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Abstract

This paper compares the role of stochastic volatility versus changes in mon-

etary policy rules in accounting for the time-varying volatility of U.S. aggregate

data. Of special interest to us is understanding the sources of the great moder-

ation of business cycle fluctuations that the U.S. economy experienced between

1984 and 2007. To explore this issue, we build a medium-scale dynamic stochastic

general equilibrium (DSGE) model with both stochastic volatility and parameter

drifting in the Taylor rule and we estimate it non-linearly using U.S. data and

Bayesian methods. Methodologically, we show how to confront such a rich model

with the data by exploiting the structure of the high-order approximation to the

decision rules that characterize the equilibrium of the economy. Our main em-

pirical findings are: 1) even after controlling for stochastic volatility (and there

is a fair amount of it), there is overwhelming evidence of changes in monetary

policy during the analyzed period; 2) however, these changes in monetary policy

mattered little for the great moderation; 3) most of the great performance of the

U.S. economy during the 1990s was a result of good shocks; and 4) the response

of monetary policy to inflation under Burns, Miller, and Greenspan was similar,

while it was much higher under Volcker.

Keywords: DSGE models, Stochastic volatility, Parameter drifting, Bayesian

methods.

JEL classification numbers: E10, E30, C11.
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1. Introduction

This paper addresses one of the main open questions in empirical macroeconomics: what

is the role of time-varying variances versus changes in monetary policy rules in accounting

for the evolving volatility of U.S. aggregate data? This discussion is particularly relevant

for understanding the sources of the great moderation of business cycle fluctuations that the

U.S. economy experienced between 1984 and 2007 and to forecast whether low volatility will

return after the turbulence of 2008-2009.1 To answer this question, we build a medium-scale

dynamic stochastic general equilibrium (DSGE) model with both stochastic volatility in the

structural shocks that drive the economy, parameter drifting in the Taylor rule followed by

the monetary authority, and rational expectations of agents regarding these changes. Then,

we estimate the model non-linearly using U.S. data and Bayesian methods, assess its fit,

and compute its impulse response functions (IRFs). We use our results to run a battery

of counterfactual exercises in which we build artificial histories of economies in which some

source of variation has been eliminated or modified in an illustrative manner.

The motivation for this investigation is transparent. Time-varying volatility tells a history

built around the changing size of the variance of structural shocks that hit the economy. The

great moderation is, then, a tale of fortune: for two and a half decades we were favored by

fate in the form of small variance of shocks. It is also a pessimistic perspective: we dwell

in joy during periods of low volatility and we struggle through times of high volatility, but

there is disappointingly little scope for the policy maker to battle the elements. Therefore,

our current turbulence may be the opening stages of an era of large business cycle swings.

Parameter drifting constructs a radically divergent account of the cause of higher stability.

It argues that some other changes in the economy, besides heteroscedastic disturbances,

explain the evolution of aggregate volatility. Some versions of the parameter drifting narrative

emphasize technological change. Two commonly cited factors are better inventory control

(McConnell and Pérez-Quirós, 2000, Ramey and Vine, 2006) or financial innovation (Dynan,

Elmendorf, and Sichel, 2006, or Guerrón-Quintana, 2009a). Other versions of the parameter

drift history, the most prominent of which is Clarida, Galí, and Gertler (2000), single out

monetary policy as the key to the reduced size of business cycle fluctuations. Thus, parameter

drifting is a tale of virtue: thanks to either better technologies or changed policies, the

1Kim and Nelson (1998), McConnell and Pérez-Quirós (2000), and Blanchard and Simon (2001) were
the first papers to point out that time-varying volatility was an important component of U.S. aggregate
fluctuations. While Kim and Nelson and McConnell and Pérez-Quirós emphasized a big change in volatility
around 1984, Blanchard and Simon saw the great moderation as part of a long-run trend toward lower
volatility only momentarily interrupted during the 1970s. Stock and Watson (2002) undertake a thorough
review of the evidence.
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economy is more stable than before. It is also an optimistic view. As long as we do not

abandon new technologies or unlearn the lessons of monetary economics, we should expect

the great moderation to continue, current maladies notwithstanding.

There is evidence in favor of parameter drifting, particularly in monetary policy. Besides

the classic work by Clarida, Galí, and Gertler (2000), basic references include Cogley and Sar-

gent (2002), Lubick and Schorfheide (2004), Boivin and Giannoni (2006), and Canova (2009),

among others. More recently, and most directly related to our investigation, Fernández-

Villaverde and Rubio-Ramírez (2008) report compelling evidence of parameter drifting in the

parameters that control the Taylor rule and in the degree of nominal rigidities in a standard

DSGE model.

Another branch of the literature, which appeared largely as a response to Clarida, Galí,

and Gertler (2000) and the other follow-up papers, has presented a strong case in favor of

heteroscedastic structural shocks. Perhaps the most influential work in this tradition is Sims

and Zha (2006). Relying on a structural vector autoregression (SVAR) with regime switching,

Sims and Zha find that the model that best fits the data only has changes over time in the

variances of structural disturbances and no variation in the monetary rule or in the private

sector of the model. But even when they allow for policy regime changes, Sims and Zha find

that the estimated changes cannot account for the evolution of observed volatility.2 Using

similar approaches, other papers corroborate this view. Among others, we can cite Cogley

and Sargent (2005), Primiceri (2005), and Canova and Gambetti (2009). In general, once

time-varying volatility is allowed, SVARs find little support for the tale of virtue; fortune

seems to be the preferred option.

But using an SVAR approach presents challenges of its own. Benati and Surico (2009)

use data generated from a simple New Keynesian DSGE model to show how regime-switching

SVARs may misinterpret changes in policy as changes in variances because changes in policy

also have implications for the volatility of endogenous variables (we can think about this

argument as one instance of the Lucas critique). They read their results as suggesting that

existing SVAR evidence may be uninformative for the question at hand.

To avoid these problems we follow a perspective more firmly grounded in explicit equilib-

riummodels. First attempts along this direction are Fernández-Villaverde and Rubio-Ramírez

(2007) and, in an important contribution, Justiniano and Primiceri (2008). These papers es-

timate DSGE economies that incorporate stochastic volatility on the structural shocks and

show that such models fit the data considerably better than economies with homoscedastic

structural shocks. However, neither of them allows for policy changes.

2Furthermore, Sims and Zha (2006) reject single-equation approaches because they require the use of
instruments, which the authors argue rely on implausible restriction assumptions and fragile identification.
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The natural next step is, thus, to estimate a DSGE model that can measure how much of

the volatility change observed in the U.S. aggregate data can be attributed to either fortune,

through heteroscedastic shocks, or virtue, in our case through changes in monetary policy.

The project is challenging because, to get an econometrically satisfying answer, we need

to simultaneously allow for both stochastic volatility and parameter drifting. A “one-at-a-

time”approach is fraught with peril. If we only allow one source of variation in the model,

the likelihood may want to take advantage of this extra degree of flexibility to fit the data

better. For example, if the “true”model is one with parameter drifting in nominal rigidities,

an estimated DSGE model with stochastic volatility may interpret this drift as time-varying

volatility in mark-up shocks. If, instead, we had time-varying volatility in technological shocks

in the data, an estimated model with only parameter drifting may conclude, erroneously,

that the parameters of the Taylor rule are changing. Finally, it is important to have a model

where agents have rational expectations over changes in monetary policy and incorporate

the distributions over these changes into their decision rules (although, at a first pass and

because of computational constraints, we will assume that the agents recognize right away

when these changes occur, a restrictive hypothesis, since changes in policy are often diffi cult

to detect even with hindsight).

Our contributions are both methodological and substantive. Methodologically, we show

how to confront a rich non-linear DSGE model with stochastic volatility with the data by

exploiting the structure of the second-order approximation to the decision rules that char-

acterize the equilibrium of the economy. We prove a theorem, for a general class of DSGE

models, that characterizes the structure of these decision rules. This theorem allows us to

handily evaluate the likelihood function of the model. As an added bonus, this approach

allows us to estimate the model without measurement errors in observables. One of the ad-

vantages of having stochastic volatility is that we multiply the number of random shocks in

the model by two: for each exogenous stochastic process, we have a shock to level and a shock

to volatility.

Our substantive findings are as follows. First, and challenging the SVAR evidence, we

show that there is overwhelming evidence of changes in monetary policy during the analyzed

period even after controlling for the fair amount of stochastic volatility present in the data.

Second, we estimate that most of the reduction in aggregate volatility was caused by a

reduction in the volatility of the innovation to the structural shocks in the economy, whereas

the changes in monetary policy mattered less for the great moderation. Structural shocks

were large and volatility under Burns, Miller, and Volcker and smaller and favorable under

Greenspan. Third, our model suggests that the response of monetary policy to inflation

during Volcker’s tenure was stronger than under Burns, Miller, or Greenspan. According to
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our econometric estimates, had monetary policy been conducted during the 1970s as it was

during the Volcker years, inflation would have been lower, in particular during the second oil

shock. Interestingly, the clear change in monetary policy during Volcker’s tenure is consistent

with one of the policy regimes identified in Sims and Zha (2006). Fourth, in comparison, our

estimated model indicates that Greenspan’s response to inflation was mild (indeed, it was

slightly lower than under Burns and Miller), but that he ruled over a period of extraordinarily

positive shocks.

We establish these facts with a number of exercises. First, we compare the fit of different

versions of the model with and without parameter drifting. Second, we inspect the smoothed

series of the estimated parameter that controls the response of the monetary policy rule

to inflation. The series shows a steep increase at the arrival of Volcker and a fast drop

after the coming of Greenspan. In fact, the response of monetary policy to inflation is back

to the levels of Burns-Miller times by the early 1990s. Third, we construct two sets of

counterfactual histories. In the first set, we eliminate stochastic volatility by fixing variances

at their historical means. In the second set, we feed alternative policy rules to different

periods of time. In particular, we compute how the economy would have behaved during the

tenure of one chairman if the monetary authority had followed the policy rule dictated by

the average estimated response to inflation of some other chairman. In other words, we use

our model to evaluate how the “average”monetary policy rule under Greenspan would have

done during Volcker’s times.

An alternative to our stochastic volatility framework would be to work with Markov

regime-switching models (either in policy rules or in variances of shocks) with discrete jumps

such as those of Bianchi (2009) or Farmer, Waggoner, and Zha (2009). This class of models

provides an extra degree of flexibility in modelling aggregate dynamics that is highly promis-

ing. In fact, some of the fast changes in policy parameters that we document suggest that

discrete jumps may be a good representation of the data. However, current technical limita-

tions regarding the computation of the equilibria induced by regime switches force researchers

to focus on small models that are only very stylized representations of an economy.

The rest of the paper is organized as follows. Section 2 presents the benchmark model that

we use for our exercise, while section 3 defines its equilibrium and how we approximate it.

Section 4, the core of the methodological contribution, explains how we evaluate the likelihood

of the model. This is achieved by stating a theorem that characterizes the structure of the

solution of second-order approximations to DSGE models with stochastic volatility. After

describing the data and the estimation approach in section 5, the empirical results appear

in sections 6 to 9. Section 10 constructs counterfactual histories. Section 11 concludes and

three appendices provide further technical details.
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2. A Benchmark Model

We adopt as the benchmark economy for our empirical investigation what has become the

standard New Keynesian DSGE model in the literature (Woodford, 2003). The model is

based on Christiano, Eichenbaum, and Evans (2005) and Smets and Wouters (2007) and we

have used it, without stochastic volatility, in Fernández-Villaverde and Rubio-Ramírez (2008)

and in Fernández-Villaverde, Guerrón-Quintana, and Rubio-Ramírez (2009). The model has

many strengths but also important weaknesses. Suffi ce it to say here that since this model has

been the base of much applied policy analysis by central banks,3 it is the natural laboratory

for this paper.

Since the model is well known, our presentation will be brief.4 A continuum of households

consume, save, hold real money balances, supply labor, and set wages subject to a demand

curve and nominal rigidities in the form of Calvo’s pricing with partial indexation. The final

good is produced by a representative firm that aggregates a continuum of intermediate goods

produced by monopolistic competitive firms. These firms manufacture the intermediate good

by renting the labor supplied and the capital accumulated by the households. Intermediate

good producers set their prices subject to a demand curve and nominal rigidities in the form

of Calvo’s pricing with partial indexation. The model is closed with a monetary authority

that fixes the one-period nominal interest rate according to a Taylor policy rule. In our spec-

ification, we introduce long-run growth through two unit roots: one in the neutral technology

and one in the investment-specific technology. Stochastic volatility appears in the form of

changing standard deviations of the five structural shocks to the model (two shocks to pref-

erences, two shocks to technology, and one shock to monetary policy). Parameter drifting

appears in the form of changing values of the parameters in the Taylor policy rule.

2.1. Households

The economy is populated by a continuum of households indexed by j. Household j’s pref-

erences are representable by a lifetime utility function:

E0

∞∑
t=0

βtdt

{
log (cjt − hcjt−1) + υ log

(
mjt

pt

)
− ϕtψ

l1+ϑ
jt

1 + ϑ

}
,

3Closely related models are used by the Federal Reserve Board (Edge, Kiley, and Laforte, 2007), the
European Central Bank (Christoffel, Coenen, and Warne, 2008) and the Bank of Sweden (Adolfson et al.,
2007).

4The interested reader can find the web document, www.econ.upenn.edu/~jesusfv/benchmark_DSGE.pdf,
in which we present the model without stochastic volatility or parameter drifting in careful detail.
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which is separable in consumption, cjt, real money balances, mjt/pt, and hours worked, ljt. In

our notation, E0 is the conditional expectation operator, β is the discount factor, h controls

habit persistence, ϑ is the inverse of the Frisch labor supply elasticity, dt is a shifter to

intertemporal preference that follows:

log dt = ρd log dt−1 + σdtεdt where εdt ∼ N (0, 1),

and ϕt is a labor supply shifter that evolves as:

logϕt = ρϕ logϕt−1 + σϕtεϕt where εϕt ∼ N (0, 1).

These two preference shocks are common to all households and provide flexibility for the

equilibrium dynamics of the model to capture fluctuations in interest rates and changes in

hours worked not accounted for by variations in consumption and wages.

The principal novelty of these preferences is that, for both shifters dt and ϕt, the standard

deviations, σdt and σϕt, of their innovations, εdt and εϕt, are indexed by time; that is, they

stochastically move period by period according to the autoregressive processes:

log σdt =
(
1− ρσd

)
log σd + ρσd log σdt−1 + ηdudt where udt ∼ N (0, 1)

and

log σϕt =
(

1− ρσϕ
)

log σϕ + ρσϕ log σϕt−1 + ηϕuϕt where uϕt ∼ N (0, 1).

Our specification for the law of motion of the standard deviations of the innovations is par-

simonious and it introduces only four new parameters, ρσd, ρσϕ , ηd, and ηϕ. At the same

time, it is surprisingly powerful in capturing some important features of the data (Shephard,

2008). All the shocks and innovations (here and later in the paper) are perfectly observed

by the agents when they are realized. Agents have, as well, rational expectations about how

they evolve over time.

We can think about the shocks to preferences and to their stochastic volatility as reflecting

the random evolution of more complicated phenomena. For example, stochastic volatility may

appear as the consequence of changing demographic structures. An economy with older agents

might be both less patient because of higher mortality risk (in our notation, a lower dt) and

less prone to reallocations in the labor force because of longer attachments to particular jobs

(in our notation, a lower σϕt).

