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Abstract

The paper proposes a novel method for conducting policy analysis with potentially

misspecified dynamic stochastic general equilibrium (DSGE) models and applies it

to a New Keynesian DSGE model along the lines of Christiano, Eichenbaum, and

Evans (JPE 2005) and Smets and Wouters (JEEA 2003). We first quantify the degree

of model misspecification and then illustrate its implications for the performance of

different interest-rate feedback rules. We find that many of the prescriptions derived

from the DSGE model are robust to model misspecification.

JEL CLASSIFICATION: C32

KEY WORDS: Bayesian Analysis, DSGE Models, Model Misspecification

∗Correspondence: Marco Del Negro: Research Department, Federal Reserve Bank of Atlanta, 1000

Peachtree St NE, Atlanta GA 30309-4470. Email: marcodelnegro@frbatlanta.org. Frank Schorfheide: De-

partment of Economics, 3718 Locust Walk, University of Pennsylvania, Philadelphia, PA 19104-6297. Email:

schorf@ssc.upenn.edu. We would like to thank Kosuke Aoki, David Arsenau, Jesus Fernandez-Villaverde,

John Geweke, Lars Hansen, Andrew Levin, Ramon Marimon, Tom Sargent, Peter Summers, Charles White-

man, as well as the participants of the 2004 EEA-ESEM session on “Empirical Models for Monetary Policy

Analysis,” the 2004 ECB Conference on “Monetary Policy and Imperfect Knowledge,” the Fall 2004 Macro

System Committee Meetings, the 2004 Southern Economic Association Meetings, the Conference on “25

Years of Macroeconomics and Reality” at UPF, the 2005 Conference on “Quantitative Evaluation of Sta-

bilization Policies” at Columbia University, and seminar participants at the Bank of England, the Kansas

City Fed, and the University of Miami for helpful comments. Schorfheide gratefully acknowledges financial

support from the Alfred P. Sloan Foundation. The views expressed in this paper do not necessarily reflect

those of the Federal Reserve Banks of Atlanta or Philadelphia or the Federal Reserve System. This paper

is available free of charge at www.philadelphiafed.org/econ/wps/index.html.



1

1 Introduction

The quantitative evaluation of monetary policy rules plays an important role in the design

of stabilization policies. Much of the recent debate about optimal monetary policy rules

has been carried out with New Keynesian dynamic stochastic general equilibrium (DSGE)

models (see Woodford 2003). DSGE models have the advantage that one can explicitly assess

the effect of policy regime changes on expectation formation and decision rules of private

agents. Yet, until recently, these models were scarcely used by central banks because they

were perceived as being inferior to less structural model in terms of fit. Recent work by

Christiano, Eichenbaum, and Evans (2005) and Smets and Wouters (2003) has changed this

perception. These papers show that the fit of large scale New Keynesian DSGE models is

comparable to that of more heavily parameterized models. As a consequence, a number of

central banks have begun to show interest in these models as tools for quantitative policy

analysis. Despite the success in improving the empirical performance of DSGE models,

misspecification remains a concern, as shown in Del Negro, Schorfheide, Smets, and Wouters

(2004).

Accounting for misspecification and model uncertainty in general is an important aspect

of the assessment of monetary policies. After all, it has long been recognized that model

and parameter uncertainty affects optimal policies, e.g., Brainard (1967), Chow (1975), and

Craine (1979).1 This paper proposes a new method for taking model misspecification into

account when assessing the performance of alternative interest-rate feedback rules. We apply

this approach to evaluate different policies in the context of a New Keynesian DSGE model,

including the estimated Volcker-Greenspan rule.

A natural approach in the presence of model uncertainty is to evaluate policy rules within

all the model specifications that are under consideration. In choosing the best performing

rule one can either follow a Bayesian route, assigning probabilities to models and minimizing

the overall posterior expected loss. Alternatively, one can follow a minimax strategy by

adopting a policy that minimizes the worst-case loss across models. The literature contains

numerous applications of these ideas, e.g., McCallum (1988), Levin, Wieland, and Williams

(1999, 2003), Rudebusch (2001, 2002), Onatski and Stock (2002), Onatski and Williams

(2003), Brock, Durlauf, and West (2004), Cogley and Sargent (2005), and Hansen and

Sargent (2005). All these papers differ with regard to the type of models included in the

1The distinction between model and parameter uncertainty is somewhat artificial. By enlarging the

parameter space appropriately, we can always absorb different model specifications.
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model set, and the formulation of the decision problem that leads to the choice of a preferred

policy.

Our analysis differs from previous work with respect to the method that is used to

construct a model set and assign probabilities to these models so that a Bayesian calculation

of posterior expected performance is possible. We start from a DSGE model in which

monetary policy is modelled through an interest-rate feedback rule. The DSGE model

imposes cross-coefficient restrictions on a vector autoregressive representation of the data.

While we are assuming that the data obey a vector autoregressive law of motion, we allow

for potential deviations from the cross-coefficient restrictions. At the same time we maintain

the assumption that monetary policy follows the same interest-rate rule as in the DSGE

model. This collection of identified vector autoregressions forms our model set.

We place a prior distribution on the structural parameters of the DSGE model and on

parameters that characterize the discrepancies between the DSGE model restrictions and

the vector autoregressive law of motion. In constructing this prior we follow our earlier work

in Del Negro and Schorfheide (2004). Roughly speaking, the prior for the discrepancies is

centered at zero and has a covariance matrix that is scaled by a hyperparameter which

is denoted by λ. If λ is large, then the prior for the discrepancies concentrates near zero,

reflecting the belief that a potential misspecification of the DSGE model restrictions is small.

Vice versa, small values of λ induce a prior that implies large misspecification.

Our procedure works in two steps. First, we construct a posterior for the hyperparame-

ter λ, determining the overall extent of misspecification on the basis of the available sample.

Conditional on the estimated λ we compute a posterior for the DSGE model and the dis-

crepancy parameters. Next, we evaluate the outcome of alternative policy rules under the

simplifying assumption that the public believes the new policy to be in place indefinitely

after being announced credibly. We evaluate different policies by studying their impact on

the volatility of the three variables we use for estimation: inflation, output gap, and the

interest rate. For expositional purposes we sometimes use a summary measure that weights

the variances of these three variables. An important feature of our analysis is that we use

the historical observations to learn about the degree of DSGE model misspecification. The

smaller the estimated degree of misspecification, the more our policy analysis relies on the

DSGE model.

Following early work by McCallum (1988) a number of recent papers study the perfor-

mance of different interest-rate feedback rules across a variety of macroeconometric models,

including models that are currently used by the Board of Governors and the European
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Central Bank to analyze monetary policy. Examples of this line of research include Levin,

Wieland, and Williams (1999, 2003), Taylor (1999), Coenen (2003), Levin and Williams

(2003), Brock, Durlauf, and West (2004), and Adalid, Coenen, McAdam, and Siviero (2005).

As in our paper, policy performance is measured by a weighted average of unconditional vari-

ances of output, inflation, and interest rates. While the class of models considered in these

papers is arguably broad and contains both forward-looking as well as backward-looking

specifications, with the exception of Brock, Durlauf, and West (2004) little or no attention

is paid to fit and forecasting performance when weighting predictions from various models.

Hence, potentially too much weight is given to specifications that are clearly at odds with

the data. By using likelihood-based measures of fit, the approach proposed in this paper

guarantees that model specifications that have performed well historically receive a lot of

weight in the policy loss calculation.

Our framework is rich enough to encompass existing approaches to policy analysis such

as the evaluation of policy rules directly based on DSGE models or by replacing the policy

rule in identified vector autoregressions, e.g. Sims (1999), as polar cases. Specifically, we

consider four assumptions about the policy invariance of the misspecification parameters

and calculate posterior expected variances as a function of the policy parameters. The first

scenario – used as a benchmark – simply ignores misspecification and computes the variances

assuming the DSGE model correctly describes the data. The first scenario corresponds to the

type of analysis conducted by Laforte (2003), and Levin, Onatski, Williams, and Williams

(2005). These papers estimate New Keynesian DSGE models similar to the one used here

with Bayesian methods to study the effects of uncertainty about structural parameters on

optimal monetary policy. If uncertainty about taste and technology parameters is certainly

important, we find that the uncertainty about the model specification is at least equally

important. Our estimates of λ indeed suggest that policymakers cannot afford to ignore

misspecification in the New Keynesian model.2

The remaining three scenarios are an attempt to incorporate the concern about model

specification in the policy recommendations derived from DSGE models. The second sce-

nario assumes that the policymaker is willing to learn from historical data about the overall

degree of model misspecification, but not about its precise nature. In computing the ex-

pected variances for a given policy she therefore uses her prior beliefs about the misspec-

ification parameters conditional on λ. In the third and fourth scenarios the policymaker
2The out-of-sample forecasting results obtained by Del Negro, Schorfheide, Smets, and Wouters (2004)

are consistent with this conclusion.
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learns from the data about the misspecification parameters, that is, uses the posterior dis-

tribution of the misspecification parameters in computing the loss. In the third scenario the

policymaker assumes that misspecification is policy invariant, while in the fourth scenario

she uses the conditional distribution of the misspecification and policy parameters to let the

misspecification vary with policy.

The trade-off between theoretical coherence and empirical fit of econometric models

poses a challenge to quantitative policy evaluation. The optimization-based general equi-

librium structure of DSGE models lends credibility to its predictions of the effect of policy

changes on the behavior of private agents. Moreover, the underlying utility functions can

be used to construct welfare-based measures of policy performance. On the other hand,

evidence on the DSGE model’s inability to fit historical data as well as other specifications

casts doubt on the model’s quantitative implications. We view the DSGE-VAR framework

developed in this paper as a diagnostic tool. If the estimate of λ provides evidence of misspec-

ification, our methods down-weigh the DSGE model predictions of changes in private-sector

behavior and rely more on the estimated reduced-form representation of household and firm

behavior. Hence, policy recommendations obtained from the DSGE model can be evaluated

under data-driven perturbations of the DSGE model restrictions.

We find that the outcomes associated with different policies change as misspecification

is taken into account.3 In particular, the increase in inflation volatility associated with

policies that deviate from the DSGE model prescriptions may not be nearly as large as policy

analysis under the DSGE model would suggest. At the same time, our results indicate that

following those prescriptions, even under misspecification, leads to outcomes that are not

substantially inferior to those of rules that perform slightly better under misspecification. In

summary, a fairly robust policy recommendation emerges from our analysis: the central bank

should avoid strong responses to output gap movements and not react weakly to inflation

fluctuations. Moreover, we find that the best-performing rules are those with a substantial

degree of inertia in the policy instrument. An implication of these findings is that the gains

associated with deviating from the historical Volcker-Greenspan policy, whenever positive,

are generally not very large. This suggests that the historical rule, if not always optimal

among those we consider, has been reasonably good at least from the perspective of this

New Keynesian DSGE model, even taking misspecification into account.
3Preliminary empirical results based on a simple three-equation New Keynesian model without capital

accumulation and variable factor utilization were reported in the 2005 Proceedings Volume of the Journal

of the European Economic Association, Del Negro and Schorfheide (2005).
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The literature is fairly divided between Bayesian and minimax or robust approaches to

resolve model uncertainty. Rather than placing a prior distribution on the misspecification

parameters, the robustness literature specifies either a static or dynamic two-player zero-sum

game in which a malevolent “nature” chooses the misspecification parameters to harm the

policymaker. Examples are Tetlow and von zur Muehlen (2001), Giannoni (2002), Onatski

and Stock (2002), some of the analysis in Levin and Williams (2003), Onatski and Williams

(2003), and the robust control approach developed in the monograph by Hansen and Sargent

(2005). The disadvantage of this approach is that the resulting policy performs well in the

worst-case but possibly poorly on average. A key difficulty in the use of minimax rules

is to constrain the model set and to bound the worst case. In most formulations of the

minimax problem the policymaker does not use historical data to learn about the extent of

model misspecification. An exception is Onatski and Williams (2003), who bound deviations

from the Rudebusch-Svenson (1999) model in a minimax calculation based on a confidence

set derived from a posterior distribution. In Hansen and Sargent’s approach the relevant

model set is constructed by bounding the Kullback-Leibler discrepancy between the models

contained in the set and a reference model, so that it becomes difficult to discriminate

among them based on statistical methods. In fact, the minimax approach is arguably most

compelling if there is little or no empirical evidence available that can discriminate between

model specifications.

