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Abstract

We show that in weakly identi�ed models (1) the posterior mode will not be a

consistent estimator of the true parameter vector, (2) the posterior distribution will

not be Gaussian even asymptotically, and (3) Bayesian credible sets and frequentist

con�dence sets will not coincide asymptotically. This means that Bayesian DSGE

estimation should not be interpreted merely as a convenient device for obtaining as-

ymptotically valid point estimates and con�dence sets from the posterior distribution.

As an alternative, we develop a new class of frequentist con�dence sets for structural

DSGE model parameters that remains asymptotically valid regardless of the strength

of the identi�cation. The proposed set correctly re�ects the uncertainty about the

structural parameters even when the likelihood is �at, it protects the researcher from

spurious inference, and it is asymptotically invariant to the prior in the case of weak

identi�cation.
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1 Introduction

In recent years, there has been growing interest in the estimation of dynamic stochastic

general equilibrium (DSGE) models by Bayesian methods. One of the chief advantages

of the Bayesian approach compared to the frequentist approach is that the use of

prior information allows the researcher to estimate models that otherwise would be

computationally intractable or would produce economically implausible estimates. This

feature has made these methods popular even among researchers who think of these

methods merely as a convenient device for obtaining model estimates but would not

consider themselves Bayesians otherwise.

At the same time, there is growing evidence that many DSGE models used in em-

pirical macroeconomics are only weakly identi�ed (see, e.g., Canova and Sala 2008).

Weak identi�cation manifests itself in a likelihood that is nearly �at across the para-

meter space. For example, Del Negro and Schorfheide (2008) document that DSGE

models that have very di¤erent policy implications may �t the data equally well. In

particular, a New Keynesian model with moderate price rigidities and low wage rigidi-

ties is observationally equivalent to a model with high wage rigidities and high price

rigidities. As a result, the posterior of the structural parameters of the model becomes

highly dependent on the priors used by the researcher. This is a common problem.

For example, Smets and Wouters (2007a, p. 594) note that for their main behavioral

parameters �the mean of the posterior distribution is typically relatively close to the

mean of the prior assumptions.�While this fact does not necessarily pose a problem for

genuine Bayesians, it is especially troublesome for frequentist users of these methods

because it suggests that we learn nothing from the data.

In this paper, we make two contributions. First, we show that in weakly identi�ed

models the usual asymptotic equivalence between Bayesian and frequentist estima-

tion and inference breaks down.1 The problem is that under weak identi�cation the

likelihood no longer asymptotically dominates the posterior, which helps explain the

1See Le Cam and Yang (2000, chapter 8) and the references therein for the large sample correspondence

between Bayesian and frequentist approaches. For more recent results in the econometrics literature, see

Andrews (1994), Chernozhukov and Hong (2003) and Hahn (1997), for example, and Kim (1998) and Phillips

and Ploberger (1996) for the nonstationary case in particular.
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sensitivity of Bayesian DSGE estimates to the prior in practice. As a result, one can-

not interpret posterior modes (or means or medians) as frequentist point estimates or

treat Bayesian credible sets e¤ectively as frequentist con�dence sets. In particular,

it is not possible to construct con�dence intervals from the quantiles of the posterior

distribution or by adding multiples of posterior standard deviations to the posterior

mean. Speci�cally, we show that (1) the posterior mode will not be a consistent esti-

mator of the true parameter vector, (2) the posterior distribution will not be Gaussian

even asymptotically, and (3) Bayesian credible sets and frequentist con�dence sets will

not coincide asymptotically. This means that Bayesian DSGE estimation should not

be interpreted merely as a convenient device for obtaining asymptotically valid point

estimates and con�dence sets from the posterior distribution.

Second, as an alternative, we develop a new class of frequentist con�dence sets for

the structural parameters of DSGE models that remain valid asymptotically regardless

of the strength of identi�cation. In general, the strength of identi�cation is a matter

of degree and there is no well-de�ned threshold that separates strongly identi�ed from

unidenti�ed models (see, e.g., Canova and Sala 2008, Iskrev 2008). There is little

hope of constructing pre-tests for strong identi�cation nor is it clear that pre-testing

would be an appropriate strategy in this context. Our approach is instead based on

the premise that the structural parameters of the model are weakly identi�ed in the

sense that the component of the likelihood function that depends on the structural

parameter vector is local to zero. As in the weak instruments literature, we think of

this assumption as a device that re�ects our inability to determine the strength of the

identi�cation from the data. The proposed con�dence set is obtained by inverting the

Bayes factor and does not depend on the prior asymptotically. It is conservative in that

a (1� �)% con�dence set has at least a (1� �)% coverage probability asymptotically.

The proposed set correctly re�ects the uncertainty about the structural parameters

even when the likelihood is �at, it protects the researcher from spurious inference, and

it is invariant to the prior asymptotically in the case of weak identi�cation. Since the

Bayes factor is the ratio of the posterior odds to the prior odds, if the likelihood is

�at and hence the prior dominates the posterior, the numerator and the denominator

of the ratio will tend to cancel, making the proposed con�dence set more robust to
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alternative priors than conventional intervals.

The work most closely related to our analysis is Moon and Schorfheide�s (2009)

comparison of frequentist and Bayesian inference in partially identi�ed models. In

such models the structural parameter vector of interest can be bounded, but the set

of admissible parameter values cannot be narrowed down to a point. Thus, the best a

researcher can hope for is to identify the set of parameter values that is consistent with

the data. Moon and Schorfheide establish that in partially identi�ed models, Bayesian

credible sets tend to be smaller than frequentist con�dence sets. This �nding is in

contrast with the conventional point identi�ed case, in which Bayesian and frequentist

sets coincide asymptotically, enabling users to reinterpret Bayesian credible sets as

frequentist con�dence sets.

Like Moon and Schorfheide we �nd that Bayesian credible sets and frequentist con-

�dence sets need not coincide asymptotically. In particular, the usual Bayesian credible

set does not have the correct asymptotic coverage probability in weakly identi�ed mod-

els, preventing its interpretation as a frequentist con�dence set. Our analysis di¤ers

from Moon and Schorfheide�s work, �rst, in that we focus on weakly point identi�ed

parameters rather than set identi�ed parameters. The second di¤erence is that we do

not stop at documenting these di¤erences but propose an alternative con�dence set

that remains valid regardless of the strength of the identi�cation. Finally, our study

deals with identi�cation in structural macroeconomic models, whereas theirs focuses

on microeconomic applications.

Related work also includes Komunjer and Ng (2009), Rubio-Ramirez, Waggoner

and Zha (2006, 2009), and Fukaµc, Waggoner and Zha (2007). Komunjer and Ng (2009)

establish conditions for identifying structural parameters in DSGE models from auto-

covariance structures. Rubio-Ramirez et al. (2006, 2009) develop conditions for iden-

ti�cation in structural vector autoregressive models. Fukaµc et al. (2007) contrast local

and global identi�cation. While these procedures are helpful in assessing the identi�-

ability of structural model parameters, they are not informative about the strength of

identi�cation, suggesting the need for approaches such as ours that are robust to weak

identi�cation.

The remainder of the paper is organized as follows. In section 2 we investigate
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the asymptotic behavior of the posterior distribution in weakly identi�ed models. We

establish the failure of the conventional frequentist interpretation of Bayesian posterior

estimates. We propose an alternative con�dence set based on the inversion of the Bayes

factor and prove its asymptotic validity from a frequentist point of view. In section 3

we investigate the �nite-sample performance of traditional pseudo-Bayesian methods

by simulation. We focus on a commonly used New Keynesian model consisting of a

Phillips curve, an investment-savings equation, and a Taylor rule. We demonstrate that

the practice of constructing con�dence intervals from the posterior of the structural

parameters by adding +=� 1:645 posterior standard deviations to the posterior mode

(or mean) results in intervals with serious coverage de�ciencies. In some cases, coverage

rates of nominal 90% intervals for commonly used sample sizes may drop as low as 39%.

In contrast, the conservative interval proposed in this paper in the simulation has more

accurate coverage for all parameters and sample sizes. In section 4, we investigate an

empirical example based on a larger scale DSGE model widely used in the DSGE

literature (see, e.g., Del Negro and Schorfheide 2008). We focus on the question of the

relative importance of wage and price rigidities in the US economy. We also illustrate

the robustness of the proposed con�dence sets to alternative choices of priors. The

concluding remarks are in section 5.