We assume complete financial markets: households can trade a whole set of securities

contingent on idiosyncratic and aggregate events. An amount of those securities, ajt+1, which

pay one unit of consumption in event ωjt+1,t, is traded at time t at unitary price qjt+1,t in
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terms of the consumption good. We drop the dependence on the event to ease the notational

burden. In addition, households also hold bjt government bonds that pay a nominal gross

interest rate of Rt−1. Therefore, the j − th household’s budget constraint is given by:

cjt + xjt +
mjt

pt
+
bjt+1

pt
+

∫
qjt+1,tajt+1dωjt+1,t

= wjtljt +
(
rtujt − µ−1

t Φ [ujt]
)
kjt−1 +

mjt−1

pt
+Rt−1

bjt
pt

+ ajt + Tt +zt

where xt is investment, wjt is the real wage, rt the real rental price of capital, ujt > 0 the

rate of use of capital, µ−1
t Φ [ujt] is the cost of utilizing capital at rate ujt in terms of the final

good, µt is an investment-specific technological level, Tt is a lump-sum transfer, and zt is the

profits of the firms in the economy. We specify that

Φ [u] = Φ1 (u− 1) +
Φ2

2
(u− 1)2

a form that satisfies the standard conditions that Φ [1] = 0, Φ′ [·] = 0, and Φ′′ [·] > 0. This

function carries the normalization that u = 1 in the balanced growth path of the economy.

Using the relevant first-order conditions, we can find Φ1 = Φ′ [1] = r̃ where r̃ is the (rescaled)

balanced growth path rental price of capital (determined by all the other parameters in the

model). This will leave us with only one free parameter, Φ2.

The capital accumulated by household j at the end of period t is given by:

kjt = (1− δ) kjt−1 + µt

(
1− V

[
xjt
xjt−1

])
xjt

where δ is the depreciation rate and V [·] is a quadratic adjustment cost function:

V

[
xt
xt−1

]
=
κ

2

(
xt
xt−1

− Λx

)2

with adjustment parameter κ. This function is written in deviations with respect to the

balanced growth rate of investment, Λx. Therefore, along the balanced growth path, V [Λx] =

V ′ [Λx] = 0.

Our third structural shock, the investment-specific technology level µt, follows a random

walk in logs:

log µt = Λµ + log µt−1 + σµtεµt where εµt ∼ N (0, 1)

where Λµ is the drift of the process and εµt is the innovation to its growth rate (see Greenwood,

Herkowitz, and Krusell, 1997, for the classic motivation for this shock). In a similar way to
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the standard deviation of the innovations to the preference shocks, the standard deviation

σµt evolves as an autoregressive process:

log σµt =
(

1− ρσµ
)

log σµ + ρσµ log σµt−1 + ηµuµt where uµt ∼ N (0, 1).

Again, we can think about stochastic volatility as a stand-in for a more detailed explanation

of technological progress in capital production that we do not model explicitly.

We can define two Lagrangian multipliers, λjt, the multiplier associated with the budget

constraint, and qjt (the marginal Tobin’s Q), the multiplier associated with the investment

adjustment constraint normalized by λjt. Thus, the first order conditions of the household

problem with respect to cjt, bjt, ujt, kjt, and xjt can be written as:

dt (cjt − hcjt−1)−1 − bβEtdt+1 (cjt+1 − hcjt)−1 = λjt,

λjt = βEt{λjt+1
Rt

Πt+1

},

rt = µ−1
t Φ′ [ujt] ,

qjt = βEt
{
λjt+1

λjt

(
(1− δ) qjt+1 + rt+1ujt+1 − µ−1

t+1Φ [ujt+1]
)}

,

and

1 = qjtµt

(
1− V

[
xjt
xjt−1

]
− V ′

[
xjt
xjt−1

]
xjt
xjt−1

)
+ βEqjt+1µt+1

λjt+1

λjt
V ′
[
xjt+1

xjt

](
xjt+1

xjt

)2

.

We need more work to find the optimality condition with respect to labor and wages

because of the presence of monopolistic competition and nominal rigidities. Each household

j supplies a slightly different type of labor services ljt that are aggregated by a “labor packer”

into homogeneous labor ldt with the production function:

ldt =

(∫ 1

0

l
η−1
η

jt dj

) η
η−1

that is rented to intermediate good producers at the wage wt. The “labor packer”is perfectly

competitive and it takes all differentiated labor wages wjt and the wage wt as given.

The first-order conditions of the “labor packer”imply a demand function for labor:

ljt =

(
wjt
wt

)−η
ldt ∀j
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and, together with a zero profit condition wtldt =
∫ 1

0
wjtljtdj, an expression for the wage:

wt =

(∫ 1

0

w1−η
jt dj

) 1
1−η

.

Households follow a Calvo pricing mechanism when they set their wages. At the start

of every period, a randomly selected fraction 1 − θw of households can reoptimize their

wages (where, by an appropriate law of large numbers, individual probabilities and aggregate

fractions are equal). All other households index their wages given past inflation with an

indexation parameter χw ∈ [0, 1]. Therefore, the real wage of a household j that has not

changed wages for τ periods is:
τ∏
s=1

Π
χw
t+s−1

Πt+s

wjt.

Since we postulated above both complete financial markets for the households and sep-

arable utility in consumption, the marginal utilities of consumption are the same for all

households. Thus, in equilibrium, cjt = ct, ujt = ut, kjt−1 = kt, xjt = xt, qjt = qt, λjt = λt,

and w∗jt = w∗t .

The last two equalities are the most relevant to simplify our analysis: they tell us that the

shadow cost of consumption is equated across households and that all households that can

reset their wages optimally will do it at the same level w∗t . With these two results, and after

several steps of algebra, we find that the evolution of wages is described by two recursive

equations:

ft =
η − 1

η
(w∗t )

1−η λtw
η
t l
d
t + βθwEt

(
Π
χw
t

Πt+1

)1−η (
w∗t+1

w∗t

)η−1

ft+1

and

ft = ψdtϕt

(
wt
w∗t

)η(1+ϑ) (
ldt
)1+ϑ

+ βθwEt
(

Π
χw
t

Πt+1

)−η(1+ϑ)(
w∗t+1

w∗t

)η(1+ϑ)

ft+1

on the auxiliary variable ft.

Taking advantage that, in every period, a fraction 1 − θw of households set w∗t as their
wage and the remaining fraction θw partially index their price by past inflation, we can write

the law of motion of real wage as:

w1−η
t = θw

(
Π
χw
t−1

Πt

)1−η

w1−η
t−1 + (1− θw)w∗1−ηt .
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2.2. The Final Good Producer

There is one final good producer that aggregates a continuum of intermediate goods according

to the production function:

ydt =

(∫ 1

0

y
ε−1
ε

it di

) ε
ε−1

(1)

where ε is the elasticity of substitution.

The final good producer is perfectly competitive and minimizes its costs subject to the

production function (1) and taking as given all intermediate goods prices pti and the final

good price pt. The optimality conditions of this problem result in a demand function for each

intermediate good with the classic form:

yit =

(
pit
pt

)−ε
ydt ∀i

where ydt is the aggregate demand and a price for the final good:

pt =

(∫ 1

0

p1−ε
it di

) 1
1−ε

.

2.3. Intermediate Good Producers

Each of the intermediate goods is produced by a monopolistic competitor whose technology

is given by a Cobb-Douglas production function with a fixed cost:

yit = Atk
α
it−1

(
ldit
)1−α − φzt

where kit−1 is the capital rented by the firm, ldit is the amount of the “packed” labor input

rented by the firm, the parameter φ corresponds to the fixed cost of production, and At (our

fourth structural shock) is neutral productivity that follows:

logAt = ΛA + logAt−1 + σAtεAt where εAt ∼ N (0, 1).

In this specification, ΛA is the drift of the neutral technological level and εAt is the innovation

to its growth rate.

The time-varying standard deviation of this innovation evolves stochastically following

our, by now already familiar, specification:

log σAt =
(
1− ρσA

)
log σA + ρσA log σAt−1 + ηAuAt where uAt ∼ N (0, 1).
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The technology is translated by a fixed cost parameter φ and a scale variable zt =

A
1

1−α
t µ

α
1−α
t . Given our definitions of neutral productivity, At, and investment-specific pro-

ductivity, µt, we have that:

log zt = Λz + log zt−1 + zzt

where Λz = ΛA+αΛµ
1−α , zzt = zAt+αzµt

1−α , zAt = σAtεAt, and zµt = σµtεµt. We can think about zt as

the weighted level of technology in the economy, where the weight is given by the elasticity of

output with respect to capital. The constant Λz is the average growth rate of the economy.

The role of φ is to make economic profits roughly equal to zero. We scale it by zt to keep the

fixed costs constant in relative terms to the technology level. Finally, note that zzt will also

have a stochastic volatility structure that is the product of the mixture of two processes with

stochastic volatility themselves.

Intermediate good producers produce the quantity demanded of the good by renting ldit
and kit−1 at prices wt and rt. Then, by minimization, we have a marginal cost of:

mct =

(
1

1− α

)1−α(
1

α

)α
w1−α
t rαt
At

The marginal cost is constant for all firms and all production levels given At, wt, and rt.

The quantity sold of the good is determined by the demand function derived above.

Given this demand function, the intermediate good producers set prices to maximize profits.

However, when they do so, they follow the same Calvo pricing scheme as households. In each

period, a fraction 1 − θp of intermediate good producers reoptimize their prices. All other
firms partially index their prices by past inflation with an indexation parameter χ ∈ [0, 1].

Therefore, prices are set to solve the problem:

max
pit

Et
∞∑
τ=0

(βθp)
τ λt+τ
λt

{(
τ∏
s=1

Πχ
t+s−1

pit
pt+τ

−mct+τ

)
yit+τ

}

subject to

yit+τ =

(
τ∏
s=1

Πχ
t+s−1

pit
pt+τ

)−ε
ydt+τ .

In this problem, future profits are discounted using the pricing kernel of the economy,

βτλt+τ/λt (which is the right valuation criteria from the perspective of the households),

and the probability of the event “only indexation for τ periods,”θτp.

The solution for the firm’s pricing problem has a recursive structure in two new auxiliary

13



variables g1
t and g

2
t that take the form:

g1
t = λtmcty

d
t + βθpEt

(
Πχ
t

Πt+1

)−ε
g1
t+1

g2
t = λtΠ

∗
ty
d
t + βθpEt

(
Πχ
t

Πt+1

)1−ε(
Π∗t

Π∗t+1

)
g2
t+1

and

εg1
t = (ε− 1)g2

t

where

Π∗t =
p∗t
pt

is the ratio between the optimal new price (common across all firms that can reset their

prices) and the price of the final good. With this structure, the price index follows:

p1−ε
t = θp

(
Πχ
t−1

)1−ε
p1−ε
t−1 + (1− θp) p∗1−εt

or, normalizing by p1−ε
t :

1 = θp

(
Πχ
t−1

Πt

)1−ε

+ (1− θp) Π∗1−εt .

2.4. The Monetary Authority

The model is closed by the presence of a monetary authority that sets the nominal interest

rates through open market operations financed with lump-sum transfers Tt and a balanced

budget. The monetary authority follows a modified Taylor rule:

Rt

R
=

(
Rt−1

R

)γR(Πt

Π

)γΠ,t

 ydt
ydt−1

exp
(
Λyd
)
γy,t1−γR

ξt.

The first term on the right-hand side, Rt−1

R
, represents a desire for interest rate smoothing,

expressed in terms of R, the balanced growth path nominal return of capital. The second

term, Πt
Π
, an “inflation gap,”responds to the deviation of inflation from its balanced growth

path level Π. The third term,
ydt
ydt−1

exp
(
Λyd
)

is a “growth gap”: the ratio between the growth rate of the economy and Λyd , the balanced

path gross growth rate of ydt . The term, log ξt = σm,tεmt, is the monetary policy shock. The
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innovation εmt to the monetary policy shock follows a N (0, 1) process with a time-varying

standard deviation, σm,t, that follows an autoregressive process:

log σmt =
(
1− ρσm

)
log σm + ρσm log σmt−1 + ηmum,t.

In this policy rule, we have two drifting parameters: the responses of the monetary au-

thority, γΠ,t and γy,t, to the inflation and growth gap. The parameters drift over time in an

autoregressive fashion:

log γΠt =
(
1− ργΠ

)
log γΠ + ργΠ

log γΠt−1 + ηπεπt where επt ∼ N (0, 1)

and

log γyt =
(

1− ργy
)

log γy + ργy log γyt−1 + ηyεyt where εyt ∼ N(0, 1).

We assume here that the agents perfectly observe the changes in monetary policy para-

meters. A more plausible scenario would involve some filtering in real time by the agents

who need to learn the stand of the monetary authority from observed decisions. A similar

argument can be made for the values of the standard deviations of all the other shocks in the

economy. But since this learning would further complicate what is already a large model, we

leave this extension for future work.

2.5. Aggregation

Aggregate demand is given by:

ydt = ct + xt + µ−1
t Φ [ut] kt−1.

By relying on the observation that the capital-labor ratio is constant across firms, we can

derive that aggregate supply is:

yst =
At (utkt−1)α

(
ldt
)1−α − φzt

vpt

where:

vpt =

∫ 1

0

(
pit
pt

)−ε
di

is the aggregate loss of effi ciency induced by price dispersion of the intermediate goods.

Market clearing requires that

yt = ydt = yst .
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By the properties of Calvo’s pricing:

vpt = θp

(
Πχ
t−1

Πt

)−ε
vpt−1 + (1− θp) Π∗−εt .

Finally, demanded labor is given by:

ldt =
1

vwt

∫ 1

0

ljtdj

where:

vwt =

∫ 1

0

(
wjt
wt

)−η
dj.

is the aggregate loss of labor input induced by wage dispersion among differentiated types of

labor. Again, by Calvo’s pricing, this ineffi ciency evolves as:

vwt = θw

(
wt−1

wt

Π
χw
t−1

Πt

)−η
vwt−1 + (1− θw) (Πw∗

t )−η .

3. Equilibrium

We can characterize an equilibrium in our economy by compiling all the first-order conditions

of the household and firms, the Taylor rule of the monetary authority, and market clear-

ing. This equilibrium is not stationary because we have two unit roots in the processes for

technology. However, we circumvent this problem by rescaling the model c̃t = ct
zt
, λ̃t = λtzt,

r̃t = rtµt, q̃t = qtµt, x̃t = xt
zt
, w̃t = wt

zt
, w̃∗t =

w∗t
zt
, k̃t = kt

ztµt
, and ỹdt =

ydt
zt
. The model is

stationary in these transformed variables and, therefore, along the balanced growth path:

Λc = Λx = Λw = Λw∗ = Λyd = Λz.

With these rescaled variables, the states of the economy are stacked in a vector St with

19 components:

St =

(
Λ, R̂t−1,

̂̃
kt−1, υ̂

p
t−1, υ̂

w
t−1,

̂̃wt−1, ̂̃ct−1, Π̂t−1, ̂̃xt−1, ̂̃yt−1,

d̂t−1, ϕ̂t−1, γ̂Πt−1, γ̂yt−1, σ̂dt−1, σ̂ϕt−1, σ̂µt−1, σ̂At−1, σ̂mt−1

)′

where we have expressed each variable vart in terms of log deviation with respect to the

steady state, v̂art = log vart − log var, and Λ is the perturbation parameter to be described

below.

At this moment, it is also useful to clarify our wording with respect to the sources of

16



randomness in the model. Thus, (dt, ϕt, At, µt, ξt) is the vector of structural shocks (two

to preferences, two to technology, and one to monetary policy), (εdt, εϕt, εAt, εµt, εmt) is the

vector of innovations to the structural shocks, and (επt, εyt) is the vector of innovations to the

parameter drifts (one to the response to inflation and one to the response to output). We stack

these two vectors of innovations in the vector W1t = (εdt, εϕt, εµt, εAt, εmt, επt, εyt)
′ . Finally,

(σdt, σϕt, σAt, σµt, σmt) is the vector of volatility shocks and W2t = (udt, uϕt, uµt, uAt, umt)
′ is

the vector of innovations to the volatility shocks.

