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Abstract

We present a theory of unsecured consumer debt that does not rely on utility costs of default

or on enforcement mechanisms that arise in repeated-interaction settings. The theory is

based on private information about a person’s type and on a person’s incentive to signal

his type to entities other than creditors. Specifically, debtors signal their low-risk status to

insurers by avoiding default in credit markets. The signal is credible because in equilibrium

people who repay are more likely to be the low-risk type and so receive better insurance

terms. We explore two different mechanisms through which repayment behavior in the

credit market can be positively correlated with low-risk status in the insurance market. Our

theory is motivated in part by some facts regarding the role of credit scores in consumer

credit and auto insurance markets.

Key Words: Unsecured Consumer Debt, Bankruptcy, Default, Adverse Selection, Credit

Score, Insurance
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1 Introduction

The question we address in this paper is: how can unsecured consumer debt coexist with

debtor’s right to invoke bankruptcy? We propose a theory of unsecured consumer debt that

is based on the existence of private information about a person’s type and on the fact that

some debtors have the incentive to forgo bankruptcy in order to signal their type. The theory

formalizes the notion that a person’s type may be relevant to different trading partners and if

a person has some advantage in resisting opportunistic behavior against one trading partner,

he may credibly signal information about his type to other trading partners by doing so.

Our theory of unsecured consumer debt is distinct from some other approaches to explaining

debt when enforcement is imperfect. Our model has finite-lived people to whom the opportu-

nity to borrow and repay is presented only once. So our theory does not rely on enforcement

mechanisms that arise in repeated-interaction settings. Also, our theory does not depend on

any utility cost of failing to honor debt contracts – there is no stigma attached to default.

There are three periods and two markets in the model. There is an asset market that

links periods 1 and 2, and a period 3 insurance market that provides insurance against an

observable loss. People in our model differ with respect to the likelihood of this loss – some

are more likely to suffer the loss than others. But insurers do not directly observe the risk

status of people, and so the low-risk types have an incentive to signal their type. This

signalling can take two forms: accepting limited insurance in the insurance market for a

lower premium and resisting opportunistic behavior in the credit market, i.e., not invoking

the right to default in the credit market. Crucially, repayment of debt is a credible signal of

low-risk status because low-risk people have an advantage in resisting opportunistic behavior

in the credit market, and therefore, in equilibrium those who repay are more likely to be the

low-risk type.

We explore two distinct reasons why low-risk people may have an advantage in resisting

opportunistic behavior in credit markets. In the first case, we assume that people who are

1



low-risk are also more patient. Then repayment is a credible signal of low-risk status because

the benefit of a lower insurance premium comes in the future – in period 3 – and the low-risk

type is also the type who values the future more. Put differently, the high-risk type does not

mimic the low-risk type and does not send the same signal (i.e., repay their debt) because

they do not care enough about the future and so do not value the benefit of a lower insurance

premium to the same extent.

In the second case, we assume that there is a difference in the stochastic environment facing

the low-risk and high-risk types. In particular, we assume that the high-risk type is more

likely to experience shocks that trigger default. Consequently, repayment of debt can act as

a signal of low-risk status because the kinds of shocks that lead to default are less likely to

be experienced by the low-risk types.

The two explanations can be differentiated as follows. In the first case repayment is a signal

of low-risk status because the low-risk type is more willing to repay; in the second case

repayment is a signal of low-risk status because the low-risk type is less likely to be in

situations that trigger default. The first explanation relies on differences in behavior, while

the second explanation relies on differences in luck.

Our theory of unsecured consumer debt is motivated by some features of the U.S. economy.

Most important, reputation appears to play an important role in credit and insurance mar-

kets. In particular, both industries make use of credit scores – a summary measure of a

person’s creditworthiness (the likelihood that a person will repay his or her debt). In the

credit market the following facts are well established: (i) people with higher scores obtain

credit on cheaper terms, (ii) default lowers a person’s credit score, and (iii) holding fixed a

person’s credit limit, more borrowing tends to lower a person’s credit score.1 In the insur-

ance market (iv) people with higher scores tend to receive insurance at a lower price.2 In

1On these points see http://www.myfico.com/Downloads/Files/myFICO CFA
2Consumers with low credit scores pay 20 to 50 percent more in auto insurance premiums than consumers

with high credit scores. And two-thirds of policy holders have lower premiums because of their high credit
scores. On this point, see http://www.bankrate.com/brm/news/insurance/credit-scores1.asp
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turn people with high credit scores default less frequently and file fewer insurance claims.

The key contribution of this paper is to present a theory of unsecured consumer debt in

which something like a credit score emerges endogenously and which is consistent with facts

(i)-(iv).

In the theory presented in this paper, the insurance benefit of a good credit-market reputation

is the sole reason people repay their debt. In other words, no credit is extended to any person

if all types are equally risky with respect to the insurable loss, since there is no reward to

curtailing opportunistic behavior in the credit market. Clearly, this is a simplification –

people may wish to maintain a good reputation in the credit market in order to maintain

access to credit on cheap terms in the future. In a companion paper (Chatterjee et al. [4])

we study an infinite horizon environment where this particular benefit of good credit market

behavior is analyzed.

The theory of debt presented in this paper is a reputation-based theory that employs an

“adverse selection approach” wherein creditors attempt to learn about the borrower’s type.3

In this it bears a resemblance to the reputation-based model of sovereign debt presented in

Cole and Kehoe [5]. However, both the motivation and details in Cole and Kehoe are different

from ours. Cole and Kehoe’s important insight was a response to Bulow and Rogoff’s [2]

criticism of models of sovereign debt based on exclusion costs of default. Bulow and Rogoff

showed that if a country can default and simultaneously purchase consumption insurance out

of its resulting savings, exclusion costs of default have no bite and equilibria with positive

debt will fail to exist.4 Cole and Kehoe wrote down a model where there are two types of

sovereigns and one type suffers a large disutility of reneging on a debt contract – a disutility

3An alternative repeated-interaction approach assumes there is no hidden information about types but
agents resist opportunistic behavior in order to avoid a less favorable continuation path in the game. In this
approach, the punishment-triggering deviation is sometimes interpreted as “loss of one’s reputation.” See
Chapter 15 of Mailath and Samuelson [9] for a discussion of the two approaches and for arguments in favor
of modeling reputation using the adverse selection approach.

4Earlier work, such as the seminal study of Eaton and Gersovitz [6], had justified the assumption of
exclusion from international borrowing and lending following default as resulting from a loss in “reputation”
of the sovereign and Bulow and Rogoff’s demonstration was, therefore, viewed as a criticism of reputation-
based models of sovereign debt.
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thought to come from default tarnishing the government’s reputation in another market (e.g.,

the labor market). Even if type is not directly observable to lenders, the utility cost of a bad

reputation can support positive amounts of (unsecured) debt if sovereigns are sufficiently

patient.

The first point to note is that Bulow and Rogoff’s criticism of exclusion-based models of

sovereign debt are not germane to correctly specified exclusion-based models of unsecured

consumer debt. U.S. bankruptcy law does not permit those invoking bankruptcy to simulta-

neously accumulate assets: a bankrupt must relinquish all (non-exempt) assets to creditors

at the time that discharge of debt is granted by a bankruptcy court.5 However, there is no

restriction on accumulating assets after discharge has been granted. Thus the exclusion costs

of U.S. consumer bankruptcy are the costs of not being able to save in the period of default

and not being able to borrow for some time following default (these are the exclusion costs

of default in Chatterjee et al. [3]). The fact that saving is not permitted in the period of

default means that positive amounts of unsecured debt can be supported in equilibrium, so

existence is not an issue. However, the fact that defaulters can save in the periods following

default implies that the costs of default tend to be too low, which makes it challenging to

match certain moments of the debt and default data in a plausibly calibrated model like that

of Chatterjee et al. [3]. Part of our motivation in considering a model of debt with reputation

effects is to explore costs of default that go beyond those of credit market exclusion.

A second difference between our paper and Cole and Kehoe’s is that we are explicit about

how default can lead to a cost in a market other than the credit market. As mentioned above,

Cole and Kehoe assume that there is a utility cost to default, but they do not derive this

utility cost from fundamentals. We do. Being explicit about the cost is important because

alternative signalling devices may be used in this other market to circumvent the problem of

hidden information about type. For instance, if insurers can figure out who they are dealing

5Some U.S. states (Texas and Florida) exempt home equity from bankruptcy proceedings. However, even
in those states, diversion of assets into home equity during bankruptcy proceedings would be considered an
abuse of the bankruptcy provision and would not be permitted.
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with by using appropriately designed contracts, they need not care about their client’s credit

market behavior.

The paper is organized as follows. In section 2 we lay out the environment. In section

3 we go through the decision problem of each agent. In section 4 we give the definition

of a competitive equilibrium and prove some basic properties. In section 5 we analyze the

equilibrium of the period 3 insurance market and explain how the insurance contracts depend

on the credit score. At the start of section 6 we point out that differences in loss probability

across types and private information about types are essential for debt to be valued in our

environment. Then, in section 6.1 we specialize the model to one where there are only 2 asset

levels that people can choose from in period 1 and analyze the credit market equilibrium

for the case where low- and high-risk types differ with respect to their discount factors.

In section 6.2 we permit any finite number of asset level choices in period 1 and analyze

the credit market equilibrium for the case where people differ in terms of the probability

distributions from which idiosyncratic shocks are drawn. The key result here is that there

exist distributions from which these shocks are drawn such that an equilibrium with positive

debt characterized by properties (i)-(iv) exists. Section 7 concludes.

2 Environment

There is a single good. There are 3 periods, denoted t = 1, 2, and 3 and a unit measure of

people. We will describe people who live in this economy, the legal environment they face,

the market arrangement, and the timing of events.

2.1 People

There are two types of people, denoted i ∈ {b, g}. The measure of type g is 0 < γ < 1 and

the measure of type b is (1− γ).
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The endowment of each person is given by e > 0 and is constant over time. In period 3 a

person of type i faces a probability πi > 0 of experiencing a loss in wealth L, where L is a

given number in (0, e). For each type, the loss is an independent draw from the corresponding

loss distribution. The loss incurred by a person is denoted by z ∈ {0, L}.

The preferences of each type is given by

Ei
[
θ1u(c1) + βi θ2u(c2) + (βi)2u(c3)

]
(1)

where ct is consumption of the single good in period t and θt ∈ R+ is a period-t pref-

erence shock drawn independently for each person of type i from the probability space

{R+,B(R+), F i
t }. The utility function u(c) : R+ → R is strictly concave and twice continu-

ously differentiable.

A person’s type and preference shocks are not directly observable to others. The loss in

period 3, however, is observable to others.

Types differ by the probability of the observable loss, by discount factors, and by the prob-

ability distribution of preference shocks. Throughout this study we assume that the proba-

bility of the observable loss is lower for type g than for type b, i.e., 0 < πg < πb < 1. Since

the type of a person is not directly observable to others, type g people have an incentive to

signal their type to insurers. We are interested in situations where type g people attempt

to signal their type to insurers by resisting opportunistic behavior in the credit market. For

this signalling to be credible, the cost of any signal must be lower for type g than for type b

(otherwise the type b people will always mimic the type g).

We explore two distinct ways in which the cost of signalling could be lower for type g than

for type b. The first mechanism relies on differences in discount factors. In particular, type g

people are assumed to be more patient than type b people, i.e., βb < βg. The second mecha-

nism relies on differences in the distribution of preference shocks across types. In particular,

the required differences are consistent with F b
2 (θ2) first-order stochastic dominating F g

2 (θ2),
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i.e., with F b
2 (θ2) ≤ F g

2 (θ2) for all θ2 ≥ 0 (inequality holding strictly for some θ2).

2.2 Legal Environment

A key feature of the environment is the existence of a bankruptcy law. This law gives people

the right to disavow their financial obligations. As is generally true for actual bankruptcy

law, this “right to bankruptcy” is assumed to be inalienable – meaning that a debtor cannot

waive his or her right to bankruptcy at the time of taking out a loan. For simplicity, we

assume that invoking the right to bankruptcy does not cost the debtor any fees or expenses.

