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Abstract

When contracts are unobserved (and nonexclusive), agents can promise the same

asset to multiple counterparties and subsequently default. I show that a central mecha-

nism can extract all relevant information about contracts that agents enter by inducing

them to report one another. The mechanism sets position limits and reveals the names

of agents who hit the limits according to (voluntary) reports from their counterparties.

This holds even if sending reports is costly and agents can collude. In some cases, an

agent’s position limit must be nonbinding in equilibrium. The mechanism has some

features of a clearinghouse.

JEL Classification: D02, D82, D86, G20, G28

1. Introduction

Consider a bank that buys a credit default swap from AIG. The bank knows that AIG

has enough capital to honor the swap agreement if the bank is its only client. However,

AIG might sell credit default swaps to many banks and thus create a liability that it cannot

honor should it need to make a payment. A central mechanism might help by monitoring

AIG’s and other agents’ positions so that no agent enters into too many liabilities relative to

his capital. Indeed, the recent financial crisis has led banks and regulators to work toward

the establishment of a clearinghouse for credit default swaps.

If a central mechanism could observe all the contracts that agents enter, it could ensure

that agents don’t enter into too many contracts by setting position limits. However, observ-

ing every contract that an agent can enter may be too costly, as agents may attempt to hide
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exposition of this paper. An earlier draft based on the first chapter of my dissertation was circulated

as “Nonexclusive contracts, collateralized trade, and a theory of an exchange.” I am grateful to Michael

Fishman (main advisor), Philip Bond, Arvind Krishnamurthy, Adriano Rampini, and Asher Wolinsky for

helpful discussions and comments. I also thank Mitchell Berlin, Ronel Elul, Robert Hunt, Cyril Monnet,

Leonard Nakamura, Christine Parlour, Brooke Stanley, and John Weinberg, as well as seminar participants

at Northwestern University, the Philadelphia Fed, and numerous conferences. The views expressed here are

those of the author and do not necessarily reflect those of the Federal Reserve Bank of Philadelphia or the

Federal Reserve System. This paper is available free of charge at http://www.philadelphiafed.org/research-

and-data/publications/working-papers/.
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their transactions or make them too complicated to understand. It turns out that it might

be enough that the central mechanism observes only the contracts agents choose to report.

In particular, I show that by allowing agents to report the identities of their counterparties

and revealing the names of those who hit prespecified position limits, a central mechanism

can achieve the same outcome that would be achieved if agents could not enter into secret

contracts. This is true even if sending a report to the mechanism involves some small cost

and even if agents can collude. I also show that in some cases it is possible to prevent

collusion only if the mechanism allows each agent to enter more contracts than he actually

enters in equilibrium; that is, the position limit must be nonbinding in equilibrium.

The central mechanism can extract all relevant information about the contracts that

agents enter by inducing them to report one another. In particular, the optimal position

limit is such that if an agent enters a contract and reports it to the mechanism, his counter-

party has the incentive to pay what he promised, but if an agent enters a contract without

reporting it, his counterparty is induced to plan a strategic default in which he enters as

many contracts as he can with the intention to default on all of them. In equilibrium, every

agent can enter contracts until he hits the position limit, but the position limit is not suf-

ficiently high to make default profitable; thus, every agent ends up with only one contract,

which is enough to achieve an efficient allocation. However, if an agent enters a contract

without reporting it, he allows his counterparty to enter more contracts than the position

limit, and this increases the counterparty’s gain from a strategic default to the point at

which default is profitable.

To induce reporting, the position limit cannot be too high, nor can it be too low. If

the position limit is too high, the counterparty will always default whether or not the agent

reports him; but then the two agents will not enter a contract to begin with. If the position

limit is too low, the counterparty will never default; but then the two agents will not report

to save the reporting fee. In some cases, “not too low” means that the position limit must

be higher than the number of contracts an agent enters in equilibrium.

To implement a position limit that is nonbinding in equilibrium, the mechanism must

not reveal the exact number of contracts that an agent has entered. It should only reveal

whether an agent has reached the position limit. The idea that the mechanism should not

reveal too much information is well known in multistage games with private information

and hidden actions: Too much information makes it easier for agents to manipulate the

mechanism.1 In my paper, an agent who learns that his counterparty has already entered

a contract believes that his counterparty plans a strategic default. Hence, the agent cannot

precommit to enter a contract with such a counterparty. But then the effective position

limit is only one.

If agents cannot send reports to a central mechanism, they must put up cash as collateral.

Collateral acts like a position limit because an agent may not have enough cash to enter

the number of contracts needed to make default profitable. However, using collateral has

an opportunity cost, as agents forgo investing in their positive net present value (NPV)

projects. Since agents can divert money from investment to consumption, the optimal

mechanism with reports (i.e., the position limit mechanism) may also require collateral, but

less than the amount needed when agents cannot send reports.

Empirical predictions. According to the model, the gain from allowing agents to send

reports to a central mechanism increases when the fixed cost per trade falls and/or the

1See Myerson (1986), Bester and Strausz (2000, 2001, 2007), and the discussion in Subsection 4.4.
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probability of finding a trading counterparty rises — both are features of a more liquid

market.2 The model also provides closed-form solutions and some comparative statics for

the optimal amount of collateral (with and without reporting), the amount of investment,

and the optimal position limits.

While this paper does not attempt to model any particular intermediary, the optimal

mechanism has some features of a clearinghouse. The clearinghouse may be part of a fu-

tures exchange or a stand-alone institution; it can clear exchange-traded contracts as well as

over-the-counter products.3 Clearinghouses deploy a number of safeguards to protect their

members and customers against the consequences of default by a clearinghouse participant.

In addition to requiring collateral, the clearinghouse monitors and controls the positions of

its members (at least daily) and the financial statements, internal controls, and other indi-

cators of financial strength (periodically). Some clearinghouses (e.g., in Sydney and Hong

Kong) also set capital-based position limits.4 These safeguards, which reduce the amount

of collateral that clearinghouse members must post, are more effective when clearinghouse

members do not enter contracts secretly.5 In practice, the incentive to default may depend

on activities in more than one market. Indeed, clearinghouses have recently moved toward

more central clearing.6

Bernanke (1990) distinguishes between two roles of a clearinghouse: reducing the trans-

actions cost of consummating agreed-upon trades (analogous to a bank that clears checks),

and standardizing contracts by setting terms and format and by guaranteeing performance

to both sides of trade (analogous to an insurance company).7 The optimal mechanism in

my paper has a more minimal role, but the results remain even if we add other roles, such as

guaranteeing performance. In addition, the model does not rule out multiple intermediaries.

Although this is not a model of regulation, in one interpretation the mechanism can be

interpreted as a regulator (e.g., a central bank). My theory suggests that, in some cases, to

induce banks to report all their transactions voluntarily, the regulator may need to commit

to keep these reports private.8 The theory also illustrates a connection between regulation

and private-sector incentives to discipline. The regulator, who sets position limits, relies

on firms in the private sector to discipline one another; that is, each firm makes sure that

its trading partner reports the trade to the regulator. The theory implies that regulations

2This seems consistent with the observation that the London Clearing House started clearing over-the-

counter interest rate swaps only after they became a standardized and liquid product. Central clearing for

credit default swaps also became relevant after a tremendous growth in market size (and the bad consequences

during the recent financial crisis).
3For example, the London Clearing House clears over-the-counter interest rate swaps without being

involved in the matching and bargaining processes.
4Capital-based position limits, whose purpose is to make sure that members maintain positions within

their financial capability, are different from speculative position limits. The latter are set by exchanges and

regulators to prevent speculators from manipulating spot prices.
5Netting may also reduce collateral. However, some clearinghouses (e.g., the Hong Kong Futures Ex-

change Clearing Corporation) calculate margin on a gross basis rather than a net basis. Also, while marking

to market reduces the risk of default, when a counterparty’s position is closed, there is a risk of not finding

a new counterparty and remaining unhedged.
6For example, in 2004, the Chicago Mercantile Exchange (CME) fully integrated the clearing of all trades

of the Chicago Board of Trade in addition to those of the CME. The CME has also developed cross-margin

arrangements with other clearinghouses so that margins can be calculated based on the total position.
7See also Telser and Higinbotham (1977) and Edwards (1983).
8While my model provides a novel rationale for regulatory secrecy, I do not present a full discussion of

the costs and benefits of regulatory secrecy.
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that are too stringent may be counterproductive because they undermine private-sector

incentives for agents to discipline one another.