The equilibrium does not have a closed-form solution and we need to resort to a numerical

approximation to compute it. This computation presents three challenges. The first challenge

is that the dynamics of the state variables depend on St = (S ′t,W
′
1t,W

′
2t), a vector that stacks

states and innovations and has 31 components, an extremely demanding structure to keep

track of. The second challenge is that since we have stochastic volatility, an inherently non-

linear structure, standard linearization techniques cannot be applied. More pointedly, if we

linearized the model, stochastic volatility would disappear from the scene because the solution

of the model would be certainty equivalent. The third challenge is that since we will need to

compute the model for a large number of different parameter values in our estimation process,

speed is of the utmost importance.

Perturbation methods provide a nice solution to the computation of the model that ad-

dresses these challenges. Beyond being extremely fast, perturbation offers high levels of ac-

curacy even relatively far away from the perturbation point (Aruoba, Fernández-Villaverde,

and Rubio-Ramírez, 2006). Therefore, we perform a second order perturbation around the

deterministic steady state of the model and with respect to the perturbation parameter Λ

that we introduced earlier. The quadratic terms of this approximation allow us to capture, to

a large extent, the effects of volatility shocks and parameter drift while keeping computational

complexity at a reasonable level.

The solution of the model is then given by a transition equation for states:

St+1 =


Ψ1
s1S′t
...

Ψ1
s19S′t

+
1

2


StΨ2

s1S′t
...

StΨ2
s19S′t

 (2)

and an observation equation:

Yt = C+


Ψ1
o1 (St,St−1)′

...

Ψ1
o5 (St,St−1)′

+
1

2


(St,St−1) Ψ2

o1 (St,St−1)′

...

(St,St−1) Ψ2
o5 (St,St−1)′

 (3)
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where Yt is a vector of observables for the econometrician (five in our case) and C is a vector
of means of these observables. The lagged vector St−1 appears in the equation because, as

we will see momentarily, our observables have components in first differences.

In these equations, Ψ1
si is a 1×31 vector and Ψ2

si is a 31×31 matrix for i = 1, . . . , 19. The

first term is the linear solution of the model while the second term is the quadratic component

of the solution. Similarly, Ψ1
oi is a 1×62 vector and Ψ2

oi a 62×62 matrix for i = 1, . . . , 5 and

the interpretation of each term is the same as before: the first term is the linear component

and the second one the quadratic component of the solution.

It is important to emphasize that we are not assuming the presence of any measurement

error. Although we consider measurement errors both plausible and empirically relevant,

in our exercise we want to measure how heteroscedastic structural shocks and parameter

drifting help in accounting for the data. Consequently, we eliminate measurement errors to

sharpen our analysis. This decision also helps to illustrate how DSGE models with stochastic

volatility have a profusion of shocks that we can exploit in our estimation. We will elaborate

on this last point below.

The transition equation (2) is unique (up to an equivalence class of representations) but

the observable equation (3) is not, because it depends on what we assume the econometrician

can observe. Guerrón-Quintana (2009b) discusses the consequences for inference of selecting

different observables.

We pick as observables the first difference of the log of the relative price of investment, the

log federal funds rate, log inflation, the first difference of log output, and the first difference

of log real wages, or in our notation:

Yt = (−4 log µt, logRt, log Πt,4 log yt,4 logwt)
′ .

This implies that C =
(
−Λµ, logR, log Π,Λyd ,Λw

)′
. Later, when we take the model to the

data, we will let the likelihood pick these means, since Λµ, logR, log Π, Λyd , and Λw depend

on the structural parameters. We select these variables because they bring us information

about aggregate behavior (output), the stand of monetary policy (the interest rate and in-

flation), and the different shocks (the relative price of investment about investment-specific

technological change, the other four variables about technology and preference shocks) that

we are concerned about.

The state space representation generated by the transition equation (2) and the measure-

ment equation (3) has an interesting structure that we exploit to evaluate the likelihood of

the model. In the next section, we present a general description of that structure and how it

applies to our economy.
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4. Stochastic Volatility and Evaluation of the Likelihood

In this section we explain how to evaluate the likelihood function of our model. If we allow

Ydatat to be the data counterpart of our observables, Ydata,t =
(
Ydata1 , . . . ,Ydatat

)
to be the

history up to time t of our observables, we can write the likelihood as:

p
(
YT= Ydata,T ; γ

)
=

T∏
t=1

p
(
Yt = Ydatat |Ydata,t−1; γ

)
,

where

p
(
Yt = Ydatat |Ydata,t−1; γ

)
=

∫ ∫ ∫
p
(
Yt = Ydatat |St,W1t,St−1; γ

)
p
(
St,W1t,St−1|Ydata,t−1; γ

)
dStdW1tdSt−1 (4)

and Ydata,0 = {∅}.
Computing this likelihood is a diffi cult problem. It cannot be evaluated exactly and deter-

ministic integration problems are too slow for practical use (we have three integrals period per

period over large dimensions). Instead, we use a sequential Monte Carlo method to obtain a

numerical estimate of (4).5 As shown in Fernández-Villaverde and Rubio-Ramírez (2007), con-

ditional on having N draws of
{
sit, w

i
1t, s

i
t−1

}N
i=1
from the densities p

(
St,W1t,St−1|Ydata,t−1; γ

)
(we will explain later how we generate them), a law of large numbers implies that the integral

(4) can be approximated by:

p
(
Yt = Ydatat |Ydata,t−1; γ

)
' 1

N

N∑
i=1

p
(
Yt = Ydatat |sit, wi1t, sit−1; γ

)
(5)

Hence, we need to evaluate:

p
(
Yt = Ydatat |sit, wi1t, sit−1; γ

)
(6)

for each draw. This evaluation step is crucial not only because it is a term in (5), but

also because, in the sequential Monte Carlo that we will implement, we need (6) to re-

sample from the draws from p
(
St,W1t,St−1|Ydata,t−1; γ

)
and, in that way, get draws from

p
(
St+1,W1t+1,St|Ydata,t; γ

)
.

5This is not the only possible algorithm to do so, although it is a procedure that we have found useful
in previous work. Alternatives include DeJong et al. (2007), Kim, Shephard, and Chib (1998), Fiorentini,
Sentana, and Shepard (2004), and Fermanian and Salanié (2004).
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The measurement equation (3) implies that evaluating (6) involves solving the equation:

Ydatat = C+


Ψ1
o1 (St,St−1)′

...

Ψ1
o5 (St,St−1)′

+
1

2


(St,St−1) Ψ2

o1 (St,St−1)′

...

(St,St−1) Ψ2
o5 (St,St−1)′

 (7)

forW2,t given Ydatat , sit, w
i
1t, and s

i
t−1. Since (7) is quadratic, we will have 25 different solutions

to this equation. We are not aware of any accurate and effi cient way to find these 25 different

solutions. This problem would seem to prevent us from achieving our goal of evaluating the

likelihood function of this model.

But considering stochastic volatility allows us to convert the above-described quadratic

problem into a linear and simpler one. In particular, we illustrate how, when stochastic

volatility is present in the problem, equation (7) has only one solution. Moreover, that

solution can be found by simply inverting a matrix. Thanks to this insight, the evaluation of

the likelihood function becomes possible.6

The key to our approach is to note that, when stochastic volatility is considered, the

optimal policies functions of many economies share a particular pattern that we can exploit.

To make this point more generally, we switch in the next few paragraphs to a more abstract

notation.

The set of equilibrium conditions of a wide variety of DSGE models (including the one

described in the paper) can be written as:

Etf (Yt+1,Yt,St+1,St,Zt+1,Zt) = 0 (8)

where Et is the expectation operator conditional on information available at time t, Yt =

(Y1t,Y2t, . . . ,Ykt) is the vector of non-predetermined variables of size k, St = (S1t,S2t, . . . ,Snt)
is the vector of endogenous predetermined variables of size n, Zt = (Z1t,Z2t, . . . ,Zmt) is the
vector of exogenous predetermined variables of size m (which we call structural shocks), and

f maps R2×k+2×n+2×m into Rk+n+m.

We want to consider the case where the structural shocks follow a stochastic volatility

6Stochastic volatility may also help to circumvent a problem of some DSGE models: stochastic singularity.
In general, we need at least as many shocks as observables for the likelihood function to be well defined. This
requirement forces researchers to add extra shocks or measurement errors in situations where they might
not desire to do so. Stochastic volatility, by introducing an additional volatility shock for each structural
shock, doubles the number of shocks in the model. Even if in our model this is not necessary, on some other
occasions, the researcher might want to take advantage of this extra flexibility and either augment the number
of observables or reduce the number of shocks.
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process of the form:

Zit+1 = ρiZit + Λσit+1εit+1

where the standard deviation of the innovations evolves as:

log σit+1 = ϑi log σit + Ληiuit+1

for all i = {1, . . . ,m}.
To ease notation, we are assuming that all structural shocks face volatility shocks. It

is straightforward yet cumbersome to generalize the notation to other cases (in fact, in our

model, some of the shocks, the ones in the parameter drifting, do not follow a stochastic

volatility process).

The solution to the model given in equation (8) can be summarized by the following two

equations, one describing the evolution of predetermined variables:

St+1 = h (St,Zt−1,Σt−1, Et,Ut,Λ) (9)

and one describing the evolution of non-predetermined ones:

Yt = g (St,Zt−1,Σt−1, Et,Ut,Λ) , (10)

where Σt = (log σ1t, log σ2t, . . . , log σmt), Et = (ε1t, ε2t, . . . , εmt), and Ut = (u1t, u2t, . . . , umt)

(this assumes that the volatility shocks are uncorrelated, a restriction that could be relaxed

by the appropriate extension of the state space). To clarify notation, we think of Σt as the

volatility shocks, Et are the innovations to the structural shocks, and Ut are innovations to
volatility shocks.

We wish to find a second-order approximation of the functions h (·) : Rn+(4×m)+1 → Rn

and g (·) : Rn+(4×m)+1 → Rk around the steady state, St = S and Λ = 0. Therefore, we need

to characterize the first- and second-order derivatives of the functions h (·) and g (·) evaluated
at the steady state. The following theorem shows that the first partial derivatives of h (·) and
g (·) with respect to any component of Ut and Σt−1 evaluated at the steady state is zero; that

is, volatility shocks and their innovations do not affect the linear component of the optimal

decision rule of the agents for any i = {1, . . . ,m} (the same occurs with the perturbation
parameter Λ). A similar result has been already established by Schmitt-Grohé and Uribe

(2004) for the homoscedastic shocks case. More important, the theorem also shows that the

second partial derivative of h (·) and g (·) with respect to ui,t and any other variable but εi,t
is also zero for any i = {1, . . . ,m}.
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Theorem 1. Let us denote [Υω]ij as the derivative of the i− th element of generic function Υ

with respect to the j − th element generic variable ω evaluated at the non-stochastic steady
state (where we drop this index if ω is unidimensional). Then, for the dynamic equilibrium

model specified in equation (8), we have that:

[
hΣt−1

]i1
j

=
[
gΣt−1

]i2
j

= [hUt ]
i1
j = [gUt ]

i2
j = [hΛ]i1 = [gΛ]i2 = 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j ∈ {1, . . . ,m}.
Furthermore, if we denote [Υωξ]

i
j1,j2

as the derivative of the i − th element of generic

function Υ with respect to the j1 − th element generic variable ω and the j2 − th element
generic variable ξ evaluated at the non-stochastic steady state (where again we drop the index

for unidimensional variables), we have that:

[hΛ,St ]
i1
j = [gΛ,St ]

i2
j = 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j ∈ {1, . . . , n} ,[
hΛ,Zt−1

]i1
j

=
[
gΛ,Zt−1

]i2
j

=
[
hΛ,Σt−1

]i1
j

=
[
gΛ,Σt−1

]i2
j

= [hΛ,Et ]
i1
j = [gΛ,Et ]

i2
j = [hΛ,Ut ]

i1
j = [gΛ,Ut ]

i2
j = 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j ∈ {1, . . . ,m},[
hSt,Σt−1

]i1
j1,j2

=
[
gSt,Σt−1

]i2
j1,j2

= [hSt,Ut ]
i1
j1,j2

= [gSt,Ut ]
i2
j1,j2

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, j1 ∈ {1, . . . , n}, and j2 ∈ {1, . . . ,m} ,[
hZt−1,Σt−1

]i1
j1,j2

=
[
gZt−1,Σt−1

]i2
j1,j2

=
[
hΣt−1,Σt−1

]i1
j1,j2

=
[
gΣt−1,Σt−1

]i2
j1,j2

= 0

and

[
hZt−1,Ut

]i1
j1,j2

=
[
gZt−1,Ut

]i2
j1,j2

=
[
hΣt−1,Ut

]i1
j1,j2

=
[
gΣt−1,Ut

]i2
j1,j2

= [hUt,Ut ]
i1
j1,j2

= [gUt,Ut ]
i2
j1,j2

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j1, j2 ∈ {1, . . . ,m}, and[
hEt,Σt−1

]i1
j1,j2

=
[
gEt,Σt−1

]i2
j1,j2

= [hEt,Ut ]
i1
j1,j2

= [gEt,Ut ]
i2
j1,j2

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j1, j2 ∈ {1, . . . ,m} if j1 6= j2.

Proof. See Appendix.
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Since the statement of the theorem is long and involved, we clarify it with a table in

which we characterize the second derivatives of h (·) and g (·) with respect to the different
variables (St,Zt−1,Σt−1, Et,Ut,Λ). The way to read the table is as follows. Take an arbitrary

entry, for instance entry (1,2), StZt−1 6= 0. In this entry, we state that the cross-derivatives

of h (·) and g (·) with respect to St and Zt−1 are different from zero. Similarly, entry (3,3),

Σt−1Ut = 0, tells us that the cross-derivatives of h (·) and g (·) with respect to Σt−1 and Ut are
all zero. Entries (3,2) and (4,2) have a “*”to denote that the only cross-derivatives of those

entries that are different from zero are those that correspond to the same index j (that is, the

cross derivatives of each innovation to the structural shocks with respect to its own volatility

shock and the cross derivatives of the innovation to the structural shocks to the innovation

to its own volatility shock). The lower triangular part of the table is empty because of the

symmetry of second derivatives.

Table 4.1: Second Derivatives

StSt 6= 0 StZt−1 6= 0 StΣt−1 = 0 StEt 6= 0 StUt = 0 StΛ = 0

Zt−1Zt−1 6= 0 Zt−1Σt−1 = 0 Zt−1Et 6= 0 Zt−1Ut = 0 Zt−1Λ = 0

Σt−1Σt−1 = 0 Σt−1Et 6= 0∗ Σt−1Ut = 0 Σt−1Λ = 0

EtEt 6= 0 EtUt 6= 0∗ EtΛ = 0

UtUt = 0 UtΛ = 0

ΛΛ 6= 0

Table 4.1 tells us that, of the 21 possible sets of second derivatives, 12 are zero and 9

are not. The implications for the decision rules of agents and for the equilibrium function

are striking. The perturbation parameter, Λ, will only have a coeffi cient different from zero

in the term where it appears in a square by itself. This term is a constant that corrects

for precautionary behavior induced by risk. Volatility shocks, Σt−1 , appear with coeffi cients

different from zero only in the term where they are multiplied by the innovation to its own

structural shock. Finally, innovations to the volatility shocks, Ut, also appear with coeffi cients
different from zero when they show up with the innovation to their own structural shock Et.
The main implication of Theorem 1 for our goal of evaluating the likelihood function is

that, of the terms that complicate our work, only the ones associated with [hEt,Ut ]
i2
j1,j1

and

[gEt,Ut ]
i1
j1,j1

are different from zero. As we will see in the next corollary, this result has an

important yet rather direct implication for the structure of the observation equation.
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Corollary 2. The second-order approximation to the measurement equation (3) can be writ-
ten as:

Yt = C+


Ψ1
o1 (St,St−1)′

...

Ψ1
o5 (St,St−1)′

+
1

2


(S ′t,W

′
1t,St−1) Ψ2,1

o1 (S ′t,W
′
1t,St−1)′

...

(S ′t,W
′
1t,St−1) Ψ2,1

o5 (S ′t,W
′
1t,St−1)′



+


W ′

1tΨ
2,2
o1

...