While our paper emphasizes a Bayesian resolution of uncertainty, our framework is

general enough to enable a risk-sensitive analysis. More specifically, using a result from

Jacobsen (1973) we compute posterior expected losses for an exponential transformation of

our summary measure of weighted variances. The resulting risk can be interpreted as the

Nash-equilibrium of a zero-sum game in which “nature” distorts the probability distribution

of the misspecification parameters subject to a penalty that is a function of the Kullback-

Leibler discrepancy between the distorted and the non-distorted probabilities.

The paper is organized as follows. The DSGE model is presented in Section 2. This

model is based on work by Altig, Christiano, Eichenbaum, and Linde (2002), Smets and

Wouters (2003), and Christiano, Eichenbaum, and Evans (2005). Compared to the bench-

mark New Keynesian models discussed, for instance, in Woodford (2003), our model has

been subjected to a number of modifications, all designed to improve its empirical fit. Sec-

tion 3 discusses the estimation of potentially misspecified DSGE models. Bayesian inference

is implemented through Markov Chain Monte Carlo methods described in the Appendix.

The framework for policy analysis is introduced in Section 4. Section 5 describes the data
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set and discusses our empirical findings, and Section 6 concludes.

2 Model

This section describes the DSGE model, which is based on work by Altig, Christiano,

Eichenbaum, and Linde (2002), Smets and Wouters (2003), and Christiano, Eichenbaum,

and Evans (2005). The model contains nominal price rigidities, capital accumulation subject

to adjustment costs, variable factor utilization, and habit formation. Unlike the above-

mentioned authors we restrict our empirical analysis to three variables: nominal interest

rates, inflation rates and the output gap. Moreover, we abstract from wage rigidities. The

reason for this departure is computational. Bayesian posterior calculations in the framework

developed in Section 3 are more difficult to implement than in the direct estimation pursued

in Smets and Wouters (2003) and the alternative DSGE-VAR setup used in Del Negro and

Schorfheide (2004) and Del Negro, Schorfheide, Smets, and Wouters (2004). Since we do not

use wage data in our empirical analysis it is difficult to disentangle price and wage rigidity.

Indeed, we did estimate a version of the model that includes wage rigidity but found its fit

(adjusted for the additional model complexity) to be worse than the baseline specification

with flexible wages.

2.1 Final Goods Producers

The final good Yt is a composite made of a continuum of intermediate goods Yt(i), indexed

by i ∈ [0, 1]:

Yt =
[∫ 1

0

Yt(i)
1

1+λf di

]1+λf

. (1)

The final goods producers are perfectly competitive firms that buy intermediate goods,

combine them to the final product Yt, and resell the final good to consumers. The firms

maximize profits

PtYt −
∫

Pt(i)Yt(i)di

subject to (1). Here Pt denotes the price of the final good and Pt(i) is the price of inter-

mediate good i. From their first order conditions and the zero-profit condition we obtain

that:

Yt(i) =
(

Pt(i)
Pt

)− 1+λf
λf

Yt and Pt =
[∫ 1

0

Pt(i)
1

λf di

]λf

. (2)

We define aggregate inflation as πt = Pt/Pt−1.
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2.2 Intermediate goods producers

Good i is made using the technology:

Yt(i) = max
{

Kt(i)α[γ(t)ZtLt(i)]1−α, 0
}

, (3)

where the technology shock Zt (common across all firms) follows a stationary autoregressive

process

ln(Zt/Z
∗) = ρz ln(Zt−1/Z

∗) + σzεz,t (4)

and the function γ(t) induces a trend into productivity. All firms face the same prices for

their inputs, labor and capital. Hence cost minimization implies that the capital/labor ratio

is the same for all firms, and equal to:

Kt

Lt
=

α

1− α

Wt

Rk
t

, (5)

where Wt is the nominal wage and Rk
t is the rental rate of capital. Following Calvo (1983)

we assume that in every period a fraction of firms ζp is unable to re-optimize their prices

Pt(i). These firms adjust their prices mechanically according to

Pt(i) = π∗Pt−1(i), (6)

where π∗ is the steady state inflation rate of the final good.4 Firms that are able to re-

optimize prices choose the price level P̃t(i) by solving

maxP̃t(i)
IEt

∑∞
s=0 ζs

pβsΞp
t+s

(
P̃t(i)(π∗)s −MCt+s

)
Yt+s(i)

s.t. Yt+s(i) =
(

P̃t(i) (π∗)
s

Pt+s

)− 1+λf
λf

Yt+s, MCt+s =
α−αW 1−α

t+s Rk α
t+s

(1−α)(1−α)Z1−α
t+s

.

(7)

where βsΞp
t+s is today’s value of a future dollar for the consumers and MCt reflects marginal

costs. We consider only the symmetric equilibrium where all firms will choose the same P̃t(i).

Hence from (2) we obtain the following law of motion for the aggregate price level:

Pt =
[
(1− ζp)P̃

1
λf

t + ζp(π∗Pt−1)
1

λf

]λf

. (8)

2.3 Households

There is a continuum of households, indexed by j ∈ [0, 1]. The objective function for each

household is given by:

IEt

∞∑
s=0

βs

[
log(Ct+s(j)− hCt+s−1(j))− ϕ

1 + νl
Lt+s(j)1+νl +

χ

1− νm

(
Mt+s(j)

γ(t + s)Pt+s

)1−νm
]

(9)
4We also estimated a version of the DSGE model with dynamic price indexation Pt(i) = πt−1Pt−1(i)

but found that the time series fit did not improve.
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where Ct(j) is consumption, Lt(j) is labor supply, and Mt(j) are money holdings. House-

holds’ preferences display habit-persistence. Real money balances enter the utility function

deflated by the trend growth of the economy to make real money demand stationary.

Household j’s budget constraint written in nominal terms is given by:

Pt+sCt+s(j) + Pt+sIt+s(j) + Bt+s(j) + Mt+s(j) ≤ Rt+sBt+s−1(j) + Mt+s−1(j) + At+s−1(j)

+ Πt+s + Wt+s(j)Lt+s(j) +
(
Rk

t+sut+s(j)K̄t+s−1(j)− Pt+sa(ut+s(j))K̄t+s−1(j)
)
,

(10)

where It(j) is investment, Bt(j) is holdings of government bonds, Rt is the gross nom-

inal interest rate paid on government bonds, At(j) is the net cash inflow from trading

state-contingent securities, Πt is the per-capita profit the household gets from owning firms

(households pool their firm shares, and they all receive the same profit), and Wt(j) is the

nominal wage earned by household j. The term within parenthesis represents the return to

owning K̄t(j) units of capital. Households choose the utilization rate of their own capital,

ut(j). Households rent to firms in period t an amount of effective capital equal to:

Kt(j) = ut(j)K̄t−1(j), (11)

and receive Rk
t ut(j)K̄t−1(j) in return. They however have to pay a cost of utilization in

terms of the consumption good equal to a(ut(j))K̄t−1(j). Households accumulate capital

according to the equation:

K̄t(j) = (1− δ)K̄t−1(j) +
(

1− S

(
It(j)

It−1(j)

))
It(j), (12)

where δ is the rate of depreciation, and S(·) is the cost of adjusting investment, with

S′(·) > 0, S′′(·) > 0.

We assume that the labor market is perfectly competitive and wages are flexible. Fi-

nally, we assume there is a complete set of state contingent securities in nominal terms,

which implies that the Lagrange multiplier associated with (10) must be the same for all

households in all periods and across all states of the world. This in turn implies that in equi-

librium households will make the same choices and can be aggregated into a representative

household.
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2.4 Government Policies

The central bank follows a nominal interest rate rule by adjusting its instrument in response

to deviations of inflation and output from their respective target levels:

Rt

R∗
=

(
Rt−1

R∗

)ρR
[(

πt

π∗

)ψ1
(

Yt

Y p
t−1

)ψ2
]1−ρR

σReεR,t , (13)

where R∗ is the steady state nominal rate, Y p
t is a measure of potential output, and the

parameter ρR determines the degree of interest rate smoothing. The government budget

constraint is of the form

PtGt + Rt−1Bt−1 + Mt−1 = Tt + Mt + Bt, (14)

where Tt are nominal lump-sum taxes (or subsidies) that also appear in the household’s

budget constraint. Government spending is given by:

Gt = (1− 1/gt)Yt, (15)

where gt follows the process:

ln gt = (1− ρg) ln g + ρg ln gt−1 + σgεg,t. (16)

2.5 Resource Constraint

The aggregate resource constraint

Ct + It + a(ut)K̄t−1 =
1
gt

Yt (17)

can be derived by integrating the budget constraint (10) across households, and combining

it with the government budget constraint (14) and the zero profit conditions of the final

good producers.

2.6 Model Solution and State-Space Representation

Our model economy evolves along a balanced growth path, generated by the trend in tech-

nology. Output, consumption, investment, real wage, physical capital and effective capital

all grow according to γ(t). Nominal interest rates, inflation, and hours worked are station-

ary. The model can be rewritten in terms of detrended variables. We find the steady states

for the detrended variables and use the method in Sims (2002) to construct a log-linear

approximation of the model around the steady state.
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Our empirical analysis is based on data on nominal interest rates Ra
t (annualized per-

centages), inflation rates πa
t (annualized percentages), and the log output gap. Hence, we

define the vector of observations as yt = [Ra
t , πa

t , 100 ln Y g
t ]′. The relationships between the

percentage deviations from steady state R̃t, π̃t, Ỹt derived from the DSGE model and the

observables yt are given by the following measurement equation:

y1,t = r∗a + γa + π∗a + 4R̃t, (18)

y2,t =


 π∗a + 4π̃t

Ỹt


 .

Here, we have partitioned yt such that y1,t corresponds to the policymaker’s instrument

(the interest rate), and y2,t is a vector that includes the remaining two observables. The

steady state (net) real interest rate in our model is given by r∗a +γa, where γa is the average

annual growth rate of the economy. The parameter r∗a is related to the discount rate β

according to β = 1/(1 + r∗a/400). Within the model, Ỹt denotes the percentage deviation

of output from its trend path γ(t)Y ∗. We interpret the potential output series published

by the Congressional Budget Office (CBO) as a measure of γ(t)Y ∗. Hence, the output gap,

computed as log difference of real and potential GDP provides us with a measure of Ỹt. The

monetary policy rule can be rewritten in terms of observables as follows:

y1,t = (1− ρR)[(r∗a + γa + π∗a)− ψ1 ln π∗a] + y1,t−1ρR + y′2,t


 (1− ρR)ψ1

4(1− ρR)ψ2


 + σRεR (19)

We collect all the DSGE model parameters in the vector θ and stack the structural shocks

in the vector εt.

3 Setup and Inference

In the subsequent analysis it is assumed that the DSGE model generates a covariance-

stationary distribution of the sequence {yt} for all θ ∈ Θ. Expectations under this dis-

tribution are denoted by IED
θ [·]. We will derive an (approximate) vector autoregressive

representation for the DSGE model and introduce model misspecifications as deviations

from this representation.5 Unlike in Del Negro and Schorfheide (2004) and Del Negro,

Schorfheide, Smets, and Wouters (2004), we assume that the interest rate feedback rule in

the DSGE model is correctly specified and do not relax the restriction generated by the
5We are working with vector autoregressive approximations rather than with state-space models to

simplify the simulation of the posterior distributions.
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policy rule. Finally, we specify a prior distribution for these model misspecifications and

discuss posterior inference and policy analysis.

3.1 A VAR Representation of the DSGE Model

Let us rewrite Equation (13), which describes the policymaker’s behavior, in more general

form as:

y1,t = x′tM1β1(θ) + y′2,tM2β2(θ) + ε1,t, (20)

where yt = [y1,t, y
′
2,t]

′ and the k × 1 vector xt = [y′t−1, . . . , y
′
t−p, 1]′ is composed of the first

p lags of yt and an intercept. The shock ε1,t corresponds to the monetary policy shock

σRεR,t in the DSGE model. The matrices M1 and M2 select the appropriate elements

of xt and y2,t to generate the policy rule. In our application the vector M1 selects the

intercept and the lagged nominal interest rate and the matrix M2 extracts inflation, and

the output gap. The functions β1(θ) and β2(θ) are implicitly provided in Equation (19).

Considering forecast-based policy rules in this framework would require significant modifica-

tions. However, according to the findings reported by Levin, Wieland, and Williams (2003)

forecast-based rules do not provide substantial gains in stabilization performance compared

with simple outcome-based rules. Hence, we decided not to pursue these modifications at

this point.

