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Abstract

Social and private insurance schemes rely on legal action to deter fraud and tax evasion.
This observation guides us to introduce a random state verification technology in a dynamic
economy with private information. With some probability, an agent’s skill level becomes
known to the planner, who prescribes a punishment if the agent is caught misreporting.
We show how deferring consumption can ease the provision of incentives. As a result, the
marginal benefit may be below the marginal cost of investment in the constrained-efficient
allocation, suggesting a subsidy on savings. We characterize conditions such that the in-
tertemporal wedge is negative in finite horizon economies. In an infinite horizon economy,
we find that the constrained-efficient allocation converges to a high level of consumption, full
insurance, and no labor distortions for any probability of state verification.

∗We thank Cyril Monnet, Randy Wright, and the audiences at the University of Maryland, the Philadel-
phia Fed, and the Christmas meeting for German economists abroad for their comments and suggestions.
The views expressed here do not necessarily reflect the views of the Federal Reserve Bank of Philadelphia or
the Federal Reserve System. This paper is available free of charge at www.philadelphiafed.org/research-and-
data/publications/working-papers.
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1 Introduction

Insurance is intended to provide support to people in adverse situations. An individual’s con-
dition determines the payment but is typically hard to monitor. Full insurance might not be
optimal as agents struggle to resist the temptation of pocketing more support than they are
entitled to. In a seminal contribution, Mirrlees (1971) formalized the trade-off between insur-
ance and incentives by treating the agent’s skills as private information. Subsequent work by
Golosov, Kocherlakota and Tsyvinski (2003) extended the analysis of private information to
dynamic economies. The optimal scheme in these economies is always designed such that agents
pick the payments intended for them, even if misreporting is undetectable.

Yet most of the insurance schemes we observe rely on the threat of legal action to induce
truthful reporting. Laws against fraud are as commonplace as they are ancient.1 Of course, the
rule of law requires the means of verifying the validity of claims. For example, insurance com-
panies routinely inspect a subset of claimants after they filed for disability insurance. Similarly,
the elderly need to provide proof of eligibility in order to collect on nursing care insurance, and
the government routinely selects households for tax audits.

In this paper, we take a first step toward incorporating the threat of punishment as means
of incentive provision in an optimal scheme. We do so by modifying an otherwise standard
Mirrleesian economy. Idiosyncratic skill levels evolve over time following a stochastic process;
output is given by a production function with constant returns to both labor and capital. The
planner observes the amount each agent produces and consumes, but, as in Mirrlees (1971), the
effort exerted by the household is not observable. We study the constrained efficient allocations
both in finite and infinite horizon economies.

In contrast to the standard Mirrleesian setup, the planner gets to verify the present skill
level of a subset of agents selected randomly each period. For the remaining households, the
present skill level remains private information: The planner has no means to check past skill
levels. Households must put forth their claims before it is known whether their skill level will be
observable. This “random state verification” technology effectively assumes that governments
and private companies can check the validity of some but not all claims; and whether a particular
claim is observable or not is out of the control of both the claimant and the provider.

We find that the possibility of state verification reshapes the decisions and allocations on
the equilibrium path. Agents’ incentives to save are sensitive to state verification: We find
that the marginal benefit may be below the marginal cost of investment; and in infinite horizon
economies, the constrained efficient allocation converges to full insurance, high consumption,
and no labor distortions.

1For example, see Buckland (1975), p. 594.
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In equilibrium, no agent ever misreports the type. Not surprisingly then, the planner al-
ways prescribes the worst continuation welfare as a punishment to an agent who is found to
be misreporting his or her type. Incentive provision improves with higher probabilities of state
verification and with sterner punishments. To focus on the equilibrium path, the worst continu-
ation welfare, and thus punishment, is given by an exogenous lower bound on payoffs. Our setup
encompasses the dynamic Mirrlees economy described in Golosov, Kocherlakota and Tsyvinski
(2003) and the full information economy as special cases by setting the probability of state
verification to zero and high enough, respectively. Our interest lies in the intermediate values.

The key insight is that, with random state verification, the provision of incentives can be
made easier by increasing savings and deferring consumption to later periods. An agent who
is caught misreporting forgoes the continuation welfare prescribed under truthful revelation:
The effective punishment is given by the difference between the continuation welfare along
the equilibrium path and the worst continuation welfare. The planner can make the effective
punishment stronger, and thus ease the provision of incentives, by deferring consumption and
welfare, which in turn demands increased savings.

Deferring consumption remains costly for the same reasons as in the Mirrleesian setting
detailed in Golosov, Kocherlakota and Tsyvinski (2003). There are thus two counteracting
forces regarding the intertemporal allocation of resources in the optimal contract. Which force
dominates dictates whether the marginal benefit of investment is above or below the marginal
cost, that is, whether the intertemporal wedge is positive or negative, respectively, and whether
a capital tax or a subsidy would be needed to implemented the constrained efficient allocations.
We illustrate both effects in a two-period economy.

An implied subsidy on capital is not just a mere possibility. Typically the sign of the
intertemporal wedge will change across periods and across agents. We first discuss conditions
for a negative intertemporal wedge in finite horizon economies. We show that the the marginal
benefit of investment will be strictly above the marginal cost at some node, provided that
the probability of state verification is in a certain range. We also show that, for any positive
probability of state-verification, there exists a long enough (but finite) time horizon such that
the intertemporal wedge is non positive.

The results are even starker for infinite horizon economies. We find that, in the long run,
almost all agents receive full insurance with a high level of consumption; and there are no distor-
tions on the labor decision. In other words, all distortions vanish in the long run. Surprisingly,
the result holds for any arbitrarily small probability of state verification. We show how the
planner can promise a high level of future consumption—high enough to make the effective
punishment deter any misreporting even, if full insurance is provided.2 Loosely speaking, the

2The assumption of constant returns to capital plays an important role here, ensuring that high consumption
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economy can “outgrow” the constraints imposed by private information. However, doing so
is quite costly because the economy needs to accumulate aggregate capital and incur in low
consumption along the transition path. Nevertheless, convergence to full insurance occurs with
probability one. The rationale for deferring consumption and welfare dominates in an infinite
horizon economy because all agents will experience a (long enough) streak of high skill level
realizations. Along with these positive shocks, it becomes easier and easier to provide incentives
with future consumption: Eventually the effective punishment is strong enough to support full
insurance, which becomes an absorbing state. Our result here is closely connected with those
found in Albanesi and Armenter (2008): As long as it is possible to front-load all the distortions
present in the economy, the constrained efficient allocation rules out permanent intertemporal
distortions.

We also find that agents whose skill level is observable are rewarded with higher consumption
and leisure as long as incentive-compatibility constraints are binding. Thus, it is optimal to
introduce some consumption uncertainty linked to the possibility of state verification. In infinite
horizon economies, however, the rewards are eventually phased out.

In contrast with the savings decisions, the prescriptions regarding the labor supply are robust
to the introduction of the random state verification. As in the standard Mirrleesian framework,
the labor decision of the agent with the top skill level is left undistorted, while the output of
other agents is taxed. The exception is that the labor supply decision of agents whose skill level
has been verified always remains undistorted.

Our work relates to the literature on the optimal taxation of savings. Early work on
economies with linear factor taxation finds a zero tax rate on capital income, see Judd (1985) and
Chamley (1986). Subsequent research has further explored the Mirrlees approach to dynamic
optimal taxation and disability insurance. A necessarily incomplete list in a rapidly increasing
literature is Albanesi and Sleet (2006); Kocherlakota (2005); Golosov and Tsyvinski (2006);
Golosov, Tsyvinski and Werning (2006); Werning (2007); Farhi and Werning (2007); Mankiw
and Weinzierl (2009); and Weinzierl (2008).

There is limited literature on the optimal design of audit and law compliance mechanisms
in private information economies, dating back to Stigler (1970). Border and Sobel (1987) char-
acterize an optimal audit mechanism design for a static economy in which agents have private
information on their endowment. Cremer and Gahvari (1995) analyze the implications of an
audit scheme for static private information economies. More recently, Ravikumar and Zhang
(2009) study incentive provision through tax audits in a dynamic hidden income model. An-
other strand of the literature explores the costly state verification model of Townsend (1979).
Wang (2005) and Popov (2007) are expanding the application of costly state verification to

is indeed feasible.
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dynamic economies. We take the state verification technology as given and focus instead on its
implications for a full-fledged dynamic private information economy.

The paper is structured as follows. Section 2 lays out the setup for the general economy.
Section 3 presents a simple economy with just two periods that illustrates our results concerning
the incentives to save and the allocation of consumption and output across agents. We start
with our formal results on the allocation of consumption and output across agents in Section 4,
and follow with our results for the incentives-to-save in Section 5. Our results concerning finite
horizon economies are in Section 6. Section 7 documents our findings on the long-run properties
of the constrained efficient allocation. Section 8 includes a short discussion of some extensions
and Section 9 concludes.

2 Setup and Constrained-Efficient Allocations

2.1 Setup

Time is discrete t = 0, 1, . . . , T with T possibly being infinite. The economy is populated by
a continuum of infinitely lived, ex-ante identical agents. Agents are subject to idiosyncratic
shocks to their skill levels. At each date t, the agent’s skill θt > 0 takes on a value from a finite
support Θ, according to the probability distribution {π (θ) : θ ∈ Θ}. Let θt = {θ0, θ1, ..., θt} be
the history of skill realizations and Θt the corresponding support for histories up-to-date t. The
skill level of an agent determines the labor effort lt needed to produce output yt = θtlt. We
assume that skill levels are independent across agents and that the law of large numbers applies.
We denote with π

(
θt
)

both the fraction of agents with history θt and the probability of such an
event.

All agents derive utility from consumption ct ∈ R+ according to the utility function u :
R+ → R and disutility from labor lt ∈ R+ according to v : R+ → R. We find it useful to express
the per-period payoff in terms of output rather than labor. Let the consumption-output bundle
for an agent be xt = {ct, yt} ∈ R2

+, then his or her utility is given by

h (xt; θt) = u (ct)− v
(
yt
θt

)
where h : R2

+ ×Θ→ R.