2 Asymptotic Theory

2.1 Asymptotic Behavior of the Posterior Distribution

When Parameters Are Weakly Identi�ed

When parameters are strongly identi�ed, the posterior distribution is degenerate about

the true parameter value and asymptotically normal after suitable scaling. The latter

result is called the Bernstein-von Mises Theorem in the Bayesian literature. We will

restate a version of the Bernstein-von Mises Theorem for the multiparameter non-iid
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case for expository purposes.2

Proposition 1 (Bernstein-von Mises Theorem): Denote the log-likelihood function by

`T (�) = lnLT (X1; :::; �) = lnf(X1; X2; :::; XT j�). Suppose that the following conditions

hold:

(a) �0 2 int(�) � <k.

(b) The prior density �(�) is continuous on � and �(�0) > 0.

(c) The likelihood function LT (�) is twice continuously di¤erentiable in a neighbor-

hood of �0.

(d) For all � > 0 there exists "(�) > 0 such that

lim
T!1

P�0

"
sup

�2�\B�(�0)
[`T (�)� `T (�0)] � �"(�)T

#
= 1; (1)

where B�(�0) � f� 2 � : k� � �0k � �g.

(e) There is a matrix valued function H(�) such that limT!1 sup�2� j� 1
Tr��`T (�)�

H(�)j p! 0 and H(�0) is positive de�nite where r��`T (�) is the Hessian of the

log-likelihood function `T (�).

(f) The maximum likelihood estimator (MLE) �̂T of �0 is strongly consistent, i.e.,

�̂T ! �0 almost surely.

Then for any compact set AZ
BT

P (�jX1; X2; :::; XT )d�
P�0! P (z 2 A): (2)

where BT = f� 2 � : [r��`T (�̂T )]
1=2(� � �̂T ) � Ag and z � N(0k�1; Ik).

The Bernstein-von Mises Theorem allows a classical interpretation of Bayesian con�-

dence sets. In other words, Bayesian credible sets for �̂T can be viewed as valid classical

con�dence sets for �0 asymptotically. This fact is important because it allows econo-

metricians who are not Bayesians to use the Bayesian apparatus to estimate DSGE

models, taking advantage of its superior convergence properties, while interpreting the

2There are stronger versions of this result. See Bickel and Doksum (2006) and Le Cam and Yang (2000)

for more detailed treatments and di¤erent versions of this theorem.
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results in a classical fashion. However, recent research has shown that DSGE models

are often only weakly identi�ed (see, e.g., Del Negro and Schorfheide 2008, Canova and

Sala 2008). In that case, the Bernstein-von Mises Theorem does not apply because as-

sumptions (d), (e) and (f) will fail when parameters are not strongly identi�ed. The

next result shows formally that the classical interpretation of Bayesian credible sets

breaks down when the model is not strongly identi�ed.

Proposition 2 (Posterior Distributions of Exponential Families Under Weak Identi�cation).

Consider an exponential family:

LT (xj�) = [�Tt=1h(xt)] exp

24 kX
j=1

�j(�)

TX
t=1

Tj(xt)� TB(�)

35 (3)

Suppose that

(a)

�j(�) =
1

T
qj(�) + o

�
1

T

�
(4)

B(�) =
1

T
r(�) + o

�
1

T

�
: (5)

(b) The likelihood function (3) is correctly speci�ed.

(c) (1=T )
PT

t=1 Tj(xt)! E(Tj(xt)) almost surely for j = 1; 2; :::; k.

Then when a conjugate prior is used, the posterior density almost surely converges

to
[exp(

Pk
j=1 qj(�)E(Tj(x))� r(�))]R

�E[exp(
Pk

j=1 qj(�)Tj(x)� r(�))]d�
(6)

When a more general, not necessarily conjugate, prior �(�) is used, the posterior density

almost surely converges to

�(�)[exp(
Pk

j=1 qj(�)E(Tj(x))� r(�))]R
� �(�)[exp(

Pk
j=1 qj(�)E(Tj(x))� r(�))]d�

(7)

If there is no unique �0 2 � that maximizes
Pk

j=1 qj(�)E[Tj(xi)] � r(�), it can be

shown that the maximum likelihood estimator is inconsistent and has a nonstandard

limiting distribution. Speci�cally, Proposition 2 shows that (i) the posterior distribu-

tion is not degenerate around the true parameter value when the parameter is weakly
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identi�ed; (ii) that it is not Gaussian; and (iii) that the limit of the posterior distribu-

tion depends on the prior. In other words, the e¤ect of the prior on the posterior will

not die out asymptotically, invalidating the usual classical interpretation of Bayesian

credible sets. This result is intuitive because information does not accumulate even

when the sample size grows when parameters are weakly identi�ed. This means �rst

that the posterior mode no longer coincides with the mean or median. Second, this

means that, when the econometrician follows the standard procedure for strongly iden-

ti�ed DSGE models and computes the mean (or median or mode) of the posterior

distribution as the best guess for the parameter value, the resulting estimator will be

inconsistent for the true parameter value.

Condition (a) is an extension of Stock and Wright�s (2000) concept of weak iden-

ti�cation in GMM to exponential families. It is useful to contrast our notion of weak

identi�cation in condition (a) of Proposition (2) to the limiting cases of strong identi-

�cation and no identi�cation. Strong identi�cation would require that the terms �j(�)

and B(�) in the likelihood function take on values that allow us to solve uniquely for

the maximum likelihood estimator. In contrast, lack of identi�cation would correspond

to �j(�) = 0 and B(�) = 0 such that the likelihood function does not depend on �. The

intermediate case embodied in assumption (a) is that the component of the likelihood

function that depends on � is local to zero. This assumption is designed to represent

our inability to determine which of the two limiting cases is a better approximation of

reality.3

2.2 Bayes Factors and Asymptotically Valid Con�dence

Sets

As a practical alternative, we propose a frequentist con�dence set for parameters in

DSGE models that is valid regardless of the strength of identi�cation. Consider testing

H0 : � 2 B�T (�0)

3Our assumptions include as a special case the possibility of no identi�cation, as discussed in Kadane

(1975) and Poirier (1998).
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against

H1 : � =2 B�T (�0)

where B�T (�0) = f� 2 � : j� � �0j � �T;j for j = 1; 2; :::; pg, � � <p and �T =

[�T;1; :::; �T;p]
0 ! 0p�1 as T !1.

We de�ne the Bayes factor (BF) in favor of H1 by

Bayes Factor(�0) =
�(H0)p(H1jX)
�(H1)p(H0jX)

(8)

where �(Hi) and p(HijX) are the prior and posterior probabilities of Hi, respectively.

The reduced-form parameters � are functions of the structural parameters of in-

terest �:

� = g(�) (9)

where g : � ! <dim(�). In DSGE models, � is the vector of parameters of the state-

space model,

xt+1 = Axt +Bwt; (10)

yt = Cxt +Dwt; (11)

where xt is a vector of possibly unobserved state variables, yt is a vector of observed

variables, wt
iid� N(0; I). While C is a matrix of zeros and ones, the reduced-form para-

meters A, B, and D are typically functions of structural parameters � (see Fernández-

Villaverde, Rubio-Ramírez, Sargent, and Watson 2007).

Theorem 1 (Asymptotically Valid Con�dence Sets Under Weak Identi�cation)

(a) � = A � B is non-empty and compact in <k where A � <k1 , B � <k2 and

k1 + k2 = k, and �0 is in the interior of �.

(b) � : �! <+ is continuous on �.

(c) The log-likelihood function `T (�) is correctly speci�ed and twice continuously

di¤erentiable in �.

(d) g1 : B ! <dim(�) and g2 : � ! <dim(�) are continuously di¤erentiable and

gT (�0) � g1(�0) + T
�1=2g2(�0) = �0;T for all T .
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(e) There is a maximum likelihood estimator �̂T such that
p
T (�̂T � �0;T )

d!

V
1=2
� z where V� = �plimT!1[(1=T )r��`T (�0)]�1 is positive de�nite and z is a

dim(�)-dimensional standard normal random vector.

(f) �T = [�T;1; :::; �T;p]
0 satis�es the following condition: If j�j � �0;j j � �T;j for

i = 1; :::; p then Dg(�)(���0) = o(T�1=2) where Dg(�) is the dim(�)�k Jacobian

matrix of g(�).