Related literature. The paper contributes to the literature on financial intermediation by

illustrating a very minimal role of an intermediary. The intermediary in my paper provides

a cost-effective way to monitor agents’ positions, not only because it saves on the cost of

duplicate monitoring, but also because it relies on voluntary reports. Existing literature has

focused on problems that arise because of asymmetric information regarding cash flows and

on the role of intermediaries in enhancing liquidity. In contrast, I start with markets that

are already liquid and show how an intermediary can help.9 The main problem in my paper

is that an agent’s history of transactions is private information. Unlike Diamond (1984), I

do not rely on diversification, and unlike in Townsend (1978), the intermediary arises when

the fixed cost per trade is low rather than high.10

The idea that a mechanism can extract information by inducing agents to report one

another is related to the literature on information extraction in teams (e.g., Ma, 1988). This

literature shows that when a principal interacts with many agents, he can implement his

desired outcome if agents observe each other’s choice of effort.11 An agent is induced to take

the desired amount of effort for fear of being reported to the principal by a teammate; how-

ever, as pointed out by many (e.g., Itoh, 1993; Bisin and Guaitoli, 2010), these information

extraction mechanisms may not work when agents can enter side contracts. In my paper a

mechanism can extract all relevant information about agents’ positions by inducing agents

to report the contracts they enter, including their counterparties’ identities. An agent is

induced to report because otherwise his counterparty can enter more contracts than the

position limit, which leads to a strategic default. Crucially, the mechanism in my paper is

collusion proof, and agents cannot undo the mechanism by entering side agreements.

In a different framework, Bizer and DeMarzo (1992) and Parlour and Rajan (2001)

study the effect of nonexclusivity on equilibrium interest rates and competition in credit

markets.12 In Bizer and DeMarzo, contracts entered in the past are observable and have

priority. Thus, a reporting mechanism, as in my paper, cannot improve welfare.13 In Parlour

and Rajan, intermediaries offer contracts simultaneously, and then a single borrower can

accept any subset of these contracts. As in my paper, agents who strategically default do

so on all the contracts they entered. In their model, this can rule out entry even though

competing lenders make positive profits. In my paper, this helps to sustain an equilibrium

in which agents do not enter contracts secretly.

Paper outline. In Section 2, I present the economic environment, and in Section 3, I

9Since my paper illustrates a negative aspect of liquidity, it relates to Myers and Rajan (1998). In their

model, greater asset liquidity reduces a firm’s capacity to raise external finance because it reduces the firm’s

ability to commit to a specific course of action.
10Madhavan (2000) summarizes the extensive literature on the effects of different trading mechanisms on

liquidity provision. Gorton and Winton (2003) summarize the extensive literature on the role of banks.

Many other papers focus on the role of an intermediary. For example, Brusco and Jackson (1999) show how

a market maker can economize on the fixed costs of trading across periods; and Rubinstein and Wolinsky

(1987) show how middlemen can reduce search costs.
11See also Ma et al (1988), in which agents observe correlated state variables before they take actions.
12See also Kahn and Mookherjee (1998), who study insurance contracts; Bisin and Rampini (2006), who

study bankruptcy; and Bisin and Guaitoli (2004), who show that intermediaries can make positive profits

by offering contracts that are not traded in equilibrium.
13The problem in their paper is that additional contracts impose a negative externality on existing con-

tracts because the agent’s hidden effort affects his future income.
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solve for the optimal contract when contracts are exclusive (second best). Section 4 solves

for an optimal mechanism when contracts are nonexclusive and shows that the second best

outcome can be achieved; this is the paper’s main result. I also discuss the role of nonbinding

position limits and show that, in general, the mechanism should not reveal the information

it has. In section 5, I show that the ability to send reports to the central mechanism is

crucial and I solve for the best outcome that can be achieved when agents cannot send

reports (third best). Section 6 discusses some robustness issues, and Section 7 concludes.

The appendix contains proofs and omitted details.

2. The Model

The model has a continuum of agents who enter bilateral contracts for mutual insurance

purpose. Half of the agents are type 1 and half are type 2. Each contract is between

a type-1 agent and a type-2 agent. Contracts are entered at date 0, and they specify

payments at date 1 contingent on the realized state. An agent can default strategically,

but if he defaults, he loses his future income. I first solve the case in which agents can

precommit to enter exclusive contracts (second best) and show that to achieve an efficient

allocation, it is sufficient that each agent enters only one contract. Then I solve for an

optimal mechanism when contracts are assumed to be nonexclusive and agents cannot

observe the set of contracts their counterparties have entered or will enter.

In more detail: There are three dates,  = 0 1 2, and one divisible good, called dollars,

or simply cash. Uncertainty is modeled by assuming two states of nature, state 1 and state

2, one of which is realized at date 1. Agents are risk-neutral and obtain an expected utility

of (0 + 1 + 2) from consuming 0 1, and 2 dollars at dates 0 1 and 2 respectively.

Agents are protected by limited liability, so  ≥ 0 at each date.
At date 0, each agent has one dollar and an investment opportunity (project) that re-

quires his human capital. Each project lasts for two periods and yields nothing if transferred

to another agent; thus, a bank cannot invest on behalf of agents, as in Diamond and Dybvig

(1983). Projects’ cash flows are in Figure 1. Start with the project of a type-1 agent. The

agent invests 1 ∈ [0 1] at date 0. At date 1, the project yields 1 in state 1 (  0) but

requires an additional investment 1 in state 2. The additional investment must be made

in full for the project to continue to date 2 and is called a negative cash flow. If the project

continues to maturity (because it had a positive cash flow at date 1 or it had a negative

cash flow and the additional investment was made in full), the project yields 1 dollars at

date 2. Similarly, the project of a type-2 agent yields 2 in state 2 but requires 2 in state

1. If the project continues to maturity, it yields 2 dollars at date 2. Note that there is

no aggregate uncertainty at date 1: Half of the projects have positive cash flows and half

have negative cash flows. Liquidation values are zero at every date, consistent with the

assumption that projects require human capital.

The risk-free rate is normalized to be zero percent (i.e., there is a storage technology

that gives one dollar at date  + 1 for every dollar invested at date ), and it is assumed

that   1  . The assumption    implies that it is efficient to make the additional

investment at date 1 if cash is available, and   1 implies that in a world without frictions,

each project has a positive NPV; the NPV of 0 project is (−1). The assumption   1
ensures that entering bilateral contracts is preferred to autarky despite the moral hazard

problems below (see Section 3).
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Contracts can be contingent on the state that is realized at date 1. However, agents

cannot commit to make payments:

Assumption 1. An agent cannot commit to pay out of the project’s final cash flows

().

Assumption 2. An agent cannot commit to pay out of the project’s interim cash flows

().

