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Abstract

The time series fit of dynamic stochastic general equilibrium (DSGE) models often suffers

from restrictions on the long-run dynamics that are at odds with the data. Relaxing these

restrictions can close the gap between DSGE models and vector autoregressions. This paper

modifies a simple stochastic growth model by incorporating permanent labor supply shocks that

can generate a unit root in hours worked. Using Bayesian methods we estimate two versions

of the DSGE model: the standard specification in which hours worked are stationary and the

modified version with permanent labor supply shocks. We find that the data support the latter

specification.
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1 Introduction

Dynamic stochastic general equilibrium (DSGE) models have become a workhorse for studying

various aggregate economic phenomena. Since these models generate both business cycle fluctu-

ations as well as long-run growth paths, they should ultimately be able to match data across all

frequencies. Despite the significant progress in developing empirically viable models, e.g., Chris-

tiano, Eichenbaum, and Evans (2005) and Smets and Wouters (2003), the time series fit of DSGE

models is typically inferior to the fit of vector autoregressions (VAR) that are estimated with

well-calibrated shrinkage methods, as documented in Del Negro, Schorfheide, Smets, and Wouters

(2004). One reason for the poor time series fit is the restrictions imposed by the so-called bal-

anced growth path. Along the balanced growth path, (i) the “big ratios” (investment-output,

consumption-output, capital-output, and real wage-output) are stable as output, consumption, in-

vestment, capital stock, and real wages grow at the same rate, and (ii) the real rates of return

to capital and per capita hours worked are stationary.1 As pointed out, for instance, by Canova,

Finn, and Pagan (1994), these model-implied co-trending relationships are often rejected by the

data. Modifications to the probabilistic structure of the exogenous shocks that generate fluctuations

in DSGE models can be used to generalize trend structures. For instance, in a two-sector model

Edge, Laubach, and Williams (2003) introduce trends in sector-specific productivity processes such

that the relative price of investment becomes non-stationary and real investment and consumption

can grow at different rates.

This paper focuses on the stationarity of hours worked. Many researchers doubt that hours

worked are stationary as we have observed apparent changes in labor-supply patterns over recent

decades, e.g., McGrattan and Rogerson (2004), and Gaĺı (2005). Usual suspects responsible for

persistent shifts in per capita hours are structural changes in demography, government purchases,

tax codes, household production technology, or preferences itself. Recently, business cycle theorists

have been particularly concerned with this issue because assumptions about the persistence of

hours has far reaching implications for our understanding of propagation mechanisms as well as the

sources of economic fluctuations. Shapiro and Watson (1988) report that about half of the cyclical

variation in output can be accounted for by the stochastic trend in labor supply. In response to a
1See King, Plosser, and Rebelo (1988) for the restrictions on technology and preferences that satisfy the balanced

growth path property.
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provocative finding by Gaĺı (1999) that hours worked decrease after a favorable technology shock,

Christiano, Eichenbaum, and Vigfusson (2003), henceforth CEV, Chari, Kehoe, and McGrattan

(2004), and Basu, Fernald, and Kimball (2004) show that the statistical inference in a structural

VAR crucially depends on the treatment of low frequency components of hours worked.

This paper makes two contributions. First, we present a modified stochastic growth model in

which hours worked have a stochastic trend, generated by a non-stationary labor supply shock. In

terms of properly detrended variables the model has a well-defined steady-state and can be solved,

for instance, by a log-linear approximation around this steady state. Since this specification implies

that the technology shock is the only source for permanent shifts in average labor productivity,

the popular long-run VAR identification scheme for technology shocks remains consistent with our

model. The modification proposed in this paper can be easily incorporated into large-scale DSGE

models with real and nominal rigidities and potentially improve their empirical performance.

Second, based on output and hours data we compute posterior odds for two stochastic growth

models: one with stationary hours and the other with non-stationary hours. We find for three

alternative data sets that the model with a non-stationary labor supply shock is preferred. Posterior

probabilities range from 93.1 to 99.4%.2 However, as the prior distribution for the autocorrelation

of the labor supply shock in the model with stationary hours is shifted toward more persistence, the

evidence in favor of the non-stationary hours specification decreases. This finding is a reflection of

the well-known fact that it is difficult to distinguish unit-root from highly persistent yet stationary

dynamics. Given the weak and partially conflicting evidence on the stationarity of hours from

univariate tests as, for instance, documented by CEV, it is in our view preferable to conduct a