If � = �0, then

lim
T!1

P
�
Bayes Factor(�0) � e

z0z
2

�
= 1 (12)

where z is de�ned in Assumption (e), i.e., 2lnBayes Factor(�0) is asymptotically bounded

by a chi-square random variable with dim(�) degrees of freedom.

Remarks.

1. Extending Stock and Wright�s (2000) concept of weak identi�cation in GMM to

our context, we model gT in such a way that the part of gT that depends on

weakly identi�ed parameters vanishes asymptotically. As a result, the rank of

the Jacobian of the function gT can be less than k in the limit. Assumption

(d) allows for the case in which the parameters are all weakly identi�ed (� = �,

gT (�) = T�1=2g2(�), k = k1), the case in which they are partially identi�ed in

the sense of Choi and Phillips (1992) (0 < k2 < k and g2(�) � 0 for all �), and

the case in which they are all strongly identi�ed (� = �, gT (�) = g2(�), k = k2).

Therefore, (12) holds true regardless of the strength of the identi�cation.

2. Assumption (e) requires only the existence of an asymptotically normally dis-

tributed maximum likelihood estimator of the reduced-form parameters. We do

not need to compute the maximum likelihood estimator of � to obtain the Bayes

factor.

3. Assumption (e) implies strong identi�cation of � and can be equivalently written

as
p
T (�̂T � g1(�))

d! g2(�) + V
1=2
� z.

4. Because � is compact and gT (�) is continuously di¤erentiable, Assumption (f) is

always satis�ed if �T = o(T�1=2).
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5. As an example in which assumptions (d) and (e) are satis�ed, consider the wage

Phillips curve in Del Negro and Schorfheide (2008):

ewt = �w�Et [ ewt+1 +�wt+1 +�1;t] +
1� �w

1 + vl (1 + �w) =�w
(vlLt � wt +�2;t) :

Here, ewt is the optimal real wage relative to the real wage for aggregate services,
w, �w is the wage rigidity, vl is the inverse of the Frisch labor supply elasticity,

and 1 + 1=�w is the demand elasticity for labor services (for further discussion

see Section 4 and Del Negro and Schorfheide, 2008). The objects �i;t relate

to terms irrelevant to our discussion. It can be shown that �w only enters the

systems of equations that de�ne the equilibrium in this DSGE model via the last

equation (Del Negro and Schorfheide, 2008). As the inverse labor supply elasticity

becomes negligible (vl ! 0), the parameter �w becomes weakly identi�ed in the

sense of the zero-information limit condition of Nelson and Startz (2007), whereas

the reduced-form parameter 1��w
1+vl(1+�w)=�w

remains strongly identi�ed. Therefore,

assumptions (d) and (e) are satis�ed.

6. Theorem 1 implies that one can obtain level (1� �) con�dence sets by inverting

the Bayes factor:

f� 2 � : Bayes Factor(�0) � e
�2k(1��)

2 g (13)

which satis�es

lim
T!1

P (�0) � 1� �: (14)

7. An alternative approach would have been to invert the likelihood ratio statis-

tic which is asymptotically pivotal under our assumptions. We do not pursue

this possibility because of the computational cost of repeatedly evaluating the

likelihood function. In contrast, the Bayes factor can be constructed from sta-

tistics readily available from Bayesian DSGE estimation procedures. No further

simulation is required.

8. Note that the fact that we focus on the Bayes factor in favor of the alternative

hypothesis (as opposed to the Bayes factor in favor of the null hypothesis) is not

10



innocuous. If we reverse the numerator and denominator in equation (8), under

strong identi�cation, an additional log(T ) term will emerge in equation (8) and

make it impossible to derive the asymptotic bounds on the distribution of the

Bayes factor.

Note that our approach does not allow the construction of point estimates of �,

but the projection method can be used to construct con�dence intervals for individual

elements of � (see Dufour and Taamouti, 2005, and Chaudhuri and Zivot, 2008, for

the projection method in linear IV and GMM models, respectively). The level (1� �)

con�dence interval for the ith parameter �j is (�j ; ��j) where the lower and upper

con�dence bounds are

�j = min

�
�j 2 �j : min

��j2��j
Bayes Factor((�j ; ��j)) � e

�2k(1��)
2

�
; (15)

��j = max

�
�j 2 �j : min

��j2��j
Bayes Factor((�j ; ��j)) � e

�2k(1��)
2

�
; (16)

and ��j is the parameter vector excluding �j and ��j is the parameter space excluding

the parameter space for �j . These con�dence intervals have con�dence level 1 � � by

construction. Because the Bayes factor is not di¤erentiable in � when it is computed

via simulation and because the number of parameters of a typical DSGE model is large,

evaluation of (15) and (16) is computationally challenging. We replace � in (15) and

(16) by the set of Monte Carlo realizations, which reduces the computational burden.

This approach is justi�ed because the set of Monte Carlo realizations becomes dense

in the parameter space, as the number of Monte Carlo draws increases.

In practice one has to choose the radius of the neighborhood B�T (�0). We suggest

the following data-dependent method for choosing �T . Because �T ! 0p�1, we have

�(H0)! 0, �(H1)! 1, P (H0jX)! 0 and P (H1jX)! 1. Thus,

Bayes Factor(�0) �
�(H0)

P (H0jX)
=

1
j�T j�(H0)

1
j�T jP (H0jX)

where j�T j = �pi=1�T;i. We typically compute �(H0) and P (H0jX) by Monte Carlo
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simulation:

�̂(H0) =
1

M

MX
j=1

I(�(j) 2 B�T (�0));

P̂ (H0jX) =
1

M

MX
j=1

I(~�
(j) 2 B�T (�0));

where M is the number of Monte Carlo realizations, �(j) is the jth Monte Carlo re-

alization from the prior distribution and ~�
(j)
is the jth realization from the posterior

distribution. Thus

1

j�T j
�̂(H0) =

1

j�T jM

MX
j=1

I(�(j) 2 B�T (�0)); (17)

1

j�T j
P̂ (H0jX) =

1

j�T jM

MX
j=1

I(~�
(j) 2 B�T (�0)); (18)

Note that the right-hand sides of (17) and (18) can be interpreted as a multivariate

density estimator based on a uniform kernel with �T as the bandwidth. Consider a

multivariate version of Silverman�s rule of thumb:

�T;j = �̂j

�
4

(p+ 2)T

� 1
p+4

(19)

where �̂j is the standard deviation of the posterior distribution of �j .4 Because the prior

and posterior distributions are not necessarily normal and the kernel is not normal,

(19) need not be optimal but satis�es assumption (f). Note that if �j is strongly

identi�ed, �̂j = op(1) and thus �T;j = op(T
�1=2); if �j is weakly identi�ed, �̂j = Op(1)

and �T;j = op(1). Thus it follows from the discussion in Remark 3 for Theorem 1 that

the resulting choice of �T satis�es Assumption (f).

Next we consider the power of our proposed Bayes factor. Suppose that the pa-

rameters consist of weakly identi�ed parameters only, i.e., � = �, and that the true

parameter value �1 is di¤erent from the hypothetical parameter value �0.

Theorem 2 (Power of the Bayes Factor Under Weak Identi�cation) Suppose that the

Assumptions (a)�(f) of Theorem 1 hold with k = k2 and gT (�) = T�1=2g2(�). Then

when � = �1,

Bayes Factor(�0)
d!
R
A �(�) exp

�
�1
2(d(�) + z)

0(d(�) + z)
�
d�

exp
�
�1
2(d(�0) + z)

0(d(�0) + z)
� ; (20)

4See Wand and Jones, 1995, p.111, for example.
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where z is de�ned in Assumption (d) of Theorem 1 and d(�) = V
1=2
� (g2(�1)� g2(�))

Remark. Theorem 2 implies

2ln(Bayes Factor(�0))
d! (d(�0) + z)

0(d(�0) + z)

+2ln
�Z

A
�(�) exp

�
�1
2
(d(�) + z)0(d(�) + z)

�
d�

�
(21)

The �rst term of (21) is a non-central chi-square random variable whose non-central

parameter value increases as the hypothetical value �0 deviates from the true parameter

value �1, while the second term does not depend on �0. When the parameter is weakly

identi�ed, the test based on the Bayes factor is not consistent, but this result shows

that it has nontrivial power against �xed alternatives.

