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Abstract 
 
 

State-dependent pricing (SDP) models treat the timing of price changes as 
a profit-maximizing choice, symmetrically with other decisions of firms. Using 
quantitative general equilibrium models that incorporate a “generalized (S,s) 
approach,” we investigate the implications of SDP for topics in two major 
areas of macroeconomic research: the early 1990s SDP literature and more 
recent work on persistence mechanisms. First, we show that state-dependent 
pricing leads to unusual macroeconomic dynamics, which occur because of the 
timing of price adjustments chosen by firms as in the earlier literature. In 
particular, we display an example in which output responses peak at about a 
year, while inflation responses peak at about two years after the shock. Second, 
we examine whether the persistence-enhancing effects of two New Keynesian 
model features, namely, specific factor markets and variable elasticity demand 
curves, depend importantly on whether pricing is state dependent. In an SDP 
setting, we provide examples in which specific factor markets perversely work 
to lower persistence, while variable elasticity demand raises it. 
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1 Introduction

State-dependent pricing models have long been viewed as a desirable vehicle for
macroeconomic analysis because these models treat the timing of price changes as
a profit-maximizing choice. SDP models make it possible to explore how the fre-
quency of price changes responds to variations in model features, such as the form
of the monetary policy rule, and to develop the implications of altered adjustment
timing for the evolution of other macroeconomic variables. Yet, most macroeconomic
investigations employ models with time-dependent pricing (TDP) for two reasons.
First, until recently, it has not been possible to construct operational SDP models,
frameworks in which the effects of alternative structural features could be explored or
that could be readily taken to the data. By contrast, TDP models have proven to be a
workhorse for both purposes. Second, macroeconomists have been unsure if incorpo-
rating state-dependent pricing behavior would have implications for the dynamics of
economic models. Some have speculated that it would be relatively inconsequential in
many contexts to adopt SDP rather than the more easily solved TDP setup. Others
have expressed the view that incorporating state-dependence is unnecessary because
the frequency of price changes does not vary much, at least in moderate inflations.
Using a battery of quantitative general equilibrium models developed along the

lines of Dotsey, King, and Wolman [1999], we show that SDP modeling makes a
difference in terms of model implications within two major areas of macroeconomic
literature. First, as suggested by the 1990s literature — which made use of very dif-
ferent models — we show that there can be a quantitatively important effect of state-
dependent pricing for economic outcomes under steady inflation and in response to
monetary shocks. State-dependent pricing leads to novel macroeconomic dynamics,
including a change in the lead-lag structure of output and inflation. In particular,
we display an example in which output responses peak at about a year, while infla-
tion peaks at about two years, in line with Friedman’s [1992] summary of dynamic
responses for the U.S. and other countries. Such dynamic responses have not previ-
ously been obtained in sticky price models, as stressed by Mankiw [2001], and the
response depends critically on the price adjustment pattern endogenously chosen by
firms. Second, it has been shown that specific factor markets and variable elasticity
demand curves generate more persistent output effects of monetary shocks because
they moderate the size of price changes that firms make. We investigate whether
these results are sensitive to the incorporation of state-dependent pricing. We find
that they can be: specific factor markets perversely work to lower persistence in the
face of state-dependent pricing, while variable elasticity demand continues to raise it.
The organization of the remainder of the paper is as follows. Section 2 provides

a little background on the literatures related to this paper. Section 3 describes the
dynamic stochastic general equilibrium (DSGE) models that we employ in the paper.
The next two sections of the paper provide our core findings. Section 4 evaluates
whether modern quantitative state-dependent models have the four key implications
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highlighted by the early 1990s SDP literature. Section 5 evaluates the consequences of
SDP for the two persistence-enhancing mechanisms stressed by some New Keynesian
economists. The common finding of sections 4 and 5 is that state-dependent pricing
has a rich set of implications for the dynamics of macroeconomic models, which differ
substantially from those of time-dependent models.1

2 A little background

We begin by providing a quick overview of the two literatures on which we build.2