multivariate specification analysis directly in the context of the model of interest. Cross-coefficient

restrictions and the careful specification of prior distributions can help to sharpen inference. This

view is mirrored in CEV’s VAR analysis, in which they advocate a multivariate encompassing test

over univariate unit-root tests. Unfortunately, CEV dodge the delicate issue of specifying prior

distributions for their model parameters by the construction of pseudo-posterior odds ratios that

ignore the likelihood functions of their VARs. While CEV find no gains from imposing difference

stationarity of hours in their VAR, our analysis documents that the unit-root specification improves

the DSGE model.
2All statements in this paper involving posterior odds or posterior model probabilities assume that the specifica-

tions have equal prior probability.
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The remainder of this paper is organized as follows. Section 2 presents the stochastic growth

model and discusses its long-run dynamics. Section 3 explains our estimation procedure. The

results from the empirical analysis are presented in Section 4 and Section 5 concludes.

2 Model

The model economy is a one-sector stochastic growth model with technology and labor supply

shocks. We consider two versions of the model that differ only with respect to the persistence of

the labor supply shock.

The representative household maximizes the expected discounted lifetime utility from consump-

tion Ct and hours worked Ht:

E0

[ ∞∑

t=0

βt

(
lnCt − (Ht/Bt)1+1/ν

1 + 1/ν

)]
. (1)

The log utility in consumption implies a constant long-run labor supply in response to a permanent

change in technology. The short-run (Frisch) labor supply elasticity is ν. The labor supply shock

is denoted by Bt. An increase of Bt raises the labor supply. This may reflect permanent shifts in

per capita hours of work due to demographic changes, tax reforms, shifts in the marginal rate of

substitution between leisure and consumption, or (non-neutral) technological changes in household

production technology. The household supplies labor at the competitive equilibrium wage Wt and

rents capital Kt to the firms at the competitive rental rate Rt. The capital stock depreciates at the

rate δ, and the per-period budget constraint faced by the household is

Ct + Kt+1 − (1− δ)Kt = WtHt + RtKt. (2)

Firms rent capital, hire labor services, and produce final goods according to the following

Cobb-Douglas technology:

Yt = (AtHt)αK1−α
t . (3)

The stochastic process At captures the exogenous labor augmenting technical progress. Profit

maximization of the firm and factor market equilibrium conditions determine wage and rental rate:

Wt = αAα
t Hα−1

t K1−α
t , Rt = (1− α)(AtHt)αK−α

t . (4)
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We assume that the log production technology evolves according to a random walk with drift:

lnAt = γ + ln At−1 + εa,t, εa,t ∼ iidN (0, σ2
a). (5)

The level of technology in period t = 0 is denoted by A0. We consider two specifications for the

labor supply process Bt. Under specification M0 the labor supply shock follows a stationary AR(1)

process:

M0 : lnBt = ρb lnBt−1 + (1− ρb) lnB0 + εb,t, εb,t ∼ iidN (0, σ2
b ), (6)

where 0 ≤ ρb < 1 and lnB0 is the unconditional mean of lnBt. In model M0 the innovation εb,t

only has a transitory effect. Alternatively, under specification M1 the labor supply shock evolves

according to a random walk:

M1 : lnBt = ln Bt−1 + εb,t, εb,t ∼ iidN (0, σ2
b ) (7)

and we use B0 to denote the initial level of Bt. In both specifications, the innovations εa,t and εb,t

are assumed to be uncorrelated at all leads and lags.

It is well known that in model M0 hours are stationary and that output, consumption, and

capital grow according to the technology process At. Hence, one can induce stationarity with the

following transformation:

M0 : Ỹt =
Yt

At
, C̃t =

Ct

At
, K̃t+1 =

Kt+1

At
.

In model M1, on the other hand, the labor supply shock Bt induces a stochastic trend into hours

as well as output, consumption, and capital. To obtain a stationary equilibrium these variables

have to be detrended according to:

M1 : H̃t =
Ht

Bt
, Ỹt =

Yt

AtBt
, C̃t =

Ct

AtBt
, K̃t+1 =

Kt+1

AtBt
.

With these transformations, we obtain a system of rational expectations equations that character-

izes the equilibrium dynamics of the endogenous variables in the neighborhood of the steady state.

It can be solved by standard log-linearization methods, e.g., King, Plosser, and Rebelo (1988), or

Sims (2002).