Assumption 1 implies that an agent with a negative cash flow cannot borrow at date 1

against the future cash flows from his project. This is why agents enter insurance contracts

at date 0, such that an agent with a positive cash flow transfers cash to an agent with a

negative cash flow. Assumption 2 implies that agents may default on these contracts. Both

assumptions can be motivated by assuming that cash flows are not verifiable in court. The

first assumption can also be motivated by assuming moral hazard as in Holmström and

Tirole (1998), or by assuming that final cash flows are unobservable.

Enforcement technology. If an agent defaults (i.e., does not pay what he promised in full),

his project is terminated. In this case the agent keeps current cash flows but loses future

cash flows. It is optimal to terminate the project of a defaulting agent with probability

one, even if it is possible to choose a probability less than one, and it is assumed that it

is possible to commit to this closure policy. Allowing for additional penalties for default,

such as spending time in prison, losing one’s reputation, or losing other sources of future

income, does not alter the nature of the results. What’s important is that penalties impose

a finite cost, rather than an infinite cost.

Collateral. Agents cannot post the projects’ assets as collateral, but they can post cash

as collateral. Specifically, a pair of agents can open an escrow account; they can store cash

through a third party who can commit not to divert it. Money placed in escrow is observable

to both agents and can be contracted upon. However, it is unobservable to agents who are

not part of the bilateral contract (or to the central planner). That is, agents can open secret

escrow accounts.

The last assumption in the benchmark model is that at date 0 agents can divert cash

invested in their projects.

Assumption 3. The amount that an agent invests in his project () and the amount

that an agent consumes are private information.

Assumption 3 introduces the risk of strategic default via “asset substitution”: An agent

can consume his initial endowment, instead of investing it, and subsequently default at

date 1, as he has no cash flows to pay from. Think of it as an agent diverting cash from

one project (the original project) to another project (“consumption”) that yields some

unobservable cash flow at date 0 and nothing afterward. Assumption 3 is the reason agents

may need to post collateral, even in the benchmark case in which contracts are exclusive

(see Section 3).14 Note that while everyone can observe whether a project operates (it can

be terminated upon default), the level of investment () is private information. In addition,

a project can operate even if  = 0. For example, an agent can go to work and keep his

business open but effectively do nothing (e.g., Bernie Madoff).

Trading game. Agents can enter contracts, as described below. The game captures the

idea that a counterparty may have entered contracts in the past and may enter additional

14Assumption 3 is needed because without it one could infer how many contracts an agent has entered by

observing , the amount left for investment after posting collateral on all contracts. If posting collateral

did not reduce the amount available for investment, Assumption 3 would not be necessary.
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contracts in the future, with none of these contracts being observable. The game also

captures the idea of a large market in which a deviation by one agent (or a finite number

of agents) does not affect bargaining power and contract terms. I do not focus on search

frictions.15

There are  trading rounds; all happen at date 0 before agents post collateral, invest

in their projects, and/or consume (see Figure 2). In each trading round, a fraction 1

of

agents, chosen randomly, arrive to trade for the first time, with an equal mass of both

types. Agents who are present in each trading round are pairwise matched according to

their types, and each pair can enter a contract. Then each agent decides whether to enter

additional contracts or stick with the contracts he has entered so far. An agent who wants

to enter additional contracts stays for the next trading round to be matched with another

counterparty. If there are no more trading rounds, the agent leaves the trading game and

moves to the next stage, in which he posts collateral. An agent who does not want to enter

additional contracts also leaves the trading game.16

The sequence of events for an individual agent is in Figure 3. For simplicity, I assume

that the contract is set by a planner and that it is entered only if both agents agree to enter

(they choose whether to enter simultaneously). The results remain even if a pair of agents

can enter a contract that is different from the one suggested by the planner (Subsection

6.1), and even if we assume other bargaining processes (e.g., one agent makes an offer and

the other agent can either accept or reject it).

The main assumption is as follows:

Assumption 4. An agent cannot observe contracts that other pairs of agents enter

(either in the past or in the future).

Assumption 4 has a few interpretations: Agents can enter contracts secretly17; trading

is too fast for agents to keep track of a counterparty’s history of transactions; or existing

contracts are observable but not understood. An example is the complex derivative positions

and off-balance-sheet transactions made by many hedge funds. As noted earlier, an agent

cannot observe the amount of collateral that his counterparty posts with other agents;

an agent who enters nonexclusive contracts opens a different escrow account with each

counterparty.

Finally, the assumption that agents have the same initial endowment is made for sim-

plicity. The results extend to the case in which agents have different endowments, which

are private information (see Subsection 6.2).

15The effects of search and bargaining frictions on valuation and bid-ask spreads in over-the-counter

markets are analyzed in Duffie et al. (2005, 2007).
16 In equilibrium, collateral requirements and/or position limits put an upper bound on the number of

contracts that an agent can enter. Thus, the mass of agents present in each round is finite, even if a

continuum of agents decides to deviate by staying for more than one round. In addition, each type has the

same proportion. In the out-of-equilibrium event in which the mass of type-1 agents does not equal the mass

of type-2 agents, some agents remain unmatched.
17For example, according to the Wall Street Journal (August 25, 2005), “(hedge) funds sometimes move

out of trades – ‘assign’ them – without telling the bank that sold them the credit-derivative contract that

their counterparty has changed.” Another example is the Nigerian barge deal between Enron and Merrill

Lynch in which Enron allegedly arranged for Merrill Lynch to serve as a temporary buyer (of the barges) so

as to make Enron appear more profitable than it was. According to a release by the Department of Justice

(October 15, 2003), “Enron promised in a secret oral ‘handshake’ side-deal that Merrill Lynch would receive

a return on its investment plus an agreed-upon profit...”

7



3. The Benchmark of Exclusive Contracts (Second Best)

In this section, I analyze the benchmark case in which every agent can enter at most one

contract (i.e.,  = 1). I characterize optimal contracts as a solution to a planning problem

in which the planner sets a contract and recommends to each agent how much to invest.

A contract is a pair ( )=12, where  is the amount of cash that an agent of type

 posts as collateral, and  is the amount of cash that he transfers to the other agent at

date 1; an agent with a positive cash flow transfers cash to an agent with a negative cash

flow (i.e., an agent of type  promises to pay in state ). An agent can default only on the

amount  −  ( ≤ ). Assuming that there are no cash transfers at date 2 and that all

transfers at date 0 are in the form of collateral is without loss of generality.

The triple (  )=12, which includes the contract and the planner’s recommended

level of investment, is referred to as the agreement and is denoted by . An agreement

induces the following consumption stream. At date 0, an agent of type  consumes 1−−,
which is his initial endowment minus the amounts he invests and posts as collateral (without

loss of generality, agents do not store on their own). The agent’s consumption at date 1

depends on the state. In state , the agent consumes  +  − , which is the amount

left after paying what he promised using the collateral he posted and the project’s cash

flows. In the other state, denoted by −, the agent consumes  + − − , which is the

amount left after making the additional investment using the collateral he posted and the

payment received from his counterparty. (We can assume, without loss of generality, that

the agreement is such that each agent has enough cash to make the additional investment.)

At date 2, the agent consumes . The agent’s expected utility is

() ≡ 1−  −  +
1

2
( +  − ) +

1

2
( + − − ) + (1)

= 1 + (− 1) + 1
2
(− − )

When an agreement is symmetric, I sometimes drop the index . The agreement is feasible

if: (i)  ≥ 0; (ii)  ≥  ≥ 0; and (iii) the amount that every agent consumes at each date
and state is nonnegative. That is,

1−  −  ≥ 0, for  ∈ {1 2}, (2)

 +  −  ≥ 0, for  ∈ {1 2}, (3)

 + − −  ≥ 0, for  ∈ {1 2}. (4)

Since the two types of agents are identical ex-ante and have equal proportion, it is natural

to assume that the planner’s objective is to maximize the unweighted sum of agents’ utilities,

1()+2(). This is equivalent to maximizing 1+ 2. The solution to the unconstrained

problem (first best) is 1 = 2 = 1, 1 = 2 = 0, and 1 = 2 = . In the first best, agents

do not post collateral, and the utility for each agent is .