2.3 Market Arrangements

There are two sets of markets. In one market people borrow from or lend to banks, and in

the other market, people purchase insurance against the observable loss L. Since household

type is private information, and type will matter for the propensity of a person to declare

bankruptcy or suffer a loss, banks and insurance companies must make an assessment of a

person’s type when selling a loan or an insurance policy.6 We will study a market structure

that permits the terms of financial contracts to depend on such an assessment. In what

follows, we will use σ as the generic symbol to denote the probability that a person is type

g. Then σ is the assessment of a person’s type or, more succinctly, a person’s type score. A

person’s type score will evolve over time because a person’s actions in the asset and insurance

markets can (and will) reveal information about a person’s true type. We imagine that there

is an information processing agency (resembling real-world credit bureaus) that keeps track

of a person’s actions in the asset and insurance markets – i.e., keeps track of a person’s

financial history.

6If the preference shocks are correlated over time, banks may also have an incentive to form an assessment
of the preference shock hitting a person because this information will be valuable in predicting future default.
Since we have assumed that shocks are i.i.d, this assessment is not necessary.
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The asset market operates only in period 1.7 The asset market offers one-period bond

contracts y ∈ A, where A is a finite subset of R. These bond contracts are offered at prices

q(y, σ). A person with type score σ who purchases the contract y pays q(y, σ) · y in period 1

and receives y in period 2. A positive y signifies a deposit and a negative y signifies a loan.

If y < 0, the person promises to repay y in period 2 conditional on not declaring bankruptcy.

Finally, we assume that banks have access to a world credit market in which they borrow or

save at the interest rate r.8

The insurance market in period 3 operates as follows. Insurers offer contracts x in I, where

I is a compact subset of R. A person with type score σ who purchases the contract x pays

p(x, σ) · x as a premium and, in the event of loss, collects the indemnity x. This notation

emphasizes the symmetry between the loan and insurance markets. Just as the probability

of default on a loan will depend on the size of the loan, so too can the probability of loss on

an insurance contract depend on the amount of insurance purchased – for the usual moral

hazard reasons. However, in this paper we abstract from moral hazard issues – for each type

of person, the probability of loss cannot be affected by any action that the person can take.

Therefore, in equilibrium, the price of insurance will turn out to depend only on σ and not

on x.

A financial firm takes the set of contracts and prices {q(y, σ), y ∈ A} and {p(x, σ), x ∈ I}
as given. Any given contract is viewed as a distinct financial product. There is free-entry

in the provision of each of these financial products. In equilibrium each of these financial

products will fetch zero profits in expectation.

An important feature of the environment is the possibility that a person’s actions in the

asset and insurance markets may reveal information about a person’s type. The possibility

7There is obviously no role for an asset market in period 3, since no one lives beyond period 3. In
period 2 it is impossible to support borrowing if agents can default after their insurance choices. Hence the
assumption that there is no loan market in period 2 is without loss of generality. For simplicity we also rule
out savings in period 2.

8Alternatively, we could imagine that banks have access to a storage technology that allows them to
transform 1 unit of output in period 1 into (1+r) units of output in period 2. This would require incorporating
the restriction that aggregate consumer assets cannot be negative.
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of information transmission is captured by the following three belief-updating functions.

• The function s = Ψ1(`) gives the person’s type score at the end of period 1 if the

person chooses asset level `.

• The function s′ = Ψ2(d, `, Ψ1(`)) gives a person’s type score at the end of period 2 if

he starts period 2 with asset `, type score Ψ1(`), and chooses a bankruptcy decision d

(d = 1 means file for bankruptcy and d = 0 means no filing).

• The function s′′ = Ψ3(x, Ψ2(d, `, Ψ1(`))) gives a person’s type score if he starts period

3 with type score Ψ2(d, `, Ψ1(`)) and chooses an insurance level x.

All market participants take these functions and the sets A and I as given. Therefore, the

prices faced by participants in the loan and insurance markets are q(`, Ψ1(`)), ` ∈ A and

p(x, Ψ3(x, Ψ2(d, `, Ψ1(`))), x ∈ I.

2.4 The Timing of Events

The timing of events in each period is as follows.

People begin period 1 with type score γ and learn their true type i and the realization of the

preference shock θ1. They then choose how much to borrow or save from the set A. This

choice is used to update a person’s type score from γ to s. Then they consume and period

1 ends.

People begin period 2 with their type score s and learn the realization of their preference

shock θ2. If a person borrowed in period 1, the person then chooses whether or not to default.

This choice is used to update a person’s type score from s to s′. After the default decision

is made they consume and period 2 comes to an end.

People begin the period with type score s′ and purchase insurance from the set I. Their
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choice of insurance is used to update the type score to s′′. Then the shock z is realized and

the person receives the insurance payment if z = L. Then people consume and die.9

3 Decision Problems

In this section we describe the decision problem of people, insurers, and banks.

3.1 People

It’s convenient to start with the final period and work backward.

3.1.1 Period 3

At the start of period 3 each person will have a type score s′ that is determined by the

person’s choices in the asset market via the function s′ = Ψ2(d, `, Ψ1(`)). Then, a type i

person’s insurance decision problem is as follows.

V i
3 (Ψ2(d, `, Ψ1(`))) = max x πiu (e− p(x, s′′) · x− L + x) + (1− πi)u (e− p(x, s′′) · x)

s.t.

x ∈ I

s′′ = Ψ3(x, Ψ2(d, `, Ψ1(`)))

Observe that the set of insurance choices available to a person may be constrained by a

person’s beginning-of-period 3 type score Ψ2(d, `, Ψ1(`)). These constraints will be elaborated

upon in the next section. We will denote a type i person’s decision rule regarding insurance

9An alternative model where periods 2 and 3 are lumped together and the timing is a default decision
followed by an insurance choice cannot support the type of equilibrium we describe in section 6.1 of the
paper because differences in discount factors cannot then play the role they do.
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purchase as xi(Ψ2(d, `, Ψ1(`))).

3.1.2 Period 2

People begin period 2 with some asset holding ` and a corresponding type score Ψ1(`). At

the start of the period they learn their preference shock θ2. If a person of type i is a debtor

and chooses to default, i.e., d = 1, the person’s utility is given by

V i, d=1
2 (θ2, `, Ψ1(`)) = θ2u(e) + βiV i

3 (Ψ2(1, `, Ψ1(`))).

If the person chooses not to default (or the person is not a debtor), then the person’s utility

is given by

V i, d=0
2 (θ2, `, Ψ1(`)) = θ2u(e + `) + βiV i

3 (Ψ2(0, `, Ψ1(`)))

Therefore,

V i
2 (θ2, `, Ψ1(`)) = max {V i, 1

2 (θ2, `, Ψ1(`)), V i, 0
2 (θ2, `, Ψ1(`))}. (2)

If both options fetch the same utility, we assume that the person chooses d = 0.

If the person is not a debtor, then he has no choice to make – the person simply consumes

e + `. However, it will be be convenient to assume that in this case his “choice” of d is also

0. With this convention, the choice of d is defined for all `. We will denote a type i’s period

2 decision rules as di(θ2, `, Ψ1(`)).
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3.1.3 Period 1

At the start of period 1 people learn their type i and their preference shock θ1. The decision

problem of a person of type i is then

V i
1 (θ1) = max` θ1u(e− q(`, Ψ1(`)) · `) + βi

∫

R+

V i
2 (θ2, `, Ψ1(`))dF2(θ2)

s.t.

e− q(`, Ψ1(`)) · ` ≥ 0 and ` ∈ A

We will denote a type i’s period 1 decision rule as `i(θ1).

3.2 Insurers

Insurers face a set of insurance contracts x ∈ I and prices {p(x, Ψ2(d, `, Ψ1(`)))}. The

decision problem of insurers is to choose how many of these different types of contracts to

sell. Clearly insurers will participate in selling any contract x ∈ I that makes non-negative

profits in expectation. That is if

p(x, Ψ3(x, Ψ2(d, `, Ψ1(`))))·x ≥ Ψ3(x, Ψ2(d, `, Ψ1(`)))·πg ·x+(1−Ψ3(x, Ψ2(d, `, Ψ1(`))))·πb·x.

Eliminating x, this condition reduces to

p(x, Ψ3(x, Ψ2(d, `, Ψ1(`)))) ≥ πb −Ψ3(x, Ψ2(d, `, Ψ1(`)))[π
b − πg].

3.3 Banks

In period 1, banks face a set of loan contracts y ∈ A and prices {q(y, Ψ1(y)), y ∈ A}. As in

the case of insurers, the decision problem of banks is to choose how many of these different
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types of contracts to sell. And, as in the case of insurers, banks will participate in selling

only those contracts that make non-negative profits in expectation.

For y < 0, non-negative profits require

q(y, Ψ1(y)) · y ≥ Ψ1(y) [1− µg(y)]
y

(1 + r)
+ (1−Ψ1(y))

[
1− µb(y)

] y

(1 + r)
,

where r is the risk-free rate available to banks and µi(y) is the probability that a person of

type i will default on a loan of size y. Eliminating y yields the condition

q(y, Ψ1(y)) ≤ (
Ψ1(y) [1− µg(y)] + (1−Ψ1(y))

[
1− µb(y)

])
(1 + r)−1.

For y > 0, non-negative profits require that

q(y, Ψ1(y)) ≥ (1 + r)−1.

4 Equilibrium

We can now state the definition of a competitive equilibrium.

Definition 1 A competitive equilibrium is: (i) a set of belief-updating functions Ψ∗
1(`),

Ψ∗
2(d, `, Ψ∗

1(`)), and Ψ∗
3(x, Ψ∗

2(d, `, Ψ∗
1(`)), (ii) a set of loan prices q∗(`, Ψ∗

1(`)); (iii) a set of

insurance prices p∗(x, Ψ∗
3(x, Ψ∗

2(d, `, Ψ∗
1(`))); (iv) a set of default probabilities µi∗(`); (iv) a

set of decision rules `i∗(θ1), di∗(θ2, `, Ψ
∗
1(`)), and xi∗(Ψ∗

2(d, `, Ψ∗
1(`))) such that

1. Each loan earns zero profits.

(a) For ` ≥ 0 this requires

q∗(`, Ψ∗
1(`)) =

1

1 + r
. (3)
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(b) For ` < 0, this requires

q∗(`, Ψ∗
1(`)) =

Ψ∗
1(`) [1− µg∗(`)] + (1−Ψ∗

1(`))
[
1− µb∗(`)

]

1 + r
. (4)

2. Each insurance contract earns zero profits. For x ∈ I(Ψ∗
2(`, d, Ψ∗

1(`)))

p∗(x, Ψ∗
3(x, Ψ∗

2(d, `, Ψ∗
1(`))) = πb −Ψ∗

3(x, Ψ∗
2(d, `, Ψ∗

1(`)))[π
b − πg]. (5)

3. Default probabilities are consistent with decision rules. This requires

µi∗(`) =

∫

R+

di∗(θ2, `, Ψ
∗
1(`))dF2(θ2) for ` < 0. (6)

4. The decision rules `i∗(θ1), di∗(θ2, `, Ψ
∗
1(`)) and x∗i(Ψ∗

2(d, `, Ψ∗
1(`))) solve each household

type’s optimization problem given (i) the loan pricing function q∗(`, Ψ∗
1(`))), ` ∈ A,

(ii) the insurance pricing function p∗(x, Ψ∗
3(x, Ψ∗

2(d, `, Ψ∗
1(`))), x ∈ I, and (iii) belief-

updating functions Ψ∗
1(`), Ψ∗

2(d, `, Ψ∗
1(`)) and Ψ∗

3(x, Ψ∗
2(d, `, Ψ∗

1(`))).

5. Updating functions are consistent with decision rules and satisfy Bayes’ Rule whenever

possible. To state these conditions, define H i∗
1 (`) = {θ1 : `i∗(θ1) = `} and H i∗

2 (d; `) =

{θ2 : di∗(θ2, `, Ψ
∗
1(`)) = d}. Then,

(a) For Ψ∗
1(`) this requires

Ψ∗
1(`) =

γ
∫

1{θ1∈Hg∗
1 (`)}dF1(θ1)

γ
∫

1{θ1∈Hg∗
1 (`)}dF1(θ1) + (1− γ)

∫
1{θ1∈Hb∗

1 (`)}dF1(θ1)
(7)

provided the denominator is positive – that is, provided a positive measure of

people choose ` in period 1.
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(b) For Ψ∗
2(d, `, Ψ∗

1(`)) this requires

Ψ∗
2(d, `, Ψ∗

1(`))

=
Ψ∗

1(`)
∫

1{θ2∈Hg∗
2 (d;`)}dF2(θ2)

Ψ∗
1(`)

∫
1{θ2∈Hg∗

2 (d;`)}dF2(θ2) + (1−Ψ∗
1(`))

∫
1{θ2∈Hb∗

2 (d;`)}dF2(θ2)
(8)

provided, again, the denominator is positive.