We note two important aspects of the model specification. First, while in M1 a positive labor

supply shock raises both hours worked and output permanently, one can show that it does not have
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a permanent effect on labor productivity Yt/Ht. Thus, both M0 and M1 are consistent with the

following popular identification assumption: technology shocks are the only source for a stochastic

trend in labor productivity.

Second, under specification M1 there is a positive probability that hours worked exceed a given

threshold H̄, e.g., 24 hours per day. Our log-linear approximation of M1 ignores this bound and

provides an accurate characterization of the local dynamics only if hours worked are well below

this threshold. Empirically, we think that this is the case and the non-stationary version of the

stochastic growth model may provide a better fit. A similar issue arises when modelling nominal

interest rates, which often appear to be locally non-stationary but at the same time are bounded

from below by zero. While linear time series models cannot explain apparent unit root behavior of

interest rates between, say 4% and 12%, and mean-reverting behavior elsewhere, nonlinear models

can. For instance, Aı̈t-Sahalia (1996) estimates a diffusion model with a nonlinear drift function

that is consistent with interest rates appearing to be non-stationary processes over extended time

periods while being overall stationary.

3 Econometric Approach

We will fit M0 and M1 to observations on the log level of real per capita output and hours worked,

denoted by the 2 × 1 vector yt. Let εt = [εa,t, εb,t]′ and define the vector of structural model

parameters as θ = [α, β, γ, δ, ν, ln A0, lnB0, ρb, σa, σb]′. It is well known that log-linearized DSGE

models have a state space representation, which we will express as follows:

yt = Γ0 + Γ1s1,t + Γ2s2,t + Γ3t (8)

s1,t = Φ1s1,t−1 + Ψ1εt (9)

s2,t = s2,t−1 + Ψ2εt. (10)

The system matrices of this state space representations are functions of the structural parameters

θ. The trend in (8) captures the effect of the drift in the random walk technology process At.

Equation (9) represents the law of motion for the state variables of the detrended model, and (10)

describes the evolution of s2,t = ln At − γt for M0 and s2,t = [ln At − γt, lnBt]′ for specification

M1.
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The Kalman filter can be used to compute the likelihood function L(θ|Y T ) for the state space

system (8) - (10). To initialize the Kalman filter a distribution for the state vector in period t = 0

has to be specified. If all the state variables are stationary then a natural choice for the initialization

is the unconditional distribution of st. However, in our model part of the state vector, s2,t, is non-

stationary. Hence, we factorize the initial distribution as p(s1,0)p(s2,0) and set the first component

equal to the unconditional distribution of s1,t, whereas the second component, composed of the

distribution of lnA0 (M0) and [lnA0, lnB0]′ (M1), respectively, is absorbed into the specification

of our prior p(θ). According to Bayes Theorem the posterior distribution of θ is given by

p(θ|Y T ) = L(θ|Y T )p(θ)/p(Y T ). (11)

The fit of models M0 and M1 can be assessed based on the marginal data densities

p(Y T |Mi) =
∫
L(θ|Y T ,Mi)p(θ|Mi)dθ, i = 1, 2. (12)

If the prior odds of two models are equal to one, then the ratio of marginal data densities provides

the posterior odds. Log marginal data densities penalize the maximized log likelihood function by a

measure of model complexity and can be interpreted as a measure of one-step-ahead out-of-sample

predictive performance. The Bayesian analysis is implemented with Markov Chain Monte Carlo

methods described in Schorfheide (2000).

4 Empirical Analysis

We use three different data sets comprised of quarterly U.S. real per capita GDP and hours worked

from 1954:Q2 to 2001:Q4. The observations from 1954:Q2 to 1958:Q4 are treated as pre-sample to

quantify prior distributions. Since we are comparing the fit of the DSGE model specifications to

that of a VAR with 4 lags, we reserve the observations from 1959:Q1 to 1959:Q4 for the initialization

of lags. Since the VAR likelihood function is conditional on the 1959 observations, we adjust the

DSGE model likelihood function accordingly.3 For Data Set 1 we use real GDP from the DRI-

Global Insight database (GDPQ) and divide it by population of age 20 or older (PM20+PF20).