In the second best, we need to ensure that (i) agents have the incentives to invest and

make the transfers suggested by the planner (incentive compatibility); and (ii) each agent

prefers the proposed agreement to autarky (participation).

Participation. Denote by  an agent’s utility in autarky. The participation constraint

is

() ≥ , for  ∈ {1 2}. (5)
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In autarky, an agent can self-insure by investing  and storing  = 1−  so that  = .

In this case, the agent continues his project in both states and obtains  +  = +
1+

( = 1
1+
). Alternatively, the agent can invest  = 1 and store nothing. In this case, the

agent cannot continue his project when he realizes a negative shock, and his expected utility

is +
2
. Since   1, self-insuring is preferred. Thus,  =

+
1+

. Entering bilateral contracts

is preferred to autarky because a pair of agents can allocate all the cash stored to the agent

with the negative cash flow so that each agent can invest more and store less.18

Incentives to make payments. Suppose an agent has entered the contract ( ) and

invested  0. When  +  0  , the agent does not have enough cash to deliver the full

amount, and it is optimal for him to pay nothing because if he makes a partial payment

he still loses his project. When  +  0 ≥ , the agent can pay the full amount, and it

is optimal for him to do so because otherwise he gains  −  ≤  0 but loses  0   0.
Denote by  whether an agent delivers ( = 1) or not ( = 0). The optimal delivery rule is

( 0  ) = 1, if  +  0 ≥ , and ( 0  ) = 0, otherwise.
Incentives to invest. Denote by (

0
|) the utility for an agent of type , if he deviates

from the agreement  by investing  0 ∈ [0 1−] instead of . Denote by ( 0 ) whether
the agent has enough cash to make the additional investment; that is, (

0
 ) = 1, if  +

− ≥  0, and (
0
 ) = 0, otherwise. Then

(
0
|) = 1−  −  0 (6)

+
1

2
[ 0 − ( 0  )( − ) + ( 0  )

0
]

+
1

2
[ + − + (

0
 )(− ) 0].

The first line in (6) is the amount the agent consumes at date 0, the second is the amount

he consumes at dates 1 and 2 after a positive cash flow, and the third line is the amount

consumed after a negative cash flow. Observe that (|) = ().

The incentive constraint is that for  ∈ {1 2},

(|) ≥ (
0
|), for every  0 ∈ [0 1− ] (7)

The second-best problem is to find a feasible agreement that maximizes 1 + 2 subject to

the participation constraint and the incentive constraint.

Equation (7) can be replaced with (|) ≥ (0|). In other words, it is enough
to focus on deviations in which an agent invests nothing in his project and then defaults

when he needs to make a payment. Intuitively, an agent who plans to default is better off

consuming his initial endowment, rather than investing it and losing it upon default.19

Hence, the incentive constraint reduces to

1

2
( − ) ≤ (− 1), for  ∈ {1 2}. (8)

Intuitively, the expected gain from not delivering the promised amount (left-hand side) must

be less than or equal to the expected loss from not investing in one’s project (right-hand

side).

18 In other words, the symmetric agreement (  ) that satisfies  = 2, and  =  = 1− , is strictly

preferred to autarky.
19Lemma 1 in the appendix contains a proof.
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The problem reduces to finding a feasible agreement that maximizes 1 + 2 subject to

Equations (5) and (8). This is a linear programming problem. When  ≥ 1 + 1
2
, the

first-best agreement satisfies all the constraints and is a unique solution. In this case, the

incentive constraint is not binding. In contrast, when   1 + 1
2
, the incentive constraint

binds and the optimal agreement is such that: agents do not consume at date 0; each agent

has exactly what he needs to make the additional investment but not more; and each agent

is indifferent between following the agreement and planning a strategic default. Collateral

is needed to prevent a strategic default in which an agent consumes his initial endowment

instead of investing it.

Proposition 1. (Second best) If  ≥ 1 + 1
2
, the second-best agreement equals the first

best. Otherwise, the second-best agreement is given (uniquely) by 1 = 2 = , 1 = 2 =

− (1 + ), and 1 = 2 = 1− , where  =
−2(−1)

−2(−1)+2 .

Denote the second-best agreement by  ≡ (  ). Then () = −(−1)
(from Equation (1) and Proposition 1). The first term () is the agent’s first-best utility,

and the second term is the opportunity cost of collateral: By posting collateral, agents forgo

investing in their positive NPV projects.

The optimal amount of collateral decreases in  but increases in . An increase in 

reduces the gain from a strategic default because the agent has more to lose. In contrast, an

increase in  increases the gain because the liquidity need is higher and the agent defaults

on a larger amount.

4. Optimal Contracts with Nonexclusivity

In this section – which contains the main results – I analyze the case in which agents

cannot precommit to enter exclusive contracts. For ease of exposition, I focus on the limit

case in which there is an infinite number of trading rounds ( = ∞). Thus, an agent
assigns a probability of zero to the event that he or his counterparty will not be able to

enter additional contracts should either of them decide to do so. The nature of the results

remains even if  is finite.20

4.1 The mechanism design problem

Using a mechanism design approach, I extend the trading game from Section 2 by allow-

ing agents to communicate with a central planner, who designs the rules of communication

to maximize the sum of agents’ utilities.

Agents here have both private information (e.g., the identities of their counterparties)

and private actions (e.g., whether to stay for additional trading rounds). By the revelation

principle (Myerson, 1982, 1986), we can restrict attention to direct communication mecha-

nisms that are incentive compatible. A direct mechanism means that in each stage of the

game every agent reports his new private information to the planner, and in return, the

planner recommends an action to him, using some prespecified recommendation rule that

maps reports to recommendations. Incentive compatibility means that it is optimal for

20 In particular, we can assume that  is a random variable with a geometric distribution. More details

are available upon request.
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each agent to be truthful and obedient (follow the planner’s recommendation), given that

all other agents are.

Hence, the sequence of events in each trading round is as follows:

1. Every agent who is present in the trading round reports the identity of his counterparty

to the planner (an agent can lie).

2. The planner tells every agent whether to agree to enter a contract, and every agent

chooses whether to follow this recommendation. A contract is entered only if both

the agent and his counterparty agree to enter.

3. Every agent tells the planner whether he has entered a contract in the current round

(an agent can lie).

4. The planner tells every agent whether to leave or stay for the next round, and every

agent chooses whether to follow this recommendation.

The problem reduces to finding a contract and a recommendation rule that maximize

the sum of agents’ utilities subject to incentive compatibility.

Our main result is that the direct mechanism above can implement the second best. The

result holds under the standard assumptions of the revelation principle, but it continues to

hold even if we violate two assumptions. In particular, I assume that sending a report to

the planner involves some small cost and that agents can collude.

In my setting, it is natural to focus on collusion between a pair of agents who were

matched, but the results extend to a group of more than two agents. Collusion is modeled

by assuming that a side planner can recommend to a pair of agents what to do. The

implementation is collusion proof if the side planner cannot come up with a recommendation

that increases the sum of the two agents’ utilities, such that it is optimal for each of them

to follow the recommendation if the other agent does and if all other agents are truthful

and obedient to the central planner.21

For ease of exposition, I assume that the cost of sending a report to the planner ap-

proaches zero and exclude it from the expressions below. I also assume, for simplicity, that

the planner can observe the identity of agents who send reports; this assumption can be re-

laxed without affecting the results. Finally, assume that an agent agrees to enter a contract

only if he believes that there is a positive probability that his counterparty will also agree.