The remainder of the system for yt is given by the following reduced form equations:

y′2,t = x′tΨ
∗(θ) + u′2,t. (21)

In general, the VAR representation (21) is not exact if the number of lags p is finite. We

define ΓXX(θ) = IED
θ [xtx

′
t] and ΓXY2(θ) = IED

θ [xty
′
2,t] and let

Ψ∗(θ) = Γ−1
XX(θ)ΓXY2(θ). (22)

Since the system is covariance stationary, the VAR approximation of the autocovariance

sequence of y2,t can be made arbitrarily precise by increasing the number of lags p. If

in addition, the moving-average (MA) representation of the DSGE model in terms of the

structural shocks εt is invertible, then u2,t can also be expressed as a function of εt for large

p. Conditions for invertibility and results on the accuracy of this VAR approximation can

be found in Fernandez-Villaverde, Rubio-Ramirez, and Sargent (2005).

The equation for the policy instrument (20) can be rewritten by replacing y2,t with

expression (21):

y1,t = x′tM1β1(θ) + x′tΨ
∗(θ)M2β2(θ) + u1,t, (23)
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where u1,t = u′2,tM2β2(θ) + ε1,t. Define u′t = [u1,t, u
′
2,t], B1(θ) = [M1β1(θ), 0k×(n−1)],

B2(θ) = [M2β2(θ), I(n−1)×(n−1)], and let

Φ∗(θ) = B1(θ) + Ψ∗(θ)B2(θ). (24)

Hence, we obtain a restricted VAR for yt

y′t = x′tΦ + u′t, IE[utu
′
t] = Σ∗(θ) (25)

with

Φ = Φ∗(θ), Σ = Σ∗(θ) = ΓY Y (θ)− ΓY X(θ)Γ−1
XX(θ)ΓXY (θ).

Here the population covariance matrices are ΓY Y (θ) = IED
θ [yty

′
t] and ΓXY (θ) = Γ′Y X(θ) =

IED
θ [xty

′
t].

Since the monetary policy rule (13) in the DSGE model is specified so that it can

be exactly reproduced by the VAR, see Equation (20), Φ∗(θ) equals the population least

squares coefficients associated with (25), and the covariance matrix of xt under the DSGE

model and its VAR approximation are identical. We will subsequently ignore the error

made by approximating the state space representation of the DSGE model with the finite-

order VAR or, in other words, treat (25) as the structural model that imposes – potentially

misspecified – cross-equation restrictions on the matrices Φ and Σ. We can do so because

we have checked that the impulse responses from the VAR representation of the DSGE

model – obtained using the identification scheme discussed in Section 3.3 – match almost

exactly those of the DSGE model even when the lag length is four (results are available

upon request).

3.2 Misspecification and Bayesian Inference

We make the following assumptions about misspecification of the DSGE model. There is a

vector θ and matrices Ψ∆ and Σ∆ such that the data are generated from the VAR in (25)

Φ = B1(θ) + (Ψ∗(θ) + Ψ∆)B2(θ), Σ = Σ∗(θ) + Σ∆ (26)

and there does not exist a θ̃ ∈ Θ such that

Φ = B1(θ̃) + Ψ∗(θ̃)B2(θ̃), Σ = Σ∗(θ̃).

We refer to the resulting specification as DSGE-VAR. A stylized graphical representation

of our notion of misspecification can be found in Figure 1. Our econometric analysis is cast
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in a Bayesian framework in which initial beliefs about the DSGE model parameter θ and

the model misspecification matrices Ψ∆ and Σ∆ are summarized in a prior distribution. In

order to compare a Bayesian approach to model misspecification to a minimax approach, the

reader might find it helpful to think of a fictitious other, “nature,” that draws the misspec-

ification matrices Ψ∆ and Σ∆ from a distribution – the prior – rather than maximizing the

loss function to harm the policymaker. The remainder of this section describes the choice

of this prior.

Our prior is based on the idea that “nature” is more likely to draw smaller than larger

misspecification matrices, reflecting the belief that the DSGE model provides a good albeit

not perfect approximation of reality. Specifically, we assume that the prior density decreases

the larger the size of the discrepancies Ψ∆ and Σ∆. In the spirit of Hansen and Sargent’s

(2005) approach to model misspecification and robust control, the size of the discrepancies

is determined by the ease with which they can be detected via likelihood ratios. This metric

determines the shape of the prior contours (see Figure 1). The mass placed on these contours

is determined by the parameter λ. Large values of λ imply that large discrepancies are less

likely to occur. Hence, the parameter λ measures the overall degree of misspecification. We

will now further motivate and explain the prior distribution using a thought experiment,

where for ease of exposition we set Σ∆ = 0 and fix the DSGE model parameter vector θ.

Suppose that a sample of λT observations is generated from the DSGE model (that is,

from Equation (25), where Φ = Φ∗). Here T denotes the size of the actual sample used in the

estimation. We will construct a prior that has the property that its density is proportional

to the expected likelihood ratio of Ψ evaluated at its (misspecified) restricted value Ψ ∗ (θ)

versus the true value Ψ = Ψ∗(θ) + Ψ∆. The log-likelihood ratio is

ln
[ L(Ψ∗,Σ∗, θ|Y, X)
L(Ψ∗ + Ψ∆,Σ∗, θ|Y, X)

]
= −1

2
tr

[
Σ∗−1

(
B′

2Ψ
∗′X ′XΨ∗B2 − 2B′

2Ψ
∗′X ′(Y −XB1)

−B′
2(Ψ

∗ + Ψ∆)′X ′X(Ψ∗ + Ψ∆)B2

+2B′
2(Ψ

∗ + Ψ∆)′X ′(Y −XB1)
)]

.

Here Y denotes the λT × n matrix with rows y′t and Xt is the λT × k matrix with rows x′t.

After replacing Y by X(B1 + (Ψ∗ + Ψ∆)B2) + U the log likelihood ratio simplifies to

ln
[ L(Ψ∗, Σ∗, θ|Y,X)
L(Ψ∗ + Ψ∆, Σ∗, θ|Y,X)

]
(27)

= −1
2
tr

[
Σ∗−1

(
B′

2Ψ
∆′X ′XΨ∆B2 − 2B′

2Ψ
∆′X ′U

)]

Taking expectations over X and U using the distribution induced by the data generating

process yields (minus) the Kullback-Leibler discrepancy between the data generating process
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and the DSGE model:

IEV AR
Ψ∗,Σ∗

[
ln

L(Ψ∗,Σ∗, θ|Y, X)
L(Ψ∗ + Ψ∆,Σ∗, θ|Y, X)

]
= −1

2
tr

[
Σ∗−1

(
λTB′

2Ψ
∆′ΓXXΨ∆B2

)]
. (28)

Here we have used the relationship IEV AR
Ψ∗(θ),Σ∗(θ)[xtx

′
t] = IED

θ [xtx
′
t] = ΓXX(θ), where the first

term refers to expectation taken with respect to the probability distribution generated by

the VAR. We choose a prior density for Ψ∆ that is proportional (∝) to the Kullback-Leibler

discrepancy:

p(Ψ∆|Σ∗, θ) ∝ exp
{
− λT

2
tr

[
Σ∗−1

(
B′

2Ψ
∆′ΓXXΨ∆B2

)]}
(29)

The hyperparameter λ determines the length of the hypothetical sample as a multiple of the

actual sample size T . This hyperparameter “scales” the overall degree of misspecification.

For high values of λ, it is easy to tell the misspecified model and the DSGE model apart

even for small values of the misspecification Ψ∆. Hence the prior density places most of its

mass near the restrictions imposed by the DSGE model when λ is large, and for λ = ∞ the

misspecification disappears altogether. On the contrary, if λ is close to zero the Kullback-

Leibler discrepancy can be small even for relatively large values of the discrepancy Ψ∆.

Hence the prior is fairly diffuse. For computational reasons it is convenient to transform this

prior into a prior for Ψ. Using standard arguments we deduce that this prior is multivariate

normal

Ψ|Σ∗, θ ∼ N
(

Ψ∗(θ),
1

λT

[
(B2(θ)Σ∗−1B2(θ)′)⊗ ΓXX(θ)

]−1
)

. (30)

In practice we also have to take potential misspecification of the covariance matrix

Σ∗(θ) into account. Hence, we will use the following, slightly modified, prior distribution

conditional on θ in the empirical analysis:

Ψ|Σ, θ ∼ N
(

Ψ∗(θ),
1

λT

[
(B2(θ)Σ−1B2(θ)′)⊗ ΓXX(θ)

]−1
)

(31)

Σ|θ ∼ IW
(

λTΣ∗(θ), λT − k, n

)
,

where IW denotes the inverted Wishart distribution. The latter induces a distribution for

the discrepancy Σ∆ = Σ− Σ∗.

The Appendix provides a characterization of the following conditional posterior densi-

ties:

p(Ψ|Σ, θ, Y ), p(Σ|Ψ, θ, Y ), and p(θ|Ψ, Σ, Y ).

Unfortunately, it is not possible to give a characterization of all conditional distributions

in terms of well-known probability distributions. To implement the Gibbs sampler we have
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to introduce two Metropolis steps that generate draws from the conditional distributions

p(Σ|Ψ, θ, Y ) and p(θ|Ψ,Σ, Y ). The resulting Markov-Chain-Monte-Carlo (MCMC) algo-

rithm is known as Metropolis-within-Gibbs sampler and allows us to generate draws from

the joint posterior distribution of θ, Ψ, and Σ. In addition to the posterior distribution of

the parameters we are also interested in evaluating marginal data densities of the form

pλ(Y ) =
∫

p(Y |θ, Σ,Φ)pλ(θ, Σ,Φ)d(θ, Σ, Φ) (32)

for various choices of the hyperparameter λ and restrictions on the parameter space of the

DSGE model. Based on the marginal data densities we can compute Bayes factors and

posterior probabilities for the various specifications of our model. Under the assumption of

equal prior probabilities, ratios of marginal likelihoods can be interpreted as model odds.

While the numerical value of λ itself may be difficult to interpret, a comparison of DSGE and

DSGE-VAR impulse response functions will enable us to assess the degree of misspecification

implied by a particular value of λ.

3.3 Identification

The model developed in the preceding subsections is of the form

y1,t = x′tM1β1 + x′tΨM2β2 + u1,t (33)

y′2,t = x′tΨ + u′2,t,

where u1,t = u′2,tM2β2+ε1,t. The policy rule coefficients β1 and β2, and hence the monetary

policy shock ε1,t = σRεR,t are identifiable. Unlike in a standard VAR, identification is

achieved through exclusion restrictions: lagged inflation and output gap do not enter the

monetary policy rule by assumption. According to the underlying structural model, the

one-step-ahead forecast errors u2,t are a function of the monetary policy shock ε1,t and the

two other structural shocks ε2,t = [εg,t, εz,t]′:

u′2,t = ε1,tA1 + ε′2,tA2.

Straightforward matrix algebra leads to the following formulas for the effect of the structural

shocks on u′2,t:

A1 =
[
Σ11 − β′2M

′
2Σ22M2β2 − 2(Σ12 − β′2M

′
2Σ22)M2β2

]−1

(Σ12 − β′2M
′
2Σ22)

A′2A2 = Σ22 −A′1

[
Σ11 − β′2M

′
2Σ22M2β2 − 2(Σ12 − β′2M

′
2Σ22)M2β2

]
A1
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Here, Σ denotes the covariance matrix of ut, and the partitions of Σ conform with the

partition of u′t = [u1,t, u
′
2,t]. Once A1 is determined, the impulse response function with

respect to the monetary policy shock can be calculated.

In order to identify A2 an additional assumption is needed. We follow the approach taken

in Del Negro and Schorfheide (2004). Let A′2,trA2,tr = A′2A2 be the Cholesky decomposition

of A′2A2. The relationship between A2,tr and A2 is given by A′2 = A′2,trΩ, where Ω is an

orthonormal matrix that is not identifiable based on the estimates of β(θ), Ψ, and Σ.

However, we are able to calculate an initial effect of ε2,t on y2,t based on the DSGE model,

denoted by AD
2 (θ). This matrix can be uniquely decomposed into a lower triangular matrix

and an orthonormal matrix:

AD′
2 (θ) = AD′

2,tr(θ)Ω
∗(θ).

To identify A2 above, we combine A′2,tr with Ω∗(θ).6 Loosely speaking, the rotation matrix

is constructed such that in the absence of misspecification the DSGE’s and the DSGE-VAR’s

impulse responses to ε2,t would coincide. To the extent that misspecification is mainly in the

dynamics as opposed to the covariance matrix of innovations, the identification procedure

can be interpreted as matching, at least qualitatively, the short-run responses of the VAR

with those from the DSGE model.