Hours worked is measured as average weekly hours of all people in the non-farm business sector
3This adjustment can be easily implemented by calculating L(θ|y−3, . . . , y0, Y

T )/L(θ|y−3, . . . , y0), where y0 cor-

responds to 1959:Q4 and Y T denotes to sample 1960:Q1 to 2001:Q4.
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compiled by the Bureau of Labor Statistics (EEU00500005). We multiply the hours series by the

employment ratio, which is the number of people employed (LHEM, DRI-Global Insight) divided

by population (PM20+PF20). Data Set 2 is obtained from CEV. Per capita output is obtained by

dividing GDPQ by civilian population age 16 or older (P16, DRI-Global Insight). Hours worked are

measured as total hours (LBMN, DRI-Global Insight) divided by P16. Data Set 3 has been used

by Gaĺı and Rabanal (2004) and is extracted from Haver Analytics’ USECON database. Output is

defined as nonfarm business sector output (LXNFO) divided by civilian noninstitutional population

age 16 or older (LNN). Hours are measured as nonfarm business sector hours (LXNFH) divided

by the same population measure. All series are seasonally adjusted4 and transformed by taking

natural logs.

The observations are depicted in Figure 1. Log output is plotted relative to 1982:Q1 and the

three log hours series are demeaned by their respective sample averages. An informal inspection of

the plots suggests that hours worked are highly persistent in all three data sets. Hence, specification

M1 may provide an empirically plausible alternative to M0.

The benchmark prior distribution of the parameters is summarized in Table 1. We assume

all parameters to be a priori independent. By and large, the prior means are chosen based on

a pre-sample of observations from 1954:Q2 to 1958:Q4. The prior mean of the labor share α is

0.66 and that for the quarter-to-quarter growth rate of productivity, γ, is 0.5%. The prior for β

is centered at 0.995. Combined with the prior mean of γ, this corresponds to an annualized real

return of about 4%. The depreciation rate δ lies between 1.8% and 3.3% per quarter. The 90%

probability interval for the Frisch labor supply elasticity ν ranges from 0.3 to 1.8.

For the stationary hours model M0 the prior mean of lnB0 is constructed by matching average

hours worked over the pre-sample period with the steady state level of hours worked H̃∗, evaluated

at the prior mean values of the remaining structural parameters. For M1 the prior mean of lnB0

is obtained by equating hours worked in 1958:Q4 with the steady state level B0H̃
∗. Similarly, we

select the prior mean of lnA0 by matching A0Ỹ
∗ and A0B0Ỹ

∗, respectively, with the level of output

in 1958:Q4. The prior standard deviations for lnA0 and lnB0 are 0.2. Finally, for specification

M0 the 90% confidence interval for the autoregressive parameter ρb ranges from 0.835 to 0.982,

implying a fairly persistent labor supply process.
4We use the X-12 filter to adjust the BLS hours series EEU0050005.
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The posterior means and 90% probability intervals are reported in Table 2. For convenience,

we also report probability intervals for the prior distribution. The estimates of α, β, δ, and γ are

very similar across data sets and model specifications. While the data are not very informative

about α, β, and δ the probability interval of γ shrinks by a factor of 4. The posterior means of

the labor supply elasticity ν range from 0.4 to 1 and are somewhat larger than the micro-level

estimates. However, our estimates are roughly consistent with the estimates obtained by Chang

and Kim (2005) and estimates from an experimental survey by Kimball and Shapiro (2003), who

report a value of about 1. The estimated standard deviations of the structural shocks are similar

across data sets and model specifications. For the stationary model, we observe that the estimated

autocorrelation of the labor supply shocks is near unity, exceeding 0.95 in all three data sets.

To assess overall time series fit of the stochastic growth models, we report marginal data

densities in Table 4. For all three data sets, the non-stationary model has a higher marginal

data density than the stationary model. The posterior odds in favor of M1 range from 14:1 (Data

Set 1) to 156:1 (Data Set 2). In addition to the DSGE models we estimate a VAR in log levels of

output and hours

yt = Φ0 + Φ1yt−1 + . . . + Φpyt−p + ut, ut ∼ iidN (0,Σ) (13)

with p = 4 lags using a Minnesota prior.5 This prior shrinks the VAR estimates toward univariate

random walk representations. While the VAR dominates bothM0 andM1 in terms of the marginal

data density, the generalization of the balanced growth structure due to a non-stationary preference

shock improves the fit of the DSGE model and narrows the gap between DSGE model and VAR.

For instance, based on Data Set 2 the odds of VAR versus M0 are only 7:1.