(c) For Ψ∗
3(x, Ψ∗

2(d, `, Ψ∗
1(`))) this requires

Ψ∗
3(x, Ψ∗

2(d, `, Ψ∗
1(`))) (9)

=
Ψ∗

2(d, `, Ψ∗
1(`)) · 1{xg∗(Ψ∗2(d,`,Ψ∗1(`))=x}

Ψ∗
2(d, `, Ψ∗

1(`)) · 1{xg∗(Ψ∗2(d,`,Ψ∗1(`)))=x} + (1−Ψ∗
2(d, `, Ψ∗

1(`))) · 1{xb∗(Ψ∗2(d,`,Ψ∗1(`)))=x}

provided, again, the denominator is positive.

We can now state a basic result, namely, that if there exists an equilibrium in which borrowing

is not permitted, then there always exists a competitive equilibrium in which borrowing is

permitted but no borrowing actually occurs in equilibrium. In such an equilibrium, insurers

ignore a person’s behavior in the credit market and therefore all borrowers have an incentive

to default. In that case default behavior is, in fact, uninformative about a borrower’s type

and no borrowing can be supported.

Proposition 1: Let B ⊂ R be a finite set with positive and negative elements. Suppose

there exists a competitive equilibrium for an economy for which A = B ∩ R+ (i.e., no bor-

rowing is permitted). Then there always exists another competitive equilibrium in which

A = B but q∗(`, s) = 0 for all ` < 0 (i.e., no loans are made).

Proof We will establish the Proposition by extending the “no-borrowing” equilibrium

belief-updating function Ψ∗
1(`) to negative values of ` and the “no-borrowing” equilibrium

belief-updating function Ψ∗
2(d, `, Ψ∗

1(`)) to allow for debt and default in such a way as to

leave budget sets and signalling opportunities unchanged. In this new extended equilibrium

q∗(`, s) will be 0 for all ` < 0.
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For any given Ψ∗
1(`), ` < 0, set Ψ∗

2(0, `, Ψ
∗
1(`)) = Ψ∗

2(1, `, Ψ
∗
1(`)) = Ψ∗

1(`). Then we have that

V i
3 (Ψ∗

2(0, `, Ψ
∗
1(`))) = V i

3 (Ψ∗
2(1, `, Ψ

∗
1(`))) = V i

3 (Ψ∗
1(`)) and so di(θ2, `, Ψ

∗
1(`)) = 1 is optimal

for all θ2 ≥ 0 and ` < 0. Given this decision rule it follows from (6) that for ` < 0,

µi(`) = 1, from (4) that q∗(`, Ψ∗
1(`)) = 0 and from (8) that Ψ∗

2(1, `, Ψ
∗
1(`)) = Ψ∗

1(`) satisfies

the Bayesian updating conditions. Since for Ψ∗
2(0, `, Ψ

∗
1(`)) the Bayesian updating formula

is not applicable, we are free to set Ψ∗
2(0, `, Ψ

∗
1(`)) = Ψ∗

1(`).

Next, set Ψ∗
1(`) = Ψ∗

1(0) for all ` < 0 so that any consumption stream a person can get

by choosing ` < 0 in period 1 and defaulting in period 2 can be obtained by choosing

` = 0. Given this it follows that `∗(θ1) ≥ 0 – the optimal period-1 decision rule for the “no-

borrowing” equilibrium – continues to be the optimal period-1 decision rule for the economy

in which borrowing is permitted but all prices on loans are zero. Since no one chooses

` < 0 in equilibrium the Bayesian updating formula is not applicable and we are free to set

Ψ∗
1(`) = Ψ∗

1(0).

¤

In the rest of the paper, we explore the possibility of equilibria in which behavior in the

credit market conveys useful information to insurers. It is a useful fact that the equilibrium

of this model can be analyzed in three blocks – corresponding to the three periods. In period

3, the equilibrium decision rule x∗i(Ψ∗
2(d, `, Ψ∗

1(`))) must be the optimal decision rule given

I(Ψ∗
2(d, `, Ψ∗

1(`))), p∗(x, Ψ∗
3(x, Ψ∗

2(d, `, Ψ∗
1(`))) and, in turn, p∗(x, Ψ∗

3(x, Ψ∗
2(d, `, Ψ∗

1(`))) must

satisfy zero profits and Ψ∗
3(x, Ψ∗

2(d, `, Ψ∗
1(`))) must satisfy Bayes’ Law whenever possible. In

period 2, di∗(θ2, `, Ψ
∗
1(`)) must be the optimal decision rule given the period-3 equilibrium

value function and the belief-updating function Ψ∗
2(d, `, Ψ∗

1(`)) and, in turn, Ψ∗
2(d, `, Ψ∗

1(`))

must satisfy Bayes’ Law whenever possible. Finally, in period 1, the equilibrium decision

rule `i∗(θ1) must be the optimal decision rule given the period-2 equilibrium value function,

q∗(`, Ψ∗
1(`)) and the belief-updating function Ψ∗

1(`) and, in turn, q∗(`, Ψ∗
1(`)) must satisfy
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zero profits and Ψ∗
1(`) satisfies Bayes’ Law whenever possible.

Since type g people are better insurance risks than type b people, the equilibria of interest

are those in which people resist opportunistic behavior in the credit market in an effort to

signal that they are more likely to be type g. For this logic to work, it must be true that

people with a high score are treated better in the insurance market. But insurers may offer

contracts that separate people into good and bad insurance risks, so it’s not obvious that

a person’s type score will matter in the insurance market. Therefore, the nature of the

equilibrium in the period-3 insurance market is key and it is to this issue we now turn.

5 Equilibrium in the Insurance Market: Pooling, Sep-

aration and Type Score

The microeconomic literature on the provision of insurance indicates that for a population

with two hidden types, competition among insurers could result in one of two kinds of equi-

librium - pooling or separating. In a pooling equilibrium insurers offer one full-insurance

contract at a price that reflects the composition of low- and high-risk types in the popu-

lation. In a separating equilibrium insurers offer two contracts, one with a low price but

enough limitations on insurance so as to attract only the low-risk types and another with

full insurance at a high price for the remaining high-risk types.

An important insight of the microeconomic insurance literature is that competitive insurers

have an incentive to break away from pooling contracts. In a pooling contract where insurers

make zero profits, the low-risk types must subsidize the high-risk types, since both types

pay the same price but the high-risk types have a higher probability of loss. Because of

this subsidy, insurers have an incentive to entice away the low-risk types by offering them

slightly less-than-full-insurance at a price that is significantly below the pooling contract

price but above the price that would be actuarially fair for low-risk types (a so-called “cream
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skimming” strategy). Given this incentive toward “cream skimming,” Rothschild and Stiglitz

[12] claimed that pooling contracts cannot exist in equilibrium. But Wilson [13] (see also

Miyazaki [11]) pointed out that if firms anticipate that contracts rendered unprofitable by

cream-skimming will be withdrawn from the market, they will also anticipate that the cream-

skimming contract will end up attracting both high- and low-risk types and therefore turn

out to be unprofitable. Given these anticipations, Wilson showed that firms cannot offer

separating contracts on which they anticipate earning non-negative profits and so equilibrium

with pooling contracts can exist.10

We will proceed in the spirit of Wilson’s notion of equilibrium in the insurance market.

In particular, we will assume that people are offered the full insurance pooling contract

unless there exists a separating contract that the low-risk types will strictly prefer over the

pooling contract and that the high-risk types will not strictly prefer over an actuarially fair

full insurance contract. This latter requirement takes Wilson’s point into account, namely,

that if a limited insurance contract is successful in attracting only the low-risk types then

the insurance alternatives facing the high-risk types no longer include the original pooling

contract. Therefore, for the limited insurance separating contract to be feasible, we require

that the high-risk types prefer obtaining full insurance at a high but actuarially fair price

over obtaining limited insurance at a lower price that is actuarially fair for the low-risk types.

In what follows, we will establish that there is a threshold value for the type score, σ∗, such

that separating contracts are not feasible for pools with type score equal to or greater than σ∗

but are feasible for pools with type score less than σ∗. Furthermore, if a separating contract

is feasible then there is a unique best separating contract that can be offered to the low-risk

types regardless of their type score. These results are used to define the insurance choice

10A similar point was made by Hellwig [8], who analyzed a 3-period extensive form game in which in the
first stage firms offer insurance contracts, in the second stage customers apply for insurance under one of
these contracts and, in the third stage, firms accept or reject customers’ applications for insurance. Hellwig
argued that the possibility that a firm may reject customers’ applications in the third stage implies that
customers cannot rationally believe that an application for a low-priced limited insurance contract will be
accepted by the offering firm in the final stage. Given this belief, no customer applies for insurance under
a low-priced limited insurance contract and the pooling contract survives. Also, see Elul [7] for a recent
application of the Wilson-Miyazaki concept of equilibrium in a related context.
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correspondence I(s′) used later in the paper.

First, some terminology and definitions. Denote an insurance contract as a pair (X,m),

where X is the indemnity and m is the price per unit of insurance (so that the premium on

the contract is m ·X). Denote the utility of a type i household from purchasing a contract

(X,m) by W i(X, m) = πiu(e − mX − L + X) + (1 − πi)u(e − mX). Denote the price of

an actuarially fair, or zero profit, insurance contract offered to people with type score σ by

m(σ) = σπg + (1 − σ)πb. Then we have the following definition of a feasible full insurance

pooling contract.

Definition: The full insurance pooling contract (L,m(σ)) is feasible if there does not exist

a contract (X, πg), X < L, such that (i) W g(X, πg) > W (L,m(σ)) and (ii) W b(L, πb) ≥
W b(X, πg).

This definition of feasibility captures the idea behind Wilson’s notion of equilibrium in the

insurance market. Basically, for a pooling contract for people with type score σ to be

infeasible there must exist a limited insurance actuarially fair contract that type g people

strictly prefer over the pooling contract and which is not strictly preferred by the type b

people over an actuarially fair full insurance contract.

We make the following assumption on the utility function.

Assumption 1: u(e− πbL) > πgu(e− L) + (1− πg)u(e).

The inequality effectively asserts that a type g person prefers to purchase full insurance at a

price that is appropriate for the type b households to not purchase insurance at all. Clearly

this assumption is a restriction on curvature of the u function and the loss L – the function

must be sufficiently concave or the loss sufficiently large.

Lemma 1 There exists a unique X∗ ∈ (0, L) such that W b(X∗, πg)= W b(L, πb).

Proof Since πg < πb it’s clear that W b(X = L, πg) > W b(L, πb). And, by virtue of

the strict concavity of u, no-insurance is worse than full-insurance at an actuarially fair
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price so W b(X = 0, πg) < W b(L, πb). Clearly W b(X, πg) is a continuous function of X ∈
[0, L]. Therefore, the existence of X∗ ∈ (0, L) follows from the Intermediate Value Theorem.

Uniqueness of X∗ follows from the fact that W b(X, πg) is strictly increasing in X, since

insurance is being offered at a price that is lower than the probability of loss.

¤

Since W b(X, πg) is strictly increasing in X, X∗ has the interpretation of being the most

generous actuarially fair (or, zero-profits) insurance that can be offered to type g people

who are in a pool with type score σ ∈ [0, 1] without necessarily attracting the type b people

in the pool.

Lemma 2 There exists a unique x(σ) ∈ [0, L] such that [W g(x(σ), πg)−W g(L,m(σ))] = 0.

Furthermore, x(σ) is continuous and strictly increasing in σ.

Proof First, observe that W g(X, πg) is clearly continuous in X and, because the price of

the insurance is actuarially fair, it is strictly increasing in X. Consider first the case where

σ = 1. Clearly a unique x(1) exists and is equal to L. Next consider any σ ∈ [0, 1).