4 Policy Analysis

We are interested in assessing the effects of changing the existing policy rule between time

and on the fluctuations of the interest rate, inflation, and the output gap. We make the

simplifying assumption that the public believes the new policy to be in place indefinitely

after being announced credibly. The policymaker does not exploit the fact that at the time

of the announcement the public has formed its expectations based on the old policy rule.

Our assumptions characterize one of the polar cases that arises in a more realistic setting in

which there are multiple types of policy shifts (using the terminology of Sims, 1982) ranging

from normal policymaking that corresponds to unanticipated deviations from a policy rule to

rare regime shifts that can be viewed as persistent changes in the central bank’s systematic

reaction to macroeconomic fundamentals.
6The calculation is easily implementable in a Markov Chain Monte Carlo analysis. For every draw of

(θ, Ψ∆, Σ∆) from their joint posterior distribution we compute Ω∗(θ) and A2.
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4.1 Evaluating Policies

The goal of our analysis is to study the effects of changes in the policy parameters θp on

the variability of key macroeconomic variables, namely, output gap, inflation, and interest

rates. We partition the vector θ into policy rule parameters θp and taste-and-technology

parameters θs and denote the unconditional covariance matrix of the endogenous variables

by V(θp, θs,Ψ∆, Σ∆). Consistent with the DSGE model, we assume that the mean of the

variables is invariant to changes in the policy parameters ψ1, ψ2, and ρR. In our empirical

analysis we examine tr[WV] for various choices of the weight matrix W. Here tr[·] denotes

the trace of a matrix. In particular we consider the variances of individual variables, which

can be obtained by setting all elements of W to zero, except for one diagonal element, which

is set equal to one. Moreover, we consider a summary measure of performance by choosing

a W that is diagonal with entries 1/4 (annualized interest rates), 1 (annualized inflation

rates), and 1/4 (output gap, percentage deviations from potential output). To ensure that

the posterior expected value of the variance is well defined when averaging over θs, Ψ∆, and

Σ∆, we truncate the weighted variances at the level B, that is, we report

min {B, tr[WV(θp, θs, Ψ∆, Σ∆)]}

The upper bound B is set to 50. This value is substantially larger than the sample variances

of the output gap, inflation, and interest rates, which are approximately 2.9, 2.1, and 6,

respectively, in our estimation sample.

One advantage of conducting policy evaluation under DSGE models is the use of welfare-

based measures. These measures lose some of their appeal in the presence of misspecification:

To the extent that the discrepancies Ψ∆ and Σ∆ are caused by a misspecification of the

household’s preferences, a representation of consumer welfare derived from the DSGE model

is potentially unreliable. Therefore, we choose to focus on the implications of different rules

on the variability of the endogenous variables. Arguably this is also the measure used in

practice by many central banks in evaluating policies.

We interpret monetary policy shocks as discretionary deviations from the interest-rate

feedback rule. Since the monetary policy shocks are assumed to be uncorrelated with the

remaining structural shocks in the economy they increase the variability of the endogenous

variables. Hence, deviations εR,t from the policy rule are undesirable. In our empirical

analysis we therefore use the procedure described in Section 3.3 to identify the monetary

policy shocks and then set their standard deviation to zero, focusing on the fluctuations

caused by technology and government spending shocks.



18

4.2 Taking Misspecification into Account

We assume that there is imperfect knowledge about: (i) the policy invariant taste and

technology parameters θs and (ii) the degree of model misspecification captured by λ, Ψ∆

and Σ∆. The uncertainty is summarized in the posterior distribution.

We consider four different scenarios for the policy invariance of the misspecification

matrices Φ∆ and Σ∆. Then we calculate the posterior expectations of the performance

measure min {B, tr[WV]} for different policies according to each scenario. If the DSGE

model does not suffer from serious misspecification all scenarios collapse to Scenario 1. The

goal of the subsequent empirical analysis is to illustrate the sensitivity of policy predictions

when the DSGE model is embedded in a collection of identified VARs.

The challenge in the evaluation of monetary policy rules is to predict the private sector’s

behavioral responses to policy regime changes. Standard VAR analysis proceeds under

the assumption that the behavioral changes are negligible. Our framework creates a link

between VAR and DSGE model parameters. Hence, it becomes possible to re-calculate the

private-sector decision rules with the DSGE model and exploit the link to make non-trivial

predictions about the private sector’s behavior with the identified VAR. If the data contain

substantial evidence against the DSGE model restrictions, that is, λ is small, less weight is

placed on the DSGE model predictions about the behavior of the private sector.

Scenario 1 – Ignore Misspecification

The DSGE model is estimated directly and its potential misspecification is ignored. The

policymaker does, however, take the uncertainty with respect to the non-policy parameters

into account when calculating the expected loss. This scenario is explored in detail by Laforte

(2003) and Levin, Onatski, Williams, and Williams (2005). If no deviations from the DSGE

model restrictions are contemplated, then the ad-hoc performance measure introduced in the

previous subsection could be replaced by the household’s utility function. Unfortunately, the

empirical evidence points toward misspecifications. Once we allow for deviations from Ψ∗(θ)

and Σ∗(θ), it is doubtful that the DSGE model-based welfare function remains appropriate.

Hence, we study the effects of policy changes on inflation, output gap, and interest rate

variability in all four scenarios.

Scenario 2 – Acknowledge Misspecification, Discard the Past

The policymaker believes that the sample (hence the posterior) provides no information

about potential misspecification after a regime shift has been implemented. This skepticism
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about the relevance of sample information is shared by the robust control approaches of

Onatski and Stock (2002), Onatski and Williams (2003), and Hansen and Sargent (2005).

However, instead of using a minimax calculation, our Bayesian policymaker relies on her

prior distribution p(Ψ∆, Σ∆|θ, λ) to cope with uncertainty about model misspecification.

The sample is only used to learn about the non-policy parameters θs and the overall degree

of misspecification λ.

Scenario 3 – Learn about Misspecification (Policy Invariant)

Ψ∆ and Σ∆ are assumed to be invariant to changes in policy. The sample information

is used to learn about the model misspecification via the posterior distribution. Looking

forward, the information is used to adjust the policy predictions derived from the DSGE

model by the estimated discrepancies. To implement the analysis, we generate draws from

the marginal posterior distribution of θs, Ψ∆, and Σ∆, combine θ̃ = [θ̃′p, θ
′
s]
′, and calculate

Ψ∗(θ̃) + Ψ∆ and Σ∗(θ̃) + Σ∆. Here, θ̃p is the new set of policy parameters. Since the choice

of θ̃p does not affect beliefs about the misspecification matrices, we refer to the treatment of

misspecification as policy invariant. This rather mechanical post-intervention adjustment of

Ψ∗(θ) and Σ∗(θ) has some undesirable properties, which will become evident in the empirical

analysis.

Scenario 4 – Learn about Misspecification (Conditional)

“Nature” generates a new set of draws from the posterior distribution of Ψ∆ and Σ∆

conditional on the post-intervention DSGE model parameters θ̃. To implement the ex-

pected variance calculation we take a draw from the marginal posterior distribution of θs,

combine it with the policy parameter to obtain θ̃ = [θ̃′p, θ
′
s]
′, and generate a draw from

p(Ψ∆, Σ∆|Y T , θ̃, λ) by iterating between the conditional distributions of Ψ∆ and Σ∆ pro-

vided in the Appendix (see Equations (A.5) and (A.7)). As before, we then calculate

Ψ∗(θ̃) + Ψ∆ and Σ∗(θ̃) + Σ∆. In this scenario, the policymaker revises her beliefs about

the misspecification matrix as she contemplates different values of the policy parameters.

Hence, we use the term conditional. Roughly speaking, the calculation can be interpreted as

follows: based on the data there is uncertainty about the historical policy rule coefficients.

Now suppose one fixes the policy parameters at a particular value θ̃p: what information do

the data provide about the misspecification parameters? This information is summarized

in p(Ψ∆,Σ∆|Y T , θ̃, λ). If the estimated value of λ is small and hence the perceived DSGE

model misspecification is large, the DSGE model’s prediction of the effect of policy rule

changes on the reduced-form equations for the private sector become less credible. In our
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analysis the conditional posterior distribution of Ψ and Σ given θ will effectively become

insensitive to θ. As λ tends to zero we effectively analyze monetary policy with a VAR by

simply changing the coefficients in the policy rule, ignoring any changes in private-sector

behavior that the policy shift might induce as in Sims (1999).

4.3 Risk-Sensitivity

So far, we placed a probability distribution over the misspecification parameters and mini-

mized posterior expected loss. There is a growing literature in economics7 that studies the

robustness of decision rules to model misspecification. Underlying this robustness analysis

is typically a static or dynamic two-person zero-sum game. The decision maker, in our case

the central bank, is minimizing a loss function while a malevolent fictitious other, “nature,”

chooses the misspecification to harm the decision maker. “Nature’s” choice, in our notation

Ψ∆ and Σ∆, is either limited to a bounded set or it is subject to a penalty function that

is increasing in the size of the misspecification. The policymaker’s decision is robust, if it

corresponds to a Nash equilibrium in the two-person game.

In the Bayesian framework the risk sensitivity that is inherent in the robust control

approach can be introduced by transforming a loss function. Let

L(θp, θs, Ψ∆,Σ∆) = min {B, tr[WV(θp, θs, Ψ∆, Σ∆)]}.

Instead of minimizing the expected value of L(θp, θs,Ψ∆, Σ∆), the decision maker is equipped

with an exponential utility function. She considers the transformed loss eτL, and solves

min
θp

1
τ

ln
∫

exp{τL(θp, θs, Ψ∆,Σ∆)}p(θs,Ψ∆, Σ∆)d(θs,Ψ∆, Σ∆), (34)

where p(θs, Ψ∆,Σ∆) denotes the joint density of θs, Ψ∆, Σ∆. A positive τ makes the

policymaker risk averse. It can be shown that the optimization of (34) is the solution to the

following zero-sum game

min
θp

max
q(θs,Ψ∆,Σ∆)

∫
L(θp, θs,Ψ∆, Σ∆)p(θs, Ψ∆,Σ∆)q(θs, Ψ∆, Σ∆)d(θs, Ψ∆, Σ∆) (35)

−1
τ

∫ (
ln q(θs,Ψ∆, Σ∆)

)
p(θs, Ψ∆,Σ∆)q(θs, Ψ∆,Σ∆)d(θs, Ψ∆, Σ∆).

The maximization with respect to q(·) is subject to the constraints
∫

p(θs, Ψ∆,Σ∆)q(θs, Ψ∆,Σ∆)d(θs, Ψ∆, Σ∆) = 1, q(θs, Ψ∆,Σ∆) ≥ 0.

7See for instance, the monograph by Hansen and Sargent (2005) or the February 2002 special issue of

Macroeconomic Dynamics.
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The interpretation of this game is that “nature” chooses the function q(·) to distort the

probabilities from which the model (misspecification) parameters are drawn. Notice that
∫

[ln q(·)]p(·)q(·)d(θs,Ψ∆, Σ∆)

=
∫

[ln p(·)q(·)]p(·)q(·)d(θs, Ψ∆, Σ∆)−
∫

[ln p(·)]p(·)q(·)d(θs, Ψ∆, Σ∆)

is the Kullback-Leibler discrepancy between the distorted and the undistorted probabilities.

The larger τ , the larger the penalty for deviating from p(·). The link between the exponential

transformation of the loss function and the zero-sum game representation was pointed out

by Jacobsen (1973) in one of the first studies of optimization under a risk-sensitive criterion.

In the subsequent empirical analysis we will also compute posterior expected losses under

Scenarios 1 and 2 for the risk-sensitive version of the policy problem. Under Scenario 1 the

DSGE model itself is assumed to be correctly specified but “nature” is allowed to distort

the beliefs about the structural parameters. The larger the uncertainty about a parameter,

the easier it is to shift probability mass to create havoc. This analysis is similar in spirit to

Giannoni (2002), who assesses the robustness of monetary policy to changes in non-policy

parameters of a simple three-equation New Keynesian DSGE model. Under Scenario 2

nature can also distort beliefs about the misspecification matrices, that is, the deviation

of the “true” law of motion from the DSGE model restrictions, and hence, our analysis

becomes comparable to that of Onatski and Stock (2002) and Onatski and Williams (2003).