3 An Illustrative Example

We investigate the accuracy of both traditional pseudo-Bayesian methods and the

proposed alternative by Monte Carlo simulation. Given the computational complexity

of applying these econometric methods repeatedly, we select as an illustrative example

a small-scale New Keynesian model, which is often used as an example in the related

literature (see, e.g., Canova and Sala 2008).

3.1 Simulation Design

Our model setup is taken from Woodford (2003, pp. 246). The economy consists of

a Phillips curve, a Taylor rule, an investment-savings relationship, and the exogenous

driving processes zt and �t:

�t = �xt + �Et�t+1; (PC)

Rt = �rRt�1 + (1� �r)���t + (1� �r)�xxt + �t; (TR)

xt = Etxt+1 � � (Rt � Et�t+1 � zt) ; (IS)

zt = �zzt�1 + �
z"zt ;

�t = �r"rt :
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where xt, �t and Rt denote the output gap, in�ation rate, and interest rate, respectively.

The shocks "zt and "
r
t are assumed to be distributed NID (0; 1). The model parameters

are the discount factor �, the intertemporal elasticity of substitution �, the probability

� of not adjusting prices for a given �rm, the elasticity of substitution across varieties

of good, �, the parameter ! controlling disutility of labor supply; �� and �x capture

the central bank�s reaction to changes in in�ation and the output gap, respectively,

and � = (1��)(1���)
�

!+�
�(!+�) .

Clearly, the parameters contained in � are not separately identi�ed. That is, �

and � are at most partially identi�ed. In practice, macroeconomists often �x some

parameters such as �, ! and sometimes � to allow estimation of � based on � (see, e.g.,

Eichenbaum and Fisher 2007), but that procedure is not recommended (see Canova

and Sala 2008). For related discussion of this approach also see Komunjer and Ng

(2009).

Our Monte Carlo experiment consists of the following steps:

1. We generate 1; 000 synthetic data sets of length T for output and in�ation using

the New Keynesian model as the DGP. In generating the data, we set � = 0:75,

� = 0:99, �� = 1:5, �x = 0:125, ! = 1, �r = 0:75, �z = 0:90, � = 6. These

parameter values are standard choices in the macroeconomics literature (see An

and Schorfheide 2007, Woodford 2003). We consider two sample sizes: T = 96

and T = 188. The smaller sample corresponds to the length of quarterly time

series starting with the Great Moderation period in 1984 (see Stock and Watson

2002). The later sample re�ects the period between 1960 and 2006.

2. For each synthetic data set, we treat output and in�ation as our observables

and estimate a total of eight parameters: � = [� �� �x � �r �z �
r �z]. The

estimation is carried out using Bayesian estimation methods for DSGE models.

We characterize the posterior distribution of the parameters of interest using the

Random Walk Metropolis-Hasting algorithm documented in An and Schorfheide

(2007). We select two types of priors. First, we use uniform priors. Following the

literature, we impose boundary restrictions to make the priors proper and to avoid

incompatible values (e.g., negative variances, persistence parameters outside the

unit circle, and indeterminancy of the model). As an alternative, we use the priors
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proposed in An and Schorfheide centered around the true values in our DGP and

with loose standard deviations (see Table 1). The algorithm involves three steps:

a. Let L (�jY ) and p (�) denote the likelihood of the data conditional on the

parameters and the prior probability, respectively. Obtain the posterior modee� = argmax[ln p (�) + lnL (�jY )] using a suitable maximization routine. To
ensure that we �nd the maximum, we provide our maximization procedure

with 10 randomly selected starting points, which gives us a set of potential

maxima
ne�io10

i=1
. Then the mode corresponds to the candidate that achieves

the highest value among the 10 potential candidates.

b. Let fP be the inverse Hessian evaluated at the posterior mode. Draw �(0)

from a normal distribution with mean e� and covariance matrix {2fP, where
{2 is a scaling parameter.

c. For k = 1; :::; Ns, draw # from the proposal density N
�
�(k�1);{2fP�. The

new draw �(k) = # is accepted with probability min f1; qg and rejected oth-

erwise. The probability r is given by

q =
L (#jY ) p (#)

L
�
�(k�1)jY

�
p
�
�(k�1)

� :
The posterior distributions are characterized using Ns = 100; 000 iterations

after discarding an initial burn-in phase of 1; 000 draws. Selecting {2 is a

delicate issue in our experiment. Ideally, one should �ne-tune that para-

meter for each synthetic data set, so that the acceptance rate falls within

the values suggested by Roberts et al. (1997). Given the size of our experi-

ment (5; 000 Monte Carlo replications each consisting of 100; 000 Metropolis-

Hasting draws), hand picking {2 for each synthetic data set is prohibitively

expensive. Instead, we set one common scaling parameter for our exercise.

To get this value, we �ne tune {2 for 10 separate Monte Carlo replications

and then take the average of scaling parameters.

3.2 Simulation Results

The �rst table reports some statistics of the priors used in our Monte Carlo experiment.

Tables 2 and 3 compare the coverage accuracy of alternative con�dence sets for the
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model discussed above. The �rst table reports the results using uniform priors, while

the second table contains the �ndings with informative priors. The upper panel is

for T = 96, which corresponds to the sample size of post-Great Moderation quarterly

data. The lower panel is for T = 188, which corresponds to the standard sample

period between 1960 and 2006. Following Gelfand and Smith�s (1990) approach, we

visually inspected draws from the posterior distribution and discarded data sets in

which convergence seems to fail. That left between 600 and 743 synthetic data sets

for each sample size and design. The nominal coverage probability is 0.90. The tuning

parameter, �T , is chosen by the data-dependent method discussed in section 2.2. In

light of the computational cost, the results are based on 5,000 draws randomly chosen

from 100,000 draws from the posterior distribution.

The �rst row of the upper panel of Table 2 focuses on the traditional asymptotic

con�dence interval that a frequentist user might construct from the posterior mode

(or mean or median) by adding += � 1:645 posterior standard errors. Some e¤ective

coverage rates are well below the nominal rates. The coverage probability may be as

low as 52.5%. Alternatively, a frequentist user may focus on the (1��)% equal-tailed

percentile interval based on the posterior distribution (see, e.g., Balke, Brown, and

Yücel 2008). For the percentile interval, the coverage rate may drop as low as 39.1%.

If we construct the interval by inverting the Bayes factor (BF interval), in contrast, all

intervals for individual parameters have coverage rates of at least 97%, and the joint

interval has a coverage probability of 89.4%.

As the sample size is increased in the second panel, the accuracy of the traditional

asymptotic interval improves but may remain as low as 71.5%, depending on the pa-

rameter. The corresponding percentile intervals have coverage rates as low as 58.8%.

The intervals based on inverting the Bayes factor in all cases have at least 90% coverage

probability.

Table 3 shows that under informative priors again the e¤ective coverage rates for

the traditional con�dence intervals may be below 90%. For example, the coverage

probability for the scale of the monetary shock, �r, can be as low as 62:3% when

T = 96. In contrast, the proposed BF interval has coverage rates of at least 90% in

all cases. An interesting feature of this second exercise is that the use of informative
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priors bene�ts the traditional method in that it improves the coverage accuracy relative

to the results in Table 2. This result is expected, since these priors are centered

around the true parameter values, which forces the posterior mode/median to remain

in the neighborhood of the true parameters. This �nding highlights the in�uence that

priors have on the construction of traditional con�dence intervals. The Monte Carlo

experiment shows that the traditional methods are typically least accurate for the

parameters describing the stochastic processes of the DSGE model.

The results in Tables 2 and 3 indicate that the accuracy of some traditional intervals

for � and � can be quite good even when those parameters are weakly identi�ed as in

our experiment. The reason is as follows: In the weakly identi�ed case, the posterior

distribution essentially replicates the prior distribution (see Canova and Sala, 2008).

A natural conjecture is that the symmetry of the priors for � and � about their true

values is responsible for the relatively high accuracy of the traditional methods because

it makes it more likely that the credible interval includes the true parameter value. To

verify our conjecture, we repeated the Monte Carlo experiment with uniform priors

with bounds [0; 0:8] and [5:5; 15] for � and �, respectively. Under these alternative

priors, the true values are close to the boundary of the support of the priors. As

Table 4 shows, in that case, the coverage rates for the traditional con�dence intervals

decline to values as low as 10%. Even under the most optimistic scenario based on the

mode, the accuracy for those parameters is only around 50%. On the other hand, our

approach remains quite robust to the new priors delivering coverage rates of at least

94% for individual parameters and near 90% for the set.