Then W g(X = L, πg) > W g(L,m(σ)) because πg < m(σ). Furthermore, W g(X = 0, πg) <

W g(L,m(σ) because by Assumption 1 W g(X = 0, πg) < W g(L, πb) and because m(σ) is

increasing in σ and W g(L,m) is increasing in m. Therefore, by the continuity of W g(X, πg)

and the Intermediate Value Theorem, x(σ) ∈ (0, L) exists. And by the strict monotonicity of

W g(X, πg) in X, x(σ) ∈ (0, L) is unique. From the continuity of W g(X, πg) with respect to

X, the continuity of m(σ) with respect to σ, and the continuity of W g(L,m) with respect to

m, it follows that x(σ) is a continuous function of σ ∈ [0, 1]. Furthermore, since W g(L,m(σ))

is strictly increasing in σ and W g(X, πg) is strictly increasing in X, it follows that x(σ) is

strictly increasing in σ.

¤

Since W g(X, πg) is strictly increasing in X, x(σ) has the interpretation of being the least
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generous actuarially fair insurance that can be offered to type g people in a pool with type

score σ that weakly dominates a full-insurance contract offered at the price m(σ).

Corollary to Lemmas 1 and 2: A full-insurance pooling contract (L,m(σ)) offered to

people with type score σ is not feasible if x(σ) < X∗ and is feasible if x(σ) ≥ X∗.

Proof: Suppose x(σ) < X∗. Consider a contract (X̃, πg), where X∗ > X̃ > x(σ). Type

g people will strictly prefer such a contract to the pooling contract, but type b people will

not prefer such a contract over the contract (L, πb). Therefore the contract (L,m(σ)) is not

feasible. Suppose x(σ) ≥ X∗. Suppose, to get a contradiction, that the pooling contract

(L,m(σ)) is not feasible. Then there must exist a contract (X, πg) that is strictly better than

(L,m(σ)) for type g people and that the type b people do not strictly prefer over (L, πb).

The first implies that X > x(σ) and the second implies that X ≤ X∗. Together they imply

that x(σ) < X∗, which contradicts the assertion that x(σ) ≥ X∗.

¤

Proposition 2: (i) There exists a cut-off type score σ∗ ∈ (0, 1) below which a full-insurance

pooling contract is not feasible and at or above which it is feasible. (ii) Furthermore when

a pooling contract is not feasible the best separating contract that can be offered to type g

is the contract (X∗, πg).

Proof (i) Given the fact that x(σ) is strictly increasing in σ (Lemma 2) and the corollary

to Lemmas 1 and 2, it is sufficient to establish that there is a unique σ∗ ∈ (0, 1) that satisfies

the equation x(σ∗) = X∗. From Lemmas 1 and 2 we know x(σ = 1) = L > X∗. Now

consider x(0), which solves

πgu(e− πgx(0)− L + x(0)) + (1− πg)u(e− πgx(0)) = u(e− πbL). (10)

We know that X∗ solves

πbu(e− πgX − L + X) + (1− πb)u(e− πgX) = u(e− πbL). (11)
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Since X∗ < L (by Lemma 1), we know that u(e−πbL) < u(e−πgX)). Therefore, u(e−πbL)

being the average of the two terms in (11), it follows that

u(e− πgX∗ − L + X∗) < u(e− πbL) < u(e− πgX∗).

Therefore, since (1− πg) > (1− πb),

πgu(e− πgX∗ − L + X∗) + (1− πg)u(e− πgX∗) > u(e− πbL). (12)

Hence (10) and (12) imply x(0) < X∗. By Lemma 2, x(σ) is continuous and strictly increasing

in σ. Therefore there must exist a unique σ∗ ∈ (0, 1) such that x(σ∗) = X∗.

(ii) When σ < σ∗ then the least generous limited-insurance contract that a type g would

take over a full-insurance contract at price m(σ) is less than X∗. Therefore, any contract

(X̃, πg), X̃ ∈ (x(σ), X∗] will induce type g to migrate to the limited-insurance contract

without giving type b a strict incentive to choose the limited-insurance contract over a full-

insurance contract offered at the price πb. However, among the set of separating contracts,

the contract (X∗, πg) gives the highest utility to type g because u is strictly concave and the

insurance is offered at a price that is actuarially fair for type g people.

¤

The reason there is a cut-off value of σ∗ at or above which a pooling contract is feasible is

that we require that when a separating contract is offered to the low-risk types, the high-

risk types must not find it in their interest to re-pool with the low-risk types (and accept

limited insurance) over a contract that offers them full insurance at a high but actuarially

fair (i.e., non-subsidized) price. Importantly, the incentive of high-risk types to “re-pool”

varies inversely with the proportion of high-risk types in the pool. When the pool contains

relatively few high-risk types, the price of insurance in the limited-insurance contract cannot

be too much below the price of insurance in the original pooling contract, and therefore,

22



the insurance offered at the lower price cannot be too much below full insurance. Such a

contract will appear quite attractive to a high-risk type whose alternative is to purchase

somewhat more insurance at a potentially much higher price. Therefore, a pooling contract

cannot be broken by a separating contract when the fraction of high-risk types in the pool

is sufficiently low.

To summarize, Proposition 2 establishes that the kind of insurance opportunities a person

will face depends on the person’s type score s′ – specifically, people with relatively high s′ will

be offered full insurance pooling contracts while people with relatively low s′ will be offered

separating contracts. This result is incorporated into our environment via the insurance

choice correspondence I(s′). Specifically, we assume that

I(s′) =




{0, X∗, L} if s′ < σ∗

{0, L} if s′ ≥ σ∗
(13)

With this definition of I(s′), we can characterize the period-3 insurance market equilibrium.11

Proposition 3: Given the insurance contract correspondence (13), the following functions

constitute a period-3 insurance market equilibrium: (i) p∗(x, Ψ∗
3(x, s′)) = πb−Ψ∗

3(x, s′)(πb−
πg), (ii) for s′ ≥ σ∗, x∗i(s′) = L for all i, for s′ < σ∗, x∗g(s′) = X∗ and x∗b(s′) = L; and (iii)

Ψ∗
3(x, s′) =





s′ if s′ ≥ σ∗ and x ∈ {0, L}
1 if s′ < σ∗ and x = X∗

s′ if s′ < σ∗ and x = 0

0 if s′ < σ∗ and x = L

Proof Obviously, p∗(x, Ψ∗
3(x, s′)) satisfies the zero profit condition (5) in the definition of

11In the interest of keeping the analysis simple, we do not explore the robustness of the credit market
equilibrium to sets of insurance contracts other than the one that provides the best possible separating
contract to the low-risk type. Furthermore, we do not consider the possible benefits of long-term contracts
that can presumably be offered by a banking-insurance conglomerate.
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equilibrium. So we need only establish that x∗i(s′) are optimal and Ψ∗
3(x, s′) satisfy condition

(9) in the definition of competitive equilibrium. Observe that a type-i person’s insurance

choice problem reduces to:

V i
3 (s′) =

maxxπ
iu(e− [πb − s′′(πb − πg)]x− L + x) + (1− πi)u(e− [πb − s′′(πb − πg)]x)

s.t

x ∈ {0, L} if s′ ≥ σ∗ and x ∈ {0, X∗, L} otherwise

s′′ = Ψ∗
3(x, s′).

Consider first households with s′ ≥ σ∗. For these households Ψ∗
3(x, s′) = s′ for x ∈ {0, L}.

By Assumption 1 it follows that the optimal insurance choice for these households, regardless

of type, is x = L. Consider next a household with s′ < σ∗. If this household chooses x = X∗

then Ψ∗
3 implies that the household’s s′′ = 1. By the pricing function p∗, the household will

face the price πg. Now suppose the household is of type g. Since the price πg is actuarially

fair for him, conditional on choosing x ≤ X∗, it is optimal for him to choose x = X∗ by

Assumption 1. If the household is of type b, then the price πg is better than actuarially fair.

So, conditional on choosing x ≤ X, it also optimal for a type b household to choose x = X∗

by concavity of u(.). On the other hand, for any household that chooses x = L, Ψ∗
3 implies

that the household’s s′′ = 0. By the pricing function p∗, it follows that the household will

face the price πb. Consequently, the choice of insurance reduces to a choice between the

contract (X∗, πg) and the contract (L, πb) regardless of type. Now we know from Lemma

1 that a type b person is indifferent between these two contracts. And by Lemma 2 we

know that a type g household with s′ < σ∗ strictly prefers the contract (X∗, πg) to (L, πb).

Therefore xi∗(s′) is the optimal decision rule.

We now verify that Ψ∗
3(x, s′) satisfies Bayes’ Rule whenever possible. Consider first s′ ≥ σ∗

in which case I(s′) = {0, L}. The decision rules imply that both types choose x = L.
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Therefore,

s′ · 1{xg∗(s′)=L} = s′ and s′ · 1{xg∗(s′)=L} + (1− s′) · 1{xb∗(s′)=L} = 1.

These expressions imply that for s′ ≥ σ∗, Ψ∗
3(x = L, s′) satisfies the requirements in (9).

For x = 0, however, the requirements lead to an indeterminacy (0/0). In this case, we

assume that the off-equilibrium choice is uninformative about a person’s type. That is

Ψ∗
3(x = 0, s′) = s′.

Next, consider s′ < σ∗ in which case I(s′) = {0, X∗, L}. The decision rules imply that type

g people choose x = X∗ and type b choose x = L. Therefore,

s′ · 1{xg∗(s′)=L} = 0 and s′ · 1{xg∗(s′)=L} + (1− s′) · 1{xb∗(s′)=L} = 1− s′,

and

s′ · 1{xg∗(s′)=X∗} = s′ and s′ · 1{xg∗(s′)=X∗} + (1− s′) · 1{xb∗(s′)=X∗)} = s′.

These expressions imply that the requirements in (9) are met for x = L and x = X∗. For x =

0, however, the requirements lead to the indeterminacy (0/0). In this case, we assume that

the off-equilibrium choice is uninformative about a person’s type so that Ψ∗
3(x = 0, s′) = s′.

¤

Proposition 3 allows us to fully characterize the period-3 equilibrium value function for each

type of individual. We have:

25



Proposition 4

V g∗
3 (s′) =





πgu(e− πg ·X∗ + X∗ − L) + (1− πg)u(e− πg ·X) if s′ < σ∗

u(e− [πb − s′(πb − πg)] · L) if s′ ≥ σ∗

V b∗
3 (s′) =





u(e− πb · L) if s′ < σ∗

u(e− [πb − s′(πb − πg)] · L) if s′ ≥ σ∗

Furthermore, V g∗
3 (s′) is continuous in s′ and concave over [σ∗, 1], V b∗

3 (s′) < V g∗
3 (s′) for s′ < σ∗,

and V b∗
3 (s) = V g∗

3 (s) for s′ ≥ σ∗.

Proof σ∗ solves the equation x(σ∗) = X∗. By definition x(σ∗) is such that πgu(e−πg ·x(σ∗)+

x(σ∗)−L)+ (1−πg)u(e−πg ·x(σ∗)) = u(e− [πb−σ∗(πb−πg)] ·L). Therefore it follows that

V g∗
3 (s′) = V g∗

3 (σ∗) for all s′ ≤ σ∗. Since V g∗
3 (s′) is clearly continuous over [σ∗, 1], continuity

of V g∗
3 (s′) follows. Concavity of V g∗

3 (s′) over [σ∗, 1] can be established by differentiating with

respect to s′ twice. Finally, observe that u(e−πb ·L) < u(e− [πb−σ∗(πb−πg)] ·L). Therefore

V b∗
3 (s′) < V g∗

3 (s′) for all s′ < σ∗.