Relative to the literature on Mirrleesian economies, the key innovation of this paper is the
possibility that the skill level becomes observable to a planner. An exogenous process determines
whether the skill level of an agent is only privately known or observable. Let at be an i.i.d.
random variable that takes the value at = 1 with probability p and at = 0 otherwise. At every

5



date and for every agent, variable αt = atθt is observable: However, if αt = 0, then the variable
is uninformative about the skill level.3 Let at be the history of realizations and At = {0, 1}t the
corresponding support. Note that only the skill level at the current date is revealed in a given
period. In terms of agents’ decisions, we assume that consumption and output are observable,
but the exerted effort is not.

Each agent’s type consists of the history of skills and state verifications sT =
{
θT , aT

}
∈

ΘT ×AT ≡ ST . From the probability process for skills and the probability of state verification,
we can define a probability over the set of types St for t = 0, 1, ..., T , which we denote with
π
(
st
)

in a slight abuse of notation.

Let x denote a mapping that assigns each type in ST → R2T
+ consumption and labor allo-

cations at every date. Agents have von Neumann-Morgenstern preferences and value a plan x

according to

W0 (x) =
T∑
t=0

∑
st∈St

βtπ
(
st
)
h
(
x
(
st
)

; θt
)

where β ∈ (0, 1) is the time discount factor. As part of the setup, we assume that period utility
cannot drop below a lower bound υ, i.e., h

(
x
(
sj
)

; θj
)
≥ υ. It turns out to be more convenient

to translate this lower bound on utility into a the lower bound on continuation welfare. For all
dates and all type realizations st ∈ St,

T∑
j=t

∑
sj∈Sj

βj−tπ
(
sj |st

)
h
(
x
(
sj
)

; θj
)
≥
(
1− βT+1−t)Υ (1)

where Υ = υ (1− β)−1 and π
(
sj |st

)
is the conditional probability of history sj given st. The

lower bound on welfare plays an important role in our analysis as it determines the maximum
punishment a planner can prescribe for a deviant agent.

We list below all the assumptions on preferences. In addition to the standard convexity and
differentiability properties, we assume a particular set of boundary conditions that allow us to
focus on interior allocations. The boundary conditions also ensure that the lower bound on
welfare (1) can be attained with an allocation in the positive quadrant.

Assumption 1 (Preferences)

Preferences are such that

1. (Monotonicity) Both u(c) and v(l) are strictly increasing;

2. (Differentiability) Both u(c) and v(l) are twice differentiable;

3This specification is a convenient shortcut for notation but requires that the uninteresting case of θ 6= 0 is
ruled out. Equivalently, we can let α be a random variable with values in Θ∪ {∅}. For each agent, αt equals his
or her skill level θt with probability p, and it is uninformative, αt = {∅}, with probability 1− p.
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3. (Convexity) Utility function u(c) is strictly concave and v(l) is strictly convex;

4. (Boundary conditions) Utility function u(c) is unbounded above and below, and v(l) is

bounded below and satisfies v′(0) = 0.

Assumption 1.4 ensures that equation (1) specifies the effective lower bound. The disutility
of labor is bounded from below, and hence we can normalize it to v(0) = 0 without loss of
generality.

An allocation is a pair {x,K} where K = {Kt+1}Tt=0 is a nonnegative sequence specifying
aggregate capital at all dates t = 1, 2, ..., T . The initial level of capital K0 > 0 is taken as given.
A feasible allocation satisfies the lower bound on welfare (1) for all st ∈ St and the resource
constraint at all dates t,

Ct +Kt+1 ≤ RKt + Yt (2)

where R = β−1 denotes the gross interest rate, and Ct and Yt stand for aggregate consumption
and output, respectively.4 The production function displays constant marginal returns to capital.
We will return to this assumption later in the paper as it plays an important role for some of
our long-run results.

2.2 Efficient and constrained-efficient allocations

Before discussing the implications of information frictions, we define the best allocation only
subject to feasibility. We denote such an allocation as “efficient” or “first best” to distinguish
it from “constrained efficient,” or “second best,” allocations to be defined later.

Definition 1 (Efficient allocation)

A feasible allocation {x,K} is efficient if

W0 (x) ≥W0

(
x′
)

for all feasible allocations {x′,K ′}.

Condition (1) implies a lower bound on W0. To guarantee that the objective function W0

is also bounded from above, we need some additional conditions on preferences. We therefore
4Aggregate consumption and output are the sum over individual consumption and output weighted by the

mass of people:

Ct =
∑
st

π
(
st
)
c
(
st
)

Yt =
∑
st

π
(
st
)
y
(
st
)
.
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adopt a standard assumption used for economies with constant marginal returns to capital.
The assumption encompasses several utility function specifications, including logarithmic and
constant elasticity of substitution (CES) utility functions.

Assumption 2

There exists scalars a, b, and γ < 1 such that u(c) ≤ a+ bcγ for all c ≥ 0.

This assumption ensures that the objective function is finite for the set of feasible allocations.
Consequently, we can characterize the efficient and constrained efficient allocations as optimal
control problems.

Let us now turn to analyzing the set of feasible allocations that can be implemented given
the presence of private information. We start by being precise about how information is revealed
and communicated to both planner and agents alike. At the beginning of each period t, the
skill level θt becomes known only to the agent. The agent then submits a report to the planner,
σt
(
st−1, θt

)
∈ Θ. The state verification variable at is realized only after the report has been filed.

The planner then dictates a consumption and output allocation given the report, the realization
of state verification at, and, if the skill level is revealed, the true type of the agent. We allow
the planner to specify different allocations for an agent, depending on whether the skill level is
public information, even if the agent is reporting truthfully.

Formally, we define a reporting strategy as a mapping σt : ST → ΘT such that for all
dates t ≥ 0, the report σt is measurable with respect to

{
st−1, θt

}
. The truth-telling reporting

strategy σ∗ is given by σ∗t
(
st−1, θt

)
= θt for all realizations in ST . Let Σ be the set of reporting

strategies. A contract ξ specifies consumption and output at all dates given history st−1, report
θ̂t, and observable variable αt = atθt.5 Let ξ (σ) be the allocation plan spanned by the reporting
strategy σ.

A feasible allocation {x,K} is admissible if ξ (σ∗) = x for some contract ξ such that

W0 (ξ (σ∗)) ≥W0 (ξ (σ))

for all σ ∈ Σ. That is, the truth-telling strategy is optimal for all agents. We now use this
language to define a constrained efficient allocation.

Definition 2 (Constrained-efficient allocation)

An admissible allocation {x,K} is constrained efficient if

W0 (x) ≥W0

(
x′
)

5Note that a contract and allocation are different mappings because a contract must be measurable over the
support for the report and observable variable αt in addition to the actual skill level.
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for all admissible allocations {x′,K ′}.

2.3 Characterization of constrained-efficient allocations

We seek to characterize constrained-efficient allocations as a solution to an optimal control prob-
lem. The first step is to write the incentive-compatibility constraints in terms of the allocation
plan. This task is simplified by two well-known results. First, we only need to consider one-step
deviations from the truth-telling strategy. Second, we can write the incentive-compatibility con-
straint knowing that the planner prescribes the lowest continuation welfare possible whenever
an agent is caught misreporting his or her skill level. The reason is that no agent will actually
misreport on the equilibrium path: to prescribe the maximum punishment available in such
events comes at no cost and improves incentives on the equilibrium path.

We simplify further the formulation of the incentive-compatibility constraints by keeping
track of promised utility. Let z(st) be the expected continuation utility for date t + 1 after
history st. We state our promise-keeping constraint to make the definition of z(st) explicit,

z
(
st
)

=
∑

st+1∈St+1

π
(
st+1|st

) {
h
(
x
(
st+1

)
; θt+1

)
+ βz

(
st+1

)}
(3)

for all histories st ∈ St, and dates t ≥ 0. If T is finite, the terminal condition, z(sT ) = 0, applies
to all histories sT ∈ ST , as part of the set of promise-keeping constraints. These constraints allow
us to rewrite the set of admissible allocations in a different form. Using the promised utility,
we can express truthful reporting in a single constraint for each type and period. A feasible
allocation {x,K} is admissible if and only if the following incentive compatibility constraint is
satisfied∑
at∈{0,1}

π(at)
{
h
(
x
(
st
)

; θt
)

+ βz
(
st
)}
≥ p

(
1− βT+1−t)Υ + (1− p)

{
h
(
x
(
ŝt
)

; θt
)

+ βz
(
ŝt
)}
(4)

at all dates t ≥ 0, for all {st−1, θt} ∈ St−1×Θ and all skill levels θ′ ∈ Θ, where ŝt =
{
st−1, θ′, 0

}
.

Note that there is no separate incentive-compatibility constraints for at = 0 and at = 1: The
agent must submit the report before knowing the realization of at. Thus, the value of truthful re-
porting and misreporting is given by a lottery spanned by the realization of the state verification
variable at.

We characterize constrained efficient allocations as solutions to the following optimal control
problem

sup
{x,K,z}

W0(x)

subject to the resource constraint (2) at all dates t = 0, 1, ..., T , and to the promise-keeping and
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incentive-compatibility constraints (3) and (4) at all nodes st ∈ St, as well as nonnegativity
constraints and the lower bound constraint on continuation welfare (1).

The state verification technology relaxes the incentive-compatibility constraints, as can be
seen from equation (4), and thus enlarges the set of admissible allocations. Before we proceed
further, we ask under which conditions the efficient allocation is admissible, rendering trivial the
problem of constrained efficiency. From the incentive-compatibility constraint (4), the role of the
lower bound on welfare, υ, becomes clear. If welfare were unbounded below, the planner could
prescribe an infinite punishment in the event of misreporting: the efficient allocation would then
trivially satisfy the incentive-compatibility constraints. We shall treat the lower bound υ as a
fixed parameter for the remainder of the paper.

The next assumption ensures that the lower bound is low enough such that the set of admis-
sible allocations exists and is not a singleton. To ensure that the lower bound can be achieved
with a feasible allocation, we also assume Υ is finite.