W ′
1tΨ

2,2
o5

W2,t

where Ψ2,1
oi denotes the cross-derivative between elements of (S ′t,W

′
1t,St−1) and Ψ2,2

oi denotes

the cross-derivative between elements of W1t and elements of W2t for i ∈ {1, . . . , 5}.

We are now ready to evaluate the likelihood function. Using corollary 2 and if we define:

At (S ′t,W
′
1t, St−1) ≡ Ydatat − C−


Ψ1
o1
...

Ψ1
o5

 (St,St−1)′−

1

2


(S ′t,W

′
1t,St−1) Ψ2,1

o1 (S ′t,W
′
1t,St−1)′

...

(S ′t,W
′
1t,St−1) Ψ2,1

o5 (S ′t,W
′
1t, St−1)′


′

and

Bt (W ′
1t) ≡


W ′

1tΨ
2,2
o1

...

W ′
1tΨ

2,2
o5


we have that:

p
(
Yt = Ydatat |St,W1t,St−1; γ

)
= detB−1

t (W ′
1t) p

(
W2,t = B−1

t (W ′
1t)At (S ′t,W

′
1t,St−1)

)
which is evaluated directly given that we know Bt (W ′

1t), At (S ′t,W
′
1t,St−1), and the distribu-

tion of W2t.

With this expression, evaluated at N draws of
{
sit, w

i
1t, s

i
t−1

}N
i=1

from the conditional

densities p
(
St,W1t,St−1|Ydata,t−1; γ

)
, the likelihood (4) can be approximated by:

p
(
Yt = Ydatat |Ydata,t−1

)
' 1

N

N∑
i=1

det
(
B−1
t

(
wi′1t
))
p
(
W2,t = B−1

t

(
wi′1t
)
At

(
si
′

t , w
i′
1t, s

i
t−1

))
24



In addition, we can find the importance weights for each draw:

qit =
det
(
B−1
t (wi′1t)

)
p
(
W2,t = B−1

t (wi′1t)At
(
si
′
t , w

i′
1t, s

i
t−1

))∑N
i=1 det

(
B−1
t (wi′1t)

)
p
(
W2,t = B−1

t (wi′1t)At
(
si
′
t , w

i′
1t, s

i
t−1

)) (11)

that we will use momentarily to update our swarm of particles.

To generate the N draws of
{
sit, w

i
1t, s

i
t−1

}N
i=1

, we rely on a sequential Monte Carlo that

proceeds as follows (see Fernández-Villaverde and Rubio-Ramírez, 2007, for details):

Step 0, Initialization: Set t 1. Sample N values
{
sit−1|t−1, w

i
1t−1|t−1, s

i
t−2|t−1

}N
i=1

from p
(
St−1,W1t−1,St−2|Ydata,t−1; γ

)
.

Step 1, Prediction: Sample N values
{
sit, w

i
1t, s

i
t−1

}N
i=1

from p
(
St,W1t,St−1|Ydata,t−1; γ

)
using

{
sit−1|t−1, w

i
1t−1|t−1, s

i
t−2|t−1

}N
i=1
, the law of motion for states and the distribution

of shocks {W1t,W2t−1}.
Step 2, Filtering: Assign to each draw

(
sit, w

i
1t, s

i
t−1

)
the weight qit in (11).

Step 3, Sampling: Sample N times with replacement from
{
sit, w

i
1t, s

i
t−1

}N
i=1

and

weights {qit}
N
i=1. Call each draw

(
sit|t, w

i
1t|t, s

i
t−1|t

)
. If t < T, set t t+ 1 and go

to step 1. Otherwise stop.

Del Moral and Jacod (2002) and Künsch (2005) prove, under weak conditions, that this

sequential Monte Carlo delivers a consistent estimator of the likelihood function and that a

central limit theorem applies.

5. Data and Estimation

We estimate our model using five time series for the U.S. economy: 1) the relative price of

investment goods with respect to the price of consumption goods, 2) the federal funds rate,

3) real output per capita growth, 4) the consumer price index, and 5) real wages per capita.

Our sample covers 1959.Q1 to 2007.Q1, with 192 observations. Appendix B explains how we

construct the series.

Once we have evaluated the likelihood as outlined earlier, we can either maximize it or

combine it with a prior and rely on a Markov chain Monte Carlo algorithm to simulate from

the posterior distribution. We follow the second route. However, we pick flat priors on a

bounded support for all the parameters. The bounds are either natural economic restrictions

(for instance, the Calvo and indexation parameters lie between 0 and 1) or are so wide that

the likelihood assigns (numerically) zero probability to values outside them. Bounded flat
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priors induce a proper posterior, a convenient feature for our exercise below that assesses the

fit of the model.

We resort to flat priors for two reasons. First, to reduce the impact of presample infor-

mation and show that our results arise mainly from the shape of the likelihood and not from

the prior (although, of course, flat priors are not invariant to reparameterization). Thus, the

reader who wants to interpret our posterior modes as maximum likelihood point estimates

can do so. Second, because as we learned in Fernández-Villaverde et al. (2009), eliciting

priors for stochastic volatility is diffi cult, since we deal with unfamiliar units, such as the

variance of volatility shocks, about which we do not have clear beliefs.

Flat priors come, though, at a price: before proceeding to the estimation, we have to fix

several parameters. We are dealing with a large model that suffers from weak identification

along some dimensions. Our ability to learn from the data is sharpened if we avoid searching

over these dimensions.

Table 5.1: Fixed Parameters

β h ψ ϑ δ α κ

0.99 0.9 8 1.17 0.025 0.21 9.5

ε η φ Φ2 ργΠ
ργy ηy

10 10 0 0.001 0.95 0 0

Table 5.1 lists the fixed parameters. Our guiding criterion in selecting them was to pick

conventional values in the literature. The discount factor, β = 0.99, is a default choice, habit

persistence, h = 0.9, matches the observed sluggish response of consumption to shocks, the

parameter controlling the level of labor supply, ψ = 8, captures the average amount of hours

in the data, and the depreciation rate, δ = 0.025, induces the appropriate capital-output

ratio. The elasticities of substitution, ε = η = 10, deliver average mark-ups of around 10

percent, a common value in these models. We set the fixed cost of production, φ, to zero,

since it is nearly irrelevant for the dynamics of the model, and we set the cost of capital

utilization, Φ2, to a small number to introduce some curvature in this decision.

Three parameter values are borrowed from the point estimates from a similar model with-

out stochastic volatility or parameter drifting presented in Fernández-Villaverde, Guerrón-

Quintana, and Rubio-Ramírez (2009). The first is the inverse of the Frisch labor elasticity,

ϑ = 1.17. As argued by Rogerson and Wallenius (2009), this aggregate elasticity is compat-

ible with microeconomic data, once we allow for intensive and extensive margins on labor

supply. The second is the coeffi cient of the intermediate goods production function, α = 0.21.

This value is lower than the common calibration of Cobb-Douglas production functions in
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real business cycle models because, in our environment, we have positive profits that also

appear as capital income in the National Income and Product Accounts. The third value

that we borrow is the adjustment cost, κ = 9.5, a number in line with other estimates from

DSGE models (κ would be particularly hard to identify, since investment is not one of our

observables).

The autoregressive parameter of the evolution of the response to inflation, ργΠ
, is set to

0.95. In preliminary estimations, we discovered that the likelihood pushed this parameter

to 1. When this happened, and although the model was still in the determinacy region, the

simulations became numerically unstable: after some shocks, the reaction of interest rates

to inflation could be too tepid for too long. The 0.95 value seems to be the highest possible

value of ργΠ
such that the problem does not appear. The last two parameters, ργy and ηy,

are equal to zero because, also in exploratory estimations, the likelihood favored values of

ηy ≈ 0. Thus, we decided to forget about them and make γy,t = γy.

To find the posterior, we proceed as follows. First, we define a grid of parameter values and

check for the regions of high posterior density by evaluating the likelihood function in each

point of the grid. This is a time-consuming procedure, but it ensures that we are searching

in the right zone of the parameter space. Once we have identified the global maximum in

the grid, we initialize a random-walk Metropolis-Hastings algorithm from this point. After

an extensive fine-tuning of the algorithm, we draw 10,000 times from the chain.

6. Parameter Estimates

We now examine our parameter estimates. To ease the discussion, we group them in different

tables, one for each set of parameters dealing with related aspects of the model. In all cases,

we report the mode of the posterior and the standard deviation in parenthesis below (in the

interest of space, we do not include the whole histograms of the posterior).

Table 6.1: Posterior, Parameters of Nominal Rigidities

θp χ θw χw

0.8139
(0.0143)

0.6186
(0.024)

0.6869
(0.0432)

0.6340
(0.0074)

Table 6.1 presents the results for the nominal rigidities parameters. Our estimates indicate

an economy with substantial rigidities in prices, which are reoptimized roughly once every five

quarters, and in wages, which are reoptimized approximately every three quarters. Moreover,

since the standard deviations are small, there is enough information on the data about this

result. At the same time, there is a fair degree of indexation, between 0.62-0.63, which brings
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a strong persistence of inflation. While it is tempting to compare our estimates with the

evidence on the individual duration of prices as reviewed by Klenow and Malin (2009), in

our model all prices and wages change every quarter. That is why, to a naive observer, our

economy would look like one displaying tremendous price flexibility.

Table 6.2: Posterior, Parameters of the Stochastic Processes for Structural Shocks

ρd ρϕ Λµ ΛA

0.1182
(0.0049)

0.9331
(0.0425)

0.0034
(6.6e−5)

0.0028
(4.1e−5)

Table 6.2 reports the findings for the parameters of the stochastic processes for the struc-

tural shocks. We estimate a low persistence of the intertemporal preference shock and a high

persistence of the intratemporal one. The low estimate of ρd gets the quick variations in

marginal utilities of consumption that match output growth and inflation fluctuations. The

intratemporal shock is persistent to account for long-lived movements in hours worked. We es-

timate mean growth rates of technology of 0.0034 (neutral) and 0.0028 (investment-specific).

Those numbers give us an average growth of the economy of 0.44 percent per quarter, or

around 1.77 percent on an annual basis (0.46 and 1.86 percent in the data, respectively).

Technology shocks, in our model, are deviations with respect to these drifts. Thus, we esti-

mate that At falls in only 8 of the 192 quarters in our sample (which roughly corresponds to

the percentage of quarters where measured productivity falls in the data), even if we estimate

negative innovations to neutral technology in 103 quarters.

Table 6.3: Posterior, Parameters of the Stochastic Processes for Volatility Shocks

log σd log σϕ log σµ log σA log σm

−1.9834
(0.0726)

−2.4983
(0.0917)

−6.0283
(0.1278)

−3.9013
(0.0745)

−6.000
(0.1471)

ρσd ρσϕ ρσµ ρσa ρσm
0.9506
(0.0298)

0.1275
(0.0032)

0.7508
(0.035)

0.2411
(0.005)

0.8550
(0.0231)

ηd ηϕ ηµ ηa ηm

0.3246
(0.0083)

2.8549
(0.0669)

0.4716
(0.006)

0.7955
(0.013)

1.1034
(0.0185)

The results for the parameters of the stochastic volatility processes appear in table 6.3. In

all cases, the ρ’s and the η’s are far away from zero: the likelihood strongly favors values where

stochastic volatility plays an important role. The standard deviations of the innovations of

the intertemporal preference shock and of the monetary policy shock are the most persistent,

while the standard deviation of the innovation of the intratemporal preference shock is the
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least persistent. The standard deviation of the innovations of the volatility shock to the

intratemporal preference shock, ηϕ = 2.8549, is large: the model asks for fast changes in the

size of movements in marginal utilities of leisure to reproduce the hours data.

Table 6.4: Posterior, Policy Parameters

γR log γy Π log γΠ ηπ

0.7855
(0.0162)

−1.4034
(0.0498)

1.0005
(0.0043)

0.0441
(0.0005)

0.1479
(0.002)

In table 6.4., we have the estimates of the policy parameters. The autoregressive compo-

nent of the federal funds rate is high, 0.7855, although somewhat smaller than in estimations

without parameter drift. The value of γy (0.24 in levels) is similar to other results in the lit-

erature. The inflation along the balanced growth path is estimated to be 0.0005 per quarter.

This parameter requires some comment. As for all the other endogenous variables, the law of

motion of inflation is not centered around its value along the balanced growth path. Instead,

it is moved away by the second-order terms in the solution. In this case, the constant in

the second order associated with the squared value of the perturbation parameter is 0.0013.

These effects allow the model to capture the level of inflation in the data.7

Finally, the estimated value of γΠ (1.045 in levels) guarantees local determinacy of the

equilibrium. To see this, note that the relevant part of the solution of the model for local

determinacy is the linear component. This component depends on γΠ, the mean policy re-

sponse, and not on the current value of γΠt. The economic intuition is that local unicity

survives even if γΠt temporarily violates the Taylor principle as long as there is reversion

to the mean in the policy response and, thus, the agents have the expectation that γΠt will

satisfy the Taylor principle on average. For a related result in models with Markov-switching

regime changes, see Davig and Leeper (2006). While we cannot find an analytical expression

for the determinacy region, numerical experiments show that, conditional on the other point

estimates, values of γΠ above 0.98 ensure uniqueness. Since the likelihood assigns zero proba-

bility to values of γΠ lower than 1.01, well inside the determinacy region, multiplicity of local

equilibria is not an issue here.

7These effects also enormously complicate the introduction of time variation in Π. The likelihood wants
to match the moments of the ergodic distribution of inflation, not the level of Π, which is inflation along the
balanced growth path. When we have non-linearities, the mean of that ergodic distribution may be far from
Π. Therefore, learning from that mean about Π is hard. Learning from that mean about a time-varying Π is
even harder.
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7. Impulse Response Functions

Before continuing the exploration of our results, we plot the impulse response functions (IRFs)

generated by the model to a monetary policy shock. This exercise is a powerful reality check.

If the IRFs match the shapes and sizes of those gathered by time series methods such as

SVARs, it will strengthen our belief in the rest of our results. Otherwise, we should at least

understand where the differences come from.

Figure 7.1: IRFs of inflation, output growth, and the federal funds rate to a monetary

policy (εmt) shock. The responses are measured as log differences with respect to the mean

of the ergodic distribution.
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Auspiciously, the answer is positive: our model generates dynamic responses that are close

to the ones from SVARs (see, for instance, Sims and Zha, 2006). Figure 7.1 plots the IRFs

to three variables commonly discussed in monetary models: the federal funds rate, output

growth, and inflation. Since we have a non-linear model, in all the figures in this section,

we report the generalized IRFs starting from the mean of the ergodic distribution (Koop,

Pesaran, and Potter, 1996). After a one-standard-deviation shock to the federal funds rate,

inflation goes down in a hump-shaped pattern for many quarters and output growth drops.

Figure 7.2 plots the IRFs after a one-standard-deviation innovation to the monetary policy

shock computed conditional on fixing γΠt to the estimated mean during the tenure of each of

three different chairmen of the Board of Governors: the combination Burns-Miller, Volcker,

and Greenspan. This exercise tells us how the variation on the systematic component of

monetary policy has affected the dynamics of aggregate variables. Furthermore, it allows a

comparison with numerous similar exercises done in the literature with SVARs where the

IRFs are estimated on different subsamples.

The most interesting difference is that the response of output growth under Volcker was

the mildest: the estimated average stand of monetary policy under his tenure reduces the

volatility of output. Inflation responds more moderately as well since the agents have the

expectation that future shocks will be smoothed out by the monetary authority. In models

such as ours, this stabilization of the economy is generally welfare improving since it reduces

price and wage dispersion and lowers consumption fluctuations. This finding also explains

why the IRFs of the interest rate are nearly on top of each other for all three periods: while

we estimate that monetary policy responded more during Volcker’s years for any given level

of inflation than under Burns-Miller or Greenspan, this policy lowers inflation deviations and

hence moderates the actual movement along the equilibrium path of the economy. Moreover,

this second set of IRFs already points out one important result of this paper: we estimate

that monetary policy under Burns-Miller and Greenspan was similar, while it was different

under Volcker. This finding will be reinforced by the results we present below.
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Figure 7.2: IRFs of inflation, output growth, and the federal funds rate to a monetary

policy (εmt) shock conditional on the mean of the Taylor rule parameters of each chairmen.