5 Policy Evaluation Under DSGE-VAR

Our empirical analysis is based on interest rate, inflation, and output gap time series. We use

the CBO’s potential output series and obtain all other series from Haver Analytics (Haver

mnemonics are in italics). The output gap is defined as the log difference of real GDP

(nominal GDP divided by the chained-price deflator JGDP) and real potential output. The

log differences are scaled by 100 to convert them to percentages. Inflation is computed using

quarter-to-quarter log-differences of the GDP deflator, scaled by 400 to obtain annualized

percentages. The nominal rate corresponds to the effective federal funds rate (FFED), also

in percent. The results reported below are based on a sample from 1983:Q3 to 2004:Q1.

We begin with the estimation of the state-space representation of the DSGE model and of

the DSGE-VAR for different values of λ. We document the degree of misspecification of the

DSGE model. Next, we discuss the estimates of the “deep” parameters and the extent to

which they are identified. Finally, we proceed with the policy analysis.
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5.1 Estimation

We begin the section by discussing our assumptions on the priors for the “deep” parameters.

Since we do not use observations on consumption and investment, it is difficult to identify

the capital share and the depreciation rate. Therefore, we let α = 0.25 and δ = 0.025.

Moreover, in a log-linear approximation the price markup parameter λf , which we fix at

0.3, is typically not identifiable. The parameters χ and νm only affect the dynamics of the

money stock, which is not included in the set of observables. The parameter ϕ determines

the steady state labor supply and does not influence the dynamics of interest rates, inflation,

and the output gap. We set the average annualized growth rate of the economy γa equal to

1.5%.

Priors for the remaining DSGE model parameters are provided in Table 1. All intervals

reported in the text are meant to be 90% intervals. The distribution for ψ1 and ψ2 is

approximately centered at Taylor’s (1993) values, whereas the smoothing parameter lies in

the range from 0.18 to 0.83. The prior mean for the growth-adjusted real interest rate,

r∗a + γa, is 2.5% and annualized steady state inflation ranges from 0 to 6.25%, which is

consistent with pre-1982 long-run historical averages. The prior mean of g∗ implies that

that the government share of GDP is 15%. According to our prior the habit persistence

parameter h lies between 0.55 and 0.85. Boldrin, Christiano, and Fisher (2001) found that

a value of 0.7 enhances the ability of a standard DSGE model to account for key asset

market statistics. The interval for νl implies that the Frisch labor supply elasticity lies

between 0.3 and 1.3, reflecting the micro-level estimates at the lower end, and the estimates

of Kimball and Shapiro (2003) and Chang and Kim (2005) at the upper end. According

to the prior for ζp, firms re-optimize their prices, on average every 2.5 to 12.5 quarters.

This interval encompasses findings in micro-level studies of price adjustments such as Bils

and Klenow (2004). The prior for the adjustment cost parameter s′′ is consistent with the

values that Christiano, Eichenbaum, and Evans (2005) report when matching consumption

and investment DSGE impulse response functions, among others, to VAR responses. Our

prior for a′ implies that in response to a 1% increase in the return to capital, utilization

rates rise by 0.1 to 0.3%. These numbers are considerably smaller than the one used by

Christiano, Eichenbaum, and Evans (2005). Finally, the priors for ρz and ρg are centered

on 0.8. The priors for the standard deviation parameters are chosen to obtain realistic

magnitudes for the implied volatility of the output gap, inflation, and interest rates. These

priors are by and large similar to the ones that have been used elsewhere in the literature,

e.g., Smets and Wouters (2003), Del Negro, Schorfheide, Smets, and Wouters (2004), and
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Levin, Onatski, Williams, and Williams (2005).

We estimate the state-space representation of the DSGE model using the Bayesian

techniques described in Schorfheide (2000) and the DSGE-VARs with the Gibbs sampler

discussed in the Appendix for various values of λ. Although λ is in principle a continuous

parameter, for computational reasons we consider only 8 values on a grid ranging from 0.25,

i.e., large prior variance of the misspecification matrices Ψ∆ and Σ∆, to 10, which implies

small misspecification. The DSGE-VAR analysis is based on p = 4 lags.

Table 2 summarizes the posterior of the hyperparameter λ. Log marginal data densities

are reported in column 2 of the table. Differences of log marginal densities across λ’s can

be interpreted as log posterior odds, under the assumption that the prior odds are equal to

one. The odds reported in the last column of Table 2 are relative to λ = 0.5, which is the

specification with the largest marginal data density and, according to this likelihood-based

criterion, the best fit. The posterior of λ has an inverted U -shape. There is little variation

in the marginal data densities for λ values between 0.5 and 1, whereas values outside of

this interval lead to a substantial deterioration in fit. In the first row of Table 2 we report

the marginal data density for the DSGE model, which is about 30 points lower than the

density of the DSGE-VAR(λ = 0.5) on a log scale. We conclude that over the range of the

historical sample the DSGE model is strongly dominated by DSGE-VARs with fairly low

values of λ, indicating that the structural model is to some extent misspecified and that its

policy predictions should be interpreted with care.8 However, the results of the next section

indicate that even when λ is as low as 0.5 much of the mechanics of the DSGE model carries

over to the DSGE-VAR. All DSGE-VAR results reported subsequently are based on λ = 0.5.

Parameter estimation results for the DSGE-VAR and the state-space representation

of the DSGE model are reported in Table 3. There is a growing literature highlighting

parameter identification problems associated with New Keynesian DSGE models, e.g. Beyer

and Farmer (2004), Canova and Sala (2005), and Lubik and Schorfheide (2004, 2005). In

some cases the rational expectations solution of the DSGE model implies that a subset of

structural parameters disappear from the reduced-form law of motion of the observables; in

other cases the estimation objective function may have little curvature in some directions.

Straightforward manipulations of Bayes Theorem can be used to show that priors are not
8The estimate of λ is in line with estimates that we obtained for DSGE-VARs fitted to output, inflation,

and interest rate data based on a model without capital accumulation, see Del Negro and Schorfheide (2004,

2005), and a DSGE-VAR based on the Smets and Wouters (2003) model fitted to seven variables in Del

Negro, Schorfheide, Smets, and Wouters (2004).
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updated in directions of the parameter space in which the likelihood function is flat, e.g.

Poirier (1998). Hence, to enable a careful comparison of priors and posteriors and an

assessment of the information extracted from the sample we also report means and confidence

intervals for the prior in Table 3. The summary statistics for the prior reflect the truncation

at the boundary of the determinacy region. For the purpose of this study we are mostly

interested in the estimation of the degree of misspecification λ and of policy loss differentials.

With respect to λ, lack of identification of the deep parameters is not a concern. Therefore,

we are concerned about lack of sample information only with respect to those parameters

that significantly affect the ranking of policies.

The policy parameter estimates obtained from the DSGE-VAR can be viewed as Bayesian

instrumental variable estimates. Since inflation and the output gap are endogenous vari-

ables, the estimator of ψ1 and ψ2 has to be adjusted for the non-zero conditional expectation

of the monetary policy shock. Both the likelihood function associated with the state-space

representation of the DSGE model and the DSGE-VAR likelihood generate such an adjust-

ment. The former imposes all cross-coefficient restrictions of the DSGE model, whereas the

latter relaxes the restrictions. The estimates of ψ1 are 2.19 for the DSGE-VAR and 1.90

for the DSGE model itself, implying a strong response of the Fed to inflation in the post-

Volcker era. The estimated degree of interest rate smoothing is about 0.8. A comparison of

prior and posterior means for ψ2 indicates that the location shift is fairly small. The 90%

posterior probability interval is, however, much tighter than the prior interval, reflecting the

information about the central bank’s response to the output gap contained in the data. The

estimated interest-feedback rate rule is admittedly a stylized description of monetary policy

in the Volcker-Greenspan years. Yet the R2 of the policy rule equation, obtained using the

parameters that maximize the DSGE model posterior, is 94% for our sample period. This

number is not too far from the 97% percent obtained by Blinder and Reis (2005) for the

1987:Q3 to 2005:Q1 period using a more sophisticated rule. We have experimented with

a four-quarter moving average of inflation as an argument of the rule. We found that this

does not affect the estimates of the other parameters, and slightly worsens the overall fit of

the model.

To understand the remaining parameter estimates obtained from the DSGE-VAR it is

instructive to consider the likelihood function, which is given by

p(Y |Ψ,Σ, θ) (36)

∝ |Σ|−T/2etr
[
Σ−1

(
Y −X(B1(θ) + ΨB2(θ))

)′(
Y −X(B1(θ) + ΨB2(θ))

)]
.
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We show in the Appendix that the mode of the posterior distribution of Ψ conditional on

Σ and θ is of the form

Ψ̃(Σ, θ) = (λTΓXX + X ′X)−1(λTΓXỸ + X ′Ỹ )Σ−1B′
2(B2Σ−1B′

2)
−1,

where Ỹ (θ) = Y −XB1(θ). Since we are unable to compute a marginal likelihood function

p(Y |θ) analytically, we consider the concentrated likelihood function instead p(Y |Ψ̃(Σ, θ),Σ, θ).

Notice that as λ approaches zero the non-policy parameters, which do not affect B1(θ) and

B2(θ) vanish from p(Y |Ψ̃(Σ, θ), Σ, θ) because Ψ̃(Σ, θ) approaches (X ′X)−1X ′Ỹ Σ−1B′
2(B2Σ−1B′

2)
−1.

Hence, as the value of λ decreases we would expect the posterior distribution of the non-

policy parameters to resemble more closely the prior distribution. Indeed, we found this to

be the case.

The DSGE model estimates for the non-policy parameter point toward a large degree

of habit persistence, ĥ = 0.92, and a small elasticity of investment with respect to the value

of installed capital 1/ŝ′′ = 0.12 implying fairly large capital adjustment costs. The estimate

of the Calvo parameter ζp is 0.59, indicating a fairly low degree of price-stickiness: Agents

re-optimize their prices on average every 2.5 quarters. We find that all shocks are fairly

persistent, but our autocorrelation estimates are not as large as in other studies, e.g. Smets

and Wouters (2003). The upper bound of the 90% posterior intervals for ρz and ρg are

well below 1. The likelihood function of the DSGE model provides little information on

g∗, and a′. While our values for g∗ can be justified by the historical government share,

the determination of a′ is more difficult. We decided to conduct a robustness analysis by

comparing DSGE model-based loss differentials for various values of a′ and we found that

the losses and the ranking of policies were insensitive to this parameter.

For many parameters, the estimates obtained from the DSGE-VAR are by and large

similar to the the DSGE model estimates. One exception is the standard deviation of

demand shocks σg, which is much lower according to the DSGE-VAR. Other exceptions

are h and s′′, for which the DSGE-VAR likelihood function contains little information. We

have compared the loss differentials under Scenario 1 for both the DSGE model and the

DSGE-VAR and found that the differences in the estimates of the deep parameters between

the two are quantitatively not important.

5.2 Policy Outcomes Under Misspecification

This section studies how policy outcomes change when misspecification is taken into account.

We analyze the effect of different policies on aggregate stability under the four different
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assumptions regarding misspecification described in Section 4.2. Specifically, we evaluate

the variances of inflation, interest rates, and the output gap under each scenario as a function

of all the parameters characterizing the interest rate rule (13): ψ1 and ψ2, the central

bank’s response to inflation and output, respectively, and ρR, the interest rate smoothing

parameter. Throughout this section we compute individual variances of the three series as

well as a weighted average for each point of a three-dimensional grid, where: ψ1 takes nine

values ranging from 1.001 to 3 in intervals of 0.25; ψ2 takes six different values, computed

taking Taylor’s (1993) value ψT
2 = 0.125 as a reference, namely, 0, 1

2ψT
2 = 0.062, ψT

2 = 0.125,
3
2ψT

2 = 0.188, 2ψT
2 = 0.250, 3ψT

2 = 0.375; and ρR takes three different values, namely, 0.7,

0.8, and 0.95.9 Finally, we calculate variance differentials relative to the benchmark ψ1 = 2,

ψ2 = 0.188, ρR = 0.8, and take expectations. The benchmark is chosen by selecting the point

in the grid that roughly corresponds to the estimated values for those parameters, i.e., the

historical Volcker-Greenspan rule. Negative differentials therefore indicate an improvement,

that is, a reduction of variance, relative to the Volcker-Greenspan rule.

The results are summarized in Figures 2 and 3. Figure 2 contains four charts, one for

each scenario. Each chart shows three surfaces describing the posterior expected differentials

of the weighted variances as a function of ψ1 and ψ2. The three surfaces correspond to the

different values for ρR (0.7, 0.8, and 0.95), with darkness of the surface being directly

proportional to ρR. In Figure 3 we decompose the weighted average of variance differentials

into the contributions of the three individual series for one particular slice of the three-

dimensional plot, obtained by fixing ψ2 to its benchmark value of 0.188.

