the transitory shock takes the value m1. Now observe that the loss in current consumption

from choosing b̂′ over b′1 when the transitory shock takes the value m0 is also ∆. However,

the level of consumption when the transitory shock takes the value m0 and the sovereign

chooses b′1, denoted c̃, is strictly less than c1. From the strict concavity of u, it follows that

u(c̃)−u(c̃−∆) > u(c1)−u(c1−∆). Therefore, u (c̃)+βZ(y, b′ 1) > u(c̃−∆)+βZ(y, b̂′). Since

b̂′ was any b′ greater than b′ 1, a(y,m0, b) cannot exceed b′ 1. Thus, a(y,m0, b) ≤ a(y,m1, b).

The fact that d(y,m, b) is decreasing in m follows from the fact that V (y,m, b) is strictly

increasing in m (Proposition 0) and the utility from default, X(y,−m̄), is independent of m.
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9 Appendix B: Logic, Performance of the Computa-

tion Algorithm and Sensitivity Analysis

9.1 Logic

In this section, we describe the logic of our solution algorithm. The first part gives the logic

of the algorithm for calculating the optimal debt choice as a function of m. The second part,

taking the algorithm in the first part as given, provides the logic for the solution algorithm.

9.1.1 Method For Recovering a(y,m, b; q) Given (y, b) and q

Proposition 5 implies that given (y, b) and q there exists {−m̄ < mK−1 < mK−2 < . . . <

m1 < m̄} and {b′K < b′K−1 < . . . < b′ 1} such that b′K is chosen for m ∈ [−m̄,mK−1), b′K−1

is chosen for m ∈ [mK−1,mK−2), . . . , b′ 1 is chosen for m ∈ (m1, m̄] (K = 1 means that b′1 is

chosen for all m ∈M).

Since b′k need not be adjacent to b′k+1 on the grid, the algorithm has to find both {mk}

and {b′k}. The decision rule is constructed recursively. The choice problem is initially solved

for a choice set containing only one b′. The choice set is then expanded in steps until the

entire set B is available, with the solution from each step being used to construct the solution

for the next step.

Suppose that we have located pairs {(mh−1, b′h), (mh−2, b′h−1), . . . (m̄, b′1)} such that if

the sovereign is permitted to choose only from the set b′ ≥ b′h, the sovereign would choose

b′h for m ∈ [−m̄,mh−1), b′h−1 for m ∈ [mh−1,mh−2), . . . , b′1 ∈ (m1, m̄]. The next step is to

compare the utility from choosing b′h with the utility from choosing the next lower b′ (i.e.,

next higher debt level) on the grid, denoted b′−. Two cases are possible.

1. −q(y, b′−)[b′−− (1−λ)b] ≤ −q(y, b′h)[b′h− (1−λ)b]. Then, the lifetime utility from b′h

is at least as high as the lifetime utility from b′ − for all m ∈ M . So we drop b′ − from

further consideration and move to comparing b′h to the next lower b′ on the grid.
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2. −q(y, b′−)[b′−−(1−λ)b] > −q(y, b′h)[b′h−(1−λ)b]. Then ∆(m) = u(. . .m−q(y, b′−)[b′−−

(1 − λ)b] . . .) − u(. . .m − q(y, b′h)[b′h − (1 − λ)b] . . .) > 0 for all m, where u(. . .m −

q(y, b′)[b′ − (1 − λ)b] . . .) is the current utility from choosing b′ (we have suppressed

terms that do not depend on m and b′). Furthermore, from the strict concavity of u,

∆(m) is decreasing in m. Three subcases are possible.

(a) ∆(−m̄) + β{Z(y, b′−) − Z(y, b′h)} ≤ 0. Then b′h is at least as good as b′− for all

m and we can drop b′− from further consideration.

(b) ∆(−m̄) + β{Z(y, b′−) − Z(y, b′h)} > 0 and ∆(m̄) + β{Z(y, b′−) − Z(y, b′h)} ≤ 0.

Then there must exist a unique m̃ ∈ (−m̄, m̄] such that ∆(m̃) + β{Z(y, b′−) −

Z(y, b′h)} = 0. If m̃ < mh, we prepend (m̃, b′ −) to the list of pairs and proceed to

compare the utility between b′ − with the next lower b′ on the grid. If m̃ ≥ mh,

we drop b′h from further consideration and proceed backwards to compare b′ −

with b′h−1. The reason is that m̃ ≥ mh implies that b′− is preferred to b′h for any

m < m̃ and at the same time b′h−1 is preferred to b′h for any m ≥ mh. Thus,

b′h is dominated by the choices of b′h−1 and b′− and can be dropped from further

consideration. When this is the case, b′− needs to be compared to b′h−1. The

process is continued by finding a new m̃ between the choices of b′− and b′h−1. If

m̃ < mh−1, we add (m̃, b′ −) to the list of pairs {(mh−2, b′h−1), . . . (m̄, b′1)} and

proceed to compare the utility between b′ − with the next lower level of assets. If

m̃ ≥ mh−1, we drop b′h−1 from further consideration and continue to go backwards

through the list. This process will either end in finding mh−j such that m̃ < mh−j

or in the exhaustion of all pairs in the list {mk, b′ k}. If the latter, we conclude that

b′ − dominates any b′ > b′ − for all m (i.e., the list becomes a singleton {(m̄, b′−)}

and proceed to compare b′ − with the next lower b′ on the grid.