The responses are measured as log differences with respect to the mean of the ergodic

distribution.
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Figure 7.3: IRFs of inflation, output growth, and the federal funds rate to an intertemporal

demand (εdt) shock, an intratemporal demand (εφt) shock, an investment-specific (εµt)

shock, and a neutral technology (εAt) shock. The responses are measured as log differences

with respect to the mean of the ergodic distribution.

For completeness, we also plot, in figure 7.3, the IRFs to each of the other four shocks in our

model: the two preferences shocks (intertemporal and intratemporal) and the two technology

shocks (investment-specific and neutral). The behavior of the model is standard. A one-

standard-deviation intertemporal preference shock raises output growth and inflation because

there is an increase in the desire for consumption in the current period. The intratemporal

shock lowers output because labor becomes less attractive, driving up the marginal costs and

with it, prices. The two supply shocks raise output growth and lower inflation by increasing

productivity.
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8. Model Fit

After the point estimates and the IRFs, our next step is to examine the fit of the model

and how it compares with alternative specifications. In this way, we document the first

main finding of the paper: the data strongly support the view that monetary policy has

changed over time even after including stochastic volatility. This finding corroborates our

interpretation that the differences in IRFs reported in figure 7.2 are empirically relevant.

Given our Bayesian framework, a natural approach for model comparison is the computa-

tion of log marginal data densities (log MDD) and log Bayes factors. The log MDD of version

i of a model is defined as

log p
(
YT= Ydata,T ; i

)
= log

∫
p
(
YT= Ydata,T ; γ, i

)
p (γ; i) dγ, (12)

where p
(
YT= Ydata,T ; γ, i

)
is the likelihood and p (γ; i) is the prior for the parameters of

version i. The log Bayes factor between specifications i and j, a measure of the evidence in

the data for one specification above the other, is

logBi,j = log p
(
YT= Ydata,T ; i

)
− log p

(
YT= Ydata,T ; j

)
.

The Bayes factor is attractive because it automatically penalizes specifications with unneeded

free parameters.

We compare the full model with stochastic volatility and parameter drifting (drift) with

a version without parameter drifting (no drift) but with stochastic volatility. In this second

case, we have two parameters less, ργΠ
and ηπ (but we still have the mean response log γΠ of

monetary policy to inflation deviations). To ease notation, we partition the parameter vector

γ as γ =
(
γ̃, ργΠ

, ηπ
)
where γ̃ is the vector of all the other parameters, common to the two

versions of the model.

Given that 1) our priors are uniform, 2) independent of each other, and 3) covers all the

area where the likelihood is (numerically) positive, and that 4) the priors on γ̃ are common

across the two specifications of the model, we can write

log p
(
YT= Ydata,T ; drift

)
= log

∫
p
(
YT= Ydata,T ; γ, drift

)
p (γ̃) p

(
ργΠ

)
p (ηπ) dγ =

= log

∫
p
(
YT= Ydata,T ; γ, drift

)
dγ + log p (γ̃) + log p

(
ργΠ

)
+ log p (ηπ) ,
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where log p (γ̃), log p
(
ργΠ

)
, and log p (ηπ) are constants and

log p
(
YT= Ydata,T ;no drift

)
= log

∫
p
(
YT= Ydata,T ; γ̃,no drift

)
p (γ̃) dγ̃ = log

∫
p
(
YT= Ydata,T ; γ̃,no drift

)
dγ̃ + log p (γ̃) .

Thus

logBdrift, no drift = log p
(
YT= Ydata,T ; drift

)
− log p

(
YT= Ydata,T ;no drift

)
= log

∫
p
(
YT= Ydata,T ; γ, drift

)
dγ̃ − log

∫
p
(
YT= Ydata,T ; γ̃,no drift

)
dγ̃ − log p

(
ργΠ

)
− log p (ηπ) .

The first two terms, log
∫
p
(
YT= Ydata,T ; γ, drift

)
dγ − log

∫
p
(
YT= Ydata,T ; γ̃,no drift

)
dγ̃,

tell us how much better the version with parameter drift fits the data in comparison with the

version with no drift. The last two terms, log p
(
ργΠ

)
+ log p (ηπ) , penalize for the presence

of two extra parameters in the version with parameter drift.

We estimate the log MDDs following Geweke’s (1998) harmonic mean method. This

requires us to generate a new draw of the posterior of the model for the specification with no

parameter drift to compute log
∫
p
(
YT= Ydata,T ; γ̃,no drift

)
dγ̃. After doing so, we find that

logBdrift, no drift = 126.1331 + log p
(
ργΠ

)
+ log p (ηπ) .

This expression shows a potential problem of Bayes factors: by picking uniform priors for

ργΠ
and ηπ spread out over a suffi ciently large interval, we could overcome any difference in

fit. But the prior for ργΠ
is pinned down by our desire to keep that process stationary, which

imposes natural bounds in [−1, 1] and makes log p
(
ργΠ

)
= −0.6931. Thus, there is only one

degree of freedom left: our choice of log p (ηπ).

Any sensible prior for ηπ will only put mass in a relatively small interval: the point

estimate is 0.1479, the standard deviation is 0.002, and the likelihood is numerically zero for

values bigger than 0.2. Hence, we can safely impose that log p (ηπ) > −1 (log p (ηπ) = −1

would imply a uniform prior between 0 and 2.7183, a considerably wider support than any

evidence in the data) and conclude that logBdrift, no drift > 124.4400. This is conventionally

considered overwhelming evidence in favor of the model with parameter drift (Jeffreys, 1961,

for instance, suggests that differences bigger than 5 are decisive).8 Thus, even after controlling

for stochastic volatility, the data strongly prefer a specification of the model where monetary

policy has changed over time. This finding, however, does not imply that volatility shocks

8An alternative way to see this is that, to overcome the evidence in the data as recorded by the difference
in loglikelihoods, log p (ηπ) should be defined between 0 and 3.0054e+ 054, clearly an absurd proposition.
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did not play an important role in the great moderation. In fact, as we will see in section 10,

they were a key mechanism to account for it.

It has been noted that the estimation of log MDDs is dangerous because of numerical

instabilities in the evaluation of the integral (12). This concern is particularly relevant in our

case, since we have a large model saddled with a burdensome computation. As a robustness

analysis, we also computed the Bayesian Information Criterion (BIC) (Schwarz, 1978). The

BIC, which avoids the need to handle the integral in (12), can be understood as an asymp-

totic approximation of the Bayes factor that also automatically penalizes for unneeded free

parameters. The BIC of model i is defined:

BICi = −2 ln p
(
YT= Ydata,T ; γ̂, i

)
+ ki lnn

where γ̂ is the maximum likelihood estimator (or, in our case given our flat priors, the mode

of the posterior), ki is the number of parameters, and n is the number of observations. Then,

the BIC of the model with stochastic volatility and parameter drifting is:

BICdrift = −2 ∗ 3885 + 28 ∗ ln 192 = −7, 622.8

If we eliminate parameter drifting and the parameters ργΠ
and ηπ associated with it (and, of

course, with a new point estimate of the other parameters):

BICno drift = −2 ∗ 3810.7 + 26 ∗ ln 192 = −7, 484.7

The difference is, therefore, of over 138 log points, which is again overwhelming evidence in

favor of the model with parameter drifting.

The comparison with the case without stochastic volatility is more diffi cult, since we

are taking advantage of its presence to evaluate the likelihood. Fortunately, Justiniano and

Primiceri (2008) and Fernández-Villaverde and Rubio-Ramírez (2007) estimate models sim-

ilar to ours with and without stochastic volatility (in the first case, using only a first-order

approximation to the decision rules of the agents and in the second with measurement errors).

Both papers find that the fit of the model improves substantially when we include stochastic

volatility. Finally, Fernández-Villaverde and Rubio-Ramírez (2008) compare a model with

parameter drifting and no stochastic volatility with a model without parameter drifting and

no stochastic volatility and report that parameter drifting is also strongly preferred by the

likelihood. These findings corroborate the evidence of the importance of changes in volatility

gathered by Sims and Zha (2006) using an SVAR perspective.
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9. Smoothed Shocks

We present now the smoothed estimates of the structural shocks, volatility shocks, and drifting

parameters of the model. Figure 9.1 reports the log-deviations with respect to their means

for the intertemporal, intratemporal, and monetary shocks and deviations of the growth rate

of the investment and technological shocks with respect to their means. To ease reading of

the results, we color different vertical bars to represent each of the periods at the Federal

Reserve: the McChesney Martin years from the start of our sample in 1959 to the appointment

of Burns in February 1970 (white), the Burns-Miller era (light blue), the Volcker interlude

from August 1979 to August 1987 (grey), the Greenspan times (orange), and Bernanke’s

tenure from February 2006 (yellow).

We see in the top left panel of figure 9.1 that the intertemporal shock, d̂t, is particularly

high in the 1970s. This increases households’desire for current consumption (for instance,

because of the entrance of baby boomers into adulthood). A higher aggregate demand trig-

gers, in the model, the higher inflation observed in the data for those years and generates

challenges for the monetary authority that we will discuss below. The shock has a dramatic

drop in the second quarter of 1980. This is precisely the quarter where the Carter administra-

tion invoked the Credit Control Act (started on March 14, 1980). Schreft (1990) documents

that this measure caused turmoil in financial markets and, most likely, distorted intertempo-

ral choices of households, which is reflected in the large negative innovation to d̂t. The low

values of d̂t in the 1990s with respect to the 1970s and 1980s eased the inflationary pressures

in the economy.

The shock to the utility of leisure, ϕ̂t, grows in the 1970s and falls in the 1980s to stabilize

at a very low value in the 1990s. The likelihood wants to track, in this way, the path of

average hours worked: low in the 1970s, increasing in the 1980s, and stabilizing in the 1990s.

Higher hours also lower the marginal cost of firms (wages fall relative to the technological

level). The reduction in marginal costs also helped to reduce inflation during Greenspan’s

tenure.

The evolution of the investment-specific technology, µ̂t
µt−1

, shows a clear drop after 1973

(when it is likely that energy-intensive capital goods suffered the consequences of the oil shocks

in the form of economic obsolescence) and very positive realizations in the late 1990s (our

model interprets the sustained boom of those years as the consequence of strong improvements

in investment technology). These positive realizations were an additional help to contain

inflation during those years. In comparison, the neutral-technology shocks, Ât
At−1

, have been

stable since 1959, with only a few big shocks at the end of the sample.
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Figure 9.1: Smoothed intertemporal demand (d̂t) shock, intratemporal demand (φ̂t) shock,

investment-specific ( µ̂t
µt−1

) shock, technology ( Ât
At−1

) shock, and monetary policy (ξ̂t) shock.

The evolution of the monetary policy shock, ξ̂t, reveals large innovations the early 1980s.

This is due both to the fast change in policy brought about by Volcker in and to the fact

that a Taylor rule might not fully capture the dynamics of monetary policy during a period

in which money growth targeting was attempted. Sims and Zha (2006) also find that the

Volcker period appears to be one with large disturbances to the policy rule and argue that

the Taylor rule formalism can be a misleading perspective from which to view policy during

that time. Our evidence from the estimated intertemporal, intratemporal, and investment

shocks suggests that monetary authorities faced a more diffi cult environment in the 1970s

and early 1980s than in the 1990s.
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As a way to gauge the level of uncertainty of our smoothed estimates, we plot in figure

9.2 the same shock plus/minus two standard deviations. The lesson to take away from this

figure is that, in all cases, the data are informative about the history we just narrated.

Figure 9.2: Smoothed intertemporal demand (d̂t) shock, intratemporal demand (φ̂t) shock,

investment-specific ( µ̂t
µt−1

) shock, technology ( Ât
At−1

) shock, and monetary policy (ξ̂t) shock

+/- 2 Standard Deviations.

We move now, in figure 9.3, to plot the evolution of the standard deviation of the inno-

vation of the structural shocks, all of them in log-deviations with respect to their estimated

means. We see in this figure that the standard deviation of the intertemporal shock was

particularly high in the 1970s and only slowly went down during the 1980s and early 1990s.
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By the end of the sample, the standard deviation of the intertemporal shock was roughly at

the level where it started. In comparison, the standard deviation of all the other shocks is

relatively stable except, perhaps, for the big drop in the standard deviation of the monetary

policy shock in the early 1980s and the big changes in the standard deviation of the invest-

ment shock during the period of oil price shocks. Hence, the 1970s and the 1980s were more

volatile than the 1960s and the 1990s, creating a tougher environment for monetary policy.

This result also confirms Blanchard and Simon’s (2001) observation that volatility had a

downward trend in the 20th century with an abrupt and temporal increase in the 1970s.

Figure 9.3: Smoothed standard deviation shocks to the intertemporal demand (σ̂dt) shock,

the intratemporal demand (σ̂φt) shock, the investment-specific (σ̂µt) shock, the technology

(σ̂At) shock, and the monetary policy (σ̂mt) shock.
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In figure 9.4, we plot the same results except that now we add two standard deviations to

assess posterior uncertainty. Again, the lesson from this figure is that the big movements in

the different series that we report can be ascertained with a reasonable degree of confidence.

Figure 9.4: Smoothed standard deviation shocks to the intertemporal demand (σ̂dt) shock,

the intratemporal demand (σ̂φt) shock, the investment-specific (σ̂µt) shock, the technology

(σ̂At) shock, and the monetary policy (σ̂mt) shock +/- 2 standard deviations.

Finally, in figure 9.5, we plot the evolution of the response of monetary policy to inflation

plus/minus a two-standard-deviation interval. Figure 9.5 shows us an intriguing narrative.

The parameter γΠt started the sample around its estimated mean, slightly over 1, and it grew

more or less steadily during the 1960s until reaching a peak in early 1968. After that year, γΠt
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suffered a fast collapse that took it below 1 in 1971. To put this evolution in perspective, it

is useful to remember that Burns was appointed chairman in February 1970. The parameter

stayed below 1 for all of the 1970s, showing either that monetary policy did not satisfy the

Taylor principle or that our postulated monetary policy rule is not a good description of the

behavior of the Fed at the time (for example, because the Fed was using real-time data to

make its decisions; see Orphanides, 2002).

Figure 9.5: Smoothed path for the Taylor rule parameter on inflation +/- 2 standard

deviations.

The arrival of Volcker is quickly picked up by our smoothed estimates: γΠt increases to over

2 after a few months and stays high during all the years of Volcker’s tenure. Interestingly, our
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estimate captures well the observation by Goodfriend and King (2007) that monetary policy

tightened in the spring of 1980 as inflation and long-run inflation expectations continued to

grow. The level of γΠt stayed roughly constant at this high during the remainder of Volcker’s

tenure.

But as quickly as γΠt rose when Volcker arrived, it went down again when he departed.

Greenspan’s tenure at the Fed meant that, by 1990, the response of the monetary authority

to inflation was again below 1. During all the following years, γΠt was low, probably even

below the values that it took during Burns-Miller’s time. Moreover, our estimates of γΠt

are relatively tight, suggesting that posterior uncertainty may not be the full explanation

behind these movements. But if monetary policy in the 1970s was similar to policy in the

1990s, how can our model account for the different economic performance between the two

decades? While our smoothed shocks already hint at the reason (the 1990s were characterized

by favorable shocks and low volatility, compared with either Burns-Miller’s or Volcker’s time),

to satisfactorily answer this question, in the next section we build counterfactual histories.