This can be motivated by assuming there is some small cost involved in making an offer.22

4.2 The main result

Suppose the planner sets the second-best contract. The planner wants to implement an

outcome in which every agent enters exactly one contract and follows it. The utility for

each agent is then ().

A possible deviation is that an agent enters more than one contract, invests nothing in

his project, and subsequently defaults on all contracts. The maximum number of contracts

21The side planner is a modeling device that captures what a pair of agents can achieve via direct com-

munication in an environment of asymmetric information; see, for example, Laffont and Martimort (1997).

The side planner knows that the two agents were matched with one another, but he cannot observe anything

else about the history of the game.
22The last assumption is used in the proof of Proposition 4.

11



that a deviating agent can enter depends on the recommendation rule used by the planner

and on the equilibrium strategies of all other agents. Suppose that if all other agents are

truthful and obedient, a deviating agent can enter  contracts (assume the deviating agent

remains truthful). I refer to  as the position limit. The deviating agent’s utility is then

( ) ≡ (1− ) +
1

2
( + ) +

1

2
(0) (9)

= 1 +
1

2
( − )

The first expression (1−) is what the agent consumes at date 0 after posting collateral.
The other two expressions represent the expected amount consumed at date 1. In one

state, the agent receives back all the collateral he posted plus a payment from each of his

counterparties. In the other state, the agent needs to deliver, but he defaults; thus, he

loses his collateral and ends up with nothing (limited liability). Observe that ( ) is

increasing in .

To prevent the deviation above, we must have:

( ) ≤ (). (10)

Denote ∗ = bmax(1 2(−1)


)c, where the function bc denotes the largest integer less than
or equal to . Equation (10) reduces to  ≤ ∗.

Another deviation is that a pair of agents enters a contract secretly. Specifically, a

side planner can recommend that the two agents enter a contract without reporting each

other’s identities and without reporting the fact that they entered a contract; he can further

recommend that the two agents do not enter additional contracts afterward. If both agents

follow the side planner’s recommendations, each of them obtains the second-best utility

without incurring the reporting cost.

For the implementation to be collusion proof, we need to make sure that if one agent

follows the side planner’s recommendation, it is optimal for the other agent to cheat. An

agent can cheat by entering additional contracts and defaulting on all contracts. Since the

planner does not observe that the two agents entered a contract, he continues to allow each

of them to enter  additional contracts, according to the position limit. Hence, together

with the contract that was entered secretly, each of the two agents can enter a total of +1

contracts. Thus, an agent will cheat if and only if

( + 1)  (). (11)

Equation (11) reduces to  ≥ ∗.
Combining the two results above, we obtain that  = ∗.

Proposition 2. (Optimal position limits) To implement the second best in a collusion-

proof way, the planner must allow each agent to enter ∗ contracts, i.e., he must set a
position limit  = ∗.

Intuitively, the position limit cannot be too high nor can it be too low. If the position

limit is too high, agents are induced to enter too many contracts with the intention to

default on all of them; if the position limit is too low, agents can collude by entering

a contact without reporting it to the planner. Agents have the incentive to report one
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another only if not reporting triggers a counterparty’s default. When a contract is not

reported, a counterparty can enter more contracts than the position limit. However, if the

position limit is too low, a counterparty will never find it optimal to do so, whether the

contract is reported to the planner or not. In this case, a pair of agents can benefit by not

reporting and saving the reporting cost.

Implementation. Denote by ( ) the number of times that agent  (here  denotes an

agent’s identity) reported entering a contract by the end of round  , and denote by 0( )
the number of agents who reported entering a contract with agent  (an agent reported

entering a contract with agent  if he reported agent ’s identity and then reported entering

a contract).

Consider the following rule, which we call a position limit rule: If agent  reports the

identity of agent  in round  , the planner recommends that agent  agree to enter a

contract if and only if 0( )  ∗. The planner recommends that agent  leave if and only
if ( ) = 0( ) = 1 or 0( ) = ∗ (i.e., if the agent entered a contract and both the
agent and his counterparty reported it, or if the agent has hit the position limit).

One can show that the game induced by the recommendation rule above has a perfect

Bayesian equilibrium in which every agent enters the second-best contract exactly once. In

addition, the implementation is collusion proof.

Proposition 3. (Main Result) A position limit rule with a position limit ∗can imple-
ment the second best. In addition, the implementation is collusion proof.

Under a position limit rule, the planner sets a position limit ∗ and counts the number
of times that an agent has entered a contract, according to reports from his counterparties.

The planner recommends that an agent enter a contract only if his counterparty has not

hit the position limit. Thus, if everyone is truthful and obedient, a deviating agent can

enter at most ∗ contracts. Along the equilibrium path (when everyone is truthful), the

planner recommends that an agent leave after he enters his first contract. From our previous

analysis, we know that it is optimal to follow this recommendation and that a pair of agents

cannot gain by entering a contract secretly. If an agent reports entering a contract, and

his counterparty does not, the planner does not count the contract and recommends that

the agent who reported should default. This rules out a unilateral deviation in which one

agent reports and his counterparty does not. Lying to the planner has the same effect as

not reporting and is therefore suboptimal.

Essentially, the planner can extract all the relevant information about contracts that

agents enter by inducing them to “police” one another: If one agents does not report entering

a contract (and/or the identity of his counterparty), the counterparty is induced to plan

a strategic default. Note that the planner can extract information that is shared by two

agents (e.g., the fact that they entered a contract), but he cannot extract information that

is held by only one agent (e.g., the amount that an agent invests).

As I mentioned in the introduction, the idea that agents police one another relates to

the literature on information extraction in teams. However, in contrast to this literature,

the planner in my setting can extract all relevant information even when agents can collude.

The reason is that in my setting, a pair of agents cannot extract surplus from other agents,

because when an agent defaults, he defaults on all the contracts he entered. In contrast, in

the problem of a principal who deals with multiple agents, a group of agents can extract

surplus from the principal by putting low effort and reporting high effort. Hence, whenever
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the principal offers contracts that induce high effort, agents have the incentive to undo what

the principal does by entering a side contract.

The optimal position limit, ∗, increases in  but decreases in . Intuitively, when the

gain from strategic default falls (rises), the optimal position limit is higher (lower). It can

also be shown that the optimal position limit is lower when markets become more liquid,

as defined in Section 5 below.

4.3 The role of nonbinding position limits

When   1 + , it follows that ∗  1. Thus, the planner must allow each agent

to enter more than one contract, even though in equilibrium every agent enters only one

contract.

Corollary 1. If   1 + , the position limit in Propositions 2 and 3 must be nonbinding

in equilibrium.

Position limits that are nonbinding in equilibrium are essential if agents can collude, but

they are not essential if agents cannot collude. When agents cannot collude, the planner can

implement the second best by allowing each agent to enter only one contract and punishing

an agent who lied or did not send a report to the planner by allowing his counterparty –

and only his counterparty – to enter ∗ additional contracts so that the counterparty will
have the incentive to default.23

In contrast, when agents can collude, the planner must rely on nonbinding position limits

to induce agents to punish one another. Since the planner cannot detect a joint deviation,

he must give each agent enough latitude to cheat on his counterparty. Then if a pair of

agents attempts to enter a contract without reporting it to the planner, it is optimal for

each of them to enter additional contracts and default.

The planner’s commitment to use the prespecified recommendation rule (which is one

of the assumptions behind the revelation principle) is crucial. When ∗  1, the planner

must allow an agent to enter ∗ contracts, although an agent will enter these contracts only
if he plans a strategic default. Ex ante, the threat of default is optimal because it induces

agents to reveal information to the planner. However, ex post, once an agent attempts to

enter more than one contract, it is suboptimal to let him do so.