(c) ∆(−m̄) + β{Z(y, b′−) − Z(y, b′h)} > 0 and ∆(m̄) + β{Z(y, b′−) − Z(y, b′h)} > 0.

Then b′− dominates b′h for all m and we can drop b
′h from further consideration.

We then move to compare b′− with b′h−1.
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3. To implement this algorithm we start off with the choice set being {0}.The solution

for this stage is the list {(m̄, 0)} (meaning that no borrowing is optimal for all m). We

then proceed to compare 0 with the next lower b′ on the grid. The algorithm is applied

until every element of B has been compared.

9.1.2 Method for Computing the Solution

We discretize the state space into Ny grids for persistent output shock and Nb grids for

bonds. We enter the k-th iteration with guesses for qk(y, b′) and Zk(y, b′), where Zk(y, b′) =

E(y′,m′|y)W
k (y′,m′, b′). All calculations below are for some specific (y, b) and k.

1. Given these guesses, we find what the sovereign would do if it repayed. This entails

finding the decision rule for debt. The algorithm to accomplish this was outlined above.

At the end of this stage, we have
{

(mK−1, b′K), (mK−2, b′K−1), . . . , (m̄, b′1)
}

.

2. In the second step, we find default thresholds. For each interval from step 1, we com-

pare the lifetime utility from choosing the indicated quantity of debt with the lifetime

utility derived from default. Suppose that for m ∈ (mi,mi−1] the sovereign chooses

b′i. Define ∆(m) = u
(
y +m− qk(y, b′i)[b′i − [1− λ]b]

)
+ βZk (y, b′i)−X(y,−m̄). Ev-

idently, ∆(m) is increasing in m. If ∆(mi) ·∆(mi−1) < 0, there exists an m̃ such that

default is optimal for (mi, m̃) and b′i is optimal for [m̃,mi−1]. If ∆(mi) ·∆(mi−1) ≥ 0,

then either default is optimal over the entire interval or b′i is optimal over the interval.

At the end of this stage, we have a maximum of 2(Nb − 1) intervals. Within each

interval we know whether default or repayment is chosen and if repayment is chosen,

the corresponding debt choice. Although the maximum number of intervals can be

very large, in practice the number of intervals is usually less than 20.

3. Finally, with these intervals in hand we compute the functions Znew (y, b′) and qnew(y, b′).

We check if
∣∣Znew (y, b′)− Zk (y, b′)

∣∣ < ε1 and
∣∣qnew(y, b′)− qk(y, b′)

∣∣ < ε2 where ε1 and

ε2 are very small numbers. If these conditions hold, we end the program. If one of
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them does not hold, we update

qk+1(y, b′) = (1− ζ) · qnew(y, b′) + ζ · qk(y, b′)

Zk+1 (y, b′) = (1− ν) · Znew (y, b′) + ν · Zk (y, b′) ,

where ζ, ν ∈ [0, 1) and continue with step 1 (ν can be set to 0 without any impairment

in performance).

4. To compute Znew (y, b′) and qnew(y, b′) we need to integrate W k and qk with respect to

m. To integrate, we divide M into 11 equally spaced intervals and assume that within

each interval m is uniformly distributed. Consider an interval (m1,m2) and suppose

that it contains one threshold, say m̂ ∈ [m1,m2], where the optimal decision changes

from a debt of b′ to a debt of b̂′. Then,

∫ m2

m1

W (y,m, b)dG(m) '
[∫ m2

m1

dG(m)

]
×(

m̂−m1

m2 −m1

)
· (u(y +m12 + [λ+ z(1− λ)]b+ q(y, b′)[b′ − (1− λ)b]) + βZ(y, b′)) +(

m2 − m̂
m2 −m1

)
·
(
u(y +m12 + [λ+ z(1− λ)]b+ q(y, b̂′)b̂′)[b′ − (1− λ)b] + βZ(y, b̂′)

)
.

In other words, over each interval, we replace m by the midpoint of the interval but

recognize that the choice of debt may switch as m varies over the interval. The overall

variation in m is small and, with 11 intervals, the variation within each interval is

smaller still. Thus, the differences between m and m12 are of little consequence for the

evaluation of utility, given the choice of debt. Having obtained
∫
m
W (y,m, b)dG(m)

in this way for each y and b, we obtain Z(y, b′) as
∑

y′ [
∫
m
W (y′,m′, b′)dG(m)]F (y, y′).

The procedure for integrating the price function is similar:

∫ m2

m1

q(y′, a(y′,m′, b′))dG(m′) '∫ m2

m1

dG(m′)×
[(

m̂−m1

m2 −m1

)
· (q(y′, b′)) +

(
m2 − m̂
m2 −m1

)
· (q(y, b̂′)

]
.
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9.2 Performance

As explained in the computation section, the reason for adding the m shock (and calculating

thresholds to solve the decision problem) is to ensure that (6) has a solution and that

the iteration (7) converges. In this appendix we show that alternative methods that do

not use “randomization” have significantly worse convergence performance. We make these

comparisons by fixing all parameter values at baseline values and iterate each solution method

3000 times and report the maximum absolute error in the final 100 iterations as well as the

relative value of this maximum error. The error for iteration k is defined as the largest

absolute change in the price matrix from iteration k − 1 to k. For purely discrete models,

we also report the maximum jump in asset choice (in terms of the maximum number of grid

points skipped) from one iteration to the next, for the final 100 iterations. All computations

were implemented via parallelized (MPI) Fortran 90/95 running on a 16-node cluster.