¤

Figure 1 illustrates the properties of V i∗
3 functions. For s′ < σ∗, the value functions are

constant for both types but it is constant at a lower level for type b than for type g. For

s′ ≥ σ∗, the value functions for both types coincide and is strictly increasing in the score. The

existence of the increasing segment in these value functions is the reason why it is desirable

for people to emerge from the credit market with a high type score.
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6 Credit Market Equilibrium: Debt, Default, and Sig-

nalling

We are interested in the possibility of equilibria in which people resist opportunistic behavior

in the credit market with a view to obtaining better terms in the insurance market. The

fact that V i∗
3 (s′) is strictly increasing in s′ for s′ > σ∗ provides people with the incentive to

signal that they are more likely to be of type g. However it is an interesting (if somewhat

inconvenient) fact that from the perspective of period 3 it is the type b people who lose

more from default than type g people. To see this consider Figure 1. Suppose that in

equilibrium repayment of debt leads to a type score s′ = sR and default leads to a type score

s′ = sD < sR. By Proposition 4 (or simply from inspection of Figure 1) it is evident that the

loss from default for type g
[
V g∗

3 (sR)− V ∗g
3 (sD)

]
cannot be any greater than the loss from

default for type b
[
V b∗

3 (sR)− V b∗
3 (sD)

]
and can, in fact, be strictly less. On this count we

would expect type b to have less of an incentive to default than type g. However, as noted

earlier, it is possible to make assumptions on either discount factors or the distribution of

preference shocks that ensure that default is less likely for type g than type b.

In what follows we seek conditions under which the following three basic properties hold in

equilibrium.

• P1: Ψ∗
1(`) > 0 is strictly increasing in `, with Ψ∗(`min) < γ < Ψ∗(`max). That is,

borrowing less or saving more improves the likelihood that a person is of type g and

this likelihood is less than γ for the largest loan and greater than γ for the largest

deposit.

• P2: 0 < Ψ∗
2(1, `, Ψ

∗
1(`)) < Ψ∗

1(`) < Ψ∗
2(0, `, Ψ

∗
1(`)) for ` < 0. That is, repaying a loan

improves the likelihood that a person is of type g while default worsens it.

• P3: Ψ∗
2(0, `, Ψ

∗
1(`)) > 0 is non-decreasing in `. This assumption rules out the possi-

bility that a person who borrowed more can end period 2 with a better score (upon
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repayment) than a person who borrowed less (and repaid) or who saved.

In addition, we make the following consistency assumption.

• P4: Ψ∗
2(0, `, Ψ

∗
1(`)) = Ψ∗

1(`) for ` > 0. That is, for people without debt there is no

change in their score in period 2. This assumption simply recognizes that since these

people do not make any choices in period 2, nothing further is revealed about them.

Our strategy is to assume that there are functions Ψ∗
t that satisfy properties P1-P4 (and some

additional properties specific to each of the following subsections) and then show that there

exist distribution functions that make Ψ∗
t consistent with the equilibrium requirements on

belief-updating functions. In the first approach we require that F g
t (θ) = F b

t (θ) (no difference

in distribution of preference shocks across types) and in the second approach we require that

βb = βg (no difference in discount factors across types).

We begin by establishing a simple property of every competitive equilibrium, namely, that

the default decision has a threshold property with respect to θ2.

Lemma 3 Let ` < 0. There exists θi∗
2 ≥ 0 such that di∗(θ2, `, Ψ

∗
1(`)) = 1 for θ2 > θi∗

2 and 0

otherwise.

Proof: For ` < 0, the benefit from default is θ0
2 [u(e)− u(e + `)] and the cost of default is

βi [V i
3 (Ψ∗

2(0, `, Ψ
∗
1(`)))− V i

3 (Ψ∗
2(1, `, Ψ

∗
1(`)))]. The benefit of default is strictly positive. By

Proposition 4 and P2, the cost of default is non-negative. If the cost is 0 then the benefit of

default exceeds the cost for all θ2 > 0 and is equal to the cost for θ2 = 0. Therefore θi∗
2 = 0.

If the cost is strictly positive it is bounded above by βi [V i∗
3 (1)− V i∗

3 (0)]. Therefore, there

must exist θ0
2 > 0 for which the cost and the benefit are exactly equal. Then θi∗

2 = θ0
2.

¤

Next we point out that equilibrium loan prices are zero if there is no private information

about types or if both types have the same probability of loss in period 3. Thus in our
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environment, the desire to signal private information about type is the fundamental reason

why active trade can occur in the credit market.

Corollary to Lemma 3: If type is observable or if πg = πb, then q∗(`, Ψ∗
1(`)) = 0, provided

the probability of θ2 = 0 is 0.

Proof: If type is observable, then competition implies that full insurance is available to

type g and b at prices πg and πb, respectively. Since both types are risk averse it is optimal

for them to buy full insurance. Then, in period 2, it is strictly optimal for both types to

default for any θ2 > 0 since defaulting yields utility θ2u(e)+βiu(e−πiL) and not defaulting

yields utility θ2u(e+ `)+βiu(e−πiL), where ` < 0. If the probability of θ2 = 0 is zero, both

types will default with certainty, i.e., µ∗(`) = 1. Then q∗(`, Ψ∗(`)) must be 0.

If πg = πb = π then insurers do not care about a person’s type and, under competition, both

types will be offered full insurance at the price π. Once again, it is strictly optimal for both

types to default on any ` < 0 for any θ2 > 0.

¤

6.1 Credit Market Equilibrium with Differences in Discount Fac-

tors

In this subsection we will assume that type g is more patient than type b but the distribution

functions for the two types are the same. That is, βb < βg and F b
t (θ) = F g

t (θ). Furthermore,

we take A = {−a, 0}. That is, people in period 1 have the option of choosing to borrow a or

not. This is a strong assumption. At the end of this section we discuss what happens when

more asset choices are permitted.

We make the following assumption on discount factors.

Assumption 2: βb
[
V b∗

3 (1)− V ∗b
3 (0)

]
< βg [V g∗

3 (1)− V g∗
3 (0)].
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The assumption requires that even if the period-3 cost of default for type b exceeds the

period-3 cost of default for type g by as much as is possible, the discounted cost of default

is less for type b than type g. With this assumption we have the following useful result.

Lemma 4: Given Assumption 2, there exists σ̃ ∈ (σ∗, 1) such that βg [V g∗
3 (s′)− V g∗

3 (0)] >

βb
[
V b∗

3 (s′)− V b∗
3 (0)

]
if and only if s′ ∈ (σ̃, 1],

Proof: Consider the function w(s′) = βg [V g∗
3 (s′)− V g∗

3 (0)]− βb
[
V b∗

3 (s′)− V b∗
3 (0)

]
defined

for s′ ∈ [σ∗, 1]. Since V i∗
3 (1) = u(e− πgL), it follows from Assumption 2 that w(1) > 0. By

Proposition 4, V g∗
3 (s′) = V b∗

3 (s′) for all s′ ∈ [σ∗, 1] so that w(s′) is continuous and strictly

increasing in s′ for s′ ∈ [σ∗, 1]. Furthermore by Proposition 4, V g∗
3 (σ∗) = V ∗g

3 (0) > V b∗
3 (0).

Hence w(σ∗) < 0. Therefore, there must exist σ̃ ∈ (σ∗, 1) such that w(σ̃) = 0. The

Proposition follows.

¤

In what follows we assume that we have given Ψ∗
t functions satisfying P1-P4. In addition,

in this subsection we will make the following additional assumption on the Ψ∗
2 function.

Assumption 3: Ψ∗
2(0, `, Ψ

∗
1(`)) > σ̃ for ` = −a.

This assumption requires that repaying the debt a puts a person’s score in the σ̃ to 1 range.

This assumption will ensure that type b people have a greater incentive to default than type

g people in period 2.

Proposition 5 Given Assumptions 2 and 3, the optimal default thresholds θi∗
2 are (i) strictly

positive and (ii) satisfy θb∗
2 < θg∗

2 .

Proof: By Lemma 3 there exist θi∗
2 ≥ 0 such that di∗(θ2,−a, Ψ∗

1(−a)) = 1 for θ2 > θi∗
2

and zero otherwise. (i) To establish that the default thresholds θi∗
2 are strictly positive,

consider a type i with debt a. The benefit from default is given by θ2[u(e) − u(e − a)]

and the cost of default is given by βi[V i∗
3 (Ψ∗

2(0,−a, Ψ∗
1(−a)))− V i∗

3 (Ψ∗
2(1,−a, Ψ∗

1(−a)))]. By

Assumption 3 and Lemma 4 we know that Ψ∗
2(0,−a, Ψ∗

1(−a)) > σ∗. By P2 we know that
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Ψ∗
2(1,−a, Ψ∗

1(−a)) < Ψ∗
2(0,−a, Ψ∗

1(−a)). By Proposition 4 it follows that the cost of default

is strictly positive for both types. Since the benefit of default is clearly positive, the default

thresholds given by θi∗
2 [u(e)−u(e−a)] = βi[V i∗

3 (Ψ∗
2(0,−a, Ψ∗

1(−a)))−V i∗
3 (Ψ∗

2(1,−a, Ψ∗
1(−a)))]

are strictly positive.

(ii) To establish that θb∗
2 < θg∗

2 we need to consider two cases. First, consider the case where

Ψ∗
2(1,−a, Ψ∗

1(−a)) is also at least as large as σ∗. Then it follows from Proposition 4 that the

undiscounted cost of default [V i∗
3 (Ψ∗

2(0,−a, Ψ∗
1(−a)))− V i∗

3 (Ψ∗
2(1,−a, Ψ∗

1(−a)))] is the same

for both types. But βb < βg so the discounted cost of default is strictly lower for type b

compared to type g. Therefore θb∗
2 < θg∗

2 . Second, consider the case where Ψ∗
2(1,−a, Ψ∗

1(−a))

is strictly less than σ∗. Then by Proposition 4 the discounted cost of default for type i is

given by βi[V i∗
3 (Ψ∗

2(0,−a, Ψ∗
1(−a)))−V i∗

3 (0)]. By Assumption 3 and Lemma 4, the discounted

cost of default for type b is strictly lower than the discounted cost for type g and, therefore,

θb∗
2 < θg∗

2 .

¤

The following proposition establishes that there exists a distribution of preference shocks

that will make the default thresholds obtained in the previous Proposition consistent with

the belief-updating functions. The belief-updating function implicitly fixes the probability

of repayment (and therefore of default) of the two types and property P2 implies that the

probability of repayment by type g is greater than the probability of repayment by type

b. Since the default threshold for type g is higher than the default threshold for type b

as established in the previous Proposition, the ordering of repayment probabilities and the

ordering of default thresholds coincide. Hence a distribution function can be found for which

the probability mass below the default thresholds of type b and type g equals the repayment

probabilities implied by the belief-updating functions.

Proposition 6: For Ψ∗
2(d, `, Ψ∗

1(`)) satisfying Assumption 3 there exist distribution functions

F2(θ) (same for both types) for which Ψ∗
2(d, `, Ψ∗

1(`)) constitutes a period-2 equilibrium and

for which both types default or repay with strictly positive probability.
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Proof: Recall that a period-2 equilibrium is a pair of decision rules di∗(θ2, `, Ψ
∗
1(`)), i ∈

{b, g}, and a belief-updating function Ψ∗
2(d, `, Ψ∗

1(`)) such that the decision rules are optimal

given the belief updating function and the belief-updating function satisfies Bayes’ Law

(wherever applicable) given the optimal decision rules.

Consider the decision rules di∗(θ2,−a, Ψ∗
1(−a)) = 1 for θ2 > θi∗

2 and di∗(θ2,−a, Ψ∗
1(−a)) = 0

for θ2 ≤ θi∗
2 . By Proposition 5 these decision rules are optimal given the belief-updating

function Ψ∗
2(d, `, Ψ1(`)).