10. Historical Counterfactuals

One important goal of our research is to quantify how much of the observed changes in the

volatility of aggregate variables can be accounted for by changes in the standard deviations

of shocks and how much by changes in policy. To accomplish this, we build a number of

historical counterfactuals. These are internally coherent exercises in which we remove one

source of variation at a time and we measure how aggregate variables would have behaved

when hit only by the remaining shocks. Since our model is structural in the sense of Hurwicz

(1962) (it is invariant to interventions, including shocks by nature such as the ones we are

postulating), we will obtain an answer that is robust to the Lucas critique.

In the next two subsections, we will always plot the same three basic variables that we used

in Section 7: inflation, output growth, and the federal funds rate. Counterfactual histories

of other variables could be built analogously. Also, we will have vertical bars for the tenure

of each chairman, following the same color scheme as in Section 9.

10.1. Counterfactual I: No Volatility Changes

In our first historical counterfactual, we compute how the economy would have behaved in the

absence of changes in the volatility of the shocks, that is, if the volatility of the innovation

of the structural shocks had been fixed at its historical mean. We can think about this

exercise as measuring the effect of virtue by eliminating fortune. To do so, we back up the

smoothed structural shocks as we did in section 9 and we feed them to the model, given
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our parameter point estimates and the historical mean of volatility, to generate series for

inflation, output, and the federal funds rate. We present our findings in two steps. First, we

discuss several moments of the data and the counterfactuals. Second, we compare the paths

of our counterfactual histories over time with the observed data.

10.1.1. Moments

Table 10.1 reports the moments of the data (in annualized terms) and the moments from the

counterfactual history (no s.v. in the table stands for “no stochastic volatility”). In both

cases, we include the moments for the whole sample and for the sample divided before and

after 1984.Q1, a conventional date for the start of the great moderation (McConnell and

Pérez-Quirós, 2000). In the last two rows of the table, we compute the ratio of the moments

after 1984.Q1 over the moments before 1984.Q1.9

Table 10.1: No Volatility Changes, Data versus Counterfactual History

Means Standard Deviations

Inflation
Output

Growth
FFR Inflation

Output

Growth
FFR

Data 3.8170 1.8475 6.0021 2.6181 3.5879 3.3004

Data, pre 1984.1 4.6180 1.9943 6.7179 3.2260 4.3995 3.8665

Data, after 1984.1 2.9644 1.6911 5.2401 1.3113 2.4616 2.3560

No s.v. 2.5995 0.7169 6.9388 3.5534 3.1735 2.4128

No s.v., pre-1984.1 2.0515 0.9539 6.3076 3.7365 3.4120 2.7538

No s.v., after-1984.1 3.1828 0.4647 7.6106 3.2672 2.8954 1.7673

Data, post-1984.1/pre-1984.1 0.6419 0.8480 0.7800 0.4065 0.5595 0.6093

No s.v., post-1984.1/pre-1984.1 1.5515 0.4871 1.2066 0.8744 0.8486 0.6418

Some of the numbers in table 10.1 are well known. For instance, after 1984, the standard

deviation of inflation falls by nearly 60 percent, the standard deviation of output growth falls

by 44 percent, and the standard deviation of federal funds rate falls by 39 percent. In terms

of means, after 1984, there is less inflation and the federal funds rate is lower, but output

growth is also 15 percent lower.

More novel are the numbers that come from our counterfactual. Without changes in

volatility, the great moderation would have been noticeably smaller. The standard deviation

9The benchmark model with stochastic volatility plus parameter drifting replicates the data exactly. Hence,
there is no need to report the volatility results from the model in table 10.1.
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of inflation would have fallen by only 13 percent, the standard deviation of output growth

would have fallen by 16 percent, and the standard deviation of the federal funds rate would

have fallen by 35 percent, that is, only 33, 20, and 87 percent, respectively, of how much they

would have fallen otherwise.10

Table 10.1 documents the second main finding of the paper: without changes in the

standard deviations of the innovation of the structural shocks, the great moderation would

not have been nearly as big as we observed in the data. How do we reconcile these findings

with the findings in section 8? While there is strong evidence of changes in the systematic

component of monetary policy, they can account for only a fraction of the great moderation

observed after 1984. In other words: according to our estimated model, monetary policy

has a relatively small role in affecting aggregate outcomes besides inflation. Also, without

stochastic volatility, output growth would have been quite lower on average. As we will see

in the next section, this would have had important consequences for the performance of the

economy during the last 15 years of our sample.

10.1.2. Counterfactual Paths

To further illustrate the previous results, figure 10.1 compares the whole path of the counter-

factual history (blue line) with the observed one (red line). Figure 10.1 tells us that volatility

shocks mattered all across the sample. The run-up for inflation would have been much slower

in the late 1960s (inflation would have actually been negative during the last years of Mar-

tin’s tenure) with small effects on output growth or the federal funds rate (except at the very

end of the sample). Inflation would not have picked up as nearly as much during the first

oil shock, but output growth would have suffered. During Volcker’s time, inflation would

also have fallen faster with little cost to output growth. These are indications that both

Burns-Miller and Volcker suffered from large and volatile shocks to the economy.

In comparison, during the 1990s, inflation would have been more volatile, with a big

increase in the middle of the decade. Similarly, during those years, output growth would

have been much lower, with a long recession between 1994 and 1998, and the federal funds

rate would have been prominently higher. Confirming the results presented in section 9, this

is yet another manifestation of how placid the 1990s were for policymakers.

10We must resist here the temptation of undertaking a standard variance decomposition exercise. Since we
have a second-order approximation to the policy function and its associated cross-product terms, we cannot
neatly divide total variance among the different shocks as we could do in the linear case.

45



Figure 10.1: Counterfactual history with no changes in volatility.
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10.2. Counterfactual II: Switching Chairmen

In our second counterfactual we move one chairman from his mandate to an alternative time

period. For example, we appoint Greenspan as chairman during the Burns-Miller years. By

that, we mean that the monetary authority would have followed the policy rule dictated by

the average γΠt that we estimated during Greenspan’s time while starting from the same

states as Burns-Miller and suffering the same shocks (both structural and of volatility). We

repeat this exercise with all the other possible combinations: Volcker in the Burns-Miller

decade, Burns-Miller in Volcker’s mandate, Greenspan in Volcker’s time, Burns-Miller in the

Greenspan years, and, finally, Volcker in Greenspan’s time.

It is important to be careful in interpreting this exercise. By appointing Greenspan at

Volcker’s time, we do not literally mean Greenspan as a person, but Greenspan as a convenient

label for a particular monetary policy response to shocks that according to our model were

observed during his tenure. The real Greenspan could have behaved in a different way, for

example, as a result of some non-linearities in monetary policy that are not properly captured

by a simple rule as the one we postulated in section 2. In fact, the argument could be pushed

one step further and we could think about the appointment of Volcker as an endogenous

response of the political-economic equilibrium to high inflation.11

Another issue that we sidelined is the evolution of expectations. In our model, agents

have rational expectations and observe the changes in monetary policy parameters. This

hypothesis may be a poor approximation of the agents’behavior in real life. It could be the

case that γΠt was high in 1984, even though inflation was already low by that time, because

of the high inflationary expectations that economic agents held during most of the 1980s (this

point is also linked to issues of commitment and credibility that our model does not address).

While we see all these arguments as interesting lines of research, we find it important to

focus first on our basic counterfactual conditional. As before, in the next two subsections,

we explore first the moments of the counterfactual and later we plot the whole paths.

10.2.1. Moments

In table 10.2, we report the mean and the standard deviation of inflation, output growth, and

the federal funds rate in the observed data and in the six counterfactual ones. The means of

the observed data present us with a history similar to that in table 10.1. Inflation was high

with Burns-Miller, fell with Volcker, and stayed low with Greenspan. Output growth went

11In our model agents have a probability distribution regarding possible changes of monetary policy in
the next periods, but those changes are uncorrelated with current conditions. Therefore, our model cannot
capture the endogeneity of policy selection.
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down during the Volcker years to recover with Greenspan. The federal funds rate reached its

peak with Volcker. The standard deviation of the observed data tells us yet one more time

about the great moderation: from a standard deviation of output growth of 4.7 in Burns-

Miller’s time, we went to a standard deviation of 2.45 with Greenspan, a cut in half. Similarly,

inflation volatility fell nearly 54 percent and the federal funds rate volatility 5 percent.

Table 10.2: Switching Chairmen, Data versus Counterfactual Histories

Means Standard Deviations

Inflation Output Gr. FFR Inflation Output Gr. FFR

BM (data) 6.2333 2.0322 6.5764 2.7347 4.7010 2.2720

Greenspan to BM 6.8269 1.8881 6.5046 3.3732 4.6781 2.0103

Volcker to BM 4.3604 1.5010 7.6479 2.4620 4.6219 2.3470

Volcker (data) 5.3584 1.3846 10.3338 3.1811 4.4811 3.4995

BM to Volcker 6.4132 1.3560 10.4126 2.9728 4.4220 3.0648

Greenspan to Volcker 6.7284 1.3423 10.4235 2.9824 4.3730 2.8734

Greenspan (data) 2.9583 1.5177 4.7352 1.2675 2.4567 2.1887

BM to Greenspan 2.3355 1.5277 4.4529 1.5625 2.4684 2.4652

Volcker to Greenspan -0.4947 1.3751 3.6560 1.7700 2.4705 2.7619

But table 10.2 also tells us other things. Contrary to the conventional wisdom, our

estimates suggest that the stand of monetary policy against inflation under Greenspan was

not particularly strong. In Burns-Miller’s time, the monetary policy under Greenspan would

have delivered slightly higher average inflation, 6.83 versus the observed 6.23, accompanied

by a slightly lower federal funds rate and lower output growth, 1.89 versus the observed 2.03.

The difference is even bigger in Volcker’s time, during which average inflation would have

been nearly 1.4 percent higher, while output growth would have been virtually identical (1.34

versus 1.38). The key for this finding is in the behavior of the federal funds rate, which would

have increased only by 9 basis points, on average, if Greenspan had been in charge of the

Fed instead of Volcker. Given the higher inflation in the counterfactual, the slightly higher

nominal interest rates would have implied much lower real rates.

The counterfactual of Burns-Miller in Greenspan’s and Volcker’s time casts doubts on

the malignant reputations of these two short-lived chairmen, at least when compared with

Greenspan. Burns-Miller would have brought even slightly lower inflation than Greenspan,

thanks to a higher real federal funds rate and a bit higher output growth. However, Burns-

Miller would have delivered higher inflation than Volcker.
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This is the third main empirical finding of the paper: according to our estimates, Volcker’s

response to inflation was high. Greenspan’s response was milder. Instead, he was favored by

a long sequence of good shocks and low volatility. In fact, Greenspan seems to have behaved

quite similarly to how Burns-Miller would have behaved. This result will be confirmed by

the counterfactual paths in the next subsection.

10.2.2. Counterfactual Paths

Our next exercise is to plot the whole counterfactual histories summarized in table 10.2. We

find it interesting to plot the whole history because changes in the economy’s behavior in one

period will propagate over time and we want to understand, for example, how Greenspan’s

legacy would have molded Volcker’s tenure. Also, plotting the whole history allows us to

track the counterfactual response of monetary policy to large economic events such as the oil

shocks.

Our first plot is figure 10.2, where we put Greenspan in Burns-Miller’s time. The pick

up in inflation after the first oil shock of 1973 would have been even higher. This would

have been caused by a lower federal funds rate, which, coupled with faster price increases,

would have turned out to yield a much lower real interest rate. Greenspan would have left

Volcker with approximately the same legacy as Burns-Miller. We can see this from how

close the counterfactual history was during Volcker’s mandate (where, remember, Volcker is

responding to inflation as our estimates indicate he did in the data but where he is facing

the states of the economy left by Greenspan, not the ones left by Burns-Miller).

In figure 10.3, we repeat the same exercise for Greenspan during Volcker’s time. The main

difference is that, in our counterfactual history, Greenspan would have disinflated more slowly

than Volcker did. Moreover, the disinflation would have lasted longer, well into the 1990s.

As we saw before, this slower disinflation would not have had increased output growth. In

terms of nominal interest rates, those would have been lower at the beginning of the 1980s,

reflecting a softer stand against inflation, but higher in the late 1980s because of the higher

inflation during those years.
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Figure 10.2: Greenspan during the Burns-Miller years
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Figure 10.3: Greenspan during the Volcker years

In figure 10.4, we move to Burns-Miller being reappointed in Greenspan’s time. The first

thing we see is that inflation would have been lower with Burns-Miller than it was in the

data, while output growth would have been nearly identical. Also, the federal funds rate

would have been a bit lower due to lower inflation. This is yet another piece of evidence

that the differences in monetary policy under Greenspan’s and Burns-Miller may have been

overstated by the literature.
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Figure 10.4: Burns-Miller during the Greenspan years

In figure 10.5, we plot the counterfactual of Burns-Miller extending their tenure to 1987.

The results are very similar to the case in which we move Greenspan to the same period:

slower disinflation and no improvement in output growth.
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Figure 10.5: Burns-Miller during the Volcker years

A particularly interesting exercise is to check what would have happened if Reagan had

decided to reappoint Volcker and not Greenspan. We plot these results in figure 10.6. The

quick answer is: lower inflation and interest rates. Our estimates also suggest that Volcker

would have reduced price increases with little cost to output. In fact, the difference in output

growth is mainly caused by the period 2004-2007. Without those years, output growth under

Volcker would have been higher than under Greenspan.
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Figure 10.6: Volcker during the Greenspan years

This exercise has the problem that, according to the estimated policy rule, during 2004-

2005, the Federal Reserve should have implemented a negative federal funds rate. Forgetting

for a moment the practicality of schemes to push the nominal interest rate below zero, this

evidence points out that an extension of the model should take the zero-lower bound on

interest rates seriously. This, however, would preclude us from using a perturbation method

and, given the current computational frontier, make it impossible to estimate such a model.

54



Figure 10.7: Volcker during the Burns-Miller years

Our final exercise is to plot, in figure 10.7, the counterfactual in which we move Volcker

to the time of Burns-Miller. The main finding is that inflation would have been rather lower

especially because the effects of the second oil shock would have been much more muted.

This counterfactual is plausible: other countries, such as Germany, Switzerland, and Japan,

that undertook a more aggressive monetary policy during the late 1970s were able to keep

inflation under control at levels below 5 percent at an annual rate, while the U.S. had peaks

of price increases over 10 percent.
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11. Conclusion

In this paper, we have built and estimated a non-linear DSGE model with both stochastic

volatility in the structural shocks that drive the economy and parameter drifting in the

monetary policy rule. We have shown how such a rich model can be successfully taken to the

data by using our characterization of a second-order approximation of the decision rules of a

large class of DSGE models. We can see many future applications for these tools in all those

situations in which being explicit about heteroscedastic shocks is crucial (see, among others,

Bloom, Jaimovich, and Floetotto, 2008, or Fernández-Villaverde et al., 2009).

With respect to our main empirical findings, a simple way to summarize them is to think

about the recent monetary history of the U.S. as being characterized by three eras:

1. An era of small responses to inflation and large and volatile structural shocks: Burns

and Miller, 1970-1979.

2. An era of large responses to inflation and large and volatile structural shocks: Volcker,

1979-1987.

3. An era of small responses to inflation and small and positive structural shocks: Greenspan,

1987-2006.