Omitting M and refining Y . The following table compares the baseline method (Method

I) with three other methods. Method II is the model without M , method III is the model

without M in which the Y grid is doubled, and method IV is the baseline model but the M

is discretized and thresholds are not computed.

Table 9: Omitting M and Refining Y

Baseline (M = 11) II III IV (M = 11)

Grids Y = 200, B = 350 Y = 200, B = 350 Y = 400, B = 350 Y = 200, B = 350

∆|qk − qk−1| 9.47× 10−14 2.33× 10−2 1.14× 10−2 3.34× 10−3

∆|(qk − qk−1)/[0.001 + qk]| 4.85× 10−13 2.11× 10−1 1.01× 10−1 2.61× 10−2

∆|V k − V k−1| 1.78× 10−14 2.65× 10−4 1.48× 10−4 2.40× 10−5

∆|(V k − V k−1)/[0.001 + V k]| 8.84× 10−13 1.31× 10−5 7.27× 10−6 1.04× 10−6

Max jump in b′ between iterations NA 15 14 14

Method II: No M

Method III: No M but refined Y grid

Method IV: Baseline but M discretized and thresholds are not computed
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With the baseline method, we get convergence for very tight convergence criteria. In

contrast, for Method II, where we omit M , even after 3000 iterations the price matrix is far

from convergence; the error can be as much as 20 percent. The maximum change in debt

choice is 15 grid points; these jumps occur because nonconvexities lead to multiple local

maxima and the solution meanders between these local maxima (as discussed in the text in

relation to Figure 2). In Method III, we double the grid on Y to 400. There is not much

improvement in the results. Finally, in the last column, M is discretized and thresholds

are not used. Convergence is somewhat better but still nowhere close to Method I.41 For

models II- IV, the convergence performance of value functions is considerably better than

the convergence performance of the price function. This is because the jumps occur between

actions that give roughly the same utility and, therefore, do not affect value functions as

much (the same is true of models V and VI discussed below).

Omitting M and Refining B. In the following table we establish that the poor perfor-

mance of the baseline model without M (Model II above) cannot be rectified by refining the

B, or asset, dimension.

Table 10: Omitting M and Refining B

Method II Method V Method VI (continuous B)

Grids Y = 200, B = 350 Y = 200, B = 700 Y = 200, B = 350

∆|qt − qt−1| 2.23× 10−2 2.47× 10−2 2.22× 10−2

∆|(qt − qt−1)/(0.001 + qt)| 2.11× 10−1 2.13× 10−1 2.10× 10−1

∆|V t − V t−1| 2.65× 10−4 1.82× 10−4 1.84× 10−4

∆|(V t − V t−1)/(0.001 + V t)| 1.31× 10−5 9.05× 10−5 9.10× 10−6

Max jump in b′ between iterations 15 31 -

41Also this method takes longer to run relative to the baseline method because the discounted utility of
the country is calculated for all current states (m, y, b) and for all choices of b′. In the baseline method,
given current states (y, b), we find the thresholds for which there is a switch between different choices of
assets. As those switches do not happen very frequently, the utility level given the choice of b′ is computed
much less frequently.
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The column labeled Method V shows the case where we omit the M shock and increase

the number of grids for the asset level. Evidently, increasing the grids for B makes no

difference to convergence. In Method VI, we continue to omit the M shock but treat B as a

continuous variable. We discretize B as in the other methods but allow for asset choices off

the grid. In particular, if income is y and beginning-of-period debt is b, then for a debt level

b′ between two adjacent grids bj and bj−1, c = y+ [λ+ (1− λ)z]b+wq(bj, y)[bj − (1− λ)b] +

(1−w)q(bj+1, y)[bj+1− (1−λ)b], and Ey′|yV (y′, b′) = wEy′|yV (y′, bj) + (1−w)Ey′|yV (y′, bj+1)

where w is (bj+1− b′)/(bj+1− bj). Since there is more than one local maxima in our problem,

we first find the b′ that maximizes utility confining our choice to the initial discrete grids and

then do a refined search to locate the best choice of b′ around that grid (this is the procedure

followed in Hatchondo, Martinez and Sapriza (2010)). Treating B continuous in this fashion

also does not improve convergence. The lotteries between adjacent grid points do not help

because the problematic cycles are between grids that are far apart.

9.3 Sensitivity Analysis

It is known that model statistics in the Eaton-Gersovitz model can be sensitive to the choice

of grid sizes (Hatchondo, Martinez and Sapriza (2010)). To check for this, we doubled the

grid sizes on Y and B, separately. Table 9 reports the results for the baseline model as

well as for the one-period debt model. The statistics for the baseline model are virtually

unaffected. For the one-period model, mean spreads decline somewhat with an increase in

grid size but other statistics are unaffected.
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Table 11: Sensitivity to Grid Sizes

Moment Baseline Model I Model II 1-Period Debt Model III Model IV

Avg. (r − rf ) 0.0815 0.0814 0.0815 0.0815 0.0806 0.0809

σ(r − rf ) 0.0443 0.0443 0.0443 0.0443 0.0434 0.0438

Avg. b/y −0.7 −0.7 −0.7 −0.7 −0.7 −0.7

σ(c)/σ(y) 1.11 1.11 1.11 1.59 1.59 1.59

σ(NX/y)/σ(y) 0.20 0.21 0.20 1.06 1.05 1.06

corr (c, y) 0.99 0.99 0.99 0.73 0.73 0.73

corr (NX, y) −0.44 −0.44 −0.44 −0.16 −0.16 −0.16

corr (r − rf , y) −0.65 −0.65 −0.65 −0.55 −0.55 −0.55

Debt Service 0.055 0.055 0.055 0.699 0.699 0.701

Def Freq 0.068 0.068 0.068 0.073 0.072 0.073

Baseline: Ny = 200, Nb = 350;1-Period Model: Ny = 200,Nb = 450

Model I: Ny = 400, Nb = 350; Model II: Ny = 200, Nb = 700

Model III: Ny = 400,Nb = 450; Model IV: Ny = 200,Nb = 900

In addition, we investigated sensitivity to some other aspects of our model (details are

available in the Web Appendix). We targeted the full average debt level of 1 (instead of