Scenario 1 – Ignore Misspecification

The first of these scenarios amounts to evaluating policy as if the New Keynesian model

correctly described the data. This first scenario is the natural benchmark for comparing the

results obtained once we allow for the presence of misspecification. Although the model con-

sidered here has a number of additional rigidities relative to the stylized model considered in

Woodford (2003), the policy recommendation emerging from the analysis of the performance

differentials are in line with those in Woodford, at least qualitatively. First, a high response

of the interest rate to inflation (high ψ1) is preferred to a low one, regardless of the value

taken by ψ2 and ρR. The drop in inflation and interest rate variability is particularly steep

as ψ1 increases from 1.001 to 1.5, but flattens thereafter, as can be appreciated from the

two-dimensional plot in Figure 3. The mechanism underlying this result is well known: due
9We have experimented with a finer grid, especially for ψ1 and ρR, and we have found the loss to be a

smooth function of these parameters. Hence, for ease of exposition we focus on the coarser grid.
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to the forward looking nature of the model an increase in ψ1 results in a drop of inflation

variability, which in turn implies – for given ρR – a lower volatility of interest rates.

The top panel of Figure 4, which shows the impulse responses for the DSGE model as

a function of ψ1, illustrates this mechanism. The panel displays the impulse responses with

respect to the technology shock εz,t and the demand shock εg,t for three different values

of ψ1, 1.25, 2, and 2.75, keeping ψ2 and ρR at their historical values. Recall that these

shocks are the only ones that matter for the variance calculations, since we set σR = 0 and

exclude the monetary policy shocks. The figure shows that the response of inflation and

the interest rate to both shocks is less strong the higher the value of ψ1. Quantitatively,

it is the response to technology shocks that makes the difference, with inflation responding

roughly twice as strongly for ψ1 equal to 1.25 than for ψ1 equal to 2.75. The response of

interest rates to both shocks is slightly stronger on impact the higher the value of ψ1, but

becomes weaker soon thanks to the fact that inflation is kept under control. The output

gap is more volatile for high ψ1 with respect to technology shocks, but quantitatively the

difference is not large. With respect to demand shocks the response of the output gap is

strong on impact, but is not affected by the size of ψ1.

The expected variance differential as a function of ρR depends on the values of ψ1 and

ψ2, as shown in Figure 2. For low values of ψ1 and high values of ψ2, a higher interest

rate inertia is preferred. As the value of ψ2 decreases and, especially, that of ψ1 increases,

the expected loss differential as a function of ρR becomes flatter. For values of ψ1 larger

than 1.25 the optimal value of ρR is 0.8. The individual variance differentials depicted in

Figure 3 as well as the impulse responses for the DSGE model as a function of ρR, shown

in the top panel of Figure 5, provide further insights. A value of ρR equal to 0.95 implies a

drastic reduction in the variability of interest rates relative to the baseline ρR = 0.8, but a

slightly increased variability of inflation. Given the weights that we used in our calculation

of average variance differentials plotted in Figure 2, this trade-off is resolved by choosing a

value of ρR that is neither too high (here, 0.95) nor too low (0.7). It is clear, however, that

the outcome depends on the specific choice of the weights.

Figure 2 shows that the weighted variances as a function of ψ2 are sharply increasing for

low values of ψ1 and ρR: Targeting the output gap in the presence of a weak interest rate

response to inflation results in high inflation and interest rate variability. The slope of our

performance measure with respect to ψ2 decreases as ρR, but especially ψ1, increase. For

high values of ψ1 the expected loss differential appears from Figure 2 almost invariant with

respect to ψ2. In fact, it is slightly U-shaped, with a minimum for the historical value of
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ψ2 = 0.188. According to our weighting scheme the variability of the endogenous variables

is minimized, ignoring misspecification, if ψ1 = 3.00 (the highest value in the grid), while

ψ2 and ρR equal their estimated values of 0.188 and 0.8, respectively. The inference about

the misspecification parameter λ in Table 2 casts some doubts on the reliability of DSGE

model predictions, however. Hence we move to take potential misspecification into account.

Scenario 2 – Acknowledge Misspecification, Discard the Past

In Scenario 2 the policymaker still uses the DSGE model to compute the mean response

of the endogenous variables to the change in the policy parameters but recognizes that

“nature” may be injecting noise around these mean responses using the prior distribution.

Under this scenario the policymaker learns from the data about the overall amount of noise

(λ) but refuses to learn about the precise nature of the misspecification. We therefore refer

to this scenario as “Acknowledge Misspecification – Discard the Past,” where “Discard the

Past” refers to the fact that under this scenario the policymaker refuses to use the posterior

information regarding Ψ∆ and Σ∆ on the grounds that it contains no useful information

once policy changes. Rather, she uses the prior distribution to generate draws of Ψ∆ and Σ∆

in evaluating policy outcomes. In both Figures 2 and 3 we focus on the expected variance

differentials computed for λ = 0.5, which represents the “best-fitting” model. We have

computed our measures of aggregate stability for the entire sequence of λ values included

in Table 2 and have found that the policy outcomes for intermediate values of λ conform

with our expectations. That is, the results are pretty similar to those for the DSGE model

when λ equals 5 or 10, and as λ decreases they become more similar to those obtained for

λ = 0.5. Moreover, we find that for λ values between 0.5 and 1 – that is, for all the models

that would receive non-negligible weights in a Bayesian posterior averaging calculation – the

variance differentials are both qualitatively and quantitatively very similar. Therefore we

focus on λ = 0.5.

Under Scenario 2 the qualitative policy implications obtained under the DSGE model

remain valid. Figure 2 shows that a strong response of the interest rate to inflation move-

ments is preferred. Moreover, for high enough ψ1 the best choice of ρR equals the historical

value of 0.8. Unlike in Scenario 1 we find that under Scenario 2 the policymaker should

not respond at all to the output gap if performance is measured by the weighted average of

variances. Indeed, the best performing policy according to this measure under Scenario 2

is identical to that under Scenario 1, except that ψ2 equals 0. Quantitatively, the expected
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variance differentials also appear very similar under Scenarios 1 and 2.10 Under Scenario 2

(as under the prior) the misspecification matrices Ψ∆ and Σ∆ have zero mean. Because of

non-linearities in the impulse-response functions, the zero mean in the misspecification ma-

trices does not imply that the expected variance differentials are the same with and without

misspecification. But in our application they are roughly the same. This does not imply

that introducing misspecification under Scenario 2 bears no consequences for the policy-

maker. The impact of misspecification can be felt in the uncertainty surrounding a given

policy outcome. This uncertainty averages out in Figures 2 and 3 but can play a substantial

role in a risk-sensitive analysis. We will return to this point later.

Scenario 3 – Learn About Misspecification (Policy Invariant)

In Scenario 3 the policymaker uses sample information to learn about the precise nature of

misspecification, unlike in the previous scenario. In addition, she believes that the histor-

ically observed discrepancies Ψ∆ and Σ∆ are policy invariant. Figure 2 shows that under

this scenario the variance surface is quite different than under Scenarios 1 and 2. First of

all, there is much more curvature with respect to ψ2. Second, the variance profile is no

longer strictly decreasing in ψ1, at least for values of ρR less than 0.95, as can be seen from

Figure 3. For small ρRs the loss differential is a U-shaped function of ψ1, with the minimum

attained at the value of 1.5 for ρR = 0.8.

The contours of the variance differentials under Scenario 3 are almost exclusively driven

by the presence of explosive roots, at least for values of ρR less than 0.95. Explosiveness

is not a concern at all for Scenarios 1 (mechanically), and 2 (as is non-uniqueness of the

rational expectation equilibrium). For Scenario 4 the fraction of explosive draws is very

small. For Scenario 3 explosiveness is ubiquitous. Hence, the policy recommendation under

Scenario 3 is largely driven by the desire to avoid explosiveness.

We view this policy recommendation with suspicion, because it results from ignoring

the correlation between the policy parameters and the size of misspecification in models

that have a backward-looking component. We now elaborate on this point for the case of
10This is a bit misleading, however, as the underlying draw of the deep parameters θ is different under the

two scenarios – one corresponds to the DSGE model and the other to DSGE-VAR (the values are given in

Table 3). Whenever we computed the loss under Scenario 1 using the DSGE-VAR draws for θ, we find that

the shape of the loss functions is exactly the same, but the expected loss differentials are smaller, largely

because the estimated standard deviation of demand shocks is smaller. When we use the same set of draws

for the deep parameters under both scenarios, we see that allowing for misspecification actually enhances

the loss differentials, particularly those associated with small values of ψ1. Quantitatively, the difference is

not very large.
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DSGE-VAR. Recall that the estimated VAR parameters Ψ̂ can be decomposed into the sum

of the parameters implied by the DSGE restrictions Ψ∗(θ) and of the misspecification Ψ∆.

Roughly speaking, under Scenario 3, the new set of VAR parameters is computed as the sum

of Ψ∗(θ̃), which changes with policy, and Ψ∆, which is assumed to be invariant. If the policy

parameters are close to estimated ones, the sum of Ψ∗(θ̃) and Ψ∆ returns the estimated VAR

parameters, which do not have explosive roots. But as we move away from the estimated

policy parameters, or as we ignore the correlation between the policy parameters and Ψ∆,

the sum of Ψ∗(θ̃) and Ψ∆ can deliver new VAR parameters whose roots are explosive.

Here, this is particularly true for low values of ρR.11 Inserting a policy rule different from

the estimated one into a backward-looking model can often produce explosiveness.12 This

explosiveness is driven by the fact that the backward looking component of the system

(here, Ψ∆) is not allowed to change with policy. Here, for instance, we find that a number

of policies that are not too different from the historical one (say, ψ1 between 1.75 and 2.5,

ψ2 = 0.188, and ρR = 0.8) deliver a non-negligible probability of explosiveness. We see this

as a warning against having the backward-looking component of the model invariant with

policy, rather than a warning against these policies.

Scenario 4 – Learn About Misspecification (Conditional)

Scenario 4 is an attempt to address this concern. Under this scenario the policymaker again

uses sample information to learn about potential model misspecification. As in Scenario 3,

the misspecification is backward looking. But unlike in Scenario 3, the policymaker takes

into account the in-sample correlation between the policy parameters and the misspecifi-

cation matrices Ψ∆ and Σ∆. Specifically, the policymaker now asks the question: What

would the estimates of the discrepancies Ψ∆ and Σ∆ be if the new policy had been in place

during the sample period? Explosiveness is no longer an overriding concern in Scenario 4,

as it was in Scenario 3. The reason for this result is that now as θ̃ changes both Ψ∗(θ̃) and

Ψ∆(θ̃) change in such a way that the sum of the two is not too different from the estimated

VAR parameters. Indeed, for λ close to zero the dynamics for all equations other than the

interest rate rule are approximately independent of the policy parameters.
11Whenever λ is large, however, Ψ∆ is negligible and the new VAR parameters roughly coincide with

Ψ∗(θ̃), which is non-explosive.
12There are several examples in the literature. For instance, Levin and Williams (2003) find that many of

the rules they consider generate explosiveness in the backward-looking Rudebusch-Svenson model. Likewise,

Cogley and Sargent (2005) find that the optimal policy computed under their rational expectations “Lucas”

model leads to explosive behavior when plugged into the backward-looking “Solow-Samuelson” model.
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Figure 2 shows that under Scenario 4 the variance profile becomes flatter. In particular,

the drop in inflation variability that characterized the increase in ψ1 from 1.001 to 1.5 under

the DSGE model is much smaller under Scenario 4, as can be appreciated from Figure 3.

Under the DSGE model the mechanics of the rational expectations equilibrium imply that

high values of ψ1 help to anchor inflationary expectations. Since in equilibrium inflation

moves less than under high values of ψ1, interest rates need to move less as well. The

presence of substantial misspecification changes these dynamic responses, as shown in the

bottom panel of Figure 4. As ψ1 increases the response of inflation to both technology

and demand shocks is more subdued, as in the DSGE model. Unlike in the DSGE model,

the interest rate becomes more volatile as ψ1 increases, not only on impact but also in the

medium run. Figure 3 indeed confirms that interest rate variability rises as the central bank

responds more strongly to inflation. Moreover, compared to Scenario 1 the increase in the

output gap volatility is amplified. If the policymaker cared only about inflation, she would

still choose a high response to inflation even under misspecification. However, if interest

rate and output gap variability are also a concern, a large value of ψ1 is undesirable. Indeed,

if performance is measured by our weighted average of variances, the preferred value of ψ1

is 1.75.