Assumption 3

The lower bound υ is set in a way that the set of admissible allocations has a non-empty interior

and υ > −∞.

Taken the punishment level as given, we now ask about conditions on the state verification
probability such that the efficient allocation is admissible. Clearly, the efficient allocation is not
implementable for a sufficiently low state verification probability p. For the case in which the
probability of state verification is zero, we retrieve the standard dynamic Mirrlees formulation.
In that case, the efficient allocation is never admissible. On the other end, if p is large enough,
the efficient allocation satisfies the incentive-compatibility constraints (4). Indeed, there exists
a threshold p∗ such that the set of admissible allocations for p < p∗ does not contain the efficient
allocation.

Lemma 1

There exists p∗ ∈ (0, 1) such that the efficient allocation is not admissible if and only if p < p∗.

3 A Simple Two-Period Economy

We use a two-period economy to illustrate the mechanics of the setup. We are interested in
how exogenous state verification shapes the incentives to save and work under the constrained
efficient allocation.

Therefore, we use the setup of the previous section with only two periods as a special case.
For illustrative purposes, we do not allow the planner to give out rewards for truth-telling. At
time t = 1, each agent chooses how much of his or her initial endowment to consume, c1, leading
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to an amount of savings s = y1 − c1. All agents behave symmetrically in the first period since
there is no source of heterogeneity.

In the second period, agents learn their idiosyncratic skill level. Half of the agents are able
to produce one unit of output with 1/θ units of effort where θ > 1. The other half produces
only one unit of output for each unit of effort. The resource constraint at date t = 2 is given by

1
2

(c2 (θ)− y2 (θ)) +
1
2

(c2 (1)− y2 (1)) ≤ s.

where {c2 (θ) , y2 (θ)} and {c2 (1) , y2 (1)} denote consumption and output produced at date t = 2
for agents with skill level θ and 1, respectively. For simplicity, we assume that the return to
savings is 1. A feasible allocation x is a vector specifying consumption at date t = 1, savings,
and consumption and output at both dates as a function of the skill level such that the resource
constraint is satisfied at both dates.

3.1 Constrained-efficient allocation

The incentive-compatibility constraints do not reflect any promised utility since we only set up
a two-period economy. Hence, we can write them as

u (c2 (θ))− v (y2 (θ) /θ) ≥ pυ + (1− p) (u (c2 (1))− v (y2 (1) /θ)) (5)

where υ stands for the amount of utility agents receive if caught misreporting. The incentive-
compatibility constraint ensures that the high skill level reveals his or her type before knowing
whether it will be observable. As in the standard Mirrlees problem, the corresponding incentive-
compatibility constraint for the low skill agent is automatically satisfied.

The possibility of the skill level becoming public information relaxes the incentive compati-
bility constraint. The higher the probability of observing the true type and the more severe the
punishment, the easier it is to provide incentives. Indeed, if υ is low enough or p is sufficiently
close to 1, the first best allocation becomes incentive compatible. On the other end, if skills are
never verified, we recover the standard formulation of the dynamic Mirrleesian setup.

To arrive at the constrained efficient allocations, we maximize social welfare

u(c1)− v(y1) +
1
2

(
u(c2(θ)− v(

y2(θ)
θ

)
)

+
1
2

(u(c2(1)− v(y2(1)))

subject to the incentive compatibility constraint (5) and the resource constraint.

We are interested in the constrained efficient allocation, that is, the incentive-compatible
allocation attaining the highest welfare. From the first-order conditions of the optimal control
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problem, we derive a relation between the consumption levels of the two different types in the
second period:

uc2 (θ) (1 + µ) = uc2 (1) (1− (1− p)µ)

where µ is the Lagrangian multiplier associated with the incentive-compatibility constraint.6 As
long as the first best allocations are not incentive compatible, that is µ > 0, consumption is not
equated across agents. More precisely, the agent of type θ has a higher level of consumption, as
in the standard Mirrlees problem.

We start by exploring how private information and the state verification technology shape
agents’ incentives to work. We find that the prescriptions of the static Mirrlees problem are
remarkably robust. For any state verification probability, the marginal rate of substitution is
equated to the marginal rate of transformation for the agent with the highest skill.

u′(c2(θ)) =
1
θ
v′
(
y2(θ)
θ

)
Thus, the implied marginal labor wedge is zero for the agent with high skills, as in Mirrlees
(1971). As long as the first-best allocation is not incentive compatible, the allocations suggest
a positive labor tax for low skill types.

v′(y2(1))
(

1− (1− p)µv
′(y2(1)/θ
θv′(y2(1))

)
= (1− (1− p)µ)u′(c2(1))

Both results follow immediately from the first-order conditions for consumption and output.

The probability of state verification p influences the magnitude of the labor wedge of the
constrained-efficient allocation. It is easier to provide incentives as p increases, and the optimal
labor wedge is decreasing. Figure 1 plots the optimal labor wedge for the low skill agent as
a function of p.7 Labor is undistorted only when the probability of state verification is high
enough that the incentive-compatibility constraint is no longer binding. In other words, labor
distortions only disappear when the first-best allocation is incentive compatible. We show these
results for the general case with multiple types and many periods in section 4.

Let us now sign the intertemporal wedge for the optimal allocation. The question here is
whether the intertemporal distortion suggests a tax or subsidy for capital. By manipulation
of the first-order conditions derived from the maximization problem above, we arrive at an

6We have normalized the Lagrangian multiplier µ by the measure of agents of type θ.
7Agents value allocations according to preferences that satisfy the assumptions of the previous section. For

our simple economy, we choose utility of consumption u(c) = log(c) and disutility of labor v(l) = −l4/4 with
parameter choices θ = 2 and υ = −1/4.
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Figure 1: Implied labor tax rate for various probabilities of state verification.

intertemporal optimality condition given by

E

{
1
uc2

}
=

1
uc1

(
1 +

pµ

2

)
. (6)

In the special case in which types are never verified, equation (6) encompasses the well-known
inverse Euler equation,

uc1 =
[
E

{
1
uc2

}]−1

.

In this case, there is always variation in consumption across types. Jensen’s inequality then
implies uc1 < E {uc2}. The intertemporal wedge must be positive in order to implement the con-
strained efficient allocations. This result carries on for infinite horizon economies with arbitrary
stochastic processes for the agents’ type.

Now consider the possibility of exogenous state verification, p > 0. As long as pµ > 0 in
equation (6), we cannot guarantee the above result of a positive implied savings tax.

Fortunately, it is still possible to sign the term uc1−E {uc2}. Using the first-order conditions for
c2 (θ) and c2 (1), we can solve for E {uc2} in terms of µ and p, which in turn implies uc1 ≥ E {uc2}
whenever

µ ≤ 1
2

p

1− p
. (7)

Moreover, uc1 = E {uc2} if and only if µ = 0 or (7) holds with strict equality. It is possible to
express condition (7) in terms of a threshold p̂ for the probability of state verification at which
the equality is satisfied. Heuristically, the Lagrangian multiplier µ is decreasing in p as the
incentive-compatibility constraints become relaxed, and the right-hand side of (7) is increasing
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Figure 2: Implied savings tax rate for various probabilities of state verification.

in p. We derive the general version of this inverse Euler equation for our setup in Section 5.

We thus find an implied subsidy if it is likely enough to observe the skill level, p ≥ p̂. Figure
2 displays the implied savings tax needed to implement the constrained efficient allocation for
different state-verification probabilities. The comparative statics for the implied tax are not
monotone and lead to a sign-switch: around p = .05, the optimal saving tax turns into a subsidy.
The exact value of the threshold depends on the primitives of the economy—the curvature of the
preferences, the dispersion in skills, as well as the lower bound on welfare. Importantly though,
the first-best allocations are not incentive compatible at p = p̂.

Before interpreting our results, let us first briefly revisit why the dynamic Mirrlees problem
calls for savings to be taxed. The incentive-compatibility constraints require some spread be-
tween the consumption of high and low skill level agents. The more resources that are available
in the economy, the larger the spread must be. In other words, savings make the provision
of incentives more difficult. As a result, consumption and welfare are frontloaded under the
constrained-efficient allocation.

The possibility of observing the agent’s type ex-post opens a new channel to improve in-
centives. Being able to verify the state allows to prescribe a punishment for any agent caught
misreporting the skill level. Since this punishment is never administered on the equilibrium
path, the planner equates the welfare of any misreporting agent to the lower bound on welfare.
Everything else constant, the higher expected consumption for truthful reporting, the sterner
the punishment for misreporting, and thus the more effective is state verification in relaxing the
incentive-compatibility constraints. Hence, additional resources, and thus savings, can improve
the provision of incentives by raising overall welfare.
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In short, savings can help the provision of incentives in the presence of state verification.
Whether savings are taxed or subsidized depends, ultimately, on which effect dominates. Indeed,
there is a probability of state verification such that the implied tax on savings is negative. We
discuss the incentives to save in more detail in Section 5.

We show the existence of an implied subsidy of capital in Section 6 for the finite horizon
case. There, we also discuss its economic interpretation. In the infinite horizon case, we can
demonstrate even stronger predictions: All economic agents will eventually have a nonpositive
intertemporal wedge (see Section 7).

4 Output and consumption distribution

We start our analysis of the general setting with the allocation of consumption and output
across agents. Firs,t we want to know whether agents allocate between consumption and leisure
optimally. In particular, we explore how allocations compare between an agent whose skill level
becomes public information and an agent with identical history and skill level but the latter
remains private information.

The derivations of the first-order necessary conditions can be found in the Appendix, where
we also prove that constrained-efficient allocations are interior, which we use to simplify our
presentation whenever possible.8

Let us first consider the case in which the agent’s skill level remains private information,
at = 0. We find that the results of the classic, static Mirrlees economy carry over. An agent
with skill θt will face a wedge between the marginal rate of substitution and the marginal rate
of transformation as long as some other agent θ′ incentive-compatibility constraint to report the
type θt is binding, that is, the Lagrangian multiplier µ

(
st−1, θ′; θt

)
is positive. By encouraging

leisure, the allocation prescribed for skill level θt looks less attractive to agents with higher skill
levels. Again as in Mirrlees (1971), no agent has incentives to report the top skill level, and thus
the marginal rate of substitution and the marginal rate of transformation are equated for agents
with top skill. Note that the presence of positive marginal labor taxes is assured as long as
private information constrains the set of admissible allocations.9 We summarize these findings
in the following proposition.