0.7). There is an increase in the volatility of consumption and of the trade balance and an

increase in debt service, but these increases are what we would expect for a higher average

debt burden. The correlation patterns remain the same. We also investigated whether results

are sensitive to the assumption that the value of m resets to −m̄ in the period of default.

As an alternative, we assumed that m resets to 0 instead of −m̄, which might be viewed as

a more neutral assumption. The change makes no difference to model statistics. Finally, we

re-estimated the endowment process for σm = 0.002, which is the lowest σm for which we get

convergence for the baseline model. The implied estimate of ρ was somewhat smaller than

in the baseline and the estimate of σε somewhat higher. These differences had no effect on

model statistics.
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10 Appendix C: Equivalence of Longer-Term Debt to

One-Period Debt When Future Value of Debt is

Protected

For the purposes of this demonstration, it is not important to include the i.i.d. income shock,

so we suppress it. The value of repayment is:

V (y−, y, b) = max
b′

 u (y + [λ+ (1− λ) (z + q(y−, b))] b− q(y, b′)b′)

+βEy′|y [max {V (y, y′, b′), X(y′)}]


where y− is the realization of income in the previous period. Observe that the portion of the

bond that does not mature in the current period pays off the coupon z and its last period

market value as opposed to its current market value. This is equivalent to the sovereign

transferring [(q(y−, b) − q(y, b′)](1 − λ)b to the lenders each period (the sovereign pays if

this quantity is negative and receives if it is positive). The value of default is: X(y) =

u(y− φ(y)) + βEy′|y{(1− ξ)X(y′) + ξW (y, y′, 0)} and W (y−, y, b) = max{V (y−, y, b), X(y)}.

Denote the decision rules by d(y−, y, b) and a(y−, y, b). Then, the equilibrium price of a unit

bond is given by:

q(y, b′) = [λ+ (1− λ) (z + q(y, b′))]

(
Ey′|y(1− d(y, y′, b′))

1 + r

)
(14)

We can now do a change of variables that will allow us to re-write the above problem in

terms of only two state variables. The key insight is that the default decision should de-

pend only on y and the total obligation of the sovereign at the start of each period, which is

[λ+ (1− λ) (z + q(y−1, b))] b. Let A = [λ+ (1− λ) (z + q(y−1, b))] b and suppose that the de-

fault decision rule can be expressed as a function d(y, A). Next, notice that multiplying both

sides of (14) by b′ gives q(y, b′)b′ = [λ+ (1− λ) (z + q(y, b′))] b′
(
Ey′|y(1− d(y, y′, b′))/(1 + r)

)
.

Or, q(y, b′)b′ =
(
Ey′|y(1− d(A′, y′))/(1 + r)

)
A′ = q̃(y, A′)A′. Thus, we can re-write the value
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of repayment as V (y, A) = max
A′
{u(y +A− q̃(y, A′)A′) + βEy′|y max {V (y′, A′), X(y′)}. This

repayment value is exactly the same as the one in which the sovereign issues one-period

debt. From the solution to this one-period debt problem (namely the decision rules d(y, A)

and A′(y, A)) we can recover both the decision rules and the price function of the origi-

nal long-term debt problem. Observe that (i) q(y, b′)b′ = A′
(
Ey′|y(1− d(y′, A′))/(1 + r)

)
and (ii) A′ = [(1− λ) + λ (z + q(y, b′))] b′. Using (i), we can solve for b′ from (ii): A′ =

[(1− λ) + λz]b′ +A′
(
Ey′|y(1− d(y′, A′))/(1 + r)

)
. This gives b′ as a function of y, y− and b,

since A′ is a function of y and A. Then, using this solution, we can solve for q(y, b′) from (i).

Thus, with this market arrangement, long-term debt is isomorphic to one-period debt.42

42Strictly speaking it needs to be proven that the decision rule and price function recovered in this way
actually solve the long-term debt problem. But it is fairly evident that it will, so we omit this proof.
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11 Web Appendix

11.1 Theory

Proof of Proposition 0 LetW be the set of all continuous (in m) functions on Y ×M ×B

that take values in the bounded interval [u(0)/(1− β), U/(1− β)]. Equip W with sup norm

|| · ||∞. Then (W , || · ||∞) is a complete metric space.

For W ∈ W , let X(y,m;W ) be the solution to (3). The solution exists because (3)

defines a contraction mapping in X with modulus β(1−ξ). By standard contraction mapping

arguments, X(y,m) is continuous in m because c = y − φ(y) +m is continuous in m and u

is continuous in c.

For W ∈ W , let V (y,m, b;W, q) be the solution to (4). We index this solution by q

because q appears as a parameter in (4). Here, however, we need to address the fact that V

may not be well-defined because there may not be any feasible b′ for some (y,m, b) and q.