Like all empirical work, our approach suffers from several shortcomings, many of which

we have discussed in the main body of the paper. The most important, in our opinion, is the

limitation of how much we can learn from the data given our relatively short sample. In fact,

we are reluctant to estimate even more complicated versions of our model precisely because

of these limits of aggregate time series. A source of information that can complement our

quantitative investigation is a historical narrative based on the Federal Reserve statements

and documents. We have in mind the type of work pioneered by Romer and Romer (2004)

or Hetzel (2008). If the changes in policy uncovered by our estimates did, in fact, occur,

we should find telltale signs of them in the written record. We undertake this exercise

in Fernández-Villaverde, Guerrón-Quintana, and Rubio-Ramírez (2010), where we use our

estimates to read the recent monetary history of the U.S.
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12. Appendix A: Theorem 1

Let us now prove theorem 1. In this theorem, we characterize the first- and second-order

derivatives of the functions h (·) and g (·) evaluated at the non-stochastic steady state. We
first show that the first partial derivatives of h (·) and g (·) with respect to any component
of Σt−1, Ut, or Λ evaluated at the non-stochastic steady state is zero (or, in other words,

that the the first order of the solution does not depend on volatility levels or shocks nor on

the perturbation parameter). Second, it shows that, among many other results, the second

partial derivative of h (·) and g (·) with respect to uj,t and any other state variable but εj,t is
also zero for any j = {1, . . . ,m}.
Before proceeding, note that we can write Zt as a function of Zt−1,Σt−1, Et, and Ut:

Zt = ς (Zt−1,Σt−1, Et,Ut)

and that Σt can be expressed as:

Σt = ϑΣt−1 + ηUt

where ϑ and η are both m×m diagonal matrices with diagonal elements equal to ϑi and ηi
respectively. If we substitute the two functions (9) and (10) into (8) we get that:

F (St,Zt−1,Σt−1, Et,Ut,Λ) ≡

Etf

 g (h (St,Zt−1,Σt−1, Et,Ut,Λ) , ς (Zt−1,Σt−1, Et,Ut) , ϑΣt−1 + ηUt,ΛEt+1,ΛUt+1,Λ) ,

g (St,Zt−1,Σt−1, Et,Ut,Λ) , h (St,Zt−1,Σt−1, Et,Ut,Λ) ,St,
ς (ς (Zt−1,Σt−1, Et,Ut) , ϑΣt−1 + ηUt,ΛEt+1,ΛUt+1) , ς (Zt−1,Σt−1, Et,Ut)

 = 0.

To ease reading, we divide the proof into four parts, the first dealing with the first derivatives

and the next three dealing with the second derivatives.

Proof, part 1. The first part of the proof deals with the first derivatives of (9) and

(10) that are equal to zero. In particular, we want to show that:

[
hΣt−1

]i1
j

=
[
gΣt−1

]i2
j

= [hUt ]
i1
j = [gUt ]

i2
j = [hΛ]i1 = [gΛ]i2 = 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j ∈ {1, . . . ,m}.
We show this result in three steps that basically repeat the same argument based on

homogeneity of a system of linear equations:

1. We can write the derivative of the i− th element of F with respect to the j− th element
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of Σt−1 as:[
FΣt−1

]i
j

=
[
fYt+1

]i
i2

(
[gSt ]

i2
i1

[
hΣt−1

]i1
j

+
[
gΣt−1

]i2
j
ϑj

)
+[fYt ]

i
i2

[
gΣt−1

]i2
j

+
[
fSt+1

]i
i1

[
hΣt−1

]i1
j

= 0

for i ∈ {1, . . . , k + n+m} and j ∈ {1, . . . ,m}. This is a homogeneous system on[
hΣt−1

]i1
j
and

[
gΣt−1

]i2
j
for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j ∈ {1, . . . ,m}. Thus:

[
hΣt−1

]i1
j

=
[
gΣt−1

]i2
j

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j ∈ {1, . . . ,m}.

2. We can write the derivative of the i− th element of F with respect to the j− th element
of Ut as:

[FUt ]
i
j =

[
fYt+1

]i
i2

(
[gSt ]

i2
i1

[hUt ]
i1
j +

[
gΣt−1

]i2
j
ηj

)
+ [fYt ]

i
i2

[gUt ]
i2
j +

[
fSt+1

]i
i1

[hUt ]
i1
j = 0

for i ∈ {1, . . . , k + n+m} and j ∈ {1, . . . ,m}. Since we have already shown that[
gΣt−1

]i2
j

= 0 for i2 ∈ {1, . . . , k} and j ∈ {1, . . . ,m}, this is a homogeneous system on

[hUt ]
i1
j and [gUt ]

i2
j for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j ∈ {1, . . . ,m}, Thus:

[hUt ]
i1
j = [gUt ]

i2
j = 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j ∈ {1, . . . ,m}.

3. Finally, we can write the derivative of the i− th element of F with respect to Λ as:

[FΛ]i =
[
fYt+1

]i
i2

(
[gSt ]

i2
i1

[hΛ]i1 + [gΛ]i2
)

+ [fYt ]
i
i2

[gΛ]i2 +
[
fSt+1

]i
i1

[hΛ]i1 = 0

for i ∈ {1, . . . , k + n+m}. Since this is a homogeneous system on [hΛ]i1 and [gΛ]i2 for

i1 ∈ {1, . . . , n} and i2 ∈ {1, . . . , k}, we have that:

[hΛ]i1 = [gΛ]i2 = 0

for i1 ∈ {1, . . . , n} and i2 ∈ {1, . . . , k}.

Proof, part 2. The second part of the proof deals with the cross-derivatives of (9) and

(10) with respect to Λ and any of St, Zt−1, Σt−1, Et, or Ut and it shows that all of them are
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equal to zero. In particular, we want to show that:

[hΛ,St ]
i1
j = [gΛ,St ]

i2
j = 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j ∈ {1, . . . , n} and:[
hΛ,Zt−1

]i1
j

=
[
gΛ,Zt−1

]i2
j

=
[
hΛ,Σt−1

]i1
j

=
[
gΛ,Σt−1

]i2
j

= [hΛ,Et ]
i1
j = [gΛ,Et ]

i2
j = [hΛ,Ut ]

i1
j = [gΛ,Ut ]

i2
j = 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j ∈ {1, . . . ,m}.
We show this result in five steps that, as in part 1 of the proof, exploit the homogeneity of

a system of linear equations (and where we have already taken advantage of the terms that

we know from part 1 of the proof that they are equal to zero and eliminate them from our

expressions):

1. We consider the cross-derivative of the i − th element of F with respect to Λ and the

j − th element of St :

[FΛ,St ]
i
j =

[
fYt+1

]i
i2

(
[gSt ]

i2
i1

[hΛ,St ]
i1
j + [gΛ,St ]

i2
i1

[hSt ]
i1
j

)
+[fYt ]

i
i2

[gΛ,St ]
i2
j +
[
fSt+1

]i
i1

[hΛ,St ]
i1
j = 0

for i ∈ {1, . . . , k + n+m} and j ∈ {1, . . . , n}. This is a homogeneous system on [hΛ,St ]
i1
j

and [gΛ,St ]
i2
j for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j ∈ {1, . . . , n}. Thus:

[hΛ,St ]
i1
j = [gΛ,St ]

i2
j = 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j ∈ {1, . . . , n}.

2. We consider the cross-derivative of the i − th element of F with respect to Λ and the

j − th element of Zt−1:[
FΛ,Zt−1

]i
j

=
[
fYt+1

]i
i2

(
[gSt ]

i2
i1

[
hΛ,Zt−1

]i1
j

+ [gΛ,St ]
i2
i1

[
hZt−1

]i1
j

+ ρj
[
gΛ,Zt−1

]i2
j

)
+ [fYt ]

i
i2

[
gΛ,Zt−1

]i2
j

+
[
fSt+1

]i
i1

[
hΛ,Zt−1

]i1
j

= 0

for i ∈ {1, . . . , k + n+m} and j ∈ {1, . . . ,m}. Since [gΛ,St ]
i2
j = 0 for i2 ∈ {1, . . . , k}

and j ∈ {1, . . . , n}, this is a homogeneous system on
[
hΛ,Zt−1

]i1
j
and

[
gΛ,Zt−1

]i2
j
for

i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j ∈ {1, . . . ,m}. Hence:[
hΛ,Zt−1

]i1
j

=
[
gΛ,Zt−1

]i2
j

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j ∈ {1, . . . ,m}.
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3. We consider the cross-derivative of the i − th element of F with respect to Λ and the

j − th element of Σt−1:[
FΛ,Σt−1

]i
j

=
[
fYt+1

]i
i2

(
[gSt ]

i2
i1

[
hΛ,Σt−1

]i1
j

+
[
gΛ,Σt−1

]i2
j
ϑj

)
+ [fYt ]

i
i2

[
gΛ,Σt−1

]i2
j

+
[
fSt+1

]i
i1

[
hΛ,Σt−1

]i1
j

= 0

for i ∈ {1, . . . , k + n+m} and j ∈ {1, . . . ,m}. This is a homogeneous system on[
hΛ,Σt−1

]i1
j
and

[
gΛ,Σt−1

]i2
j
for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j ∈ {1, . . . ,m}.

Hence: [
hΛ,Σt−1

]i1
j

=
[
gΛ,Σt−1

]i2
j

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j ∈ {1, . . . ,m}.

4. We consider the cross-derivative of the i − th element of F with respect to Λ and the

j − th element of Et:

[FΛ,Et ]
i
j =

[
fYt+1

]i
i2

(
[gSt ]

i2
i1

[hΛ,Et ]
i1
j + [gΛ,St ]

i2
i1

[hEt ]
i1
j + expϑjσj,t−1

[
gΛ,Zt−1

]i2
j

)
+ [fYt ]

i
i2

[gΛ,Et ]
i2
j +

[
fSt+1

]i
i1

[hΛ,Et ]
i1
j = 0

for i ∈ {1, . . . , k + n+m} and j ∈ {1, . . . ,m}. Since
[
gΛ,Zt−1

]i2
j

= 0 for i2 ∈ {1, . . . , k}
and j ∈ {1, . . . ,m} and [gΛ,St ]

i2
j = 0 for i2 ∈ {1, . . . , k} and j ∈ {1, . . . , n}, this is a

homogeneous system on [hΛ,Et ]
i1
j and [gΛ,Et ]

i2
j for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and

j ∈ {1, . . . ,m}. Thus:
[hΛ,Et ]

i1
j = [gΛ,Et ]

i2
j = 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j ∈ {1, . . . ,m}.

5. We consider the cross-derivative of the i − th element of F with respect to Λ and the

j − th element of Ut:

[FΛ,Ut ]
i
j =

[
fYt+1

]i
i2

(
[gSt ]

i2
i1

[hΛ,Ut ]
i1
j + ηj

[
gΛ,Σt−1

]i2
j

)
+[fYt ]

i
i2

[gΛ,Ut ]
i2
j +
[
fSt+1

]i
i1

[hΛ,Ut ]
i1
j = 0

for i ∈ {1, . . . , k + n+m} and j ∈ {1, . . . ,m}. Since we have shown that
[
gΛ,Σt−1

]i2
j

= 0

for i2 ∈ {1, . . . , k} and j ∈ {1, . . . ,m} , we have that the above system is a homogeneous
system on [hΛ,Ut ]

i1
j and [gΛ,Ut ]

i2
j for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j ∈ {1, . . . ,m}.

Then:

[hΛ,Ut ]
i1
j = [gΛ,Ut ]

i2
j = 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j ∈ {1, . . . ,m}.
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Proof, part 3. The third part of the proof deals with the cross-derivatives of (9) and

(10) with respect to Σt−1 and any of St, Zt−1, Σt−1, or Et and it shows that all of them are

equal to zero with one exception. In particular, we want to show that:

[
hSt,Σt−1

]i1
j1,j2

=
[
gSt,Σt−1

]i2
j1,j2

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, j1 ∈ {1, . . . , n}, and j2 ∈ {1, . . . ,m},[
hZt−1,Σt−1

]i1
j1,j2

=
[
gZt−1,Σt−1

]i2
j1,j2

=
[
hΣt−1,Σt−1

]i1
j1,j2

=
[
gΣt−1,Σt−1

]i2
j1,j2

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j1, j2 ∈ {1, . . . ,m}, and[
hEt,Σt−1

]i1
j1,j2

=
[
gEt,Σt−1

]i2
j1,j2

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j1, j2 ∈ {1, . . . ,m} if j1 6= j2.

We show this result in four steps (and where we have already taken advantage of the

terms that we know from part 1 of the proof are equal to zero and eliminate them from our

expressions):

1. We consider the cross-derivative of the i− th element of F with respect to the j1 − th
element of St and the j2 − th element of Σt−1:[

FSt,Σt−1

]i
j1,j2

=
[
fYt+1

]i
i2

(
[gSt ]

i2
i1

[
hSt,Σt−1

]i1
j1,j2

+
[
gSt,Σt−1

]i2
i1,j2

[hSt ]
i1
j1
ϑj2

)
+ [fYt ]

i
i2

[
gSt,Σt−1

]i2
j1,j2

+
[
fSt+1

]i
i1

[
hSt,Σt−1

]i1
j1,j2

= 0

for i ∈ {1, . . . , k + n+m}, j1 ∈ {1, . . . , n}, and j2 ∈ {1, . . . ,m}. This is a homogeneous
system on

[
hSt,Σt−1

]i1
j1,j2

and
[
gSt,Σt−1

]i2
j1,j2

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, j1 ∈
{1, . . . , n}, and j2 ∈ {1, . . . ,m}. Therefore:[

hSt,Σt−1

]i1
j1,j2

=
[
gSt,Σt−1

]i2
i2,j2

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, j1 ∈ {1, . . . , n}, and j2 ∈ {1, . . . ,m}.

2. We consider the cross-derivative of the i− th element of F with respect to the j1 − th

61



element of Zt−1 and the j2 − th element of Σt−1:[
FZt−1,Σt−1

]i
j1,j2

=
[
fYt+1

]i
i2

(
[gSt ]

i2
i1

[
hZt−1,Σt−1

]i1
j1,j2

+
[
gSt,Σt−1

]i2
i1,j2

[
hZt−1

]i1
j1
ϑj2 +

[
gZt−1,Σt−1

]i2
j1,j2

ϑj2ρj1

)
+ [fYt ]

i
i2

[
gZt−1,Σt−1

]i2
j1,j2

+
[
fSt+1

]i
i1

[
hZt−1,Σt−1

]i1
j1,j2

= 0

for i ∈ {1, . . . , k + n+m}, and j1, j2 ∈ {1, . . . ,m}. Since we just found that
[
gSt,Σt−1

]i2
j1,j2

=

0 for i2 ∈ {1, . . . , k}, j1 ∈ {1, . . . , n}, and j2 ∈ {1, . . . ,m}, this is a homogeneous sys-
tem on

[
hZt−1,Σt−1

]i1
j1,j2

and
[
gZt−1,Σt−1

]i2
i2,j2

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and
j1, j2 ∈ {1, . . . ,m}. Therefore:[

hZt−1,Σt−1

]i1
j1,j2

=
[
gZt−1,Σt−1

]i2
i2,j2

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j1, j2 ∈ {1, . . . ,m}.

3. We consider the cross-derivative of the i− th element of F with respect to the j1 − th
element of Σt−1 and the j2 − th element of Σt−1:[

FΣt−1,Σt−1

]i
j1,j2

=[
fYt+1

]i
i2

(
[gSt ]

i2
i1

[
hΣt−1,Σt−1

]i1
j1,j2

+
[
gΣt−1,Σt−1

]i2
j1,j2

ϑj1ϑj2

)
+ [fYt ]

i
i2

[
gΣt−1,Σt−1

]i2
j1,j2

+
[
fSt+1

]i
i1

[
hΣt−1,Σt−1

]i1
j1,j2

= 0

for i ∈ {1, . . . , k + n+m} and j1, j2 ∈ {1, . . . ,m}. This is a homogeneous system on[
hΣt−1,Σt−1

]i1
j1,j2

and
[
gΣt−1,Σt−1

]i2
j1,j2

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j1, j2 ∈
{1, . . . ,m}, therefore:

[
hΣt−1,Σt−1

]i1
j1,j2

=
[
gΣt−1,Σt−1

]i2
j1,j2

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j1, j2 ∈ {1, . . . ,m}.