We conclude that traditional interval estimates for Bayesian DSGE model estimates

are not reliable and that the proposed alternative interval has the potential of achieving

substantial improvements in accuracy.

4 Empirical Application

To illustrate the usefulness of our methodology, we now construct the BF con�dence

intervals in a medium-scale DSGE framework. The model for this section builds on

the recent literature on dynamic stochastic general equilibrium models (see, e.g., Altig
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et al. 2005; Smets and Wouters 2007a,b). Our speci�cation follows very closely that

of Del Negro et al. (2007) and Del Negro and Schorfheide (2008), who in turn build on

Smets and Wouters (2003) and Christiano, Eichenbaum and Evans (2005). Since this

type of environment has been extensively discussed in the literature, we provide only

a brief discussion. The main features of the model can be summarized as follows: The

economy grows along a stochastic path; prices and wages are assumed to be sticky à la

Calvo; preferences display internal habit formation; investment is costly; and �nally,

there are �ve sources of uncertainty: neutral and capital embodied technology shocks,

preference shocks, government expenditure shocks, and monetary shocks. Additional

details on the formulation and estimation of DSGE models can be found in Fernandez-

Villaverde et al. (2009).

4.1 Firms

There is a continuum of monopolistically competitive �rms indexed by j 2 [0; 1] each

producing an intermediate good from capital services, kj , and labor services, Lj;t. The

technology function is given by

Yj;t = k�j;t (ZtLj;t)
1�� � Zt ;

where  makes pro�ts equal to zero in the steady state. The neutral technology shock,

Zt, grows at rate zt = log (Zt=Zt�1) which is assumed to follow the process5

zt = (1� �z)
 + �zzt�1 + �z�z;t;

where �z;t is distributed NID(0; 1). Firms rent capital and labor in perfectly compet-

itive factor markets.

Firms choose prices to maximize the present value of pro�ts; prices are set in Calvo

fashion; that is, each period, �rms optimally revise their prices with an exogenous

probability 1 � �p. If, instead, a �rm does not re-optimize its price, then the price

is updated according to the rule: Pj;t = (�t�1)
�p (��)

1��p Pj;t�1, where �t�1 is the

economy-wide in�ation in the previous period, �� is steady-state in�ation and �p 2

[0; 1].

5The growth term is needed to have a well-de�ned steady state around which we can solve the model.
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There is a competitive �rm that produces the �nal good using intermediate goods

according to the technology

Yt =

�Z 1

0
Y
1=(1+�f;t)
j;t dj

�1+�f;t
:

Here �f;t is the degree of monopoly power and evolves according to the process log �f;t =�
1� ��f

�
log �f + ��f log �f;t�1+ ��f ��;t. The shock ��;t is assumed to be NID(0; 1).

4.2 Households

The economy is populated by a continuum of households indexed by i. Every period

households must decide how much to consume, work, and invest. In addition, they

must choose the amount of money to be sent to a �nancial intermediary. Agents in the

economy have access to complete markets; such an assumption is needed to eliminate

wealth di¤erentials arising from wage heterogeneity. Households maximize the expected

present discounted value of utility

Ei0
1X
t=0

�t

"
log(Ci;t � hCi;t�1)� �t

L1+vli;t

1 + vl

#
(22)

subject to

PtCi;t+Pt
�
Ii;t + a(ui;t)Ki;t

�
+Bi;t+1 = RKt ui;tKi;t+Wi;tLi;t+Rt�1Bi;t+Ai;t+�t+Ti;t;

and

Ki;t+1 = (1� �)Ki;t + Ii;t

�
1� �( Ii;t

Ii;t�1
)

�
:

Here, Eit is the time t expectation operator conditional on the information set of house-

hold i; �t is a preference shifter that follows the process log �t =
�
1� ��

�
log � +

�� log �t�1 + ����;t with "�;t distributed N (0; 1); preferences display internal habit

formation measured by h 2 (0; 1); and � is a function re�ecting the costs associated

with adjusting the investment portfolio. This function is assumed to be increasing

and convex satisfying � (e
) = �0 (e
) = 0 and �00 (e
) > 0 in the steady state. Tj;t

corresponds to lump-sum transfers from the government to household i. Bi;t is the

individual demand for one-period government bonds, which pay the gross nominal in-

terest rate Rt. As in the related literature, it is assumed that physical capital can be
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used at di¤erent intensities (see, e.g., Altig et al. 2005). Furthermore, using the cap-

ital with intensity ui;t yields the return RKt ui;tKi;t but entails the cost a(ui;t), which

satis�es a(1) = 0; a00(1) > 0; a0(1) > 0. Finally, the term Ai;t captures net payments

from complete markets, while �t corresponds to pro�ts from producers.

4.3 Wage Setting

Following Erceg et al. (2000), we assume that each household is a monopolistic sup-

plier of a di¤erentiated labor service, Li;t. Households sell these labor services to a

competitive �rm that aggregates labor and sells it to �nal �rms. The technology used

by the aggregator is

Lt =

�Z 1

0
L
1=(1+�w)
i;t dj

�1+�w
; 0 < �w <1:

It is straightforward to show that the relationship between the labor aggregate and the

aggregate wage, Wt, is given by

Li;t =

�
Wi;t

Wt

��(1+�w)=�w
Lt:

To induce wage sluggishness, we assume that households set their wages in Calvo fash-

ion. In particular, with exogenous probability �w a household does not re-optimize

wages each period. Hence, wages are set according to the rule of thumb Wi;t =

(��e
)
1�� (�t�1ezt�1)

�w Wi;t�1.

4.4 Government

As in most of the recent New Keynesian literature, we assume a cashless economy

(Woodford, 2003). The monetary authority sets the short-term interest rate according

to a Taylor rule. In particular, the central bank smoothes interest rates and responds to

deviations of actual in�ation from steady-state in�ation, ��, and deviations of output

from its target level, Y �t :

Rt
R�

=

�
Rt�1
R�

��r "��t
��

� 1 � Yt
Y �t

� 2#1��r
exp(�r�r;t): (23)
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The term �r;t is a random shock to the systematic component of monetary policy and is

assumed to be standard normal; �r is the size of the monetary shock. This is the same

Taylor rule used in Del Negro et al. (2007) and Del Negro and Schorfheide (2008). R�

corresponds to the steady-state gross nominal interest rate.

Finally, we assume that government spending is given by Gt = (1� 1=gt)Yt where

gt follows the exogenous process log gt =
�
1� �g

�
log g + �g log gt�1 + �g�g;t, where

�g;t � NID(0; 1). The government uses taxes and one-period bonds to �nance its

purchases.

4.5 Data and Estimation

We follow Del Negro and Schorfheide (2008) in estimating the model using �ve observ-

ables: real output growth, per capita hours worked, labor share, in�ation (annualized),

and nominal interest rates (annualized). We use their quarterly data set for the period

1982:Q1� 2005:Q4. We set our priors alternatively to the non-dogmatic agnostic, low-

rigidities, and high-rigidities priors employed in Del Negro and Schorfheide (see Tables

1 through 3 in their paper).

The parameter space is divided into two sets: �1 = [� � g L�  ]; which is not esti-

mated, and�2 = [r� 
 �f �� �p �p �w �w �w �
00 h a00 vl  1  2 �r �z �z �� �� �� �� �g �g �r Ladj ],

which is. The following values are used for the �rst set of parameters: � = 0:33,

� = 0:025, g = 0:22, L� = 1,  = 0. Although these values are standard choices in

the DSGE literature, some clari�cations are in order. As in Del Negro and Schorfheide

(2008), our parametrization imposes the constraint that �rms make zero pro�ts in the

steady state. We also assume that households work one unit of time in steady state.

This assumption in turn has two implications: First, the parameter � is endogenously

determined by the optimality conditions in the model. Second, because hours worked

have a mean di¤erent from that in the data, the measurement equation in the state

space representation is

logLt(data) = logLt(model) + logLadj :

Here, the term Ladj is required to match the mean observed in the data. Finally,

rather than imposing priors on the great ratios as in Del Negro and Schorfheide, we
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follow the standard practice (Christiano et al. 2005) of �xing the capital share, �, the

depreciation rate, �, and the share of government expenditure on production, g.