To extend the definition of V over the entire domain, we will assume that the utility from a

choice of b′ under repayment, denoted Vb′(y,m, b;W, q), is given by u(max{0, y + m + [λ +

(1−λ)z]b+ q(y, b′)[b′− (1−λ)b]}) +βE(y′,m′|y)W (y′,m′, b′). Thus, for an infeasible choice of

b′, current consumption is set to 0. Then, V (y,m, b;W, q) = maxb′∈B Vb′(y,m, b;W, q). Since

B is a finite set, V (y,m, b;W, q) exists for all (y,m, b) and q. Also Vb′ is continuous in m for

every b′ since max{0, y+m+ [λ+ (1− λ)z]b+ q(y, b′)[b′− (1− λ)b]} is continuous in m and

u is continuous in c. Therefore, V (y,m, b;W, q) is continuous in m since the maximum of

a finite set of continuous functions is also continuous. Furthermore, both X(y,m;W ) and

V (y,m, b;W, q) ∈ [u(0)/(1− β), U/(1− β)] for all y,m and b.

Next, define the operator

T (W )(y,m, b; q) = max{V (y,m, b;W, q), X(y,−m̄;W )} (15)

on the space of functions W . Then, (i) T (W)(y,m, b; q) ⊂ W which is obvious; (ii) If
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W ≥ Ŵ then T (W ) ≥ T (Ŵ ), which follows because V (y,m, b,W, q) is clearly increasing in

W and standard contraction mapping arguments can establish that X(y,m;W ) is increasing

in W ; and (iii) T (W + k) ≤ T (W ) + ηk, where η = max{βξ/[(1 − β) + βξ], β} < 1.

To see (iii), note that V (y,m, b;W + k, q) = V (y,m, b;W, q) + βk and X(y,m;W + k) =

X(y,m;W ) + (βξ/[(1− β) + βξ])k. Therefore,

T (W + k)(y,m, b; q) = max

{
V (y,m, b;W, q) + βk, X(y,−m̄;W ) +

βξ

[(1− β) + βξ
k

}

and (iii) follows. Therefore, T is a contraction mapping with modulus η and the existence of

a unique solution to (15) in W , denoted W ∗
q (y,m, b), follows from the Contraction Mapping

Theorem.

The strict monotonicity of X(y,m) with respect to m follows from the endowment being

strictly increasing in m, u being strictly increasing in c, and the fact that m does not affect

the probability distribution of (y′,m′).

For the strict monotonicity of V with respect to m, observe that if m0 < m1 then

every b′ that is feasible under (y,m0, b) is also feasible under (y,m1, b) and yields strictly

higher consumption. In the region where repayment is feasible, there must be at least one

b′ that is feasible. Then, since m does not affect the probability distribution of (y′,m′),

strict monotonicity of u implies V (y,m0, b) < V (y,m1, b). For strict monotonicity with

regard to b, observe that for b0 < b1 we have [λ + (1− λ)z]b0 + q(y, b′)[1− λ]b0 < [λ + (1−

λ)z]b1 + q(y, b′)[1 − λ]b1 for every feasible b′ ∈ B and every y ∈ Y . This follows because

[λ + (1 − λ)z] > 0 and q(y, b′) ≥ 0. Hence, every b′ that is feasible under (y,m, b0) is

also feasible under (y,m, b1) and affords strictly greater consumption. Again, in the region

where repayment is feasible, there must be at least one feasible b′. Therefore, by the strict

monotonicity of u, V (y,m, b0) < V (y,m, b1).

From the strict monotonicity of V with respect to b, it follows that for b′1 > b′0,

W (y′,m′, b′1) ≥ W (y′,m′, b′0). Hence, Z(y, b′1) ≥ Z(y, b′0). To show the inequality is strict,
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we will assume bI (the smallest b ∈ B) is bounded below as

bI > −[φ(ymax) + 2m̄]/[λ+ (1− λ)z], (16)

where ymax is the largest y ∈ Y . Then, observe that (16) implies that u(ymax + [λ + (1 −

λ)z]b+ m̄) + βZ(y, 0) > u(ymax − φ(ymax)− m̄) + βZ(y, 0) for all b ∈ B. Also, observe that

Z(y, 0) > E(y′,m′)|y[ξW (y′,m′, 0) + (1 − ξ)X(y′,m′)], since X(y′,m′) < W (y′,m′, 0) for all

(y′,m′) ∈ Y ×M . Thus, for every debt level there is a range of m values for which repayment

without new borrowing is better than default if y is at its highest value. Therefore, for every

b′ ∈ B, there is a range of m′ for which V (ymax,m
′, b′) > X(ymax,−m̄). By the strict

monotonicity of V with respect to b, every m′ for which V (m′, b′0, ymax) > X(ymax,−m̄) it

is also true that V (m′, b′1, ymax) > X(ymax,−m̄). Thus, there is a range of m values for

which W (ymax,m
′, b′1) > W (ymax,m

′, b′0). Since F (y, ymax) > 0 for all y, it follows that

Z(y′, b′1) > Z(y′, b′0). �

Since we extended the domain of the definition of V to infeasible choices, we need to

verify that this extension does not result in the sovereign actually choosing infeasible b′. In

the following Lemma we establish that if u(0) is set to a sufficiently low number, then it is

never optimal to choose infeasible actions.

Lemma 0: If u(0) + βU/(1 − β) < u(ymin − φ(ymin) − m̄)/(1 − β), where ymin is the

smallest value in Y, then optimal consumption under repayment, c(y,m, b), is uniformly

bounded below by some strictly positive number c̄.