We conduct a number of robustness checks by re-estimating M0 and M1 under alternative

prior distributions presented in Table 3. Prior A1 uses a more diffuse distribution for lnB0 in the

non-stationary model M1, whereas the distribution under A2 is more concentrated than for the

benchmark prior. Not surprisingly, the marginal data density deteriorates under the less informative

Prior A1 for all three data sets. However, the change is small because our analysis is conditioned on
5See Doan, Litterman, and Sims (1984). Our version is implemented via dummy observations based on MATLAB

code provided by Chris Sims. A description can be found in Appendix C of Lubik and Schorfheide (2005). We use

the following hyperparameters: d = 0.5, λ = 5, µ = 2, τ = 3. Mean and standard observations of yt are calculated

based on the pre-sample.
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four initial observations. Tightening the prior for lnB0 leaves the marginal data density virtually

unchanged.

Priors A3 and A4 modify the distribution of ρb in M0 by increasing (A3) and decreasing (A4)

the implied persistence of the labor supply shock. For all three data sets A3 raises the marginal

data density of M0 and hence narrows the gap between M0 and M1. For instance, based on Data

Set 1 the odds in favor of the non-stationary specification drop from 14:1 to 5:1. If one compares

M0 with Prior A3 to M1 with Prior A1, then the two specifications attain roughly equal posterior

probabilities. Under Prior A4, on the other hand, the marginal data density of M0 falls relative to

the benchmark prior. While overall the non-stationary specification M1 is the preferred one, the

particular margin is sensitive to the prior, reflecting the difficulty of distinguishing unit root from

stationary yet highly persistent dynamics in finite samples.

Posterior mean impulse responses of output, hours, and labor productivity to technology and

labor supply shocks are depicted in Figure 2. The estimated impulse response functions for Data

Set 2 and 3 are similar to those obtained from Data Set 1 and hence omitted. Given the simple

structure of the model and its well-known lack of internal propagation, the impulse responses are

monotonic. A technology shock raises output permanently. Hours worked increase initially and

then return to the steady state level. UnderM0 a preference shock increases labor supply and raises

output and hours worked temporarily, whereas under M1 the increase is permanent. However, the

labor supply shock does not affect labor productivity permanently so that the technology shock

remains the unique source of permanent shifts in labor productivity.

5 Conclusion

Since DSGE models generate both business cycle fluctuations as well as long-run growth paths

they should ultimately be able to match the data across all frequencies to be quantitatively taken

seriously. However, the time series fit of DSGE models often suffers from restrictions on the long-

run dynamics that are at odds with the data. This paper considered a stochastic growth model

in which the marginal rate of substitution between leisure and market consumption changes over

time. If this exogenous shock to labor supply has a unit root, hours worked become non-stationary.

According to our empirical analysis, the version of the model in which labor supply shifts have a
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permanent component attains a better time series fit and narrows the gap between DSGE model

and VAR. Our modification can be easily incorporated into more sophisticated DSGE models with

real and nominal frictions. While this paper has focused on improving time series fit by modifying

an exogenous process, the ultimate goal should be to improve the structure of the labor market

specification to reduce the role of exogenous shocks by unveiling economic factors behind persistent

movements in hours.
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Table 1: Benchmark Prior Distribution

Parameter Range Density Data, Model Para (1) Para (2)

α [0, 1) Beta 0.660 0.020

β [0, 1) Beta 0.995 0.002

γ R Normal 0.005 0.005

δ [0, 1) Beta 0.025 0.005

ν [0, 1) Gamma 1.000 0.500

ρb [0, 1) Beta M0 0.900 0.050

σa R+ InvGamma 0.015 1.000

σb R+ InvGamma 0.015 1.000

ln A0 R Normal 1, M0 5.647 0.200

1, M1 5.674 0.200

2, M0 2.346 0.200

2, M1 2.394 0.200

3, M0 -1.857 0.200

3, M1 -1.821 0.200

ln B0 R Normal 1, M0 3.236 0.200

1, M1 3.209 0.200

2, M0 6.453 0.200

2, M1 6.405 0.200

3, M0 6.346 0.200

3, M1 6.309 0.200

Notes: In the non-stationary model M1, ρb is fixed at 1. Para (1) and Para (2) list the means

and the standard deviations for Beta, Gamma, and Normal distributions; s and ν for the Inverse

Gamma distribution, where pIG(σ|ν, s) ∝ σ−ν−1e−νs2/2σ2
.
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Table 2: Posterior Distribution