Proposition 1 (Mirrleesian results)

For any date t = 0, 1, ..., T and node st−1 ∈ St−1 with at = 0,

hy
(
st; θt

)
≤ u′

(
st
)
F yt

8See Proposition 6.
9Our assumptions on preferences rule out the possibility of “bunching,” in which some agents with skill level

θt < θ̄ face a zero marginal tax. See Tuomala (1990) and Salanie (2003) for a discussion and references herein.
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with strict inequality iff µ
(
st−1, θ′; θt

)
> 0 for some θ′ ∈ Θ.

Proof: In the Appendix. �

We now turn our attention to allocation whenever the skill level becomes public information,
at = 1. Obviously, allocations conditional on at = 1 are not part of the payoff of misreporting
for any agent. It is thus possible to relax the incentive-compatibility constraints by prescribing
different allocations in the event at = 1. Indeed we find that the constrained efficient allocation
does so.

First, there is no need to distort the labor supply decision of agents whose type is public
information. The only reason for the labor supply to be distorted for some agents is to ease
the incentives to misreport. But there is no need to do so for the allocation with observable
skills. In this case, delivering the efficient allocation between consumption and leisure relaxes the
incentive-compatibility constraints (4). Any tax system that would decentralize the constrained
efficient allocation would need to include a provision for a zero marginal tax rate—a tax break—
whenever the skill level of an agent is public information.

We go one step further by ranking consumption and labor allocations between agents with
and without state verification. We find that for two agents with identical histories st−1 and
identical skill level θt, consumption is weakly higher for the agent whose type is public informa-
tion,

c
({
st−1, θt, 0

})
≤ c

({
st−1, θt, 1

})
with strict inequality as long as the incentive-compatibility constraint is binding. The possibility
of state verification thus introduces consumption variation along the equilibrium path. Similarly,
the agent with observable skills enjoys not only more consumption but also more leisure:

y({st−1, θt, 0}) ≥ y({st−1, θt, 1}).

Furthermore, the agent with observable skills will also continue to receive higher utility than the
agent whose skill level remained private information. We infer this observation from a higher
Lagrangian multiplier on the constraint on promised utility.

Agents are thus “rewarded” whenever their skill level becomes public information by having
more consumption and more leisure, as well as more continuation welfare. By delivering higher
welfare in the event of state verification, the agent’s incentive-compatibility constraints are
relaxed without tightening any other agent’s constraints. The variation in consumption, however,
is costly, since agents are risk averse. Risk aversion thus puts a bound on the optimal spread
in consumption levels. If agents were risk-neutral, consumption and welfare would exhibit a
bang-bang solution.
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Proposition 2 formalizes these results.

Proposition 2 (Rewards for state verification)

For any date t = 0, 1, ..., T and node st−1 ∈ St−1,

c
({
st−1, θt, 0

})
≤ c

({
st−1, θt, 1

})
y({st−1, θt, 0}) ≥ y({st−1, θt, 1})

for all θt ∈ Θ, and with strict inequality iff µ
(
st−1, θ′; θt

)
> 0 for some θ′ ∈ Θ. Moreover, if

at = 1,

hy
(
st; θt

)
= u′

(
st
)
F yt .

Proof: In the Appendix. �

Finally, we turn our attention to the agent with the highest skill level θ̄ = max{θ ∈ Θ}. Since
our preferences satisfy the single-crossing condition, the incentive-compatibility constraints for
agents with θt < θ̄ to report θ̄ are not binding. It follows from Proposition 2 that the allocations
of consumption, output, and promised utility for the agent with top skill level are identical,
regardless of whether the skill level is made public information or remains private information.
The reason is that no agent with θt < θ̄ has incentives to misreport their type as θ̄. Thus,
prescribing distinct allocations for at = 0 and at = 1 does not relax any incentive-compatibility
constraint. Since it does not improve incentives, providing the same allocation whether the state
is verified or not delivers the same welfare to the top skill agent with less resources.

5 The incentives to save

This section is concerned with the allocation of resources across periods. This topic has been
the focus of most of the literature on dynamic Mirrleesian economies, starting with the finding
in Golosov, Kocherlakota and Tsyvinski (2003) that the marginal benefit of investment is above
the marginal cost. The standard dynamic Mirrleesian economy is nested in our setup when the
probability of state verification equals zero.

Since aggregate capital does not directly affect incentives, the first-order condition for Kt

equates the shadow cost of resources λt across periods as the efficient allocation would do. Of
course, the shadow cost of resources will generally not be the same for efficient and constrained-
efficient allocations, and thus the optimal paths for aggregate capital will differ as well. Without
further assumptions, it is difficult to say much about the transition path for capital.

Fortunately we can characterize the incentives to save for private agents. Proposition 6
in the Appendix shows that consumption and output are strictly positive in the constrained-
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efficient allocation so that the first-order conditions hold with strict equality. Given this result,
we follow the same steps involved in the derivation of the inverse-Euler equation—see Rogerson
(1985) and Golosov, Kocherlakota and Tsyvinski (2003). The resulting optimality condition for
intertemporal allocations reads

u′
(
st
)

=
(
Et

{
1

u′ (st+1)

})−1
(

1 + p
µ∗
(
st
)

1 + η (st)

)
(8)

where
µ∗
(
st
)

=
∑
θ,θ′∈Θ

{
π(θ)µ

(
st, θ; θ′

)}
is a weighted average of Lagrangian multipliers µ

(
st, θ; θ′

)
on the incentive-compatibility con-

straints.

If there is no chance that the state is verified, p = 0, we recover the familiar inverse Euler
equation from (8). Following Golosov, Kocherlakota and Tsyvinski (2003), we can establish the
existence of a positive wedge between the marginal benefit and the marginal cost of investment,
as

u′
(
st
)

=
(
Et

{
1

u′ (st+1)

})−1

< Et
{
u′
(
st+1

)}
where the last step follows from Jensen’s inequality. If we were to decentralize the constrained-
efficient allocation in the case p = 0, we would find that we need a positive capital tax. In
short, reducing savings helps in improving the provision of incentives in future periods because
it becomes easier to provide the necessary spread in the marginal utility of consumption.

On the other end of the spectrum where all the skill types are observed, information is no
longer private. Hence, the first-best allocation becomes feasible for the planner. The interesting
results of this paper thus deal with probabilities in between these two extrema.

Once we consider the possibility of state verification, however, we can no longer establish
unambiguously that the marginal benefit of investment is above the marginal cost, or vice versa.
The sign of the intertemporal wedge u′

(
st
)
− Et

{
u′
(
st+1

)}
depends on the size of Lagrangian

multipliers and probabilities of state verification.10

Random state verification opens a new channel to improve incentives for future periods.
Recall that an agent caught misreporting his or her type is assigned continuation welfare equal
to Υ. Thus, the amount of welfare forgone once caught misreporting is z(st)−Υ, what we call the
effective punishment. The harsher the effective punishment is, the better the incentive provision.
Everything else equal, the planner can improve allocations by promising higher continuation

10The exception is when µ∗ = 0. In this case, no incentive-compatibility constraint is binding at nodes st+1 ∈
St+1|st, and the allocation features full insurance with respect to date t+ 1 shocks.
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welfare. In turn, higher continuation welfare requires accumulating more capital in order to
generate the necessary additional resources.

However, the opposite force of standard private information economies remains: Incentives
require a larger consumption spread when there are more savings. Whether the constrained
efficient allocation prescribes a positive or negative intertemporal wedge (8) depends on which
channel is stronger. In other words, savings present the planner with a trade-off between more
effective punishment and a larger consumption spread.

The random state verification channel has a key property: The effective punishment can
be large enough to overcome all the incentive problems. That is, if the continuation welfare is
high enough, then no agent risks losing it by misreporting, even if the allocations prescribe full
insurance and no labor distortions. For constrained-efficient allocations, we can say even more:
Full insurance and no labor distortions are necessary properties if the continuation welfare is
above a certain threshold. Proposition 3 formalizes the first key result of the paper.

Proposition 3

Let p > 0. There exists threshold z∗ < ∞ such that if {x,K, z} is a constrained-efficient

allocation and

z(st−1) ≥ z∗,

then for all dates j ≥ t and continuation nodes sj ∈ Sj |st−1, there are no labor distortions:

v′
(
y(sj)/θj

)
= u′

(
c(sj)

)
θj ,

and there is full insurance:

c(sj) = c(st)

for all st ∈ St|st−1.

Proof: In the Appendix. �

The proof of Proposition 3 is quite straightforward. The welfare gains for misreporting the
skill type and going undetected are bounded above when the efficient allocations are prescribed.
We thus only need a large enough effective punishment to enforce truthful reporting.

Proposition 3 does not imply that the upper bound will ever be reached. Whether we will
reach the range of full insurance is a matter of discussion in the following sections. However, it
already tells us that we cannot have very high levels of promised utility and still have the same
prediction of a positive intertemporal wedge as for standard dynamic Mirrleesian economies.

Next we highlight a key implication of Proposition 3 that is featured prominently in our
results for finite and infinite horizon economies.
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Proposition 4

Let p > 0 and {x,K} be a constrained-efficient allocation. If {x,K} is not efficient, then

c(st) ≤ c̄ <∞

for all nodes st ∈ St and dates t = 0, 1, . . . , T .

Proof: In the Appendix. �

Note this stands in contrast with the standard Mirrleesian economy with p = 0: Individual
consumption is usually unbounded above.

Proposition 3 states that the constrained-efficient allocation will have some surprising prop-
erties if the continuation welfare is large enough. However, we still do not know whether it is
part of the constrained-efficient allocation to back-load welfare until the threshold in Proposition
3 is achieved. Doing so is not costless: It requires low initial consumption and, in general, a less
smooth path for consumption. In the next sections we will characterize the conditions under
which the random state verification channel dominates and the marginal return to investment
is below its cost in constrained-efficient allocations.