Proof: By continuity of u there exists c̄ > 0 such that u(c̄) + βU/(1 − β) < u(ymin −

φ(ymin)−m̄)/(1−β). Since the sovereign can choose to consume its endowment each period,

and it can always consume at least ymin − φ(ymin)− m̄ in every period, its lifetime utility in

any period is bounded below by u(ymin−φ(ymin)−m̄)/(1−β). On the other hand, the highest

utility from selecting any action that leads to consumption c̄ or less is u(c̄) + βU/(1 − β).

By assumption the former dominates the latter. Thus it can never be optimal to choose to

consume c̄ or less. In particular, it can never be optimal to choose an action that leads to 0
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consumption. �

The next three Lemmas are needed to establish the continuity of the operator H(q) with

respect to q.

Lemma 1: W ∗
q (y,m, b), V (y,m, b;W ∗

q , q), X(y,m;W ∗
q ) and Z∗q (y, b′) are all continuous

in q.

Proof: To prove that W ∗(y,m, b; q) is continuous in q, it is sufficient to prove that

the contraction operator T (W )(y,m, b; q) is continuous in q (see Theorem 4.3.6 in Hut-

son and Pym (1980, pp. 117-118). In order to establish this, we need to prove only that

V (y,m, b;W, q) is continuous in q. Fix (y,m, b) and W. Observe that Vb′(y,m, b;W, q) is con-

tinuous in q because max{0, y+m+ [λ+ (1−λ)z]b+ q(y, b′)[b′− (1−λ)b]} is continuous in q

and u is continuous in c. Thus, V (y,m, b;W, q), being the maximum of a finite set of contin-

uous functions, is also continuous in q. Hence W ∗
q (y,m, b) is continuous in q. The continuity

of V (y,m, b;W ∗
q , q) with respect to q follows from the same logic as before: Vb′(y,m, b;W

∗
q , q)

is continuous in q for each b′and hence the maximum over b′must also be continuous in q; the

continuity of Z∗q (y, b′) with respect to q follows directly from its definition; and the continu-

ity of X(y,m;W ∗
q ) with respect q follows from noting that the contraction operator defining

X(y,m;W ) depends on W via the quantity Z(y, 0) and that the operator is continuous in

Z(y, 0). Since Z∗q (0, y′) is continuous in q, it follows from another application of Theorem

4.3.6 of Hutson and Pym that X(y,m;W ∗
q ) is continuous in q. �

Lemma 2 establishes that the sovereign can be indifferent between default and repayment

at exactly one value of m and it can be indifferent between any two borrowing levels at

exactly one value of m. These results are needed for Lemma 3, which establishes almost sure

convergence of decision rules with respect to prices q.

Lemma 2: (i) For any given b′0, there can be at most one value of m for which choosing

b′0 gives the same lifetime utility as defaulting and (ii) for any given b′ 0 < b′ 1 there can be

at most one value of m for which choosing the two debt levels gives the same lifetime utility.

Proof: (i) Fix y and b. (i) Suppose that there is an m̂ such that Vb′0(y, m̂, b) = X(y,−m̄).
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Since the l.h.s is strictly increasing in m, there cannot be any other m 6= m̂ for which

the same equality holds. (ii) Suppose there is an m̂ for which u(c0(m̂)) + βZ(y, b′ 0) =

u(c1(m̂)) + Z(y, b′ 1), where c0(m̂) and c1(m̂) are the levels of consumption when b′ 0 and b′ 1

are chosen, respectively. Since Z(y, b′1) > Z(y, b′0) (Proposition 0), it follows that c0(m̂) >

c1(m̂). Suppose, to get a contradiction, there is another m̃ > m̂ such that u(c0(m̃)) +

βZ(y, b′ 0) = u(c1(m̃)) + Z(y, b′ 1). Then, u(c0(m̂)) − u(c0(m̃)) = u(c1(m̂)) − u(c1(m̃)) and

(from the budget constraint) ci(m̃) = ci(m̂) + [m̃ − m̂] for i = 0, 1. Thus, we must have

u(c0(m̂))−u(c0(m̂) + [m̃− m̂]) = u(c1(m̂))−u(c1(m̂) + [m̃− m̂]). But, since c0(m̂) > c1(m̂),

the preceding equality violates the strict concavity of u. Hence there can only be at most

one m for which u(c0(m)) + βZ(y, b′ 0) = u(c1(m)) + βZ(y, b′ 1). �

Corollary to Lemma 2: The thresholds {−m̄ < mK−1 < mK−2 < . . . < m1 < m̄} and

the corresponding debt choices {b′K < b′K−1 < . . . < b′ 1} are unique.

Proof: Suppose, to get a contradiction, that there are two distinct pairs {mk−1, b′k} and

{m̂k−1, b̂′k}. Without loss of generality, assume that these lists deviate from each other for

k = 1. That is, according to the first list the sovereign is indifferent between choosing 0 and

b′1 at m1 and according to the second list it is indifferent between choosing 0 and b̂′1 at m̂1.

Suppose also that b̂′1 > b′1. If m̂1 6= m1, then there are two distinct values of m for which

b̂′1 and b′1 give the same utility. This contradicts Lemma 2(ii). And if m̂1 = m1 then b′1 is

inconsistent with our assumption that, all else the same, two b′ choices that give the same

utility, the sovereign chooses the larger one. �

Lemma 3: Let qn(y, b′) be a sequence converging to q̄(y, b′). Let d(y,m, b; qn), a(y,m, b; qn)

and d(y,m, b; q̄), a(y,m, b; q̄) be the corresponding optimal decision rules. Then, d(y,m, b; qn)

converges pointwise to d(y,m, b; q̄) and a(y,m, b; qn) converges pointwise to a(y,m, b; q̄) ex-

cept, possibly, at a finite number of points.