We will now establish that there exists a probability distribution function F2(θ) for which

Ψ∗
2(d, `, Ψ1(`)) satisfies Bayes’ Law wherever applicable given these decision rules. Let ∆i∗

2

denote the probability that a type i person repays the loan −a. Then

Ψ∗
2(0,−a, Ψ∗

1(−a)) =
∆g∗

2 ·Ψ∗
1(−a))

∆g∗
2 ·Ψ∗

1(−a)) + ∆b∗
2 · [(1−Ψ∗

1(−a))]
(14)

and

Ψ∗
2(1,−a, Ψ∗

1(−a)) =
(1−∆g∗

2 ) ·Ψ∗
1(−a)

(1−∆g∗
2 ) ·Ψ∗

1(−a)) + (1−∆b∗
2 ) · [(1−Ψ∗

1(−a))]
. (15)

Given Ψ∗
2(d,−a, Ψ∗

1(−a)), d ∈ {0, 1}, these two equations pin down the values of ∆i∗
2 , i ∈

{b, g}. To see this assume (this will be verified to be true) that ∆∗g
2 ∈ (0, 1) and let ρ∗2 =

∆b∗
2 /∆g∗

2 , where ρ∗2 is the repayment likelihood ratio. Since Ψ∗
1(−a) > 0 by P1, (14) can be

written as

Ψ∗
2(0,−a, Ψ∗

1(−a)) =
1

1 + ρ∗2 · [(1−Ψ∗
1(−a))/Ψ∗

1(−a)]
(16)

Viewed as a function of ρ∗2, the r.h.s. of (16) is strictly decreasing in ρ∗2. Therefore

Ψ∗
1(0,−a, Ψ∗

1(−a)) determines a unique strictly positive value of ρ∗2. Furthermore, the r.h.s

of (16) is equal to Ψ∗
1(−a) for ρ∗2 = 1. Therefore it follows from the last inequality in P2 that

ρ∗2 < 1, namely, the probability that type b repays is less than the probability that type g
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repays. Similarly, letting δ∗2 = (1−∆g∗
2 )/(1−∆g∗

2 ), where δ∗2 is the default likelihood ratio,

(15) can be written as

Ψ∗
2(1,−a, Ψ∗

1(−a)) =
1

1 + δ∗2 · [(1−Ψ∗
1(−a))/Ψ∗

1(−a)]
. (17)

The r.h.s of (17) is strictly decreasing in δ∗2 and, given Ψ∗
2(1,−a, Ψ∗

1), determines a unique

strictly positive value of δ∗2. And by the second inequality in P2, it follows that δ∗2 >

1, i.e., the probability of a type b person defaulting is greater than the probability of a

type g person defaulting. Now note that from the definitions of ρ∗2 and δ∗2 we have that

∆∗g
2 = [1 − δ∗2]/[ρ

∗
2 − δ∗2]. Since 0 < ρ∗2 < 1 < δ∗2 it follows that ∆g∗

2 is in (0, 1) and

∆b∗
2 = ρ∗2·∆g∗

2 is also in (0, 1). Now consider any distribution function for which F2(θ
g∗
2 ) = ∆g∗

2

and F2(θ
b∗
2 ) = ∆b∗

2 . Since θb∗
2 < θg∗

2 and ∆b∗
2 < ∆g∗

2 such a distribution can always be

found. Denote the distribution function by F ∗
2 (θ). Given the optimal decision rules and

the distribution function F ∗
2 (θ), the belief-updating function will, by construction, satisfy

Bayes’ Law. Therefore there exists a distribution F ∗
2 (θ) that delivers the Ψ∗

2 consistent with

Assumption 3.

¤

We turn now to period 1.

Lemma 5: Given Ψ∗
1(`) and the default thresholds θi∗

2 the period-1 equilibrium price function

q∗(−a, Ψ∗
1(−a)) > 0.

Proof: The probability of repayment on debt a is Ψ∗
1(−a) ·F2(θ

g∗
2 )+(1−Ψ∗

1(−a)) ·F2(θ
b∗
2 ).

By Proposition 6 and P1 the probability of repayment is strictly positive. By the zero profit

condition it follows that q∗(−a, Ψ∗
1(−a)) is also strictly positive.

¤

The next proposition establishes that the period-1 decision rules also display a threshold

property and the thresholds for the two types can be ordered.
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Proposition 7 (i) For i ∈ {b, g}, there exists θi∗
1 > 0 such that `i∗(θ1) = 0 for θ1 ≤ θi∗

1 and

`i∗(θ1) = −a for θ1 > θi∗
1 . (ii) Furthermore, for βb sufficiently close to zero θb∗

1 < θg∗
1

Proof: (i) The “gain” from borrowing a is θ1[u(e + q∗(−a, Ψ∗
1(−a)) · a) − u(e)] and the

“cost” is βiEθ2 [V i∗
2 (θ2, 0, Ψ

∗
1(0))− V i∗

2 (θ2,−a, Ψ∗
1(−a))]. By Lemma 5 the “gain” is indeed

positive. We will now establish that the “cost” is positive as well. Consider first the set of

θ2 ≤ θi∗
2 . For these θ2 the (discounted) cost is given by

βi · θ2[u(e)− u(e− a)] + (βi)2 · [V i∗
3 (Ψ∗

2(0, 0, Ψ
∗
1(0)))− V i∗

3 (Ψ∗
2(0,−a, Ψ∗

1(−a)))].

Clearly the first term above is positive. By property P3 Ψ∗
2(0, 0, Ψ

∗
1(0)) ≥ Ψ∗

2(0,−a, Ψ∗
1(−a)).

Therefore by Proposition 4 the second term is non-negative. Next consider the θ2 > θi∗
2 . For

these θ2 the cost is given by

(βi)2 · [V i∗
3 (Ψ∗

2(0, 0, Ψ
∗
1(0)))− V i∗

3 (Ψ∗
2(1,−a, Ψ∗

1(−a)))] > 0

by properties P2-P3 and Proposition 4. Since the cost is positive for all realizations of θ2,

βiEθ2 [V i∗
2 (θ2, 0, Ψ

∗
1(0))− V i∗

2 (θ2,−a, Ψ∗
1(−a))] is positive. Then for each type there exists

θi∗
1 > 0 such that `i∗(θ1) = 0 for θ1 ≤ θi∗

1 and `i∗(θ1) = −a for θ1 > θi∗
1 .

(ii) To establish that θb∗
1 < θg∗

1 we need to show that the cost of default is strictly lower

for type b than for type g. From the expressions given above, it is evident that for any θ2

the cost of default converges to 0 as βi converges to 0. Therefore there must exist some

βb sufficiently small for which βbEθ2

[
V b∗

2 (θ2, 0, Ψ
∗
1(0))− V b∗

2 (θ2,−a, Ψ∗
1(−a))

]
is less than

βgEθ2 [V g∗
2 (θ2, 0, Ψ

∗
1(0))− V g∗

2 (θ2,−a, Ψ∗
1(−a))]. Given this it follows that if a type g person

is indifferent between borrowing and not borrowing for θ1 = θg∗
1 , then type b must strictly

prefer to borrow at θ1 = θg∗
1 . Hence, θb∗

1 < θg∗
1 .

¤

We turn now to establishing that there exist distribution functions F1(θ) that can support
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given belief-updating functions Ψ∗
1 and Ψ∗

2 satisfying P1-P4 as an equilibrium outcome.

Proposition 8 There exists a distribution function F1(θ) for which Ψ∗
1(`) constitutes a

period-1 equilibrium. Furthermore, for this distribution function both types choose 0 and

−a with positive probability.

Proof: Recall that a period-1 equilibrium is a pair of decision rules `i∗(θ1), a belief-updating

function Ψ∗
1(`), and a pricing function q∗(`, Ψ∗

1(`)) such that the decision rules are optimal

given the belief-updating function, the pricing function, and the period-2 equilibrium value

functions. And the pricing function satisfies zero profits and the belief-updating function

satisfies Bayes’ Law (wherever applicable) given the optimal decision rules.

The decision rules `i∗(θ1) were derived for the given Ψ∗
1(`) function, the equilibrium period-2

value functions, and pricing function satisfying zero profits. Therefore, all we need to show

is that there exists a distribution function F1(θ) for which Ψ∗
1(`) satisfies Bayes’ Rule. The

proof closely follows the logic of the proof of Proposition 6 and therefore will be sketched.

Denote the probability that type i chooses ` = 0 with ∆i∗
1 . Then the probability that type

i chooses ` = −a is (1 − ∆i∗
1 ). Assume (and this will be verified to be true) that ∆g∗

1 is in

(0, 1). Then satisfaction of Bayes’ Rule requires:

Ψ∗
1(0) =

∆g∗
1 · γ

∆g∗
1 · γ + ∆b∗

1 · (1− γ)
and Ψ∗

1(−a) =
(1−∆g∗

1 ) · γ
(1−∆g∗

1 ) · γ + (1−∆b∗
1 ) · (1− γ)

.

Given Ψ∗
1(`), these two equations determine the values of ∆b∗

1 and ∆g∗
1 . It can be shown

that P1 implies (i) ∆i∗
1 ∈ (0, 1) and (ii) ∆b∗

1 < ∆g∗
1 (the proof parallels the one given in

Proposition 6 for ∆i∗
2 and is omitted).

Now consider any distribution function for which F1(θ
g∗
1 ) = ∆g∗

1 and F1(θ
b∗
2 ) = ∆b∗

1 . Since

θb∗
1 < θg∗

1 (by Proposition 7) and ∆b∗
1 < ∆g∗

1 such a distribution always exists. Denote

the distribution function by F ∗
1 (θ). Given the optimal decision rules and the distribution

function F ∗
1 (θ), the belief-updating function Ψ∗

1(`) will, by construction, satisfy Bayes’ Law.
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¤

What have we learned? It is possible to construct equilibria in which what we have called

the type score behaves like a credit score. In the constructed equilibrium (i) a person’s type

score declines as the person borrows more (as in P1), (ii) default on debt lowers a person’s

type score (as in P2), and (iii) people with low type scores get worse insurance rates and

are, on average, more likely to file a claim (suffer the loss L). However, our type score goes

beyond a credit score in that it takes into account a person’s asset information (as in P1

and P4), which real-world credit scores do not take into account but which credit granters

might.12

The construction relied on the assumption that people differ with respect to their discount

factors and those who are less patient are also more likely to suffer the loss. Although not

modeled, the idea underlying the link between patience and loss probability is that the loss

probability can be reduced if a person undertakes some costly investment. Since less patient

people are less likely to invest, there is likely to be a positive association between the degree

of impatience and loss probability.

The construction leaned rather heavily on the fact that there was a single level of debt that

people could choose. Can the results be generalized to many asset/loan levels? There is a

close connection between properties P1 and P2 and the monotone comparative statics results

of Milgrom and Shannon [10] and Athey [1]. These authors study conditions under which

a decisionmaker’s optimal choice (say, to default or not) is increasing in some parameter

(say, β). They show that there is a monotonic relationship between the optimal choice and

the parameter, provided the difference in payoff from choosing one action over the other is

increasing in the parameter (the so-called property of increasing difference). The proofs of

Propositions 5 and 7 relied on the property of increasing difference. In Proposition 5 we

established that the (expected) benefit from choosing repayment over default was increasing

12To see what kinds of information credit scores are based on and what kinds of information offers of credit
are based on, see http://www.myfico.com/Downloads/Files/myFICO UYFS Booklet.pdf
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in β. Similarly in Proposition 7 we established that the expected gain from choosing ` = 0

over choosing ` = −a was also increasing in β. These results were instrumental in establishing

the ordering of default and debt thresholds that allowed us to establish the existence of

distribution functions that support belief-updating functions with the desired properties.

Generalizing the results of this section to many asset choices requires that we generalize

the increasing difference property to the many-asset case. This appears to be a challenging

exercise.13 However, the second approach to modeling differences between people obviates

the need to rely on the property of increasing differences and can handle multiple asset

choices with less difficulty. We turn to this alternative approach next.

6.2 Credit Market Equilibrium with Differences in the Distribu-

tion of Preference Shocks

In this subsection we assume that discount factors are the same for both types but permit

the distribution of preference shocks to be different across types. We will assume that A is

a finite set with potentially many elements. It will be convenient to label the elements of

A by `k, k = 1, 2, . . . , K, where `k+1 < `k. We will assume that A has both negative and

positive elements with `J = 0, 1 < J < K. Hence `k ≥ 0 for k ≤ J and `k < 0 for k > J .

We will continue to suppose that we are given belief-updating functions Ψ∗
1(`) and Ψ∗

2(d, `, Ψ∗
1(`))

that satisfy properties P1-P4. However, in this section we will find it necessary to restrict

these functions further. The following two assumptions ensure that the cost of default is

strictly positive for both types.

Assumption 4: For all `k, Ψ∗
2(0, `k, Ψ

∗
1(`k)) > σ∗. This assumption requires that repay-

ment on debt lead to a score greater than σ∗. Note that by property P4, it also requires that

saving lead to a score greater than σ∗.