The posterior distributions of the parameters in the set �2 are characterized using

the Random walk-Metropolis-Hasting algorithm outlined in Section 3. A total of three

independent chains, each of length 100; 000 were run. We conducted standard tests to

check the convergence of each chain (see Gelman et al. 2004).

4.6 What Do the Data Tell Us about the Relative Impor-

tance of Wage and Price Rigidities?

Table 5 summarizes the posterior means, medians, and modes as well as the posterior

standard deviations, as shown in Table 6 of Del Negro and Schorfheide (2008).6 For

each structural parameter, we also show the 90% Bayesian credible interval and the

proposed 90% con�dence interval based on inverting the Bayes factor (BF interval).

For our purposes, the parameters of greatest interest are �p and �w, which quantify

the degree of price and wage rigidities, respectively. Del Negro and Schorfheide found

that the posterior of these parameters was heavily in�uenced by their prior, so a re-

searcher entering a prior favoring one of these rigidities would inevitably arrive at a

posterior favoring that same rigidity. This �nding suggests that a properly constructed

con�dence band should be wider. Our BF based interval delivers wider con�dence in-

tervals, which shields the econometrician from making unduly strong statements about

the degree of stickiness in the data. In contrast, a researcher naïvely interpreting the

credible sets as frequentist con�dence sets would have concluded that these same para-

meters are fairly tightly estimated. Although the BF intervals are wider, they are not

so wide as to make the exercise useless, indicating that even under weak identi�cation

there is some information in the data about the structural parameters.

There is an active literature on measuring the degree of price rigidity at the micro

level (see, e.g., Klenow and Kryvtsov 2008; Nakamura and Steinsson 2008). For exam-

6The attentive reader may notice that our posteriors di¤er somewhat from those in Del Negro and

Schorfheide (2008). This is because, as previously explained, we opt not to use priors on the great ratios.

For the discussion below, these di¤erences are immaterial.
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ple, Klenow and Kryvtsov (2008) �nd that price contracts last, on average, about 2:3

quarters. Based on the credible intervals, a researcher would conclude that the length

of those price spells is incompatible with the macro evidence in Table 5. In contrast,

a researcher relying on the BF interval would view Klenow and Kryvtsov�s �ndings as

perfectly consistent with the results from the Bayesian estimation exercise (the lower

bound of the interval implies that prices are reset every 1:9 quarters).7 When we turn

to wage stickiness, the credible interval favors a model with a fairly �exible wage set-

ting (the longest wage contract lasts only for 1:5 quarters). Our BF approach, however,

suggests that the data are compatible with a model displaying wage contracts of up to

2:3 quarters.

Tables 6 and 7 provide evidence that the BF interval is not very sensitive to the

choice of prior. We compare the low-rigidity and high-rigidity priors explored by Del

Negro and Schorfheide (2008). The BF interval suggests that Klenow and Kryvstov�s

�ndings are plausible even under priors that assume substantial price rigidity (Table 7)

or low price rigidity (Table 6). To summarize, the BF interval is designed to help protect

researchers from overly optimistic inferences. It allows applied users who are merely

Bayesians of convenience to compute asymptotically valid con�dence sets from DSGE

models estimated by Bayesian methods, even when conventional methods relying on

the asymptotic equivalence of Bayesian and frequentist estimation and inference would

be invalid.

5 Concluding Remarks

An attractive feature of Bayesian DSGE estimation methods is that they facilitate

the estimation of models that are too large to be estimated reliably by conventional

maximum likelihood methods. This feature has made these methods popular even

among researchers who think of these methods merely as a convenient device for ob-

taining model estimates but would not consider themselves Bayesians otherwise. If the

DSGE model is only weakly identi�ed, however, Bayesian posterior estimates tend to be

7The length of price contracts is de�ned as 1
1��p

, where �p is the probability of not re-optimizing prices

today.
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dominated by the prior and the usual asymptotic equivalence between frequentist and

Bayesian methods of estimation and inference breaks down. We showed that attempts

to construct classical con�dence sets from the posterior, whether based on percentile

intervals or by adding multiples of posterior standard deviations to posterior modes,

are invalid if the model is weakly identi�ed. Moreover, the posterior mode, mean,

and median are inconsistent estimators of the true structural parameter values. Given

mounting evidence that many DSGE models used in the literature su¤er from weak

identi�cation problems, this �nding suggests caution in interpreting posterior modes

as traditional point estimates and highlights the limitations of traditional con�dence

sets constructed from the posterior.

We proposed an alternative frequentist con�dence set that remains asymptotically

valid regardless of the strength of identi�cation. We showed that the proposed con-

�dence set tends to have higher coverage accuracy than the alternative methods we

showed to be theoretically invalid. The proposed set is designed to help applied users

separate the information conveyed by the data from the information conveyed by the

prior. This is an especially useful feature for non-Bayesian users of Bayesian DSGE es-

timation methods, given recent evidence that DSGE models with very di¤erent policy

implications may be observationally equivalent. This means that the posterior tends

to move nearly one for one with the prior. In such cases, one would like a frequen-

tist con�dence set to re�ect the fact that there is essentially no information about the

structural parameter in the data. This is indeed what we found in several examples

based on the recent literature. While the intervals tend to be appropriately wide, we

also showed that it is not necessarily the case that the proposed intervals include all

possible values. Moreover, the strength of the identi�cation and hence the width of the

con�dence set may di¤er from one structural parameter to the next.

At the same time, the proposed con�dence set takes full advantage of Bayesian es-

timation methods in that it is based on the inversion of the Bayes factor. Our method

has two attractive features. One is that it circumvents the problems of estimating

DSGE models by classical maximum likelihood methods by using the Bayesian estima-

tion framework in constructing the Bayes factor. The other is that by construction the

proposed con�dence set is asymptotically invariant to the choice of prior in the case
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of weak identi�cation. Since the Bayes factor is the ratio of the posterior odds to the

prior odds, if the likelihood is �at and hence the prior dominates the posterior, the

numerator and the denominator of the ratio will tend to cancel, making the proposed

con�dence set more robust to alternative priors than conventional intervals. We illus-

trated this point in the context of the question of the relative importance of wage and

price rigidities in a New Keynesian model.

It is of course not necessary to use our method to reveal weak identi�cation. For

example, inspection of the likelihood or a comparison of the posterior under di¤erent

priors may su¢ ce to diagnose problems of weak identi�cation, as illustrated in Del

Negro and Schorfheide (2008). Weak identi�cation does not mean that there is no

information in the data about the structural parameters of interest, however. The value

added of the BF interval relative to other methods is that it allows one to quantify

how informative the data are about the structural parameter of interest.
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Appendix

Proof of Proposition 1: Let BT = f� 2 � : [r��`T (�̂T )]
1=2(� � �̂T ) 2 Ag. Note that

BT
P�0! f�0g because A is compact, �̂T is strongly consistent and r��`T (�) is diverging.

Recall that B�(�0) = f� 2 � : k���0k � �g as de�ned in Assumption (d) of Proposition

1. De�ne I1;T and I2;T by

jr��`T (�̂T )j
1
2

�(�0)LT (X1; :::; XT j�̂T )

Z
�
�(�)LT (X1; :::; XT j�)d�

=
jr��`T (�̂T )j

1
2

�(�0)LT (X1; :::; XT j�̂T )

Z
�\B�(�0)c

�(�)LT (X1; :::; XT j�)d�

+
jr��`T (�̂T )j

1
2

�(�0)LT (X1; :::; XT j�̂T )

Z
�\B�(�0)

�(�)LT (X1; :::; XT j�)d�

= I1;T + I2;T : (24)

I1;T =
1

�(�0)
exp(`T (�0)� `T (�̂T ))jr��`T (�̂T )j

1
2

�
Z
�\B�(�0)c

�(�) exp(`T (�)� `T (�0))d�

� 1

�(�0)
jr��`T (�̂T )j

1
2 exp(�"(�)T )

! 0; (25)

where the �rst inequality follows from exp(`T (�0) � `T (�̂T )) � 1 and Assumption (f)

and the last convergence follows from Assumptions (d) and (f).