Proof: (Convergence of a(y,m, b; qn)). Let qn → q̄. Fix y and b. For a given m,

let b′ 0 = a(y,m, b; q̄). Let Vb′(y,m, b;W
∗
q̄ , q̄) denote the lifetime utility if the sovereign

chooses to borrow b′ in the current period but follows the optimal plan in all future pe-
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riods. Two cases are possible: (i) V (y,m, b;W ∗
q̄ , q̄) > Vb′(y,m, b;W

∗
q̄ , q̄) for all b′ 6= b′ 0

and (ii) V (y,m, b;W ∗
q̄ , q̄) = Vb′(y,m, b;W

∗
q̄ , q̄) for some b′ 6= b′ 0. Consider case (i). Let

V (y,m, b;W ∗
q̄ , q̄) − Vb′(y,m, b;W ∗

q̄ , q̄) = ∆. Since V (y,m, b;W ∗
q , q) is continuous in q there

exists N1 such that for all n ≥ N1 V (y,m, b;W ∗
qn , q

n) > V (y,m, b;W ∗
q̄ , q̄)−∆/2. Next, note

that

Vb′(y,m, b;W
∗
qn , q

n) = u(y +m+ [λ+ (1− λ)z]b− qn(y, b′)[b′ − (1− λ)b]) + βZ∗qn(y, b′).

Since Z∗q (y, b′) is continuous in q it follows that there exists N2 such that for all n ≥ N2

Vb′(y,m, b;W
∗
qn , q

n) < Vb′(y,m, b;W
∗
q̄ , q̄)+∆/2. Therefore V (y,m, b;W ∗

qn , q
n)−Vb′(y,m, b;W ∗

qn , q
n)

> V (y,m, b;W ∗
q̄ , q̄) − ∆/2 − Vb′(y,m, b;W ∗

q̄ , q̄) − ∆/2 = 0 for all n ≥ max{N1, N2}. Hence

a(y,m, b; qn) = b′ 0 for all n > max{N1, N2}. Now consider case (ii). In this case, conver-

gence may fail because a(y,m, b; qn) may converge to b′ rather than b′ 0. However, by Lemma

1 there can be only a finite number of m values for which case (ii) can hold. Therefore,

a(y,m, b; qn) converges pointwise to a(y,m, b; q̄) except, possibly, for a finite number of m.

(Convergence of d(y,m, b; qn)). Let qn → q̄. Fix y and b. Again, two cases are possible.

(i) X(y,−m̄;W ∗
q̄ ) 6= V (y,m, b;W ∗

q̄ , q̄) and (ii)X(y,−m̄;W ∗
q̄ ) = V (y,m, b;W ∗

q̄ , q̄). Consider

case (i). For concreteness, suppose that X(y,−m̄;W ∗
q̄ ) − V (y,m, b;W ∗

q̄ , q̄) = ∆ > 0. Then,

by continuity of V (y,m, b;W ∗
q , q) and X(y,m;W ∗

q ) with respect to q there exists N1 such

that for all n ≥ N1, V (y,m, b;W ∗
qn , q

n) < V (y,m, b;W ∗
q̄ , q̄) + ∆/2. And, by the continuity of

X(y,−m̄;W ∗
q ) with respect to q, there exists N2, such that for n ≥ N2, X(y,−m̄;W ∗

qn) >

X(y,−m̄;W ∗
q̄ )−∆/2. Then, for all n ≥ max{N1, N2}, X(y,−m̄;W ∗

qn)−V (y,m, b;W ∗
qn , q

n) >

X(y,−m̄;W ∗
q̄ ) − V (y,m, b;W ∗

q̄ , q̄) − ∆ = 0. Hence d(y,m, b; qn) = d(y,m, b; q̄) = 1 for all

n ≥ max{N1, N2}. If ∆ < 0, we can use a similar argument to show that there exists some

N such that for all n ≥ N , V (y,m, b;W ∗
qn , q

n) > X(y,−m̄;W ∗
qn). Hence, for all such n,

d(y,m, b; qn) = d(y,m, b; q̄) = 0. Now consider case (ii). Again, convergence may fail in this

case because d(y,m, b; qn) may converge to 1 or 0 while d(y,m, b; q̄) is 0 or 1. However,

by Lemma 2(i), there can only be one value of m for which this can happen. Therefore,
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d(y,m, b; qn) converges pointwise to d(y,m, b; q̄) except, possibly, for one value of m. �

Proof of Continuity of H(q): Let {qn} be a sequence in Q converging to q̄ ∈ Q

and let {d(y,m, b; qn), a(y,m, b; qn)} and {d(y,m, b; q̄), a(y,m, b; q̄)} be the corresponding

default and debt decision rules. Then

H(qn)(y, b′) = E(y′m′)|y

[
[1− d(y′,m′, b′; qn)]

λ+ [1− λ][z + qn(y′, a(y′,m′, b′; qn))]

1 + rf

]
.

Or,

H(qn)(y, b′) =∑
y′

[∫
M

[1− d(y′,m′, b′; qn)] [λ+ [1− λ][z + qn(y′, a(y′,m′, b′; qn))]] dG(m′)

1 + rf

]
F (y′, y).