13Multiple asset choices can be handled if the asset levels are chosen with care, but for arbitrary choice of
asset levels, however, the increasing difference property need not hold.
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Assumption 5: For `k < 0, Ψ∗
2(1, `k, Ψ

∗
1(`k)) < σ∗. This assumption requires that default

lead to a score less than σ∗.

By Lemma 3 we know that period-2 default decision rules satisfy the threshold property.

What we show next is that, for each type, the default thresholds are strictly positive and

that lower the thresholds, the higher the debt. This result has no analog in the previous

subsection, since there was only one debt level.

Proposition 9 Given Assumptions 4 and 5, there exist unique and strictly positive default

thresholds θi∗
2,k for each i and `k < 0. Furthermore, θi∗

2,k+1 < θi∗
2,k.

Proof: The benefit from default is given by θ2[u(e) − u(e + `k)] > 0. The cost of default

is given by β[V i∗
3 (Ψ∗

2(0, `k, Ψ
∗
1(`k))) − V i∗

3 (Ψ∗
2(1, `k, Ψ

∗
1(`k)))]. By Assumption 5 and Propo-

sition 4, we can write the cost as β[V i∗
3 (Ψ∗

2(0, `k, Ψ
∗
1(`k))) − V i∗

3 (0)]. By Assumption 4 and

Proposition 4 V i∗
3 (Ψ∗

2(0, `k, Ψ
∗
1(`k))) > V i∗

3 (0). Therefore, the cost of default is strictly pos-

itive for both types. Hence there must exist θi∗
2,k > 0 such that θi∗

2,k[u(e) − u(e + `k)] =

βi[V i∗
3 (Ψ∗

2(0, `k, Ψ
∗
1(`k)))−V i∗

3 (0)]. To prove that the thresholds are increasing in `k, observe

that by P3 and Proposition 4 V i∗
3 (Ψ∗

2(0, `k, Ψ
∗
1(`k))) is nondecreasing in `k. Hence the cost

of default is non-decreasing in `k. Since the benefit of default is strictly decreasing in `k it

follows that default thresholds θi∗
2,k are strictly increasing in `k, or equivalently, θi∗

2,k+1 < θi∗
2,k

(recall that higher k means more debt).

¤

We now turn to establishing that there exist distribution functions F i
2(θ) that can support

the given belief-updating function Ψ∗
2(d, `, Ψ∗

1(`)) in a period-2 equilibrium. To establish this

we need to restrict the belief-updating function further. Consider debt `k < 0 and let ∆∗i
2,k

be the equilibrium probability of repayment `k by a type i person. Let ρ∗2,k = ∆∗b
2,k/∆

∗g
2,k

denote the repayment likelihood ratio on debt `k and δ∗2,k = (1−∆b∗
2,k)/(1−∆∗g

2,k) denote the

default likelihood ratio on debt `k. We make the following assumption.

Assumption 6: For k = J + 1, . . . , K, (i) ∆∗g
2,k is in (0, 1), (ii) ρ∗2,k is strictly decreasing in
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k and (iii) ∆g∗
2,k is also strictly decreasing in k.

We know from the arguments given in the proof of Proposition 6 that the probabilities

of repayment and default by type i are fixed by Ψ∗
2(d, `k, Ψ

∗
1(`k)), d ∈ {0, 1} and that P2

implies that ρ∗2,k < 1 < δ∗2,k. Before we can proceed we need to verify that Assumption 6

does not conflict with Assumptions 4 and 5 and properties P1-P4. To recap the dependence

between likelihood ratios and the probability of repayment note that the definitions of these

ratios imply that ∆g∗
2,k = [δ∗2,k − 1]/[δ∗2,k − ρ∗2,k]. Furthermore Ψ∗

2(0, `k, Ψ
∗
1(`k)) = 1/[1 + ρ∗2,k ·

[(1−Ψ∗
1(`k))/Ψ

∗
1(`k)]] and Ψ∗

1(1, `k, Ψ
∗
1(`k)) = 1/[1 + δ∗2,k · [(1−Ψ∗

1(`k))/Ψ
∗
1(`k)]]. Hence the

likelihood ratios are fixed by the period-2 belief-updating function. Turning to Assumption

6(i) the requirement that ∆∗g
2,k be in (0, 1) follows from P2 (namely, from the requirement

that Ψ∗
2(1, `, Ψ

∗
1) < Ψ∗

1(`k) < Ψ∗
2(0, `, Ψ

∗
1) which implies that ρ∗2,k < 1 < δ∗2,k). Turning to

Assumption 6(ii), note that Property P3 requires that the product ρ∗2,k · [(1−Ψ∗
1(`k))/Ψ

∗
1(`k)]

be non-decreasing in `k, or equivalently, non-increasing in k. But by property P1, the term

[(1 − Ψ∗
1(`k))/Ψ

∗
1(`k)] is decreasing in `k, or equivalently, increasing in k. Therefore, it is

possible for ρ∗2,k to be strictly decreasing in k without violating P3. Finally, by choosing the

sequence δ∗2,k appropriately we can ensure that Assumption 6(iii) is also satisfied, namely

∆∗g
2,k = [δ∗2,k − 1]/[δ∗2,k − ρ∗2,k] is decreasing in k. It is worth noting that the variation in

δ∗2,k can freely be chosen because Assumption 5 (which restricts δ∗2,k) requires only that

1/[1 + δ∗2,k · [(1−Ψ∗
1(`k))/Ψ

∗
1(`k)]] be less than σ∗.14

We can now state the following result.

Proposition 10: Given Assumptions 4-6, there exist distribution functions F i
2(θ2) for which

the belief-updating functions Ψ∗
2(d, `k, Ψ

∗
1(`k)) constitute a period-2 equilibrium.

Proof: The fact that the thresholds θi∗
2,k are optimal given the belief-updating function

Ψ∗
2(d, `k, Ψ

∗
1(`k)) follows from Proposition 9. Let F g∗

2 (θ2) be such that F g∗
2 (θg∗

2,k) = ∆g∗
2,k

for k = J + 1, ..., K. Since ∆g∗
2,k is declining in k by Assumption 6 and θg∗

2,k is declining

14This degree of freedom comes from the fact that if 1/[1+ δ∗2k
· [(1−Ψ∗1(`k))/Ψ∗1(`k)]] is less than σ∗ then

by Proposition 4 V i∗
3 (s′) is constant for any s′ < σ∗. Thus the precise value of δ∗2,k is not important for

determining the payoff from default.
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in k by Proposition 9 such a distribution exists. Let F b∗
2 (θ2) be such that F b∗

2 (θb∗
2,k) =

ρ∗2,k · ∆g∗
2,k. Observe that since ρ∗2,k and ∆∗g

2,k are both in (0, 1) the product ρ∗2,k · ∆g∗
2,k is in

(0, 1). Since the product is declining by Assumption 6 and θb∗
2,k is declining by Proposition 9,

such a distribution also exists. Given the optimal decision rules and the distribution function

F i∗
2 (θ), the belief-updating function Ψ∗

2(d, `k, Ψ
∗
1(`)) will, by construction, satisfy Bayes’ Law.

Therefore there exist distribution functions F i∗
2 (θ2) that deliver a belief-updating function

Ψ∗
2 consistent with Assumptions 4, 5 and 6.

¤

In the previous subsection we provided an explanation of why a person’s type score might

decline with default that was based on differences in discount factors between the low-risk

and the high-risk types. These differences implied that the default threshold for type b (the

high-risk type from the insurer’s perspective) was lower than the default threshold for type

g. Since the two types faced the same distribution of preference shocks, the ordering of

default thresholds implied that default should lower the likelihood that the person is type

g. In contrast, Proposition 10 provides a very different explanation of why default leads

to a decline in the score. The difference can be encapsulated in the following corollary to

Proposition 9.

Corollary to Proposition 9: For `k < 0, the default threshold θg∗
2,k is strictly less than

the default threshold θb∗
2,k.

Proof: The cost of default for type i is given by β[V i∗
3 (Ψ∗

2(0, `k, Ψ
∗
1)) − V i∗

3 (0)]. By

Proposition 4, V b∗
3 (0) < V g∗

3 (0). Therefore, the cost of default is larger for type b than for

type g. Given a θ2, the benefit of default is the same for both types, namely, θ2[u(e)−u(e +

`k)]. Therefore, θg∗
2,k < θb∗

2,k.

¤

From the perspective of decision rules, type b people have less of a predilection toward default
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than type g people, which is exactly opposite to what was true in the case of differences in

discount factors. Nevertheless, default leads to a lower type score because type b people are

more likely to get high preference shocks. Indeed, combining the corollary with Assumption 6

(ii) and (iii) we have that for each `k < 0, F b∗
2 (θb∗

2,k) < F g∗
2 (θg∗

2,k) even though θb∗
2,k > θg∗

2,k. These

inequalities imply that F b∗
2 (θi∗

2,k) < F g∗
2 (θi∗

2,k) for all θi∗
2,k – which is consistent with F b∗

2 (θ2)

first-order stochastic dominating F g∗
2 (θ2), i.e., with type b distribution putting relatively

more probability mass on high values of θ and the type g distribution putting relatively

more probability mass on low values of θ.

We turn now to period 1 and to establishing that the period-1 belief-updating function Ψ∗
1(`)

can also be supported as an equilibrium for some pair of distribution functions F i
1(θ). To do

so we establish the following monotonicity result with regard to the expected value function

in period 2.

Lemma 6:
∫

θ2
V i∗

2 (θ2, `k, Ψ
∗
1(`k))dF i

2(θ2) is strictly increasing in `k or, equivalently, strictly

decreasing in k.

Proof: Let `k′ > `k. We will consider 3 mutually exclusive and exhaustive cases.

Case 1: `k′ > `k ≥ 0. Then V i∗
2 (θ2, `k′ , Ψ

∗
1(`k′)) = θ2u(e + `k′) + βV i∗

3 (Ψ∗
2(0, `k′ , Ψ

∗
1(`k))).

But for `′k > 0 we have Ψ∗
2(0, `k, Ψ

∗
1(`k)) = Ψ∗

1(`k). Therefore V i∗
2 (θ2, `k′ , Ψ

∗
1(`k′)) = θ2u(e +

`k′) + βV i∗
3 (Ψ∗

1(`k′)). Similarly, V i∗
2 (θ2, `k, Ψ

∗
1(`k)) = θ2u(e + `k) + βV i∗

3 (Ψ∗
1(`k)). By P1 and

Assumption 4, Ψ∗
1(`k′) > Ψ∗

1(`k) > σ∗. Then by Proposition 4 V i∗
3 (Ψ∗

1(`k′)) > V i∗
3 (Ψ∗

1(`k)).

Since `k′ > `k, V i∗
2 (θ2, `k′ , Ψ

∗
1(`k′)) > V i∗

2 (θ2, `k, Ψ
∗
1(`k)) for each θ2. The result then follows.

Case 2: Let `k′ ≥ 0 > `k. Within this case, consider first θ2 ≤ θi∗
2,k. By Proposition 9. these

are θ2 values for which there is repayment of the debt `k. Hence V i∗
2 (θ2, `k, Ψ

∗
1(`k)) = θ2u(e+

`k) + βV i∗
3 (Ψ2(0, `k, Ψ

∗
1)). The expression for V i∗

2 (θ2, `k′ , Ψ
∗
1(`k′)) is exactly the same as in

case (1). By P4 Ψ∗
1(`k′) = Ψ2(0, `

′
k, Ψ

∗
1(`

′
k)) and by P3 and Assumption 4 Ψ2(0, `

′
k, Ψ

∗
1(`

′
k)) >

Ψ2(0, `k, Ψ
∗
1(`k)) > σ∗. By Proposition 4 V i∗

2 (θ2, `k′ , Ψ
∗
1(`k′)) > V i∗

2 (θ2, `k, Ψ
∗
1(`k)). Next

consider θ2 > θi∗
2,k. For these θ2 there is default on the debt `k. Therefore V i∗

2 (θ2, `k, Ψ
∗
1(`k)) =

θ2u(e) + βV i∗
3 (Ψ2(1, `k, Ψ

∗
1). The expression for V i∗

2 (θ2, `k′ , Ψ
∗
1(`k′)) is exactly the same as in
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case (1) again. By P2, Assumption 5 and Proposition 4 V i∗
3 (Ψ∗

1(`k′)) > V i∗
3 (Ψ∗

2(1, `k, Ψ
∗
1(`k))).