4. We consider the cross-derivative of the i− th element of F with respect to the j1 − th
element of Et and the j2 − th element of Σt−1 if j1 6= j2:[

FEt,Σt−1

]i
j1,j2

=[
fYt+1

]i
i2

(
[gSt ]

i2
i1

[
hEt,Σt−1

]i1
j1,j2

+
[
gSt,Σt−1

]i2
i1,j2

[hEt ]
i1
j1
ϑj2 +

[
gZt−1,Σt−1

]i2
j1,j2

expϑj1σj1,t−1 ϑj2

)
+ [fYt ]

i
i2

[
gEt,Σt−1

]i2
j1,j2

+
[
fSt+1

]i
i1

[
hEt,Σt−1

]i1
j1,j2

= 0
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for i ∈ {1, . . . , k + n+m} and j1, j2 ∈ {1, . . . ,m}. Since we know that
[
gZt−1,Σt−1

]i2
j1,j2

=[
gSt,Σt−1

]i2
j,j2

= 0 for i2 ∈ {1, . . . , k}, j ∈ {1, . . . , n}, and j1, j2 ∈ {1, . . . ,m}, this
is a homogeneous system on

[
hEt,Σt−1

]i1
j1,j2

and
[
gEt,Σt−1

]i2
j1,j2

for i1 ∈ {1, . . . , n}, i2 ∈
{1, . . . , k}, and j1, j2 ∈ {1, . . . ,m} if j1 6= j2. Therefore:[

hEt,Σt−1

]i2
j1,j2

=
[
gEt,Σt−1

]i1
j1,j2

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j1, j2 ∈ {1, . . . ,m} if j1 6= j2.

Note that if j1 = j2, we have that:[
FEt,Σt−1

]i
j1,j1

=
[
fYt+1

]i
i2
∗

∗
(

[gSt ]
i2
i1

[
hEt,Σt−1

]i1
j1,j1

+ ϑj1
[
gSt,Σt−1

]i2
i1,j1

[hEt ]
i1
j1

+
([
gZt−1,Σt−1

]i2
j1,j1

+
[
gZt−1

]i2
j1

)
expϑj1σj1,t−1 ϑj1

)
+ [fYt ]

i
i2

[
gEt,Σt−1

]i2
j1,j1

+
[
fSt+1

]i
i1

[
hEt,Σt−1

]i1
j1,j1

+
(

[fZt ]
i
j1

+ ρj1
[
fZt+1

]i
j1

)
expϑj1σj1,t−1 ϑj1 = 0

and since [fZt ]
i
j1
and

[
fZt+1

]i
j1
are different from zero in general for i ∈ {1, . . . , k + n+m}

and j1 ∈ {1, . . . ,m} , we have that this system is not homogeneous and

[
hEt,Σt−1

]i2
j1,j1

=
[
gEt,Σt−1

]i1
j1,j1
6= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j1 ∈ {1, . . . ,m}.

Proof, part 4. The fourth, and final, part of the proof deals with the cross-derivatives

of (9) and (10) with respect to Ut and any of St, Zt−1, Σt−1, Et, or Ut and it shows that all of
them are equal to zero with one exception. In particular, we want to show that:

[hSt,Ut ]
i1
j1,j2

= [gSt,Ut ]
i2
j1,j2

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, j1 ∈ {1, . . . , n}, and j2 ∈ {1, . . . ,m},[
hZt−1,Ut

]i1
j1,j2

=
[
gZt−1,Ut

]i2
j1,j2

=
[
hΣt−1,Ut

]i1
j1,j2

=
[
gΣt−1,Ut

]i2
j1,j2

= [hUt,Ut ]
i1
j1,j2

= [gUt,Ut ]
i2
j1,j2

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j1, j2 ∈ {1, . . . ,m}, and

[hEt,Ut ]
i1
j1,j2

= [gEt,Ut ]
i2
j1,j2

= 0
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for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, j1, j2 ∈ {1, . . . ,m}, and j1 6= j2.

Again, we follow the same steps for each part of the result as before and use our previous

findings regarding which terms are zero.

1. We consider the cross derivative of the i− th element of F with respect to the j1 − th
element of St and the j2 − th element of Ut:

[FSt,Ut ]
i
j1,j2

=
[
fYt+1

]i
i2

(
[gSt ]

i2
i1

[hSt,Ut ]
i1
j1,j2

+
[
gSt,Σt−1

]i2
i1,j2

[hSt ]
i1
j1
ηj2

)
+ [fYt ]

i
i2

[gSt,Ut ]
i2
j1,j2

+
[
fSt+1

]i
i1

[hSt,Ut ]
i1
j1,j2

= 0

for i ∈ {1, . . . , k + n+m}, j1 ∈ {1, . . . , n}, and j2 ∈ {1, . . . ,m}. Since
[
gSt,Σt−1

]i2
j1,j2

= 0

for i2 ∈ {1, . . . , k}, j1 ∈ {1, . . . , n}, and j2 ∈ {1, . . . ,m}, this is a homogeneous system
on [hSt,Ut ]

i1
j1,j2

and [gSt,Ut ]
i2
j1,j2

.Therefore:

[hSt,Ut ]
i1
j1,j2

= [gSt,Ut ]
i2
j1,j2

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, j1 ∈ {1, . . . , n}, and j2 ∈ {1, . . . ,m}.

2. We consider the cross-derivative of the i− th element of F with respect to the j1 − th
element of Zt−1 and the j2 − th element of Ut:[

FZt−1,Ut
]i
j1,j2

=[
fYt+1

]i
i2

(
[gSt ]

i2
i1

[
hZt−1,Ut

]i1
j1,j2

+ ηj2
[
gSt,Σt−1

]i2
i1,j2

[hZt ]
i1
j1

+ ρj1ηj2
[
gZt−1,Σt−1

]i2
j1,j2

)
+ [fYt ]

i
i1

[
gZt−1,Ut

]i1
j1,j2

+
[
fSt+1

]i
i1

[
hZt−1,Ut

]i1
j1,j2

= 0

for i ∈ {1, . . . , k + n+m}, and j1, j2 ∈ {1, . . . ,m}. Since
[
gZt−1,Σt−1

]i2
j1,j2

=
[
gSt,Σt−1

]i2
j,j2

=

0 for i2 ∈ {1, . . . , k}, j ∈ {1, . . . , n}, and j1, j2 ∈ {1, . . . ,m}, this is a homogeneous
system on

[
hZt−1,Ut

]i1
j1,j2

and
[
gZt−1,Ut

]i1
j1,j2

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and
j1, j2 ∈ {1, . . . ,m}. Therefore:[

hZt−1,Ut
]i1
j1,j2

=
[
gZt−1,Ut

]i2
j1,j2

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j1, j2 ∈ {1, . . . ,m}.

3. We consider the cross-derivative of the i− th element of F with respect to the j1 − th
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element of Σt−1 and the j2 − th element of Ut:[
FΣt−1,Ut

]i
j1,j2

=[
fYt+1

]i
i2

(
[gSt ]

i2
i1

[
hΣt−1,Ut

]i1
j1,j2

+
[
gΣt−1,Σt−1

]i2
j1,j2

ϑj1ηj2

)
+ [fYt ]

i
i1

[
gΣt−1,Ut

]i1
j1,j2

+
[
fSt+1

]i
i1

[
hΣt−1,Ut

]i1
j1,j2

= 0

for i ∈ {1, . . . , k + n+m}, and j1, j2 ∈ {1, . . . ,m}. Since
[
gΣt−1,Σt−1

]i2
j1,j2

= 0 for

i2 ∈ {1, . . . , k}, and j1, j2 ∈ {1, . . . ,m}, this is a homogeneous system on
[
hΣt−1,Ut

]i1
j1,j2

and
[
gΣt−1,Ut

]i2
j1,j2

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j1, j2 ∈ {1, . . . ,m}. Therefore:

[
hΣt−1,Ut

]i1
j1,j2

=
[
gΣt−1,Ut

]i2
j1,j2

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, j1, j2 ∈ {1, . . . ,m}.

4. We consider the cross-derivative of the i− th element of F with respect to the j1 − th
element of Ut and the j2 − th element of Ut:

[FUt,Ut ]
i
j1,j2

=[
fYt+1

]i
i2

(
ηj1ηj2

[
gΣt−1,Σt−1

]i2
j1,j2

+ [gSt ]
i2
i1

[hUt,Ut ]
i1
j1,j2

)
+ [fYt ]

i
i2

[gUt,Ut ]
i2
j1,j2

+
[
fSt+1

]i
i1

[hUt,Ut ]
i1
j1,j2

= 0

for i ∈ {1, . . . , k + n+m} and j1, j2 ∈ {1, . . . ,m}. Since
[
gΣt−1,Σt−1

]i2
j1,j2

= 0 for i1 ∈
{1, . . . , k} and j1, j2 ∈ {1, . . . ,m}, this is a homogeneous system on [hUt,Ut ]

i1
j1,j2

and

[gUt,Ut ]
i2
j1,j2

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j1, j2 ∈ {1, . . . ,m}. Therefore:

[hUt,Ut ]
i1
j1,j2

= [gUt,Ut ]
i2
j1,j2

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j1, j2 ∈ {1, . . . ,m}.

5. Finally, consider the cross-derivative of the i − th element of F with respect to the

j1 − th element of Et and the j2 − th element of Ut if j1 6= j2:

[FEt,Ut ]
i
j1,j2

=[
fYt+1

]i
i2

(
[gSt ]

i2
i1

[hEt,Ut ]
i1
j1,j2

+ ηj2
[
gSt,Σt−1

]i2
i1,j2

[hEt ]
i1
j1

+
[
gZt−1,Σt−1

]i2
j1,j2

expϑj1σj1,t−1 ηj2

)
+ [fYt ]

i
i2

[gEt,Ut ]
i2
j1,j2

+
[
fSt+1

]i
i1

[hEt,Ut ]
i1
j1,j2

= 0
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for i ∈ {1, . . . , k + n+m} and j1, j2 ∈ {1, . . . ,m}. Since
[
gZt−1,Σt−1

]i2
j1,j2

=
[
gSt,Σt−1

]i2
j,j2

=

0 for i2 ∈ {1, . . . , k}, j ∈ {1, . . . , n}, and j1, j2 ∈ {1, . . . ,m}, this is a homoge-
neous system on [hEt,Ut ]

i1
j1,j2

and [gEt,Ut ]
i2
j1,j2

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and
j1, j2 ∈ {1, . . . ,m} if j1 6= j2. Therefore:

[hEt,Ut ]
i2
j1,j2

= [gEt,Ut ]
i1
j1,j2

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j1, j2 ∈ {1, . . . ,m} if j1 6= j2.

Note that if j1 = j2, we have that:

[FEt,Ut ]
i
j1,j1

=[
fYt+1

]i
i2

(
expϑj1σj1,t−1 ηj1

([
gZt−1,Σt−1

]i2
j1,j1

+
[
gZt−1

]i2
j1

)
+ ηj1

[
gSt,Σt−1

]i2
i1,j1

[hEt ]
i1
j1

+ [gSt ]
i2
i1

[hEt,Ut ]
i1
j1,j1

)
+ [fYt ]

i
i2

[gEt,Ut ]
i2
j1,j1

+
[
fSt+1

]i
i1

[hEt,Ut ]
i1
j1,j1

+ expϑj1σj1,t−1 ηj1

(
[fZt ]

i
j1

+ ρj1
[
fZt+1

]i
j1

)
= 0

and since [fZt ]
i
j1
and

[
fZt+1

]i
j1
are different from zero in general for i ∈ {1, . . . , k + n+m}

and j1 ∈ {1, . . . ,m} , we have that this system is not homogeneous and hence:

[hEt,Ut ]
i2
j1,j1

= [gEt,Ut ]
i1
j1,j1
6= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j1 ∈ {1, . . . ,m}.

13. Appendix B: Computation

In this appendix we provide some more details regarding the computation of the paper. We

generate all the derivatives required by our second-order perturbation with Mathematica 6.0.

In that way, we do not need to recompute the derivatives, the most time-intensive step, for

each set of parameter values in our estimation. Once we have all the relevant derivatives, we

export them automatically into Fortran files. This whole process takes about 3 hours.

Then, we compile the resulting files with the Intel Fortran Compiler version 10.1.025

with IMSL. Previous versions failed to compile our project because of the length of some of

the expressions. Compilation takes about 18 hours. The project has 1798 files and occupies

2.33 Gbytes of memory.

The next step is, for given parameter values, to compute the first- and second-order

approximation to the decision rules around the deterministic steady state using the analytic

derivatives we found before. For this task, Fortran takes around 5 seconds. Once we have the
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solution, we approximate the likelihood using the particle filter with 10, 000 particles. This

number delivered a good compromise between accuracy and time to compute the likelihood.

The evaluation of one likelihood requires 22 seconds on a Dell server with 8 processors. Once

we have the likelihood evaluation, we guess new parameter values and we start again. This

means that drawing 5,000 times from the posterior (even forgetting about the initial search

over a grid of parameter values) takes around 38 hours.

It is important to emphasize that the Mathematica and Fortran code were highly opti-

mized in order to 1) keep the size of the project within reasonable dimensions (otherwise, the

compiler cannot sparse the files and, even when it can, it delivers code that is too ineffi cient)

and 2) provide a fast computation of the likelihood.

Perhaps the most important task in that optimization was the parallelization of the

Fortran code using OPENMP as well as the compilation options: OG (global optimizations)

and Loop Unroll. In addition, we tailored specialized code to perform the matrix multipli-

cations required in the first- and second-order terms of our model solution.

Implementing corollary 1 requires the solution of a linear system of equations and the

computation of a Jacobian. For our particular application, we found that the following

sequence of LAPACK operations delivered the fastest solution:

1. DGESV (computes the solution to a real system of linear equations A ∗ X = B).

2. DGETRI (computes the inverse of a matrix using the LU factorization from the previous

line).

3. DGETRF (helps to compute the determinant of the inverse from the previous line).

Without the parallelization and our optimized code, the solution of the model and evalu-

ation of its likelihood take about 70 seconds.

With respect to the random-walk Metropolis-Hastings, we performed an intensive process

of fine-tuning of the chain, both in terms of initial conditions as well as in terms of getting

the right acceptance level. The only other important remark is to remember that as pointed

out by McFadden (1989) and Pakes and Pollard (1989), we must keep the random numbers

used for resampling in the particle filter constant across draws of the Markov chain. This

is required to achieve stochastic equi-continuity, and even if this condition is not strictly

necessary in a Bayesian framework, it reduces the numerical variance of the procedure, which

was a serious concern for us given the complexity of our problem.
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14. Appendix C: Construction of Data

When we estimate the model, we need to make the series provided by the National Income

and Product Accounts (NIPA) consistent with the definition of variables in the theory. The

main adjustment that we undertake is to express both real output and real gross investment

in consumption units. Our DSGE model implies that there is a numeraire in terms of which

all the other prices need to be quoted. We pick consumption as the numeraire. The NIPA, in

comparison, uses an index of all prices to transform nominal GDP and investment into real

values. In the presence of changing relative prices, such as the ones we have seen in the U.S.

over the last several decades with the fall in the relative price of capital, NIPA’s procedure

biases the valuation of different series in real terms.

We map theory into the data by computing our own series of real output and real invest-

ment. To do so, we use the relative price of investment, defined as the ratio of an investment

deflator and a deflator for consumption. The denominator is easily derived from the deflators

of non-durable goods and services reported in the NIPA. It is more complicated to obtain the

numerator because, historically, NIPA investment deflators were poorly constructed. Instead,

we rely on the investment deflator computed by Fisher (2006). Since the series ends early in

2000Q4, we have extended it to 2007.Q1 by following Fisher’s methodology.

For the real output per capita series, we first define nominal output as nominal con-

sumption plus nominal gross investment. We define nominal consumption as the sum of

personal consumption expenditures on non-durable goods and services. We define nominal

gross investment as the sum of personal consumption expenditures on durable goods, private

residential investment, and non-residential fixed investment. Per capita nominal output is

equal to the ratio between our nominal output series and the civilian non-institutional pop-

ulation between 16 and 65. To obtain per capita values, we divide the previous series by the

civilian non-institutional population between 16 and 65. Finally, real wages are defined as

compensation per hour in the non-farm business sector divided by the CPI deflator.
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