I2;T = jr��`T (�̂T )j
1
2

Z
B�(�0)

�(�)

�(�0)
exp(`T (�)� `T (�̂T ))d�

= jr��`T (�̂T )j
1
2

Z
B�(�0)

exp(`T (�)� `T (�̂T ))d� +O(�)

= jr��`T (�̂T )j
1
2

Z
B�(�0)

exp

�
1

2
(� � �̂T )0r��`T (�̂T )(� � �̂T )

�
exp(RT (�))d�

+O(�) P�0-a.s.

= jr��`T (�̂T )j
1
2

Z
B�(�0)

exp

�
1

2
(� � �̂T )0r��`T (�̂T )(� � �̂T )

�
d�

+O(�) + o(1) P�0-a.s.

! (2�)
1
2 ; (26)
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as � ! 0, where RT (�) = (� � �̂T )
0r��`T (��T )(� � �̂T ) � (� � �̂T )

0r��`T (�̂T )(� � �̂T ),

��T is a point between �̂T and �0, the second equality follows from Assumption (b) and

exp(`T (�)� `T (�̂T )) � 1, the third follows from the Taylor�s theorem, the fourth from

Assumption (c) and the last from Assumption (f). It follows from (24), (25) and (26)

that
jr��`T (�̂T )j

1
2

�(�0)LT (X1; :::; XT j�̂T )

Z
�
�(�)LT (X1; :::; XT j�)d� ! (2�)

1
2 (27)

For su¢ ciently large T , BT (�̂T ) � B�(�0). By repeating arguments we obtain

jr��`T (�̂T )j
1
2

�(�0)LT (X1; :::; XT j�̂T )

Z
�\BT (�̂T )

�(�)LT (X1; :::; XT j�)d� ! (2�)
1
2P (z 2 A) (28)

where z � N(0; I(�0)). The desired result follows from (27) and (28).

Proof of Theorem 1: It follows from Assumption (c), the Taylor theorem and the �rst

order condition for MLE that

I3 �
Z
B�T (�0)

�(�) exp(`T (gT (�))� `T (�̂T ))d�

=

Z
B�T (�0)

�(�) exp

�
1

2
(gT (�)� �̂T )0r��`T (��T (�))(gT (�)� �̂T )

�
d�; (29)

where ��T (�) is between gT (�) and �̂T . It follows from Assumptions (d) and (f) that

gT (�) = gT (�0) +DgT (��(�))(� � �0)

= gT (�0) + o(T
�1=2); (30)

where ��(�) is a point between � and �0. It follows from Assumptions (a) and (b), (29)

and (30) that

I3 =

Z
B�T (�0)

�(�) exp

�
1

2
(gT (�0)� �̂T )0r��`T (��T (�))(gT (�0)� �̂T )

�
d� + op(1)

=

Z
B�T (�0)

�(�)d� exp

�
1

2
(gT (�0)� �̂T )0r��`T (��T (�))(gT (�0)� �̂T )

�
+ op(1)

(31)

It follows from Assumption (e) and (38) that

I3 =

Z
B�T (�0)

�(�)d� exp

�
�1
2
z0z

�
+ op(1) (32)
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where z is the standard normal random vector de�ned in Assumption (e).

Let

I4 =

Z
�nB�T (�0)

�(�) exp(`T (gT (�))� `T (�̂T ))d�; (33)

where AnB = fx : x 2 A and x =2 Bg. Since `T (gT (�)) � `T (�̂T ) by the de�nition of

MLE, it follows from (33) that

I4 �
Z
�nB�T

�(�)d�: (34)

Because
R
� �(�) exp(`T (g(�)))d� cancels out, the Bayes factor in favor of H1 can be

written as

Bayes Factor (�0) =

R
B�T (�0)

�(�)d�R
�nB�T (�0)

�(�)d�

I4
I3

� exp

�
1

2
z0z

�
+ op(1) (35)

where the inequality follows from (34) and the last equality from (32). Therefore it

follows from (35) that

2ln(Bayes Factor (�0)) � z0z + op(1) (36)

from which we obtain the desired result.

Proof of Theorem 2: Because the log-likelihood function is twice continuously di¤er-

entiable by Assumption (c) and because �̂T � T�1=2g2(�) = op(1) uniformly in � 2 A

where the uniform convergence follows from Assumption (c) and the compactness of A

by Assumption (a),
1

T
r��`T (��T (�))

p! �V �1� (37)

where ��T is any point between �̂T and T�1=2g2(�) and the convergence is uniform in

�.

De�ne I3 and I4 as in the proof of Theorem 1. It follows from Assumptions (a), (b)

28



and (e), (29), (30) and (37) that

I3 =

Z
B�T (�0)

�(�) exp

�
1

2
(gT (�0)� �̂T )0r��`T (��T )(gT (�0)� �̂T )

�
d�+ op(1)

=

Z
B�T (�0)

�(�)d� exp

�
1

2
(g2(�0)� �̂T )0r��`T (��T )(g2(�0)� �̂T )

�
+ op(1)

=

Z
B�T (�0)

�(�)d�

� exp
�
1

2
(g2(�0)� g2(�1) + g2(�1)� �̂T )0r��`T (��T )(g2(�0)� g2(�1) + g2(�1)� �̂T )

�
+ op(1)

=

Z
B�T (�0)

�(�)d� exp

�
�1
2
(d(�0) + z)

0(d(�0) + z)

�
; (38)

where ��T is a point between �̂T and gT (�0).

It follows from (37) that

I4 =

Z
AnB�T (�0)

�(�) exp(`T (g2(�))� `T (�̂T ))d� (39)

=

Z
AnB�T (�0)

�(�) exp

�
1

2
(g2(�)� g2(�1) + g2(�1)� �̂T )0r��`T (��T (�))

�(g2(�)� g2(�1) + g2(�1)� �̂T )
�

(40)

=

Z
AnB�T (�0)

�(�) exp

�
�1
2
(d(�) + V

1
2
� z)

0(d(�) + V
1
2
� z)

�
+ op(1) (41)

=

Z
A
�(�) exp

�
�1
2
(d(�) + V

1
2
� z)

0(d(�) + V
1
2
� z)

�
+ op(1); (42)

where ��T (�) is between �̂T and g2(�) and the last equality follows since B�(�0) is

compact and d(�) is continuous in �.

Combining (38) and (42), the Bayes factor in favor of H1 can be written as

Bayes Factor (�0) =

R
B�T (�0)

�(�)d�R
�nB�T (�0)

�(�)d�

I4
I3

=

R
�(�) exp

�
�1
2(d(�) + z)

0(d(�) + z)
�
d�

exp
�
�1
2(d(�0) + z)

0(d(�0) + z)
� + op(1); (43)

which completes the proof.
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Table 1: Prior Speci�cation for Parameters of the Small-Scale New Keynesian Model

Uniform Priors
Parameters Distributions Lower Bound Upper Bound
�p Uniform 1 5
�x Uniform 0 5
� Uniform 0 1
� Uniform 1 15
�z Uniform 0 1
�r Uniform 0 1
�z Uniform 0 1
�r Uniform 0 1

Informative Priors
Parameters Distributions Mean Standard Deviations
�p Gamma 1.5 0.25
�x Gamma 0.125 0.1
� Beta 0.75 0.2
� Normal 6 2
�z Beta 0.9 0.2
�r Beta 0.75 0.2
�z Inverse Gamma 0.3 0.2
�r Inverse Gamma 0.2 0.2
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Table 2: E¤ective Coverage Rates of Nominal 90% Con�dence Intervals Based

on the Posterior and Bayes Factor Intervals: Small-Scale New Keynesian Model with

Uniform Priors

T = 96
�� �x � � �z �r �z �r Joint

Mean�1:645SD 0.996 0.971 0.923 1.000 0.793 0.858 0.593 0.525
Median�1:645SD 0.990 0.971 0.793 1.000 0.790 0.858 0.623 0.642
Mode�1:645SD 0.926 0.983 0.846 0.772 0.864 0.861 0.891 0.946
Percentile 1.000 0.952 0.993 1.000 0.794 0.855 0.535 0.391
BF Interval 1.000 0.994 1.000 1.000 0.970 0.972 0.991 0.972 0.894