Since `k′ > 0, V i∗
2 (θ2, `k′ , Ψ

∗
1(`k′)) > V i∗

2 (θ2, `k, Ψ
∗
1(`k)) for each θ2. The result follows.

Case 3: Finally consider the case where 0 > `k′ > `k. Within this case there are 3 subcases

to consider. Consider first θ2 < θi∗
2,k. By Proposition 9, this is the set of θ2 for which there

is no default on `k′ or `k. Thus V i∗
2 (θ2, `k′ , Ψ

∗
1(`k′)) = θ2u(e + `k′) + βV i∗

3 (Ψ∗
2(0, `k′ , Ψ

∗
1(`k′)))

and V i∗
2 (θ2, `k, Ψ

∗
1(`k)) = θ2u(e + `k) + βV i∗

3 (Ψ∗
2(0, `k, Ψ

∗
1(`k))). Since `k′ > `k and by P3

and Assumption 4,Ψ∗
2(0, `k′ , Ψ

∗
1(`k′)) > Ψ(0, `k, Ψ

∗
1(`k)) > σ∗ it follows by Proposition 4

that V i∗
2 (θ2, `k′ , Ψ

∗
1(`k′)) > V i∗

2 (θ2, `k, Ψ
∗
1(`k)) Next consider θ2 ∈ [θi∗

2,k, θ
i∗
2,k′ ]. For these values

there is repayment on `′k but default on `k. Therefore V i∗
2 (θ2, `k′ , Ψ

∗
1(`k′))) = θ2u(e + `k′) +

βV i∗
3 (Ψ(0, `k′ , Ψ

∗
1(`k′))) and V i∗

2 (θ2, `k, Ψ
∗
1(`k))) = θ2u(e) + βV i∗

3 (Ψ∗
2(1, `k, Ψ

∗
1(`k))). Since de-

fault is an option on `k′ , θ2u(e+`k′)+βV i∗
3 (Ψ∗

2(0, `k′ , Ψ
∗
1(`k′))) ≥ θ2u(e)+βV i∗

3 (Ψ∗
2(1, `k′ , Ψ

∗
1(`k′))).

By Assumption 5 and Proposition 4, θ2u(e) + βV i∗
3 (Ψ∗

2(1, `k′ , Ψ
∗
1(`k′))) is equal to θ2u(e) +

βV i∗
3 (Ψ∗

2(1, `k, Ψ
∗
1(`k))). Therefore V i∗

2 (θ2, `k′ , Ψ
∗
1(`k′)) ≥ V i∗

2 (θ2, `k, Ψ
∗
1(`k)). Finally, consider

θ2 > θ∗i2,k′ . For these θ2 there is default on both `k′ and `k. Consequently, by the argument in

the preceding case, the utility obtained is the same for `k′ and `k. Since the utility obtained

for `k′ is strictly larger than utility obtained for `k for θ2 < θ∗i2,k′ and at least as large for all

other θ2 we may conclude
∫

θ2
V i∗

2 (θ2, `k′ , Ψ
∗
1(`k′))dF2(θ2) >

∫
θ2

V i∗
2 (θ2, `k, Ψ

∗
1(`k))dF2(θ2).

¤

We can now prove that in period 1 the decision rules `i∗
k (θ1) are decreasing in θ1, but need

the following preliminary Lemma.

Lemma 7: Given Assumption 6 and the period-1 belief-updating function Ψ∗
1(`k), the

period-1 equilibrium pricing function q∗(`k, Ψ
∗
1(`k)) is strictly positive for all `k.

Proof: Consider `k < 0. By Assumption 6, the repayment probability on the debt `k,

∆i∗
2,k, is in (0, 1) and by P1 Ψ∗

1(`k) > 0. Therefore the equilibrium probability of repayment

1 − µ∗(`k) = Ψ∗
1(`k)∆

g∗
2,k + [1 − Ψ∗

1(`k)]∆
b∗
2,k is in (0, 1). By the zero profit condition on the

pricing of loans it follows that q(`k, Ψ
∗
1) = [1 − µ∗(`k)]/(1 + r) > 0. Next, consider `k > 0.
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By the zero profit condition on pricing of loans q∗(`, Ψ∗
1(`k)) = 1/(1 + r) > 0.

¤

Proposition 11: θ̂1 > θ̃1 implies `i∗(θ̂1) ≤ `i∗(θ̃1).

Proof: Pick a shock θ̃1 and let ˜̀ = `i∗(θ̃1). Consider ¯̀ > ˜̀. Then we claim that

q∗(˜̀, Ψ∗
1(

˜̀)) · ˜̀ < q∗(¯̀, Ψ∗
1(

¯̀)) · ¯̀. If not, the person can select ¯̀ and guarantee at least

as much utility in period 1 and strictly more utility starting period 2 because by Lemma

6
∫

θ2
V i∗

2 (θ2, `, Ψ
∗
1(`))dF i

2(θ2) is strictly increasing in `. This would contradict the optimal-

ity of ˜̀. Next, by optimality, θ̃1

[
u(e− q∗(˜̀, Ψ∗

1(
˜̀)) · ˜̀)− u(e− q∗(¯̀, Ψ∗

1(
¯̀)) · ¯̀)

]
is at least

as large as βEθ2

[
V i∗

2 (θ2, ¯̀, Ψ∗
1(

¯̀))− V i∗
2 (θ2, ˜̀, Ψ∗

1(
˜̀))

]
. But q∗(˜̀, Ψ∗

1(
˜̀)) · ˜̀ < q∗(¯̀, Ψ∗

1(
¯̀)) · ¯̀

implies that θ̃1

[
u(e− q∗(˜̀, Ψ∗

1(
˜̀)) · ˜̀)− u(e− q∗(¯̀, Ψ∗

1(
¯̀)) · ¯̀)

]
> 0. Therefore for θ̂1 >

θ̃1, θ̂1

[
u(e− q∗(˜̀, Ψ∗

1(
˜̀) · ˜̀))− u(e− q∗(¯̀, Ψ∗

1(
¯̀) · ¯̀))

]
is greater than βEθ2 [V2(θ2, ¯̀, Ψ∗

1(
¯̀)) −

V2(θ2, ˜̀, Ψ∗
1(

˜̀))]. Since ¯̀ was arbitrary, it follows that `i∗(θ̂1) ≤ ˜̀= `i∗(θ̃1).

¤

We are now in a position to establish that there exist period-1 distribution functions that

support the given period-1 belief-updating function. For ease of exposition, however, we will

assume that for the (given) equilibrium q∗(`k, Ψ
∗
1(`k)) every element of A is chosen by each

type for some θ1. We do this because if there are actions that are not chosen by any type,

then those actions do not have to satisfy a Bayes’ Rule restriction. But it is important that

if a particular loan level ˆ̀
k ∈ A is chosen by a type b person then ˆ̀

k must also be chosen by

a type g person for some θ1.

Proposition 12: Let `i∗(θ1) be such that for each k and i, `i∗(θ1) = `k for some θ1.

Then there exist distribution functions F i
1(θ1) for which the belief-updating functions Ψ∗

1(`k)

constitute a period-1 equilibrium and for which each `k is chosen with positive probability.

Proof: By Proposition 11, `i∗(θ1) is decreasing in θ1. Since each element of A is chosen

for some θ1, it follows that each decision rule delivers a set of strictly increasing threshold
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values {θ∗i1,k}K
k=1 such that `i∗(θ1) = `k iff θ1 ∈ [θ∗i1,k, θ

∗i
1,k+1), where θ∗i1,1 = 0 and θ∗i1,K+1 = ∞.

Satisfaction of Bayes’ Rule requires

Ψ∗
1(`k) =

γ[F g(θg∗
1,k+1)− F g(θg∗

1,k)]

γ[F g(θg∗
1,k+1)− F g(θg∗

1,k)] + (1− γ)[F b(θb∗
1,k+1)− F b(θb∗

1,k)]
for all k.

Denote ∆i∗
1,k = F i(θi∗

1,k+1) − F i(θi∗
1,k) and assume that ∆i∗

1,k > 0. Let λ∗1,k = ∆b∗
k /∆g∗

k . Then

Ψ∗
1(`k) =

[
1 +

(
1−γ

γ

)
λ∗1,k

]−1

. Clearly, Ψ∗
1(`k) fixes a unique value λ∗1,k for each k. Since

Ψ∗
1(`k) is strictly decreasing in k by P1, λ∗1,k is strictly increasing in k. Then, satisfaction of

Bayes’ Rule requires that there exist strictly positive probability weights {∆i∗
1,k} that satisfy

the following two conditions:

∆b∗
1,k = λ∗1,k∆

g∗
1,k, for all k and i (18)

K∑

k=1

∆i∗
1,k = 1 for for all i (19)

If such weights can be found, then any two distributions that satisfy F g
1 (θg∗

1,k+1) =
∑k

j=1 ∆g∗
1,k

and F b
1 (θb∗

1,k+1) =
∑k

j=1 λ∗1,k∆
g∗
1,k will satisfy the Bayes’ Rule requirements.

Observe that the condition Ψ∗
1(`1) > γ > Ψ∗

1(`K) in P1 is equivalent to the condition

λ∗1,1 < 1 < λ∗1,K . Then there must exist strictly positive ∆
g

1,1 and ∆
g

1,K that sum to 1 and

for which λ∗1,1∆
g

1,1 + λ∗1,K∆
g

1,K = 1. Let λ1 =
∑K−1

k=2 λ∗1,k/(K − 2) and let ε > 0. Now set (i)

∆g∗
1,2 = · · · = ∆g∗

1,k = · · ·∆g∗
1,K−1 to ε/K−2, (ii) ∆g∗

1,1 = ∆
g

1,1− [(λ∗1,K−λ1)ε/(λ
∗
1,K−λ∗1,1)], (iii)

∆g∗
1,K = ∆

g

1,K − [(λ1 − λ∗1,1)ε/(λ
∗
1,K − λ∗1,1)], and (iv) ∆b∗

1,k = λ∗1,k∆
g∗
1,k. For these settings one

can verify that both {∆g∗
1,k} and {∆b∗

1,k} sum to 1. Therefore both (18) and (19) are satisfied.

¤

What have we learned? We showed that it is possible to construct equilibria with multiple

asset levels in which the type score again behaves like a credit score. We were able to do

so because there was no need to prove the analogs of Propositions 5(ii) and 7(ii) in this
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subsection. Instead the construction relied on differences in the probability distribution of

shocks to deliver the requisite properties of the belief-updating functions. For period 2, these

differences were consistent with the type g shock distribution being dominated by the type

b shock distribution in the first-order stochastic dominance sense.

7 Conclusion

In this paper we present a theory of unsecured consumer debt that does not rely on utility

costs of default or on enforcement mechanisms that arise in repeated-interaction settings.

The theory is based on private information about a person’s type and on a person’s incentive

to signal his type to entities other than creditors. Specifically, debtors signal their low-risk

status to insurers by avoiding default in credit markets. The signal is credible because in

equilibrium people who repay are more likely to be the low-risk type and so receive better

insurance terms.

Our theory was motivated, in part, by facts regarding the role of credit scores in consumer

credit and auto insurance markets. Facts indicate that people with high scores receive credit

on cheaper terms, that scores decline with default, and that (given credit limits) greater

borrowing leads to lower scores. Also, drivers with high scores pay lower premiums for auto

insurance. In the theory presented in this paper, the likelihood that a person is the low-risk

type (what we labeled type score) displays these four properties of a credit score. In that

sense, we have provided a theory of credit scores as well.

Interestingly, we presented two rather different mechanisms via which a credit score with

the four properties could arise. In the first mechanism, the low-risk types were also assumed

to be the more patient type. In this case, the low-risk people avoided default because they

cared more about the future insurance benefit of a higher score. In the second mechanism,

the low-risk people were equally as patient as the high-risk people but they were less likely

to suffer shocks that trigger default. Once again, repayment became a signal of low-risk
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status. Loosely speaking, the first mechanism relies on differences in behavior while the

second mechanism relies on differences in luck.
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