The presence of misspecification also affects the policy prescription with respect to the

degree of inertia ρR. Figure 5 shows that under the DSGE model high interest rate inertia

leads to slightly higher inflation variability, but quantitatively the effect is small. This is

because in the DSGE model agents are aware that the eventual increase in interest rates

following a sustained increase in inflation would be large, even if today’s response is small.

Under misspecification, this mechanism does not come into play: The milder response of

interest rates to shocks under high inertia leads to a substantial increase in the volatility of

inflation. Finally, Scenario 4 shares with Scenario 2 an aversion against high responses to

the output gap. Indeed, the best performing policy under Scenario 4 is ψ1 = 1.75, ψ2 = 0.06

and ρR = 0.8.

The results in Figures 2 and 3 depend on the somewhat arbitrary choice of the bound.

For this reason, we have recomputed all figures using a bound that is double (100) or ten

times larger (500) than the one used so far. Although the variance differentials that are

affected by explosive behavior, particularly in Scenario 3, change substantially with the

bound, we find that the overall shape of the contours, and hence the gist of our conclusions,

stay roughly the same.
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Risk-Sensitive Analysis

Finally, Figure 6 compares the variance differentials that we just analyzed with those ob-

tained under the risk-sensitive version of our problem. We focus in particular on Scenario 2,

which is the closest in spirit to the robustness literature, but we also show the benchmark,

Scenario 1. For both scenarios the figure shows the risk-sensitive loss (black) as well as

the risk-neutral loss (light grey).13 For Scenario 1, where the risk-sensitivity is only with

respect to the deep parameters θs, we find that the risk-sensitive loss is generally not too

different from the plain-vanilla one. The only difference is quantitative: The loss stemming

from a weak response to inflation is much larger under the risk-sensitive calculations. In

Scenario 2, risk-sensitivity would induce the policymaker to avoid not only low values of ψ1,

but also high values of ψ2 as long as ψ1 is not above 2. Recall that misspecification alone

had little effect on the expected loss differential in Scenario 2. However, when combined

with a concern for robustness, it leads to a starker recommendation relative to the DSGE

model: Avoid the combination of moderate interest rate responses to inflation and strong

responses to the output gap.

Performance of Alternative Rules

In Table 4 we report the implications in terms of interest rate, inflation, and output gap

volatility for the best performing rule under each scenario, as well as for a set of alternative

policy rules that have been considered in the literature. The best performing rules under each

scenario are computed according to the summary measure defined in Section 4 and reported

in the last 3 rows of the table. The remaining rules include four of the five benchmark policy

rules described in Table 1 of John Taylor’s (1999) volume. Taylor I and II are interest rate

smoothing rules with a coefficient ρR = 1. These rules were favored in the simulations by

Levin, Wieland, and Williams (1999), who studied the performance of interest-rate rules in

four different structural macroeconometric models of the U.S. economy: the Federal Reserve

Board staff model, the Monetary Studies Research model, the Fuhrer-Moore model, and

Taylor’s multi-country model. In our DSGE model ρR = 1 rules make interest rates non-

stationary and the calculation of the model-based autocovariance matrices that is needed

for the construction of the prior distribution would have to be adjusted. We decided to

replace the coefficient of unity by ρR = 0.95.14 Taylor III is Taylor’s (1993) rule, which
13A caveat of our analysis so far is that we do not distinguish between uncertainty in the deep parameters

θ and in the misspecification parameters Ψ∆ and Σ∆. In principle we want to be robust against the latter,

but not necessarily the former.
14Equation (19) provides the basis for the conversion of policy rule coefficients into our setup. The interest

rate and output gap coefficients are converted according to ψ1 = gπ/0.05 and ψ2 = gy/(4 · 0.05).
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does not entail interest rate smoothing. Taylor IV rule is the same as Taylor III except

that the central bank responds twice as strongly to the output gap. The fifth rule in Taylor

(1999) is a super-inertia rule (ρR = 1.3), which we omit from our analysis. The last two

rules considered in Table 4 correspond to the robust Bayesian and minimax rules reported

in Levin and Williams (2003).15 Levin and Williams’ (2003) calculation of robust rules

is based on three models: a New Keynesian DSGE model, the Rudebusch-Svenson (1999)

model, and Fuhrer’s (2000) habit persistence model.

The first panel of Table 4 displays for each policy the coefficients ψ1, ψ2, and ρR. The

next three panels show the implication in terms of volatility for the interest rate, inflation,

and the output gap, respectively, for the ten different policies we consider. For each panel

we report the change in the volatility of the relevant variable relative to the baseline rule,

computed under Scenarios 1, 2, and 4. We omit Scenario 3 from the Table 4. The analysis

conducted under this scenario is not particularly interesting for the reasons discussed before:

The presence of explosive draws is driving the results for most of the rules.

The best-performing rule under the DSGE model (rule 1) not surprisingly leads to good

outcomes for all the variables under Scenarios 1 and 2. But under Scenario 4, rules that are

less sensitive to the output gap, such as rule 2 for instance, are preferred. The high inertia

of rule 3, combined with a non-negligible value of ψ2, also leads to high volatility for all

variables under Scenario 4. Rule 4, which displays a more moderate response to inflation,

performs slightly worse than the baseline in terms of inflation if the DSGE model is correct.

Under misspecification, however, it performs well for all variables. The rules Taylor I and

Taylor II perform very well under Scenarios 1 and 2 since they imply a strong response to

inflation movements. In fact, the Taylor I rule reduces inflation volatility more than our

preferred rules for Scenarios 1 and 2, because we restrict the value of ψ1 to be less than 3 in

our calculations. Quantitatively the difference is not large, however. Because of their high

output sensitivity, these rules lead to increased variability in the output gap relative to the

baseline under Scenario 4. Based on our previous discussion it is not surprising that the

non-inertial (ρR = 0) rules Taylor III and Taylor IV perform poorly across all four scenarios.

Levin and Williams’ (2003) robust rules also perform well under Scenarios 1 and 2. This

may stem from the fact that the authors included a New Keynesian DSGE model in their

analysis of monetary policy rules. However, Rules 5 and 6 are dominated by Taylor I across

all scenarios. Both of the Levin-Williams rules display high output gap sensitivity and hence
15Taken from the λ = 0.5 and φ = 0.1 entry in Tables 4 and 7 of Levin and Williams (2003) and converted

according to ψ1 = 1 + α/(1− ρ) and ψ2 = β/(4 · (1− ρ)).
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perform somewhat poorly in the “learn about misspecification” scenarios compared to the

baseline. This is the case for all three variables.

In summary, the qualitative implications of our findings are as follows: (i) Policies that

mainly aim at clamping down on inflation actually succeed in reducing inflation variability,

even in the presence of misspecification. Misspecification, however, implies that the cost of

these policies in terms of interest rate variability is higher than under the DSGE model.

(ii) Policies that also respond to the output gap lead to comparable (and sometimes slightly

better) outcomes if the DSGE model is correct. However, these policies lead to worse

outcomes under Scenario 4, not only in terms of inflation but also of output variability.

(iii) Non-inertial policies lead to a high degree of interest rate volatility under all scenarios.

Policies that are extremely inertial (ρR = 0.95) lead to worse outcomes in terms of inflation

under Scenario 4. Quantitatively we find that the risks and the gains associated with

deviating from the historical Volcker-Greenspan policy are sensitive to the misspecification

assumptions considered. For instance, when the policymaker chooses to learn from the

historical data about misspecification (Scenario 4), she finds that the increase in inflation

volatility associated with policies that deviate from the DSGE model prescriptions is not as

large as policy analysis under the DSGE model would suggest. In the end, a fairly robust

policy recommendation emerges from our analysis: the central bank should avoid strong

responses to output gap movements and not react weakly to inflation fluctuations. Also, we

find that the gains associated with deviating from the historical Volcker-Greenspan policy,

whenever positive, are generally not very large. This suggests that the historical rule, if

not always optimal among those we consider, has been reasonably good at least from the

perspective of this sticky-prices DSGE model, even taking misspecification into account.

6 Conclusion

Encouraged by the work of Smets and Wouters (2003) many central banks are in the process

of developing and estimating DSGE models usable for quantitative monetary policy analy-

sis. The empirical results in this paper and in Del Negro, Schorfheide, Smets, and Wouters

(2004) document that model misspecification remains a concern as less restrictive vector au-

toregressive specifications attain a better time-series fit than the DSGE model itself. In this

paper we developed and applied techniques to conduct quantitative monetary policy analysis

with DSGE models while explicitly taking account of their potential misspecification.
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A Implementation of the Posterior Simulation

A.1 Draws from the Posterior

We adopt the notation that Ỹ (θ) = Y −XB1(θ), which leads to the definitions

ΓỸ Ỹ = ΓY Y − ΓY XB1(θ)−B1(θ)′ΓXY −B1(θ)′ΓXXB1(θ), ΓXỸ = ΓXY − ΓXXB1(θ).

Let etr[A] = exp[− 1
2 tr[A]]. The likelihood function for the VAR representation is given by

p(Y |Ψ,Σ, θ) (A.1)

∝ |Σ|−T/2etr
[
Σ−1

(
Y −X(B1(θ) + ΨB2(θ))

)′(
Y −X(B1(θ) + ΨB2(θ))

)]
.

Using Lemma 1(i) we can rewrite the prior mean of Ψ as

Ψ∗(θ) = Ψ̄(Σ, θ) = Γ−1
XX(θ)ΓXỸ (θ)Σ−1B′

2(θ)[B2(θ)Σ−1B′
2(θ)]

−1.

The prior density for Ψ conditional on Σ is of the form

p(Ψ|Σ, θ) ∝ etr
[
Σ−1λT

(
− 2B′

2Ψ
′ΓXỸ (θ) + B′

2Ψ
′ΓXX(θ)ΨB2

)]
. (A.2)

The prior density for Σ is given by

p(Σ|θ) ∝ |Σ|− 1
2 (λT−k+n+1)etr

[
Σ−1λTΣ∗(θ))

]
(A.3)

To simplify notation the (θ)-argument of the functions B1, B2, Ỹ , ΓXY , ΓXX , and ΓY Y is

omitted.

Conditional Posterior of Ψ: Combining the prior density (A.2) with the likelihood func-

tion (A.1) yields

p(Ψ|Σ, θ, Y )

∝ p(Y |Ψ,Σ, θ)p(Ψ|Σ, θ) (A.4)

∝ etr
[
Σ−1λT

(
ΓY Y − 2B′

2Ψ
′ΓXỸ + B′

2Ψ
′ΓXX(θ)ΨB2

)
+ (Ỹ −XΨB2)′(Ỹ −XΨB2)

]

∝ etr
[
Σ−1

(
− 2B′

2Ψ
′(λTΓXỸ + X ′Ỹ ) + B′

2Ψ
′(λTΓXX + X ′X)ΨB2

)]
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Define

Ψ̃(Σ, θ) = (λTΓXX + X ′X)−1(λTΓXỸ + X ′Ỹ )Σ−1B′
2(B2Σ−1B′

2)
−1.

The previous calculations show that

Ψ|Σ, θ, Y ∼ N
(

Ψ̃(Σ, θ),
[
(B2Σ−1B′

2)⊗ (λTΓXX + X ′X)
]−1)

. (A.5)

Conditional Posterior of Σ: Combining the prior densities (A.2) and (A.3) with the

likelihood function (A.1) yields

p(Σ|Ψ, θ, Y ) ∝ p(Y |Ψ, Σ, θ)p(Ψ|Σ, θ)p(Σ|θ) (A.6)

∝ |Σ|− 1
2 ((λ+1)T−k+n+1)|(B2Σ−1B′

2)
−1|− k

2

etr
[
Σ−1

(
λT (ΓỸ Ỹ − ΓỸ XΓ−1

XXΓXỸ ) + (Ỹ −XΨB2)′(Ỹ −XΨB2)
)

+λT (B2Σ−1B′
2)(Ψ− Ψ̄)′ΓXX(Ψ− Ψ̄)

]
.