6 Finite Horizon

In this section, we turn to finite horizon economies with an arbitrary time horizon. We already
know the results for a special case. Section 3 discussed a two-period economy. In that section,
we saw the size of intra- and intertemporal wedges for a particular calibration.

Besides the special case, we gathered a fair bit of information on the finite horizon economy.
We know that the distortions for the labor supply decision have the same qualitative properties
as in a standard dynamic Mirrleesian economy, as Section 4 shows. There, we also discussed the
ranking of consumption and output allocations. Section 5 discussed the optimality condition for
the intertemporal allocation. Compared with the standard Mirrleesian setting, the intertemporal
wedge has an extra term that prevents us from determining the sign of the wedge directly.

This section sheds more light on under which conditions the intertemporal wedge is negative
or positive. Therefore, we discuss two sets of results. First, for any finite horizon economy, the
implied savings tax is negative if the probability of state verification is in a certain range. And
second, for a given (potentially tiny) probability of state verification, there exists a time horizon
T such that the implied savings tax is negative for some agents in the economy.

Let us turn to the first result. As we have seen in previous sections, a higher probability
of state verification relaxes the incentive-compatibility constraints. We can get intuition by
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studying two extreme cases. On one end of the spectrum, no skill level gets observed. In
this case, we retrieved the standard dynamic Mirrleesian setup for which we know that the
intertemporal wedge is positive, and, hence, the implicit tax on savings is positive. At the other
end of the spectrum, all skill levels become public information before allocations get assigned.
Since there is no private information, no incentive-compatibility constraints have to be satisfied,
and we recover the first-best allocation in which full risk sharing prevails.

For the two-period economy, however, we showed that the intertemporal wedge does not
decline monotonically. It rather turns into a subsidy region before it enters the range in which
the first-best allocation can be delivered. The rationale for the subsidy region is given by the
fact that for a higher probability of state verification, more savings relax incentive constraints
for two reasons. First, the effective punishment in case of misreporting increases. But second,
with higher probabilities of the skill becoming public information, every extra unit of effective
punishment has a bigger effect on the expected punishment.

We now show that the existence of a subsidy is a general result that holds for any finite
horizon economy of our setup. We therefore prove the following proposition.

Proposition 5

For any economy with time horizon of length T < ∞, there exists a p̂ < p∗ such that the

intertemporal wedge is negative for some node st ∈ St,

u′
(
st
)
< Et

{
u′
(
st+1

)}
.

Proof: In the Appendix. �

The key to this result lies in the incentive compatibility constraints. Imagine an economy with
the lowest probability of state verification that still supports the first-best outcome. The fact that
the full consumption sharing can be implemented means that the effect of private information
has been overcome. In essence, the effective punishment is strong enough to allow full risk
sharing. That means, however, that the reason for front-loading also has been eliminated. If the
probability of state verification is, however, just a slight bit smaller, the effective punishment
channel calls for a subsidy to push agents toward the region of a first-best allocation. Since the
effect of front-loading consumption is marginal, the intertemporal wedge becomes negative.

But is a subsidy an option for any given probability of state verification? Surprisingly, the
answer is yes—provided that the time horizon is long enough. The next theorem shows that
any economy with positive probability of skills becoming observable features a subsidy.

21



Theorem 1

Let p > 0. There exists T <∞ such that the constrained-efficient allocation {x,K} satisfies

u′
(
st
)
≥ Et

{
u′
(
st+1

)}
for some node st ∈ St, t ≤ T − 1.

Proof: In the Appendix. �

Intuitively, we know that for a given probability p, there is a level of savings such that you
can give agents first-best allocations. Now the question remains of whether agents will ever
reach that level. Therefore, consider the relevant trade-offs in a given period. To induce agents
to work, they need to be given consumption in return. However, this consumption does not
have to be delivered in the current period. It can merely be promised to be delivered in future
periods. The promise keeping constraint ensures that eventually consumption will be provided.
But therefore, the economy has to build up enough savings, which in turn raises the effective
punishment level. If the time horizon is long enough, a sufficient amount of savings guarantees
that some agents have a nonpositive intertemporal wedge.

7 Infinite horizon economies

This section answers the question regarding which sign the intertemporal wedge takes on the
long run. We find that all agents (but a set of mass zero) converge to full insurance and no
intertemporal wedge. Even more interestingly, this result does not depend on the probability of
state verification. Even a tiny chance of skill levels being revealed leads agents to converge to a
nonpositive intertemporal wedge.

Let us be clear about the precise meaning of the concept of convergence. Our results con-
cerning the long run are stated in terms of convergence in probability.11 For example, we will
say that consumption converges to some level ĉ, denoted c(st)→ ĉ, if for any δ > 0

lim
t→∞

∑
st∈St

π(st)χ
[
|c(st)− ĉ| ≥ δ

]
= 0

where χ is the indicator function. The long-run properties will thus hold for all agents with the
possible exception of a subset with measure zero.

The following theorem summarizes the main result of this section.
11See Stokey and Lucas (1996) for a formal treatment.
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Theorem 2

Let p > 0. The economy converges to full insurance and no labor distortions:

c(st) = c(st+1)

and

v′
(
y(st)/θt

)
= u′

(
c(st)

)
θt

for all θt ∈ Θ.

Proof: In the Appendix. �

The rest of this section is concerned with shedding some more light on our result. We first
establish the existence of an absorbing upper bound on promised welfare. Then we show that
there is a non-absorbing lower bound, which means that agents close to that bound can reach
higher promised welfare after good shock realizations. To establish the result of the theorem,
the remaining piece is to show that the Lagrangian multiplier on the promised welfare constraint
follows a submartingale. We then apply the submartingale convergence theorem to prove the
result of Theorem 2. Note that the Lagrangian multiplier associated with the resource constraint
(2) is constant due to constant marginal returns to capital. This assumption becomes important
in the infinite horizon case because it allows the economy to converge to an arbitrarily large
level of aggregate capital and thus defer the delivery of utility to the future.

As demonstrated in Proposition 3, there exists an upper threshold on promised utility such
that full insurance without labor distortions can be implemented. The intuition for this upper
bound goes as follows. The larger the punishment associated with misreporting, the more the
state verification technology can relax the incentive-compatibility constraints. The continuation
welfare prescribed in the event of misreporting is exogenously fixed at Υ. However, the right
measure of punishment is the amount of “forgone” welfare, that is, the difference between the
promised continuation welfare and the punishment. There is a level of continuation welfare z∗ for
which the threat of punishment is so large that the effects of private information are dominated
and full insurance can be implemented.

Proposition 3 actually goes one step further and shows that full insurance with no labor
distortions is a necessary property of the constrained-efficient allocation whenever promised
utility is at or above the threshold for full insurance. Intuitively, for any level of promised
utility, the cost-efficient solution to the promise keeping constraint is precisely to provide full
insurance with no labor distortions. If z(st) ≥ z∗, the incentive-compatibility constraints are no
longer an impediment to do so. An immediate corollary of Proposition 3 is that z(st) ≥ z∗ is an
absorbing state since the promised continuation welfare will be constant under full insurance.
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Corollary 1

Let p > 0. If z(st) ≥ z∗, then z(sj) = z(st) for all
{
sj : st ∈ sj , j ≥ t

}
.

So far, we have established that there exists an upper bound on continuation welfare and that
it is an absorbing state. We now turn to showing that there is also a non-absorbing lower bound.
By assumption, there is a lower bound on welfare (1). We briefly discuss how continuation welfare
behaves close to the lower bound. We find that the lower bound on continuation welfare (1) may
be binding with positive probability. However, promised continuation welfare is always strictly
higher than the lower bound.

Lemma 2

Let {x,K} be a constrained-efficient allocation and z be the associated plan of continuation

welfare. Then z(st) > Υ.

Proof: In the Appendix. �

The key implication of Lemma 2 is that the lower bound is not absorbing. Instead, an
agent hitting the lower bound suffers a very low per-period welfare but is promised continuation
welfare above the lower bound.12

We now link the results above with the stochastic process for the multiplier η(st) associated
with the promise keeping constraint (3). The multiplier effectively governs the process for
continuation welfare. An upper bound η∗ can be derived from Proposition 4, and characterizes
an absorbing state. There is a lower bound as well that is transient as shown in Lemma 2.

The key equation is the characterization of the one-step ahead expectation that is given by

Et
{
η
(
st+1

)}
= η

(
st
)

+ pµ∗
(
st
)
.

As long as p > 0 and some incentive-compatibility constraint is binding, the multiplier η(st)
follows a submartingale process with a strictly positive drift. The process is bounded above and
below as established by proposition 3 and Lemma 2. There is an absorbing state, as established
by Corollary 1. These conditions allow us to apply the submartingale convergence theorem
to show that the multiplier η(st) converges to the upper bound, as does continuation welfare.
Hence, in the long run, the economy features full insurance and no labor distortion.

Distortions introduced by private information are thus temporary in the sense that they
vanish in the long run for all agents but a subset of measure zero. We saw in Proposition 3
that the economy can “outgrow” the incentive-compatibility constraints by promising higher
continuation welfare. However, to sustain the welfare promises, it is necessary to accumulate
aggregate capital, and this transition is costly.

12Our results closely mirror those in Atkeson and Lucas (1993).
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Why then does the economy converge to full insurance independent of the initial conditions,
the discount rate, and the state-verification probability? The key insight is that, under state
verification, back-loading welfare can help to ease incentives. If we need to provide incentives to
a high skill agent at date t to reveal her type, we can increase consumption allocated to high
types at date t; or we can increase the promised continuation welfare from date t + 1 onward.
The latter is more efficient because it also improves the incentives at date t + 1 by increasing
the amount of welfare forgone in case an agent being caught misreporting. Yet, there are other
forces working in the opposite direction. First, concavity favors smooth consumption paths.
Second, the rationale for front-loading welfare in the standard private information economies
remains: Ro deliver higher promised welfare at date t + 1, the planner must prescribe a larger
consumption spread between skill levels to ensure that the high skill type truthfully reveals the
agent’s type.