T = 188
�� �x � � �z �r �z �r Joint

Mean�1:645SD 0.995 0.985 0.977 0.998 0.832 0.900 0.715 0.733
Median�1:645SD 0.995 0.987 0.943 0.998 0.832 0.898 0.748 0.778
Mode�1:645SD 0.973 0.977 0.880 0.782 0.880 0.893 0.925 0.962
Percentile 0.997 0.982 0.993 0.998 0.832 0.895 0.643 0.588
BF Interval 0.998 0.993 0.998 0.998 0.992 0.993 0.985 0.977 0.932
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Table 3: E¤ective Coverage Rates of Nominal 90% Con�dence Intervals Based

on the Posterior and Bayes Factor Intervals: Small-Scale New Keynesian Model with

Informative Priors

T = 96
�� �x � � �z �r �z �r Joint

Mean�1:645SD 0.997 0.996 0.995 0.997 0.880 0.915 0.890 0.945
Median�1:645SD 0.997 0.977 0.995 0.997 0.875 0.911 0.869 0.934
Mode�1:645SD 0.997 0.840 0.974 0.997 0.774 0.902 0.623 0.727
Percentile 0.997 0.996 0.995 0.997 0.887 0.915 0.921 0.964
BF Interval 0.997 0.997 0.997 0.997 0.996 0.995 0.995 0.997 0.969

T = 188
�� �x � � �z �r �z �r Joint

Mean�1:645SD 0.999 0.965 0.999 0.999 0.908 0.921 0.913 0.911
Median�1:645SD 0.999 0.938 0.999 0.999 0.905 0.919 0.899 0.894
Mode�1:645SD 0.999 0.761 0.987 0.999 0.761 0.915 0.636 0.699
Percentile 0.999 0.975 0.997 0.999 0.911 0.919 0.930 0.921
BF Interval 0.999 0.999 0.999 0.999 0.994 0.982 0.988 0.991 0.934
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Table 4: E¤ective Coverage Rates of Nominal 90% Con�dence Intervals Based

on the Posterior and Bayes Factor Intervals: Small-Scale New Keynesian Model with

Modi�ed Uniform Priors

T = 188
�� �x � � �z �� �z �r joint

Mean�1:645SD 0.996 0.988 0.104 0.490 0.808 0.931 0.635 0.679
Median�1:645SD 0.996 0.988 0.102 0.406 0.815 0.927 0.671 0.750
Mode�1:645SD 0.948 0.992 0.529 0.515 0.913 0.902 0.937 0.983
Percentile 0.996 0.981 0.102 0.263 0.804 0.923 0.552 0.506
BF Interval 0.996 0.994 0.942 0.994 0.994 0.990 0.973 0.973 0.885
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Table 5: Nominal 90% Con�dence Intervals Based on the Posterior and Bayes

Factor Interval: Medium-Scale New Keynesian Model with Agnostic Priors

Rigidity Parameters
Posterior Credible BF con�dence

means medians modes SD intervals intervals
�p 0.694 0.695 0.695 0.046 [0.615,0.769] [ 0.479, 0.840]
�w 0.219 0.214 0.164 0.071 [0.112,0.341] [ 0.036, 0.563]

Other Endogenous Propagation Parameters
Posterior Credible BF con�dence

means medians modes SD intervals intervals
�l 1.767 1.699 1.388 0.530 [1.026,2.749] [ 0.458, 4.661]
 1 2.382 2.376 2.353 0.253 [1.983,2.806] [ 1.278, 3.390]
 2 0.074 0.073 0.074 0.024 [0.038,0.116] [ 0.007, 0.180]
�r 0.722 0.724 0.715 0.038 [0.657,0.781] [ 0.547, 0.840]
{p 0.096 0.074 0.014 0.083 [0.007,0.260] [ 0.000, 0.562]
{w 0.279 0.269 0.281 0.121 [0.102,0.489] [ 0.000, 0.947]
s0 9.146 8.986 8.986 1.973 [6.177,12.639] [ 3.036, 17.459]
h 0.753 0.756 0.762 0.056 [0.657,0.840] [ 0.512, 0.905]
a00 0.230 0.214 0.168 0.101 [0.096,0.418] [ 0.035, 0.888]

Exogenous Propagation Parameters
Posterior Credible BF con�dence

means medians modes SD intervals intervals
�z 0.232 0.222 0.185 0.117 [0.052,0.445] [ 0.001, 0.676]
�� 0.958 0.960 0.964 0.018 [0.926,0.984] [ 0.867, 0.999]
��f 0.942 0.949 0.960 0.033 [0.875,0.982] [ 0.771, 0.998]
�g 0.916 0.916 0.918 0.027 [0.870,0.959] [ 0.781, 0.992]
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Table 6: Nominal 90% Con�dence Intervals Based on the Posterior and Bayes

Factor Interval: Medium-Scale New Keynesian Model with Low-Rigidity Priors

Rigidity Parameters
Posterior Credible BF con�dence

means medians modes SD intervals intervals
�p 0.658 0.660 0.681 0.045 [0.580,0.730] [ 0.466, 0.793]
�w 0.266 0.263 0.260 0.057 [0.177,0.364] [ 0.089, 0.551]

Other Endogenous Propagation Parameters
Posterior Credible BF con�dence

means medians modes SD intervals intervals
�l 1.856 1.776 1.404 0.597 [1.018,2.961] [ 0.426, 5.016]
 1 2.417 2.412 2.275 0.249 [2.014,2.838] [ 1.611, 3.692]
 2 0.074 0.072 0.062 0.023 [0.038,0.115] [ 0.007, 0.178]
�r 0.724 0.726 0.692 0.037 [0.659,0.780] [ 0.556, 0.836]
{p 0.154 0.128 0.015 0.116 [0.014,0.381] [ 0.000, 0.684]
{w 0.270 0.261 0.293 0.112 [0.101,0.467] [ 0.001, 0.770]
s0 8.955 8.788 8.851 2.007 [5.966,12.497] [ 3.799, 20.434]
h 0.740 0.742 0.736 0.055 [0.648,0.826] [ 0.535, 0.914]
a00 0.242 0.226 0.157 0.103 [0.103,0.430] [ 0.035, 0.858]

Exogenous Propagation Parameters
Posterior Credible BF con�dence

means medians modes SD intervals intervals
�z 0.217 0.207 0.211 0.115 [0.042,0.421] [ 0.000, 0.704]
�� 0.956 0.957 0.960 0.018 [0.924,0.982] [ 0.853, 0.998]
��f 0.950 0.955 0.972 0.027 [0.897,0.984] [ 0.782, 1.000]
�g 0.911 0.912 0.911 0.027 [0.866,0.955] [ 0.791, 0.996]
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Table 7: Nominal 90% Con�dence Intervals Based on the Posterior and Bayes

Factor Interval: Medium-Scale New Keynesian Model with High-Rigidity Priors

Rigidity Parameters
Posterior Credible BF con�dence

means medians modes SD intervals intervals
�p 0.773 0.774 0.739 0.056 [0.678,0.855] [ 0.580, 0.905]
�w 0.446 0.427 0.312 0.115 [0.288,0.670] [ 0.155, 0.848]

Other Endogenous Propagation Parameters
Posterior Credible BF con�dence

means medians modes SD intervals intervals
�l 1.520 1.466 1.745 0.667 [0.493,2.709] [ 0.133, 4.794]
 1 2.322 2.316 2.326 0.241 [1.944,2.733] [ 1.521, 3.374]
 2 0.057 0.055 0.061 0.021 [0.025,0.095] [ 0.007, 0.171]
�r 0.744 0.746 0.707 0.036 [0.682,0.800] [ 0.577, 0.857]
{p 0.082 0.063 0.025 0.072 [0.006,0.224] [ 0.000, 0.492]
{w 0.188 0.181 0.235 0.091 [0.047,0.347] [ 0.001, 0.611]
s0 9.996 9.860 7.798 2.073 [6.857,13.592] [ 3.983, 20.630]
h 0.795 0.801 0.771 0.052 [0.701,0.870] [ 0.562, 0.935]
a00 0.217 0.202 0.228 0.103 [0.082,0.407] [ 0.018, 0.747]

Exogenous Propagation Parameters
Posterior Credible BF con�dence

means medians modes SD intervals intervals
�z 0.235 0.223 0.240 0.125 [0.052,0.463] [ 0.000, 0.730]
�� 0.900 0.918 0.945 0.066 [0.749,0.966] [ 0.607, 0.996]
��f 0.852 0.888 0.967 0.106 [0.647,0.970] [ 0.492, 0.999]
�g 0.927 0.926 0.910 0.029 [0.880,0.978] [ 0.822, 0.999]
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