Fix y′ and b′. By Lemma 3, limn[1 − d(y′,m′, b′; qn)] = [1 − d(y′,m′, b′; q̄)] for all but a

finite number of points (possibly) of m′. Since individual points of m have probability zero,

[1−d(y′,m′, b′; qn)] converges almost surely to [1−d(y′,m′, b′; q̄)] with respect to the measure

induced by G(m). Also, by Lemma 3, limn a(y′,m′, b′; qn) = a(y′,m′, b′; q̄) for all but a finite

number of points (possibly) of m′. If convergence holds then, since a(·; qn) takes values in

a finite set B, there must exist N such that for all n > N a(y′,m′, b′; qn) = a(y′,m′, b′; q̄).

Therefore, for n > N , qn(y′, a(y′,m′, b′; qn)) = qn(y′, a(y′,m′, b′; q̄)). Since qn → q̄, it fol-

lows that limn q
n(y′, a(y′,m′, b′; q̄)) = q̄(y′, a(y′,m′, b′; q̄)). Thus, viewed as a function of m′,

qn(y′, a(y′,m′, b′; qn)) converges almost surely to q̄(y′, a(y′,m′, b′; q̄)). Therefore, we have that

lim
n

[1− d(y′,m′, b′; qn)] [λ+ [1− λ][z + qn(y′, a(y′,m′, b′; qn))]] =

[1− d(y′,m′, b′; q̄)] [λ+ [1− λ][z + q̄(y′, a(y′,m′, b′; q̄))]]

except, possibly, at a finite number of points.

Now observe that each function in the sequence is non-negative and bounded above by
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λ+ (1− λ)[z + q̄]. Thus, by the Lebesgue Dominated Convergence Theorem, we have that

lim
n

∫
M

[1− d(y′,m′, b′; qn)] [λ+ [1− λ][z + qn(y′, a(y′,m′, b′; qn))]] dG(m′) =∫
M

[1− d(y′,m′, b′; q̄)] [λ+ [1− λ][z + q̄(y′, a(y′,m′, b′; q̄))]] dG(m′).

Putting these results together, we get

lim
n
H(qn)(y, b′) =∑

y′

[∫
M

[1− d(y′,m′, b′; qn)] [λ+ [1− λ][z + qn(y′, a(y′,m′, b′; qn))]] dG(m′)

1 + rf

]
F (y′, y).

= H(q̄)(y, b′).

Thus H(q)(y, b′) is continuous. �

11.2 Details of Sensitivity Analyses

Table 12 reports the results of three sensitivity analysis. In the first exercise, denoted Model

I, the full average debt level of 1.0 is targeted. The model can successfully match all targets.

There are some differences in the results. There are increases in the volatility of consumption

and NX, and a measurable increase in the debt service. These increases are what we would

expect for a higher average debt burden. The correlation patterns remain the same. Overall,

model performance is somewhat inferior to the baseline model.

In Model II, we address one potential concern regarding the assumption about m in the

period of default. Recall that we assumed that in the period of default, the value of m resets

to −m̄. This means that there is an additional source of punishment for default, and one

may wish to know if this plays any role in the results. In Model II, we assume that in the

period of default the value of m resets to 0 instead of −m̄ – which might be viewed as a

more neutral assumption. As is evident, there is virtually no difference in results between
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the baseline model and this one.

In the third sensitivity analysis, we examine if the results change with a lower standard

deviation for m. We re-estimated the endowment process under the assumption that σm =

0.002, which is the lowest σm value for which we get convergence for our baseline model.

The implied estimates of ρ and σε are as reported in the table. As one would expect, ρ

is somewhat lower, and σε somewhat higher than in the baseline model. However, these

changes in the endowment process have virtually no effect on model statistics.

Table 12: Additional Sensitivity Analyses

Moment Baseline Model I Model II Model III

Avg. (r − rf ) 0.0815 0.0815 0.0815 0.0815

σ(r − rf ) 0.0443 0.0443 0.0443 0.0444

Avg. b/y −0.7 −0.9996 −0.7 −0.7

σ(c)/σ(y) 1.11 1.15 1.11 1.11

σ(NX/y)/σ(y) 0.20 0.28 0.21 0.20

corr(c, y) 0.99 0.96 0.99 0.99

corr(NX/y, y) −0.44 −0.44 −0.44 −0.44

corr(r − rf , y) −0.65 −0.62 −0.65 −0.65

Debt Service 0.055 0.078 0.055 0.055

Def Freq 0.068 0.067 0.068 0.068

Model I: Average b/y target = 1.0

Model II: Same targets as baseline but in period of default, m resets to 0

Model III: Same targets as basline with ρ = 0.948081,σε = 0.027203,σm = 0.002

11.3 The Trade-off Between σm and ζ in Achieving Convergence

This section of confirms that there is a trade-off between the variability of m and the relax-

ation parameter ζ with regard to convergence within 100, 000 iterations. We consider the

model where all parameter values are as in the baseline model but the number of grids on
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Y , M , and B are 25, 50 and 100, respectively. With fewer grids, the computations take less

time and we can demonstrate that convergence can be achieved for very small values of σm,

provided the value of ζ is increased correspondingly.

Table 13: (σm, ζ) Pairs For Which
Convergence Is Achieved

σm ζ

0.001 0.98

0.0005 0.98

0.0001 0.98

0.00005 0.995

0.00001 0.998

Grids Y = 25, M = 50, B = 100
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