As promised utility becomes larger, the punishment channel becomes more effective, and
the private information channel becomes weaker because the dispersion of consumption will be
lower. Hence, for very high promised utilities, there is essentially no trade-off.

Hence, in the long run, the benefits of back-loading welfare eventually dominate. The key
feature of an infinite horizon economy is that every agent receives a series of high skill realizations
of arbitrary (but finite) length with probability one. During this “streak,” promised welfare is
naturally increasing, and eventually the state verification effect dominates.

The result in Theorem 2 stands in stark contrast with the results in dynamic Mirrleesian
economies without state verification. In these economies, aggregate consumption is decreasing.
No agent ever achieves full insurance, and labor distortions are always present. It may seem
puzzling that even an arbitrarily small state verification probability can lead to such different re-
sults. However, these are long-run properties: The welfare improvement at date t = 0 associated
with a small state-verification probability may be small.

8 Extensions

This section discusses three possible extensions to our model as well as their implications for
the results. Throughout the paper, we assumed a production function with constant marginal
returns to capital. The first subsection discusses how the implementation of a production func-
tion with decreasing marginal returns to capital would alter our predictions. We then turn to
endogenizing the punishment level. In the last subsection, we discuss an endogenous choice of
state verification.
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8.1 Decreasing marginal returns to capital

We characterized the constrained-efficient allocations for a linear production function. However,
our results concerning the consumption and output distribution, as well as the finite horizon
properties, apply to more general constant returns to scale production functions.

The assumption of constant marginal returns to capital plays a key role in the long-run
results. Theorem 2 establishes convergence to full insurance in the long run. For full insurance to
be incentive compatible, we need the level of consumption to be high enough for the punishment
to be effective. Thus, in the long run, the economy must be able to accumulate enough capital to
sustain a large level of aggregate consumption. In economies with decreasing marginal returns
to capital, this may not be feasible.

Consider a more general constant returns to scale production function and let f(Kt) be
output per effective unit of labor net of capital depreciation. Decreasing marginal returns
to capital imply that f is a strictly concave function. Steady-state aggregate consumption is
maximized at capital level Kt = K̄ with f ′(K̄) = 1. Thus, aggregate consumption is bounded
above. We conjecture that, if K̄ is high enough, Theorem 2 would still apply.

It is harder to venture a conjecture for the long-run properties in the case in which the
upper bound K̄ is not high enough to sustain full insurance. In particular, we did not find
any guarantee that there exists a stationary consumption distribution. No agent will enjoy full
insurance for all continuing dates with probability one. However, there may be a subset of agents
enjoying full or almost full insurance at any given date. This suggests that, if there exists a
stationary distribution, it will be skewed to the left, with low consumption households facing
higher consumption volatility than households with high average consumption.

8.2 Endogenous punishment level

In our setup, incentives improve with stronger punishments. We took the punishment level as
exogenous to focus on the implications of random state verification. Here we briefly discuss
possible theories on potential levels of punishment.

One possibility is that an agent caught misreporting his or her type is prevented from all
trading and savings, as in the limited commitment models of Kehoe and Levine (1993) and
Kocherlakota (1996). The punishment level for an agent with type st is then given by

Υ(st) = max
y(sj):sj∈Sj |st

∞∑
j=t

∑
θj∈Θ

βj−tπ (θj |θt)
(
u(y(sj))− v(y(sj)/θj)

)
.

The punishment level given by autarky does not depend on the full history: Only the present
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realization of skill level θt matters. Importantly, none of the allocations prescribed on the
equilibrium path change the value of the punishment. In this case, the first-order conditions are
unchanged, and all of our results remain valid.

Essential to our results concerning the intertemporal wedge is the ability of the planner
to strengthen the effective punishment by increasing continuation welfare. If the punishment
level scales up with continuation welfare, our results may change. For example, if we prescribe
autarky as punishment but we allow the agent to hold onto his or her savings, then the effective
punishment may decrease with savings, reversing our arguments. Similarly, if the punishment is
modeled as fixed drop in utility, the effective punishment becomes constant. That said, we are
confident that a satisfactory theory of punishment would allow for the effective punishment to
increase with continuation welfare.

8.3 Toward a theory of optimal monitoring

Perhaps the most unsatisfactory aspect of our analysis is that state verification is a random
event, out of the planner’s control. We would like to allow the planner to specify a different
state verification probability for agents with different types or reports, and perhaps at different
dates.

We can extend the model to allow for type-specific or report-specific state verification prob-
abilities. Doing so can bring the random state verification technology closer to an optimal
monitoring strategy. For example, it is clear that there is no point in verifying the state of an
agent reporting to have a high skill because no agent with low skill will find it beneficial to mis-
report a higher skill level. Thus, we can set this particular state verification probability to zero.
Our results clearly depend only on the probability showing up in binding incentive-compatibility
constraints; as long as these are positive, we expect our analysis to be valid.

However, in a fully optimal monitoring schedule, state verification probabilities would be
history dependent. The planner is likely to focus its state verification efforts where incentives
are the worst. There will not be much use to heavily monitor agents with a high continuation
welfare, i.e., with a large effective punishment. This form of history dependence, however,
complicates the analysis greatly.

9 Conclusions

We set out to take a first step toward a more realistic information framework for dynamic
Mirrleesian economies. From observing the implementation of social insurance schemes and the
prevention of fraud, we introduced an exogenous state verification technology. The skill level
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of any agent becomes public information with some given probability. The planner can specify
allocations as a function of the reported skill level, whether the skill level is observable and, if
so, the actual skill level.

Our results establish that state verification can radically shape the constrained efficient
allocation. In particular in the infinite horizon economy with constant returns to capital, we
discover very strong predictions. We find that even an arbitrarily small probability of state
verification implies that the economy converges to full insurance, and all labor distortions vanish
in the long run. In finite horizon economies we show that different agents at different times will
generally have different incentives to save, and a decentralization would require that savings are
sometimes taxed and sometimes subsidized.
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A Proofs for Section 4

We repeat the optimal control problem of the main text. We maximize

sup
{x,K,z}

W0(x)

subject to the incentive-compatibility and promise keeping constraints (4) and (3) at all nodes
st ∈ St, and the resource constraint (2) at all dates t = 0, 1, ..., T , as well as nonnegativity
constraints and the lower bound constraint on continuation welfare (1).

By Assumption 1, h
(
x(st); θt

)
is twice differentiable in <2

+ for all θt ∈ Θ. We can thus
characterize the constrained-efficient allocation with the Lagrangian

L (x,K, z;λ, η, µ) = W0(x)−
T∑
t=0

βtλt {Ct +Kt+1 − F (Kt, Yt)}

−
T−1∑
t=0

∑
st∈St

βtπ(st)η(st)

z (st)− ∑
st+1∈St+1

π
(
st+1|st

) {
h
(
x
(
st+1

)
; θt+1

)
+ βz

(
st+1

)}
−

T∑
t=0

∑
st∈St

βtπ(st)ζ(st)
{(

1− βT+1−t)Υ− h
(
x(st); θt

)
− βz(st)

}
−

T∑
t=0

∑
st−1∈St−1

∑
θt,θ′∈Θ

βtπ(st−1, θt)µ
(
st−1, θt; θ′

)
 ∑
at∈{0,1}

π(at)
{
h
(
x
(
st
)

; θt
)

+ βz
(
st
)}
− p

(
1− βT+1−t)Υ− (1− p)

{
h
(
x
(
ŝt
)

; θ′
)

+ βz
(
ŝt
)} .

We have omitted from the Lagrangian the nonnegativity constraints on consumption and
output, as well as the terminal condition on z(sT ) for finite horizon economies.

Next, we state the necessary first-order conditions. For nodes st when the state remain
private information, at = 0, we have:

u′
(
st
)(

1 + η
(
st−1

)
+
∑
θ′∈Θ

{
µ
(
st−1, θt; θ′

)
− π (θ′)
π (θt)

µ
(
st−1, θ′; θt

)})
≤ λt, (9)

hy
(
st; θt

)(
1 + η

(
st−1

)
+
∑
θ′∈Θ

{
µ
(
st−1, θt; θ′

)
− π (θ′)
π (θt)

µ
(
st−1, θ′; θt

) hy (st; θ′)
hy (st; θt)

})
≥ λt, (10)

η
(
st−1

)
+
∑
θ′∈Θ

{
µ
(
st−1, θt; θ′

)
− π (θ′)
π (θt)

µ
(
st−1, θ′; θt

)}
≤ η

(
st
)
. (11)
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For nodes when the skill level is observable, at = 1, we have:

u′
(
st
)(

1 + η
(
st−1

)
+
∑
θ′∈Θ

µ
(
st−1, θt; θ′

))
≤ λt, (12)

hy
(
st; θt

)(
1 + η

(
st−1

)
+
∑
θ′∈Θ

µ
(
st−1, θt; θ′

))
≥ λt, (13)

η
(
st−1

)
+
∑
θ′∈Θ

µ
(
st−1, θt; θ′

)
≤ η

(
st
)
. (14)

In addition f.o.n.c. on aggregate capital is:

λt = λt+1βR, (15)

for all dates t < T . Given our assumption that βR = 1, we have that λt = λt+1 for all dates
t < T .

The next Proposition guarantees that the constrained-efficient allocation is interior at all
nodes.

Proposition 6

Let {x,K} be a constrained-efficient allocation. Then for all st ∈ St, t = 0, 1, . . . , T

c(st) ≥ cb > 0

y(st) > 0

Proof: By (1) any admissible allocation must satisfy

u(c(st)) ≥ u(c(st))− v
(
y(st)
θt

)
≥ υ.