4.4 How much information should the planner reveal?

In the implementation above, an agent can infer from the planner’s recommendations

whether his counterparty has reached the position limit and whether his counterparty re-

ported him. Instead of recommending an action, the planner can simply reveal this in-

formation. For example, at the beginning of each round, the planner can make a public

announcement (available at no cost to agents in the given round) of the identities of agents

who have reached the position limit, and after an agent reports entering a contract (and

the identity of his counterparty), the planner can let him know confidentially whether his

counterparty reported him.

23Alternatively, a pair of agents can include a clause that voids a contract if the planner does not certify

that both agents reported entering it.
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Is it possible to implement the second best if the planner reveals more information?

Under some restrictions on out-of-equilibrium beliefs, the answer is no. In other words,

the assumption that reports are confidential (which is one of the assumptions behind the

revelation principle) is crucial, and the planner cannot be replaced by a “bulletin board.”

The restriction used in the proposition below is that an agent who learns that his

counterparty was reported entering a contract believes that his counterparty indeed entered

a contract. This holds if agents assign a zero probability to the event that other agents

have lied to the planner; for example, if an agent who reports entering a contract sends a

copy of the signed contract.24

Proposition 4. The planner must not reveal the exact number of times that a counterparty

was reported entering a contract. The planner should only reveal whether the counterparty

has reached the position limit or not.

The logic behind Proposition 4 is as follows: Unlike the planner, who can precommit to

use the prespecified recommendation rule, agents cannot precommit to take actions that are

optimal ex ante but are suboptimal ex post. An agent who believes that his counterparty

has already entered a contract, or more than one contract, will not agree to enter another

contract with him, since he will expect that his counterparty will continue to enter contracts

afterward and default on all contracts. However, to implement the second best, an agent

must be able to find counterparties to enter contracts with until he hits the position limit.

The result relates to Bester and Strausz (2007), who study principal-agent problems

when the principal cannot precommit to take prespecified actions. They show that, without

loss of generality, the principal can restrict himself to communication devices such that the

agent reports his type honestly to the device, and the device garbles this information when

sending a message to the principal. The purpose of this noisy device is to “fine tune” the

amount of information that the principal has.25

More generally, we know from the revelation principle for multistage games with adverse

selection and moral hazard (Myerson, 1986) that we can focus, without loss of generality,

on communication mechanisms in which the planner tells agents what to do without giving

them extra pieces of information. This is because more information makes it easier for agents

to manipulate the planner by lying to him or by disobeying his recommendations. The

same intuition applies in my setting. If an agent knows that his counterparty has already

entered a contract (but has not hit the position limit), he will not follow the planner’s

recommendation to enter an additional contract with him.

24Another assumption is that upon observing an out-of-equilibrium event, an agent updates his beliefs

about his counterparty’s past actions but continues to believe that all other agents in the current trading

round have just showed up for trade and will follow their equilibrium strategies (to enter one contract and

leave). Thus, an agent assigns a zero probability to the event that in the next round he will be matched

with an agent from a previous round. The assumption is analogous to the notion of passive beliefs (McAfee

and Schwartz, 1994), which is common in the contract theory literature.
25Bester and Strausz (2000, 2001) also analyze a situation in which agents send messages directly to the

principal without using a noisy device. They show that if there is only one agent, the principal can restrict

attention to a direct mechanism in which (i) the agent’s message space is the set of his types, and (ii) it

is an optimal strategy for the agent to report his true type with a positive probability. However, when the

principal deals with more than two agents, the message space may need to include more messages than types.

Intuitively, the principal can add noise — just like a noisy device does — by implementing an equilibrium in

which an agent sometimes lies, or by including more messages than types.
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4.5 The planner as a clearinghouse

The central planner can be interpreted as an intermediary who sets position limits and

lets a pair of agents register their contract, as long as none of them have reached the limit.

The closest real-world example is a clearinghouse, as discussed in the introduction.

The results (including nonbinding position limits) remain even if, in addition to the

minimal role above, the intermediary becomes a central counterparty that guarantees pay-

ments. Since default never happens in equilibrium, the intermediary does not need to have

any capital to make this guarantee credible. In the out-of-equilibrium event in which an

agent enters more than one contract and defaults, the intermediary defaults as well. The

intermediary can prevent this type of default by setting aside some capital, but this is not

necessary in our model.26

5. What if Agents Cannot Send Reports to a Central Plan-

ner?

In the analysis above, I showed that the second best can be achieved if agents can send

reports to a central planner. Below I show that the ability to send reports is crucial: If

agents cannot send reports to a central planner (e.g., if there is no clearinghouse), the second

best cannot be achieved.

To see why, suppose agents are unable to send reports to the central planner, and

suppose, by contradiction, that there is an equilibrium in which every agent enters the

second-best contract exactly once and follows it.27 The only belief consistent with the

equilibrium path is that all the agents who are present in the current round have just

showed up for trade. Given this belief, an agent expects that each of his counterparties

will enter one contract and deliver on it. A necessary condition is that if all other agents

follow their equilibrium strategies, an agent cannot gain by entering more than one contract.

However, the second-best contract does not satisfy this condition, as follows: If  ≥ 1+ 1
2
,

the second-best contract does not require collateral and a deviating agent can enter ∗ + 1
contracts, thereby obtaining more than what he obtains if he enters only one contract. If

 ≤ 1+ 1
2
, the second-best contract requires collateral. Since  

1
2
(by simple algebra),

a deviating agent can enter at least two contracts and obtain ( 2)  (). Thus, it is

optimal to deviate.

Can agents benefit from bilateral trade? Yes. However, rather than relying on position

limits, agents must rely on collateral to limit the number of contracts that a deviating

agent can enter. If the collateral is  (per contract), a deviating agent can enter at most 1


contracts, since he has only one dollar to begin with.

26 If the intermediary sets aside some capital, Proposition 4 no longer holds, since an agent is guaranteed

to obtain what is promised to him, even if his counterparty defaults. However, Proposition 4 continues to

hold if a large group of agents can collude. Suppose these agents learn that their counterparties have already

entered contracts, and suppose these agents share this information among themselves. Then the agents may

rationally expect that the capital set by the clearinghouse may not be enough to guarantee payments to all

of them.
27 I restrict attention to symmetric perfect Bayesian equilibria, in which agents of the same type follow

the same (pure) strategy. I also assume that strategies do not depend on the index of the trading round in

which an agent is present; this can be motivated by assuming that an agent does not know in what round

he showed up.
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Formally, denote by  ( ) the utility for an agent of type  who enters  ≤ 1


contracts, planning to default on all of them, if each of his counterparties delivers. Similar

to Equation (9), we obtain that

 ( ) = 1 +
1

2
(− − ). (12)

Thus, the equilibrium contract must satisfy () ≥  ( ), for  ∈ {1 2} and for every
integer  ≤ 1


. This reduces to the following incentive constraint:

1

2
( − ) +

1

2
( − 1)(− − ) ≤ (− 1), (13)

for  ∈ {1 2} and for every integer  ≤ 1

. In the special case  = 1, (13) reduces to (8).

The extra term when   1 is the expected net payoff from entering additional contracts

and not delivering on them: In one state the agent collects payments from each of his

additional counterparties; in the other state the agent loses his collateral.

The optimal agreement (and related contract) when agents cannot communicate with

a central planner is referred to as third best. The third-best problem is to find a feasible

agreement that maximizes 1 + 2, subject to the participation constraint, (5), and the

incentive constraint, (13). To ensure that a solution exists, I drop the restriction that 
be an integer; the appendix contains a micro foundation for this.28 The optimal agreement

is obtained by setting  =
1

and solving (2), (4), and (13) with equalities. The next

proposition characterizes the unique solution.