Using the definition of Ψ̄, the last term can be manipulated as follows:

etr
[
λTB2Σ−1B′

2(Ψ− Ψ̄)′ΓXX(Ψ− Ψ̄)
]

= etr
[
λTΣ−1

(
B′

2Ψ
′ΓXXΨB2 − 2B′

2Ψ
′ΓXỸ

)

+λTΣ−1B′
2(B2Σ−1B′

2)
−1B2Σ−1Γ′

XỸ
Γ−1

XXΓXỸ

]

Hence,

p(Σ|Ψ, θ, Y ) ∝ |Σ|− 1
2 ((λ+1)T−k+n+1)|(B2Σ−1B′

2)
−1|− k

2 (A.7)

× etr
[
Σ−1

(
λTΓỸ Ỹ + Ỹ ′Ỹ − 2B′

2Ψ
′(λTΓXỸ + X ′Ỹ )

+B′
2Ψ

′(λTΓXX + X ′X)ΨB2

)]

× etr
[
λT (Σ−1B′

2(B2Σ−1B′
2)
−1B2Σ−1 − Σ−1)Γ′

XỸ
Γ−1

XXΓXỸ

]
.

If the DSGE model satisfies Equation (20) and the error u1,t is orthogonal to xt then

ΓXỸ = ΓXXΨ0(θ)B2

and

(Σ−1B′
2(B2Σ−1B′

2)
−1B2Σ−1 − Σ−1)Γ′

XỸ
Γ−1

XXΓXỸ = 0. (A.8)

While the conditional posterior distribution of Σ given our prior distribution is not of

the IW form, use an IW distribution as proposal distribution in a Metropolis-Hastings
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step. Define

S̃(Ψ, θ) = λTΓỸ Ỹ + Ỹ ′Ỹ − (λTΓXỸ + X ′Ỹ )′ΨB2 −B′
2Ψ

′(λTΓXỸ + X ′Ỹ ) (A.9)

+B′
2Ψ

′(λTΓXX + X ′X)ΨB2

Our proposal distribution for Σ is

IW(S̃(Ψ, θ), (λ + 1)T, n).

Conditional Posterior of θ: The posterior distribution of θ is irregular. Its density is

proportional to the joint density of Y , Ψ, Σ, and θ, which we can evaluate numerically since

the normalization constants for p(Ψ|Σ, θ) and p(Σ|θ) are readily available.

p(θ|Ψ, Σ, Y ) ∝ p(Y, Ψ,Σ, θ) = p(Y |Ψ, Σ, θ)p(Ψ|Σ, θ)p(Σ|θ)p(θ). (A.10)

To obtain a proposal density for p(θ|Ψ,Σ, Y ) we (i) maximize the posterior density of the

DSGE model with respect to θ and (ii) calculate the inverse Hessian at the mode, denoted

by Vθ̄,DSGE . (iii) We then use a random-walk Metropolis step with proposal density

N (θ(s−1), cVθ̄,DSGE)

where θ(s−1) is the value of θ drawn in iteration s − 1 of the MCMC algorithm, and c is a

scaling factor that can be used to control the rejection rate in the Metropolis step.
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Table 1: Prior Distribution

Name Domain Density P(1) P(2)

ψ1 IR+ Gamma 1.500 0.400

ψ2 IR+ Gamma 0.200 0.100

ρR [0, 1) Beta 0.500 0.200

r∗a IR+ Gamma 1.000 0.400

π∗a IR Normal 3.000 2.000

g∗ IR+ Beta 0.150 0.050

h [0, 1) Beta 0.700 0.100

νl IR+ Gamma 2.000 0.750

ζp [0, 1) Beta 0.750 0.100

s′ IR+ Gamma 4.000 1.500

a′′ IR+ Gamma 0.200 0.075

ρz [0, 1) Beta 0.800 0.050

ρg [0, 1) Beta 0.800 0.050

σz IR+ InvGamma 0.400 2.000

σg IR+ InvGamma 0.300 2.000

σR IR+ InvGamma 0.200 2.000

Notes: P(1) and P(2) list the means and the standard deviations for Beta, Gamma, and

Normal distributions; the upper and lower bound of the support for the Uniform distribution;

s and ν for the Inverse Gamma distribution, where pIG(σ|ν, s) ∝ σ−ν−1e−νs2/2σ2
. See

Section 2 for a definition of the DSGE model’s parameters. We are reporting annualized

values for π∗ and r∗ (a-subscript). The following parameters were fixed: α = 0.25, δ = 0.025,

γ = 1.5, λf = 0.3. The effective prior is truncated at the boundary of the determinacy

region.
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Table 2: Log Marginal Data Densities and Posterior Odds

Specification ln p(Y ) Post Odds

DSGE Model -305.44 5E-13

DSGE-VAR, λ = 10.0 -297.16 2E-09

DSGE-VAR, λ = 5.0 -291.28 7E-07

DSGE-VAR, λ = 2.0 -283.70 0.001

DSGE-VAR, λ = 1.5 -281.23 0.017

DSGE-VAR, λ = 1.0 -278.46 0.278

DSGE-VAR, λ = 0.75 -277.22 0.968

DSGE-VAR, λ = 0.50 -277.18 1.000

DSGE-VAR, λ = 0.25 -283.34 0.002

Notes: The marginal data densities are obtained by integrating the likelihood function with

respect to the model parameters, weighted by the prior density conditional on λ. The

difference of log marginal data densities can be interpreted as log posterior odds under the

assumption that the two specifications have equal prior probabilities.
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Table 3: Parameter Estimation Results

Prior Posterior

DSGE-VAR (λ = 0.5) DSGE (State Sp)

Mean 90% Interval Mean 90% Interval Mean 90% Interval

ψ1 1.56 [ 1.00 , 2.07 ] 2.19 [ 1.68 , 2.71 ] 1.90 [ 1.43 , 2.37 ]

ψ2 0.20 [ 0.05 , 0.35 ] 0.15 [ 0.07 , 0.23 ] 0.18 [ 0.11 , 0.26 ]

ρR 0.50 [ 0.18 , 0.83 ] 0.83 [ 0.79 , 0.88 ] 0.80 [ 0.75 , 0.85 ]

r∗a 1.00 [ 0.37 , 1.61 ] 0.86 [ 0.36 , 1.34 ] 0.88 [ 0.47 , 1.27 ]

π∗a 3.00 [ -0.31 , 6.26 ] 3.10 [ 2.46 , 3.71 ] 3.02 [ 2.44 , 3.59 ]

g∗ 0.15 [ 0.07 , 0.23 ] 0.15 [ 0.07 , 0.23 ] 0.13 [ 0.06 , 0.20 ]

h 0.70 [ 0.54 , 0.86 ] 0.73 [ 0.59 , 0.89 ] 0.92 [ 0.87 , 0.96 ]

νl 2.00 [ 0.78 , 3.12 ] 1.55 [ 0.72 , 2.35 ] 1.19 [ 0.76 , 1.60 ]

ζp 0.75 [ 0.59 , 0.92 ] 0.66 [ 0.54 , 0.78 ] 0.59 [ 0.46 , 0.71 ]

s′′ 4.00 [ 1.61 , 6.30 ] 4.39 [ 1.95 , 6.77 ] 8.15 [ 5.09 , 11.15 ]

a′ 0.20 [ 0.08 , 0.32 ] 0.22 [ 0.10 , 0.34 ] 0.23 [ 0.11 , 0.35 ]

ρz 0.80 [ 0.72 , 0.88 ] 0.83 [ 0.76 , 0.90 ] 0.83 [ 0.78 , 0.88 ]

ρg 0.80 [ 0.72 , 0.88 ] 0.83 [ 0.75 , 0.90 ] 0.89 [ 0.86 , 0.93 ]

σz 0.71 [ 0.16 , 1.24 ] 0.83 [ 0.47 , 1.18 ] 0.85 [ 0.59 , 1.09 ]

σg 0.53 [ 0.12 , 0.93 ] 0.37 [ 0.27 , 0.47 ] 0.66 [ 0.56 , 0.76 ]

σR 0.36 [ 0.08 , 0.63 ] 0.13 [ 0.10 , 0.16 ] 0.16 [ 0.13 , 0.18 ]
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Table 4: Comparative Performance of Selected Policy Rules

Preferred in Scenario Taylor (1999) Levin-Williams

1 2 3 4 I II III IV Bayes Minimax

Parameters

ψ1 3.00 3.00 3.00 1.75 60.00 24.00 1.50 1.50 4.20 6.50

ψ2 0.19 0.00 0.19 0.06 4.00 5.00 0.125 0.25 0.80 1.375

ρR 0.80 0.80 0.95 0.80 0.95 0.95 0.00 0.00 0.40 0.80

Interest Rate Variance

Scenario: 1 0.13 0.03 -1.38 -0.23 1.02 0.50 9.48 10.31 3.42 1.20

2 0.07 -0.34 -1.16 -0.48 1.79 1.56 8.31 11.13 5.89 2.49

4 2.53 0.49 3.80 -2.76 1.50 5.91 3.56 6.43 5.55 6.19

Inflation Variance

Scenario: 1 -0.80 -0.66 0.39 0.42 -1.61 -0.92 2.85 3.44 -0.86 -0.81

2 -0.89 -1.12 -0.12 -0.23 -1.79 -1.01 2.73 4.77 -0.54 -0.70

4 0.04 -0.78 4.76 -0.67 -0.16 6.75 1.66 3.71 3.92 6.18

Output Gap Variance

Scenario: 1 0.01 0.04 0.05 0.04 -0.02 -0.07 -0.02 -0.08 -0.08 -0.08

2 0.06 0.12 0.05 0.05 0.14 0.03 -0.11 -0.18 -0.01 0.01

4 1.16 -0.76 3.45 -1.68 3.10 6.98 0.57 2.37 4.51 6.48

Weighted Variances

Scenario: 1 -0.77 -0.64 0.05 0.37 -1.36 -0.81 5.21 6.00 -0.02 -0.53

2 -0.86 -1.17 -0.40 -0.34 -1.31 -0.61 4.78 7.50 0.93 0.07

4 0.62 -0.72 4.79 -1.46 0.35 6.85 2.51 5.10 4.64 6.54

Notes: Posterior expected variance differentials as a function of ψ1 and ψ2 relative to

baseline policy rule ψ1 = 2.0, ψ2 = 0.188, ρR = 0.80. Negative differentials signify a

variance reduction relative to baseline rule.
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Figure 1: Stylized View of DSGE Model Misspecification

 

φ2 

subspace generated by the 
DSGE model restrictions  

Φ∆ 

Prior for misspecification 
parameters Φ∆: Shape of contours 
determined by Kullback-Leibler 
distance.

Φ∗(θ ): Cross-equation 
restriction for given value 
of θ 

φ1 

Φ∗(θ )+Φ∆ 

Notes: Φ = [φ1, φ2]′ can be interpreted as the VAR parameters, and Φ∗(θ) is the restriction
function implied by the DSGE model.
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Figure 2: Comparative Performance of Different Rules: Summary Measure
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Notes: Posterior expected variance differentials as a function of ψ1 and ψ2 relative to

baseline policy rule ψ1 = 2.0, ψ2 = 0.188, ρR = 0.80. The weighted variances under

the baseline policy rule for the four scenarios are 2.46, 2.54, 20.13, and 4.77 respectively.

Negative differentials signify a variance reduction relative to baseline rule. Surfaces’ color

ranges from very light grey (ρ = 0.7) to dark grey (ρ = 0.95), with the darkness of the

surface being directly proportional to ρ.
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Figure 3: Comparative Performance of Different Rules: Individual Variables
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Notes: Posterior expected variance differentials as a function of ψ1 and ψ2 relative to

baseline policy rule ψ1 = 2.0, ψ2 = 0.188, ρR = 0.80. Negative differentials signify a variance

reduction relative to baseline rule. Lines’ color ranges from very light grey (ψ1 = 1.25) to

dark grey (ψ1 = 2.75), with the darkness of the line being directly proportional to ψ1.
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Figure 4: Impulse Responses as Function of ψ1

Scenario 1 – Ignore Misspecification
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Notes: Lines’ color ranges from very light grey (ψ1 = 1.25) to dark grey (ψ1 = 2.75), with

the darkness of the line being directly proportional to ψ1.
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Figure 5: Impulse Responses as Function of ρR

Scenario 1 – Ignore Misspecification
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Notes: Lines’ color ranges from very light grey (ρR = .7) to dark grey (ρR = .95), with the

darkness of the line being directly proportional to ρR.
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Figure 6: Expected Policy Loss Differentials - Risk-Neutral versus Risk-

Sensitive
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Notes: Policy loss differentials relative to baseline policy rule ψ1 = 2.0, ψ2 = 1.88, ρR = 0.80.

All numbers are computed fixing the value of ρR = 0.8. Negative differentials signify an

improvement relative to baseline rule. For each scenario, the expected loss differential is

shown in light grey, and the risk-sensitive loss differential in black.