Assumptions 1 and 3 guarantee there exists cb > 0 that achieves this lower bound, and thus
for all admissible allocations c(st) ≥ cb > 0. Next we show y(st) > 0 if {x,K} is a constrained
efficient allocation. Assume y(st) = 0 for any node. By Assumption 1, v′(0) = 0. The necessary
first order conditions associated with the Lagrangian imply that 0 ≥ λtF yt , and thus we reach a
contradiction. �

Proof: [Proof of Proposition 1] Our preferences satisfy the single-crossing condition and
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thus µ
(
st−1, θ′; θt

)
= 0 for θ′ < θt. Using the strict convexity of h,

µ
(
st−1, θ′; θt

)
hy
(
st; θ′

)
≤ µ

(
st−1, θ′; θt

)
hy
(
st; θt

)
.

Combining (9)-(10) and using the inequality above we obtain the result. �

Proof: [Proof of Proposition 2] By Proposition 6 the system of f.o.n.c. (9)-(10) and (12)-(13)
holds with strict equality. Comparing (9) and (12), it is clear that

u′
(
st−1, θt, 0

)
≥ u′

(
st−1, θt, 1

)
with strict equality iff µ

(
st−1, θ′; θt

)
= 0 for all θ′ ∈ Θ. Since u is strictly concave, the result on

consumption follows. A similar argument applies for output, now comparing (10) and (13). To
show that hy

(
st; θt

)
= u′

(
st
)
F yt in case at = 1 combine (12)-(13). �

B Proofs for Section 5

Proof: [Proof of Proposition 3]

The proof proceeds as follows. First, we construct a candidate threshold z∗. Then we show
that, for any promised utility z(st−1) ≥ z∗, there exists an allocation attaining the promised
welfare z(st−1) that satisfies all the incentive-compatibility constraints and features full insurance
and no labor distortions. Finally, we note that the proposed allocation solves an unconstrained
optimization problem over continuation nodes and thus must be part of the constrained-efficient
allocation.

For any ce > 0, let the system of functions {ye (ce; θ) : θ ∈ Θ} solve

v′
(
ye (ce; θ)

θ

)
= uc (ce) θ.

By Assumption 1 output ye (ce; θ) is strictly decreasing with ce. Let

he
(
ce; θ, θ′

)
= u (ce)− v

(
ye (ce; θ′)

θ

)
.

Clearly he (ce; θ, θ) is increasing in ce as well for any θ. Consider now the static payoff of
misreporting θ′ when the true type is θ, he (ce; θ, θ′)−he (ce; θ, θ). Since consumption is constant,
the payoff is bounded above,

he
(
ce; θ, θ′

)
− he (ce; θ, θ) ≤ v

(
ye (ce; θ)

θ

)
.
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The upper bound v
(
ye(ce;θ)

θ

)
is decreasing in ce. Hence, there exists c∗ such that for all ce ≥ c∗,

phe (ce; θ, θ) ≥ pΥ + (1− p)
(
he
(
ce; θ, θ′

)
− he (ce; θ, θ)

)
(16)

for all θ, θ′. The candidate threshold is

z∗ =
1

1− β
∑
θ∈Θ

π(θ)he (c∗; θ, θ) .

For any z(st−1) there exists a consumption level ce such that

z(st−1) =
1− βT+1−t

1− β
∑
θ∈Θ

π(θ)he (ce; θ, θ) ,

since he is increasing in ce. Hence, if z(st−1) ≥ z∗, then the solution above satisfies ce ≥ c∗.
Consider an allocation over the continuation nodes

{
sj ∈ Sj : st ∈ st−1, j = t, t+ 1, . . . , T

}
with

c(st) = ce and output levels as given by ye. Note that the allocation prescribes the same
continuation welfare for all types at a given date, d = t, t+ 1, . . . , T ,

zed =
1− βT+1−d

1− β
∑
θ∈Θ

π(θ)he (ce; θ, θ) .

Now we show that such an allocation satisfies the incentive-compatibility constraints over all
continuation nodes. Re-arrange terms in (16) for any pair θ, θ′ and date d = t, t + 1, . . . , T to
obtain

he (ce; θ, θ) ≥ pΥ + (1− p)he
(
ce; θ, θ′

)
≥ p

(
1− βT+1−d

)
Υ + (1− p)he

(
ce; θ, θ′

)
.

Adding βzed+1 to both sides results in the incentive-compatibility constraint for pair θ, θ′ and
date d.

Finally, note that the proposed allocation over continuation nodes is the solution to the
unconstrained problem:

min
{ĉ,ŷ}

T∑
j=t

∑
sj∈Sj |st−1

R−(j−t)π
(
sj
) {
ĉ
(
sj
)
− ŷ

(
sj
)}
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subject to
T∑
j=t

∑
sj∈Sj |st−1

β(j−t)π
(
sj
)
h
(
ĉ
(
sj
)
, ŷ
(
sj
)

; θj
)
≥ z(st−1)

and nonnegativity constraints. Thus, the constrained-efficient allocation must be equal to the
proposed allocation over the continuation nodes

�

Proof: [Proof of Proposition 4] For any ce > 0, let the system of functions {ye (ce; θ) : θ ∈ Θ}
solve

v′
(
ye (ce; θ)

θ

)
= uc (ce) θ,

and let
he (ce; θ) = u (ce)− v

(
ye (ce; θ)

θ

)
.

Clearly he (ce; θ) is strictly increasing in ce for all θ. Pick c̄ such that

βπ(θ̄)he
(
c̄; θ̄
)

= z∗ − (1 + β)Υ, (17)

where z∗ is the threshold value given by Proposition 3.

Let {x,K} be a constrained-efficient allocation and assume that there exists st such that
c(st) > c̄. We take θt = θ̄ without loss of generality as c(st−1, θ̄) ≥ c(st) by the single-crossing
condition. If t ≤ 1, then (17) implies that W0(x) ≥ z∗ by construction. Proposition 3 then
concludes that {x,K} is efficient. If t > 1, then (17) implies that z(st−2) ≥ z∗ by construction.
Proposition 3 then implies that c(st−1) = c(st) ≥ c̄. By induction, we conclude that {x,K} is
efficient. Thus if {x,K} is not efficient then we must have c(st) ≤ c̄. �

Propositions 6 and 4, together with the characterization for consumption

u′
(
st
) (

1 + η
(
st
))

= λt, (18)

imply that the Lagrangian η(st) is bounded above and below. We state this result as a simple
Lemma that comes in use in Theorems 1 and 2.

Lemma 3

Let p > 0 and {x,K} be a constrained-efficient allocation and {η(st) : st ∈ St, t ≥ 0} the

associated Lagrangian multiplier on the promise keeping constraint (3). Then

−1 < B0 ≤ η(st) ≤ B1 <∞

for all st ∈ St, t ≥ 0.
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Proof: The lower bound follows from Proposition 6. Since c(st) ≥ cb > 0, f.o.n.c. (18) implies

η(st) =
λ

u′(c(st))
− 1 ≥ λ

u′(cb))
− 1 > −1.

For the upper bound, we distinguish two cases. If {x,K} is efficient, then consumption is
constant at all nodes, and by (18) it follows that η(st) is also constant and finite. If {x,K} is
not efficient, then c(st) ≤ c̄ <∞ by Proposition 4. Thus by (18)

η(st) =
λ

u′(c(st))
− 1 ≤ λ

u′(c̄))
<∞.

�

C Proofs for Section 6

Proof: [Proof of Proposition 5] We lay out a constructive proof for the value of p̂. For a given
node st, there exists the lowest level for the probability of state verification p∗ ∈ (0, 1] such that
the first-best allocation can be implemented from then on for all values p ∈ [p∗, 1]. At the cut-off
value p∗, all Lagrangian multipliers on the incentive-compatibility conditions µ(st, θ, θ′) equal
zero for all θ and θ′. This result follows directly from the fact that at p∗, the maximization
problem of the social planner with and without incentive-compatibility constraints leads to the
same outcome.

We write the intertemporal wedge as an implicit tax (i.e. wedge) in the intertemporal Euler
equation

τ = 1−
1 + pµ∗(st)

1+η(st)

E[u′(st+1)]E[ 1
u′(st+1)

]
= 1− u′(st)

E[u′(st+1)]
= 1−

λt
1+η(st)

E[u′(st+1)]

and compute the derivative with respect to the Lagrangian multiplier µ(st, θ, θ′) to get

∂τ

∂µ(st, θ, θ′)
=

λt
1+η(st)

E[u′(st+1)]2
· ∂E[u′(st+1)]
∂µ(st, θ, θ′)

.

As we see from the first-order conditions directly, expected marginal utility is given by

E[u′(st+1)] = λt+1

[
p
∑
θ

π(θ)

1 + η(st) +
∑
θ′ µ(st, θ, θ′)

+ (1− p)
∑
θ

π(θ)

1 + η(st) +
∑
θ′

{
µ(st, θ, θ′)− π(θ′)

π(θ)
µ(st, θ′, θ)

}]
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We can compute the derivative as

∂E[u′(st+1)]

∂µ(st, θ, θ′)
= λt+1

[
− p

π(θ)

(1 + η(st) +
∑
θ′ µ(st, θ, θ′))2

+ (1− p)
[
−

π(θ)(
1 + η(st) +

∑
θ′

{
µ(st, θ, θ′)− π(θ′)

π(θ)
µ(st, θ′, θ)

})2

+
π(θ′) π(θ)

π(θ′)(
1 + η(st) +

∑
θ

{
µ(st, θ′, θ)− π(θ)

π(θ′)µ(st, θ, θ′)
})2

]]

Hence, expected marginal utility decreases with higher Lagrangian multipliers µ(st, θ, θ′)

∂E[u′(st+1)]
∂µ(st, θ, θ′)

∣∣∣∣∣
~µ=0

= −λt+1p
π(θ)

(1 + η(st))2
.