Prior Posterior

Data Set 1 Data Set 2 Data Set 3

Parameter 90% Interval Mean 90% Interval Mean 90% Interval Mean 90% Interval

Stationary Model M0

α [0.627,0.693] 0.653 [0.627,0.683] 0.648 [0.622,0.674] 0.655 [0.627,0.682]

β [0.992,0.998] 0.996 [0.993,0.998] 0.996 [0.993,0.998] 0.996 [0.994,0.998]

γ [-0.004,0.013] 0.004 [0.002,0.006] 0.004 [0.002,0.005] 0.004 [0.002,0.006]

δ [0.018,0.033] 0.023 [0.016,0.030] 0.021 [0.015,0.027] 0.020 [0.014,0.027]

ν [0.277,1.802] 0.528 [0.206,0.837] 0.549 [0.152,0.900] 1.023 [0.482,1.582]

ρb [0.835,0.982] 0.950 [0.920,0.983] 0.977 [0.961,0.995] 0.980 [0.966,0.995]

σa [0.004,0.133] 0.011 [0.010,0.013] 0.011 [0.009,0.012] 0.014 [0.013,0.016]

σb [0.005,0.129] 0.006 [0.005,0.006] 0.007 [0.006,0.008] 0.006 [0.006,0.007]

ln A0 [5.386,6.007] 5.719 [5.480,5.959]

[2.041,2.675] 2.459 [2.234,2.674]

[-2.190,-1.551] -1.807 [-2.047,-1.585]

ln B0 [2.896,3.549] 3.179 [3.148,3.203]

[6.130,6.758] 6.324 [6.265,6.397]

[6.075,6.710] 6.317 [6.247,6.393]

Non-stationary Model M1

α [0.629,0.695] 0.654 [0.626,0.681] 0.648 [0.618,0.678] 0.661 [0.632,0.690]

β [0.992,0.998] 0.995 [0.993,0.998] 0.996 [0.993,0.998] 0.996 [0.993,0.998]

γ [-0.003,0.014] 0.004 [0.002,0.006] 0.004 [0.002,0.005] 0.004 [0.003,0.006]

δ [0.017,0.033] 0.023 [0.016,0.031] 0.022 [0.016,0.029] 0.020 [0.013,0.027]

ν [0.244,1.784] 0.454 [0.122,0.752] 0.664 [0.222,1.041] 1.007 [0.470,1.491]

σa [0.005,0.116] 0.012 [0.010,0.013] 0.011 [0.009,0.012] 0.014 [0.012,0.015]

σb [0.004,0.123] 0.006 [0.006,0.007] 0.007 [0.007,0.008] 0.007 [0.006,0.008]

ln A0 [5.356,5.992] 5.716 [5.461,5.986]

[2.114,2.754] 2.498 [2.237,2.763]

[-2.177,-1.480] -1.767 [-2.063,-1.459]

ln B0 [2.897,3.568] 3.139 [2.821,3.392]

[6.114,6.752] 6.324 [6.061,6.584]

[6.005,6.680] 6.269 [6.025,6.488]
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Table 3: Alternative Prior Distributions

Parameter Range Density Data, Model Para (1) Para (2)

Alternative Prior A1

lnB0 R Normal 1, M1 3.209 2.000

2, M1 6.405 2.000

3, M1 6.309 2.000

Alternative Prior A2

lnB0 R Normal 1, M1 3.209 0.020

2, M1 6.405 0.020

3, M1 6.309 0.020

Alternative Prior A3

ρb [0, 1) Beta M0 0.950 0.020

Alternative Prior A4

ρb [0, 1) Beta M0 0.800 0.100

Notes: Para (1) and Para (2) list the means and the standard deviations for Beta and Normal

distributions.
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Table 4: Log Marginal Data Densities

Data Set Prior Stationary Model M0 Non-stationary Model M1 VAR(4)

1 B 1174.38 1176.99 1183.96

A1 1175.39

A2 1176.95

A3 1175.40

A4 1172.84

2 B 1159.60 1164.65 1166.56

A1 1163.42

A2 1164.56

A3 1161.26

A4 1158.32

3 B 1113.31 1117.99 1136.77

A1 1116.08

A2 1118.57

A3 1114.47

A4 1111.77

Notes: B denotes the benchmark prior in Table 1 whereas A1 through A4 refer to the alternative

priors in Table 3.
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Figure 1: Data – Output and Hours (in Logs)
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Figure 2: Impulse Response Functions (Posterior Means)