Proposition 5. (Third best) The optimal agreement when agents cannot send reports to

a central planner involves collateral, and more than in the second best. The agreement is

given (uniquely) by 1 = 2 = ∗, 1 = 2 =  − (1 + )∗, and 1 = 2 = 1 − ∗, where
∗ ≡ 1

4

³
−√2 − 8

´
,  = − 1, and  = 2 + + 2.

Under the third-best agreement, an agent promises more than the amount of cash that

he posts as collateral, i.e.,   . Specifically, it follows from Equation (13) that  =

+
2(−1)


, where  = 1


. The first term () captures the idea that an agent cannot default

on the amount of cash that he posts as collateral. The second term captures the idea that

requiring collateral limits the number of contracts that an agent can enter, and this makes

the threat of losing future cash flows valuable in backing promises.

As in the second best, the optimal amount of collateral decreases in  but increases in

. The proof in the appendix applies to a more general case in which entering a contract

involves some fixed cost , which can represent the time and effort involved in entering a

contract. I show that when  falls, the third-best agreement requires more collateral. A

lower  represents a more liquid market. Liquid markets present a problem in this model

because they create more opportunities for strategic default.29 The following conclusion

then follows:

28 If  is restricted to be an integer, a solution may not exist because the set of feasible agreements that

satisfy Equation (13) may be open (since  is not a continuous function of ).
29 In an appendix available upon request, I focus on another feature of a liquid market: the probability of

not finding a counterparty. The effects of reducing this probability are similar to the effects of reducing the

fixed cost per trade.
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Corollary 2. The gain from allowing agents to send reports to a central planner increases

when the fixed cost per trade () falls.

6. Robustness

6.1 What if agents can choose the contract terms?

In the analysis above I assumed that the contract is set by the central planner. The

main result remains even if a pair of agents can choose to enter a contract that is different

from the one suggested by the central planner. To see why, suppose a side planner suggests

that a pair of agents enter  6=  without reporting. The two agents save the reporting

cost, but to prevent default they must post more collateral than in the second best. If the

cost of sending a report to the central planner is sufficiently low, the extra cost of collateral

outweighs the benefits of not reporting.

Proposition 5 (third best) also remains. In fact, the third-best agreement is the only

feasible agreement satisfying Equations (5) and (13) (participation and incentive) that is

both symmetric and renegotiation proof.30

6.2 Unobservable endowments

In the analysis above I assumed that endowments are observable. Under some conditions,

the results extend to the case in which endowments differ across agents and are private

information. In particular, assume that an agent who claims having an endowment b must
prove it by showing it to the planner. That is, an agent who has  can report b ∈ [0 ].
Then agents will report their endowments truthfully and the second best will be achieved.

The extra step in which agents reports their endowments to the planner will be before

trading begins. If an agent reports b, his position limit will be b∗, and the planner will
recommend that he enter the scaled contract (b b) and invest b. To abstract from
search and matching issues, assume that there are many trading venues and that in each

trading venue the planner recommends that agents enter a different contract. Each agent

will select a trading venue according to the contract that he wants to enter in the given

round; the appendix contains more details.

Essentially, when endowments are observable, the planner’s role is very simple because

he only needs to rely on voluntary reports regarding the contracts that agents enter. When

endowments are private information, the planner can still rely on these voluntary reports to

learn whether a pair of agents has entered into a contractual relationship; however, to set

position limits appropriately, the planner must verify that an agent who claims to have a

certain endowment actually has it. The need to verify endowments also arises when agents

set optimal collateral levels in the decentralized environment

What if we add deep-pocket lenders to our model? Nonexclusivity rules out a situation

in which agents borrow money secretly to make their endowments look better than what

they truly are. Lenders will report all the loans they make to the planner because otherwise

30A proof is available upon request. (An agreement  is renegotiation proof if a side planner cannot

improve the agents’ utilities by giving them the opportunity to enter the agreement 0 6=  instead of ,

such that it is optimal for each agent to follow 0 if the other agent does, and if all other agents enter and
follow .)
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an agent could borrow from multiple lenders, divert the borrowed funds for consumption,

and subsequently default on all loans.

6.3 Multiple intermediaries

The analysis above shows that one intermediary can implement the second best, but

Proposition 2 does not rule out multiple intermediaries. For example, a position limit of four

can be implemented by four intermediaries, each setting a position limit of one.31 To see

that, adjust the trading game by assuming more than one location, such that each location

has its own intermediary (planner) who can observe only the information that is reported

to him. Each agent shows up for trade in a randomly chosen location. Initially, an agent

must trade in the location where he shows up, but if an agent decides to stay for additional

rounds, he can switch back and forth among the different locations. Pairwise matching

in each location is as in the original game, and an agent can communicate only with the

intermediary in the location where he is. The game above has an equilibrium in which every

agent enters one contract and reports his information truthfully to the intermediary in his

original location.

7. Conclusion

The paper constructs a mechanism that induces agents to voluntarily reveal to it all the

contracts they enter. The mechanism allows each agent to report every contract he enters,

and it reveals the names of agents who have reached some prespecified position limit. The

main result is that such a mechanism can implement the same outcome that could be

implemented if agents could not enter contracts secretly. This is true even if reporting

involves some small cost, and even if agents can collude. If agents’ endowments are private

information, the mechanism must also verify that an agent who claims to have a certain

endowment, actually has it. In general, the mechanism should not reveal the information it

has and so it cannot be replaced by a bulletin board. The paper also provides a closed-form

solution for the best outcome when agents cannot send reports to a central mechanism and

shows that the gain from allowing agents to send reports increases when markets become

more liquid.

Appendix

Unobservable Endowments. Assume that instead of one group of agents, there

are an infinite number of groups corresponding to the interval (0 1]. Agents in group

 ∈ (0 1] have an initial endowment . There are also an infinite number of trading venues,
corresponding to the interval (0 1]. In trading venue  ∈ (0 1], the planner recommends
entering the scaled contract ( )=12 and investing ()=12. In each trading round,

the same mass of agents from each group and type shows up for trade for the first time. An

agent can switch back and forth among different trading venues.

The optimal mechanism includes an initial stage in which agents report their endow-

ments to the planner. An agent with an initial endowment  can report b ∈ [0 ]. In
31More generally, ∗ can be implemented by  intermediaries, such that intermediary  sets a position

limit  ≥ 1, and


=1
 = ∗.
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addition, an agent also announces the trading venue in which he chooses to trade. The

planner recommends entering a contract, and he later counts a contract as being entered,

only if the counterparty’s endowment is consistent with the trading venue.

Following a similar logic as in the single-endowment case, it is possible to show that the

second best can be implemented if the planner sets a position limit of b∗ for an agent who
reports b. Given this position limit, an agent cannot gain by saying that he has less than
he truly has, and by assumption, he cannot say that he has more.

Dropping the Restriction That  in Equation (13) Be an Integer. Consider the

extension for unobservable endowments, and assume that an agent can trade in venue  only

if  ≥  (i.e., the agent must reveal his endowment or a portion of it to his counterparty).

When agents cannot send reports to the planner, an agent can deviate by entering multiple

contracts in the venue that corresponds to his initial endowments, but he can also trade in

venues that correspond to less than his initial endowment. Since choosing a venue   

is like entering a fraction of a contract, the number of contracts that a deviating agent can

enter is no longer restricted to be an integer.

Lemma 1. Equation (7) can be replaced with (|) ≥ (0|).
Proof. First, observe that Equation (2) must be binding; that is,  = 1−. Otherwise,

we can increase the value of the objective function without violating the constraints by

increasing  and  by ∆ and ∆, respectively, where ∆ is small enough.