Furthermore, we need to make sure that the effect of the subsidy does not vanish with higher
η. Therefore, we compute

∂τ

∂η(st)
=

λt
(1+η(st))2

(E[u′(st+1)])2

(
E[u′(st+1)] + (1 + η(st))

∂E[u′(st+1)]
∂η(st)

)
where

∂E[u′(st+1)]

∂η(st)
= λt+1

[
− p

∑
θ

π(θ)

(1 + η(st) +
∑
θ′ µ(st, θ, θ′))2

− (1− p)
∑
θ

π(θ)

(1 + η(st) +
∑
θ′

{
µ(st, θ, θ′)− π(θ′)

π(θ)
µ(st, θ′, θ)

}
)2

]

Evaluating this expression at ~µ = 0, we get

∂E[u′(st+1)]

∂η(st)

∣∣∣∣∣
~µ=0

=

λt
(1+η(st))2

E[u′(st+1)]2

[
E[u′(st+1)]−

λt+1

1 + η(st)

]
= 0

The intertemporal wedge turns negative once µ(st, θ, θ′) becomes slightly positive:

∂τ

∂µ (st, θ, θ′)
≤ −p λt

E[u′(st+1)]
π(θ)

(1 +B1)2
< 0

where B1 denotes the upper bound of the Lagrangian multiplier given by Lemma 3.

We can now construct a probability at which the intertemporal wedge becomes negative.
Since p∗ is the lowest level of probabilities that implements the first-best allocation, at least
some multiplier µ(st, θ, θ′) must be strictly positive for a probability of p̂ = p∗ − ε. From the
above reasoning, it then follows that for this ε the intertemporal wedge τ(p̂) becomes negative.
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Proof: [Proof of Theorem 1] The proof has two parts. First, we show that if

u′
(
st
)
< Et

{
u′
(
st+1

)}
at some node st, then for some pair θ, θ′ we have µ

(
st, θ, θ′

)
≥ µ̄ > 0. For the second part we

proceed by contradiction: If there does not exist a finite T such that u′
(
st
)
≥ Et

{
u′
(
st+1

)}
for

some node, then η(st) would violate the upper bound imposed by Lemma 3.

Let the intertemporal wedge be given by

τ(st) = 1− u′(st)
E[u′(st+1)]

.

Using the f.o.n.c. we have

τ(st) = 1−
1 + pµ∗(st)

1+η(st)

E[u′(st+1)]E[ 1
u′(st+1)

]

= 1−
λt

1+η(st)

E[u′(st+1)]
.

We differentiate the wedge with respect to some µ
(
st, θ, θ′

)
:

∂τ

∂µ (st, θ, θ′)
=

λt
1+η(st)

βFKt+1(E[u′(st+1)])2
· ∂E[u′(st+1)]
∂µ (st, θ, θ′)

Using the f.o.n.c, we write the expected marginal utility as

E[u′(st+1)]
λt+1

= p
∑
θ

π(θ)
1 + η(st) +

∑
θ′ µ(st, θ, θ′)

+ (1− p)
∑
θ

π(θ)

1 + η(st) +
∑

θ′

{
µ(st, θ, θ′)− π(θ′)

π(θ) µ(st, θ′, θ)
} .
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For any node st with t < T , and pair of types θi, θj , we can compute the derivative as

∂E[u′(st+1)]
∂µ(st, θi, θj)

= −p λt+1π(θi)
(1 + η(st) +

∑
θ′ µ(st, θi, θ′))2

− (1− p)λt+1π(θi)

(1 + η(st) +
∑

θ′

{
µ(st, θi, θ′)− π(θ′)

π(θi)
µ(st, θ′, θi)

}
)2

+
(1− p)λt+1π(θi)

(1 + η(st) +
∑

θ′

{
µ(st, θj , θ′)− π(θ′)

π(θj)
µ(st, θ′, θj)

}
)2
.

We evaluate ∂E[u′(st+1)]
∂µ(st,θi,θj)

at ~µ = 0 to obtain

∂E[u′(st+1)]
∂µ(st, θi, θj)

∣∣∣∣∣
~µ=0

= −p λt+1π(θi)
(1 + η(st))2

.

By Lemma 3 multiplier η(st) is bounded above by Bη <∞. Hence

∂E[u′(st+1)]
∂µ(st, θi, θj)

∣∣∣∣∣
~µ=0

≤ −p λπ(θi)
(1 +Bη)2

< 0.

It follows that the intertemporal wedge is negative τ(st) < 0 if for all pairs θi, θj we have
µ(st, θi, θj) < µ̄, where µ̄ is strictly positive and constant across nodes and valid for all horizons
T .

For a given horizon T and constrained-efficient allocation, assume that at all nodes for dates
t < T we have τ(st) > 0. We can then construct a type ŝT by selecting such pair and at = 1 for
all dates, that is, for any node ŝt select ŝt+1 =

{
ŝt, θ, 1

}
where θ is such that µ(st, θ, θ′) ≥ µ̄ for

some θ′. If such θ does not exist, then τ(st) ≤ 0 contradicting the premise.

By f.o.n.c. 14 we have that
η(ŝT ) ≥ T µ̄. (19)

If there does not exist a finite T such that τ(st) ≤ 0 for some node, then (19) implies that there
exists a finite T ∗ with T ∗µ̄ > Bη, contradicting Lemma 3.

�

D Proofs for Section 7

Proof: [Proof of Lemma 2] Let θ̄ = max{θ ∈ Θ} and x a constrained-efficient allocation with z
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the associated plan of continuation welfare. We show that for all nodes st,

h
(
x(st); θ̄

)
+ βz(st) > Υ. (20)

As previously shown, allocations for the top skill agent do not depend on the realization of at,
and we can write the system of incentive-compatibility constraints for such agent as

h
(
x(st); θ̄

)
+ βz(st) ≥ pΥ + (1− p)

(
h
(
x(ŝt); θ̄

)
+ βz(ŝt)

)
for any θ′ 6= θ̄, ŝt = {st−1, 0, θ′}. By Proposition 6, y(ŝt) > 0 and thus

h
(
x(ŝt); θ̄

)
> h

(
x(ŝt); θ′

)
.

The lower bound on welfare (1) implies

h
(
x(ŝt); θ′

)
+ βz(ŝt) ≥ Υ,

and thus (20) follows. Since π
(
θt+1 = θ̄|st

)
> 0 it is immediate that z(st) > Υ. �

Proof: [Proof of Theorem 2] Define

η̃t ≡ E
{
η
(
st
)}

=
∑
st∈St

π
(
st
)
η
(
st
)
.

By the law of iterated expectations and the conditional expectation of ηt+1, we have that

η̃t+1 = η̃t + pE
{
µ∗(st)

}
(21)

Since µ∗(st) ≥ 0 the sequence {η̃t} is increasing by (21). Because the sequence is bounded
above, it necessarily has to converge. Thus µ∗(st) converges in mean to 0,

lim
t→∞

∑
st∈St

π(st)µ∗(st) = 0.

Since all terms are positive,
lim
t→∞

∑
st∈St

π(st)µ(st, θ; θ′) = 0

for all θ, θ′ ∈ Θ. Convergence-in-mean implies convergence-in-probability, so for any ε > 0, the
probability Pr

(
µ(st, θ; θ′) > ε

)
converges to 0 for all θ, θ′ ∈ Θ.

Next, we show that if |c(st) − c(st+1)| ≥ δ for some δ > 0 then µ(st, θ; θ′) ≥ εδ > 0 for
some pair {θ, θ′}. Since we have shown the Lagrangian multiplier on promised utility ηt to be
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bounded, c(st) is bounded above and below, and κ = inf{|u′′(st)/(u′(st))2| : st ∈ St, t ≥ 0} is
finite. Using a Taylor expansion we have that∣∣∣∣ λ

u′(st)
− λ

u′(st+1)

∣∣∣∣ ≥ κ|c(st)− c(st+1)|

≥ κδ = δ′.

If at+1 = 0 then (9) at st+1 combined with (18) at st imply∣∣∣∣∣∑
θ′∈Θ

{
µ
(
st, θt+1; θ′

)
− π(θ′)
π(θt+1)

µ
(
st, θ′; θt+1

)}∣∣∣∣∣ ≥ δ
and thus ∑

θ′∈Θ

{∣∣µ (st, θt+1; θ′
)∣∣+

1
π(θt+1)

∣∣µ (st, θ′; θt+1

)∣∣} ≥ δ′. (22)

Set
εδ =

δ′min {π(θ) : θ ∈ Θ}
2NΘ

where NΘ is the cardinality of set Θ. By construction, if µ(st, θ; θ′) < εδ for all {θ, θ′} then we
contradict (22).

If at+1 = 1 then (12) at st+1 combined with (18) at st imply∣∣∣∣∣∑
θ′∈Θ

µ
(
st, θt+1; θ′

)∣∣∣∣∣ ≥ δ′,
and thus µ(st, θ; θ′) > εδ for some {θ, θ′}.

Thus for any δ > 0

lim
t→∞

Pr
(
|c(st)− c(st+1)| ≥ δ

)
≤ lim

t→∞
Pr
(
µ(st, θ; θ′) ≥ εδ

)
= 0.

Next, we show that there are no labor distortions in the limit following very similar steps.
If
∣∣u′(st)− hy(st; θt)∣∣ ≥ δ then by manipulation of the f.o.n.c. (10) we have that

∣∣u′(st)− hy(st; θt)∣∣ =

∑
θ′∈Θ

π(θ′)
π(θt)

µ
(
st−1, θ′; θt

)
hy
(
st; θ′

)
1 + η(st)

.

For all binding IC constraints, hy
(
st; θ′

)
≤ hy

(
st; θt

)
, and with the first-order conditions for the

top skill agent and 2, hy
(
st; θt

)
≤ u′(st). Furthermore, Lemma 3 implies u′(st) ≤ κ < ∞ and
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−1 < B0 ≤ η(st), so

∣∣u′(st)− hy(st; θt)∣∣ ≤ 1
(1 +B0)π(θt)

∑
θ′∈Θ

µ
(
st−1, θ′; θt

)
κ.

By setting εδ = δ(1 +B0) min{π(θ) : θ ∈ Θ}/ (κNΘ) we can show that if
∣∣u′(st)− hy(st; θt)∣∣ ≥ δ

then µ(st, θ; θ′) > εδ for some {θ, θ′} and εδ > 0. Hence

lim
t→∞

Pr
(∣∣u′(st)− hy(st; θt)∣∣ ≥ δ) = 0

for any δ > 0.

�
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