An agent can deviate by choosing  0  . He can pay what he promised if and only if

 0 ≥ −

. The result follows because ( 0|) is linear on [0 −

], has a positive jump at

 0 =
−

, and is increasing on [−


 ] (since   1).

Proof of Proposition 1. The proof applies to a more general case in which there

is a penalty  ≥ 0 upon default (measured in terms of utility), so (0|) is replaced
with (0|) − 1

2
 , and the incentive constraint becomes 1

2
( − ) − 1

2
 ≤ ( − 1).

When  + 1
2
 ≥ 1 + 1

2
, the second best equals the first best. Otherwise, Equation (3)

follows from the incentive constraint, and the solution is obtained by solving the incentive

constraint and Equations (2), (4) with equalities. From (2),  = 1− . Substituting this

in (4) and in the incentive constraint, and rearranging terms, we obtain: − = − (1+)
and  =  + 2( − 1) + (3− 2), for  ∈ {1 2} Thus, 2 − 1 = (1 + )(2 − 1) and

2 − 1 = (3− 2)(2 − 1). Since 2(1−)  0  , it follows that 1 +  6= 3− 2. Thus,
1 = 2. Denoting  = , we obtain 1 = 2 = − (1 + ) = + 2(− 1) + (3− 2).
Solving for , we obtain,  =

−2(−1)−
−2(−1)+2 . Observe that (



) = −2(2 +)  0, and

(

) = 2+  0. Thus, the optimal amount of collateral decreases in  but increases

in . ¥

Proof of Proposition 2. As explained in the text, to prevent a deviation in which

an agent enters more than one contract and defaults, we must have  ≤ ∗. To prevent
collusion, we must have  ≥ ∗. Thus,  = ∗ is a necessary condition. ¥

Proof of Proposition 3. If everyone is truthful and obedient, the outcome is that

every agent enters one contract (the second best) and leaves. It is optimal to follow the

planner’s recommendations as follows: If the planner recommends that an agent agree to
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enter a contract, the agent believes that his counterparty has just showed up for trade and

will follow the contract. If the planner recommends that an agent should not agree to enter

a contract, the agent believes that his counterparty has already entered ∗ contracts and
will default if he enters an additional contract. If an agent has entered one contract, and

the planner recommends that he leave, the agent believes that his counterparty reported

him, and since ( 
∗) ≤ (), it is optimal to follow the recommendation. If the

planner recommends that the agent stay, the agent believes that his (first) counterparty

did not report, and since ( 
∗ + 1)  (), it is optimal to stay for 

∗ additional
rounds (and default). It is optimal to report the counterparty’s identity (truthfully) and

the fact that an agent has entered a contract because otherwise the planner acts as if the

counterparty did not enter a contract and recommends that he stay for additional rounds

and default. Collusion proofness follows from Equation (11), as explained in the text. ¥

Proof of Proposition 4. The relevant case is ∗ ≥ 2. Suppose an agent learns that
his counterparty has entered  ≥ 1 contracts. Since the counterparty is expected to use
his equilibrium strategy from now on, he will either stick with the contracts he has already

entered and not agree to enter a contract in the current round, or else he will agree to enter

a contract in the current round and continue to enter as many contracts as he can, planning

to default on all contracts. In the first case, it is suboptimal to agree to enter a contract,

since there is zero probability that the counterparty will also agree. In the second case, it is

suboptimal to enter a contract, since the counterparty will default. But then the effective

position limit is less than ∗, and the implementation is not collusion proof. ¥

Proof of Proposition 5. The proof applies to a more general case in which () =

1 + ( − 1) + 1
2
(− − ) −  and  ( ) = 1 + 1

2
(− − ) − 1

2
 − . The

parameter  ≥ 0 represents a fixed cost per trade, and  ≥ 0 represents a penalty upon
default, both measured in terms of utility. Assume that  is sufficiently small so that the

participation constraint is satisfied, and the third best does not equal the second best. The

incentive constraint becomes 1
2
( − −) + 1

2
(− − ) − ( − 1) ≤ ( − 1) + 1

2
 .

As in Lemma 1,  = 1 − . Substituting this and  =
1

in the incentive constraint,

summing over  = 1 2, and rearranging terms, we obtain 1() ≡ 1
2

P2
=1(

−

− 1) −

( − 1)P2
=1(1 − ) − − 

P2
=1(

1

− 1) ≤ 0. Similarly, from Equation (4) we obtain

2() ≡ 
P2

=1(1− )−
P2

=1( + ) ≤ 0.
Denote 0 ≡ − 2;  ≡ − 1;  ≡ 2 + 0 + 2 + ; and ∗ = 1

4
(−√2 − 80). (The

statement of the proposition in the text is for the special case,  =  = 0.) To prove the

proposition, it is enough to show that the agreement (  ) = (∗  − (1 + )∗ 1 − ∗)
is feasible, satisfies the participation and the incentive constraint, and is a unique solution

to min(1 + 2) subject to () ≤ 0 for every  ∈ {1 2}. I prove the last part below. The
rest follows easily.

First, () ≤ 0 is binding ( = 1 2), as follows: Since the second best is not achieved,
1  0 and/or 2  0. Without loss of generality, 1  0. If 1()  0 (by contradiction), we

can increase the value of the objective function without violating the constraints by replacing

1 and 1 with 1−∆ and 1+(1+)∆, where ∆ is sufficiently small. If 2()  0, we can

increase the value of the objective function without violating the constraints by replacing

1 and 2 with (1−∆)1 and (1−∆)2. Hence, 1() = 2() = 0.
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Denote the Lagrange multiplier of () by , and let () = 1 + 2 +
P2

=1 ().

An (optimal) solution satisfies 

= 1

2− −2 = 0 and


= 1− −

22
1+(−1)1+ 1

2
1−

2 − 2 = 0 ( = 1 2). Thus, 1 = 2 ≡  and 1 = 2 ≡ . From 2() = 0, we obtain

 =  − (1 + ). Thus, 1() = 0 reduces to
−(1+)


− 1 = 2(1 − ) + + 2( 1


− 1).

This further reduces to 22 −  + 0 = 0, which has two roots,  = 1
4
( ±√2 − 80).

The smallest root (∗) is the unique solution, since it gives a lower value for the objective
function than the other root.

It is easy to verify that ∗ ∈ (0 1). To see that ∗  1, note that ∗  1 is equivalent to
−4  √2 − 80. If   4, the result follows since the left-hand side is negative and the
right-hand side is positive. Otherwise, we need to show that (− 4)2  2 − 80, which is
equivalent to   2 + 0. The last inequality follows from the definition of . To see that

∗  0, note that
√
2 − 80 

√
2 = .

To do comparative statics, define  = 22−+0. Observe that 

|=∗ = 4∗− =

−
√
2 − 80  0. Thus, (

∗

) = (


|=∗) = (1 − ∗)  0; (

∗

) =

(

|=∗) = (2(−1))  0; and (∗


) = (


|=∗) = (2(−1))  0.

¥

Proof of Corollary 2. Denote the third-best agreement by  = (  ). The

gain from allowing agents to send reports to a central planner is () − () = ( −
1)( − ). Since  does not depend on , but  does (




 0), the gain increases

when  falls. ¥
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Figure 1. Project’s cash flows for an agent of type i (i=1,2) if the agent

makes the additional investment at date 1.
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Figure 2. Time Line
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Project terminates 

 Add funds?  Don’t add funds? 

Date 0: 

Date 1: 

Date 2: Consume project’s final cash flow  
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Negative cash flow 
Agent obtains payments from counterparties 

Figure 3. Sequence of events for an agent of type i. 
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