2.1 The early 1990s literature on state-dependent pricing

A decade ago, macroeconomists viewed dynamic models with state-dependent pric-
ing as having very different implications from time-dependent models. For example,
the influential textbook of Blanchard and Fischer [1989] reviewed a number of state-
dependent pricing models and stressed how different the conclusions from SDPmodels
were from TDP models, particularly in terms of the effects of monetary disturbances
on real activity. Further contributions, published shortly after the textbook, increased
the perceived discrepancy between time and state-dependent pricing models. Taken
together, these developments through the early 1990s suggested the following ideas:
(1) The steady-state pattern of price adjustment depends importantly on the nature of
the demand and cost functions of the firm (Sheshinki and Weiss [1977,1983]); (2) The
dynamic effect of money on output within state-dependent pricing models is dramat-
ically different from that in time-dependent models, possibly involving complicated
cyclical adjustment processes and nonlinear responses (Caplin and Leahy [1991]); (3)
The evolution of the price level is substantially affected by the adjustment strategies
of firms interacting with heterogeneous prices (Caballero and Engel [1993]); and (4)
Multiple equilibria can readily arise in state-dependent pricing models because of
complementarities in price-setting, even with the type of exogenous money stock rule

1We are pleased to have contributed this work to this volume and to have presented it at the
April 2004 Carnegie-Rochester conference in honor of Alan Stockman, “The Economics of Exchange
Rates” and the resulting conference volume. Comparing our title and that of the conference, a
reader may plausibly wonder if there has been some mistake and our paper has accidentally fallen
into the wrong collection. But we do not think that Alan will think so, since he has long argued
in various conference discussions that it is important to incorporate state-dependent pricing into
open economy modeling. In the last decade, research on “the new open economy macroeconomics”
has explored the implications of sticky prices for the behavior of exchange rates. That literature
has nearly exclusively concentrated on time-dependent pricing models. (The only exception we
know is Landry [2003]). Our results suggest that the NOEM literature, by concentrating on time-
dependent pricing models, may have missed some important dynamic implications of price-stickiness
and reached inappropriate conclusions about the implications of structural features of models.

2The weblink at http://people.bu.edu/rking makes GAUSS and MATLAB code available to those
interested in replicating and extending this research.
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that nearly always guarantees a unique equilibrium in time-dependent models (Ball
and Romer [1991]).
Accordingly, our first objective in this paper is to evaluate whether these core ideas

remain as features in dynamic general equilibrium analysis, with specific emphasis
on the effects of monetary shocks. Using a basic general equilibrium model, we find
support for all of the core ideas from the early 1990s SDP literature.3

2.2 Recent work on output responses to monetary shocks

Within the last decade, there has been substantial research into the effects of mon-
etary shocks and monetary policy rules within macroeconomic models that incorpo-
rate time-dependent pricing, most frequently along the lines of Taylor [1980] or Calvo
[1983]. By contrast, there has been relatively little research on these topics within
state-dependent pricing models. Initially, this was because state-dependent pricing
models were not operational: it was difficult to solve them under general assumptions
about the processes driving economic activity. But the Dotsey, King, and Wolman
[1999] state-dependent pricing model provides one laboratory where these questions
can be addressed.
One major focus of the recent literature on time-dependent models has been a

“search for persistence mechanisms”, in response to Chari, Kehoe, and McGrattan’s
[2000] provocative critique of Taylor-style pricing models. We look at two promi-
nent ideas in the literature on New Keynesian macroeconomics: that there are fac-
tor markets specific to individual firms (Ball and Romer [1990], Kimball [1995] and
Rotemberg [1996]) and that firms may face non constant elasticity demand curves
that are of a “smoothed off kink” form (Ball and Romer [1990] and Kimball [1995]).
The basic idea is that each of these mechanisms should moderate the magnitude of
price adjustments that a firm would like to make, relative to those in a benchmark
setting with flexible factors and a constant elasticity demand, thus making the price
level response more sluggish and the nonneutrality of money more protracted.
In particular, we ask whether these New Keynesian mechanisms lead to increases

in persistence that survive the introduction of state-dependent pricing. We find that
there are very different conclusions for these two models. Within our state-dependent
pricing framework, the introduction of local factor markets leads to more rapid price
adjustment in the face of steady-state inflation and also more rapid adjustment in
response to monetary shocks. Accordingly, time-dependent models that stress this
mechanism are implicitly relying on very large costs of price adjustment in order
to generate persistence. The variable demand elasticity specification works quite
differently. First, in a steady state, this model produces more rapid adjustment —
at given adjustment costs—than its constant elasticity counterpart. Second, in re-
sponse to a monetary shock, this model produces slower adjustment initially than its

3There is one exception: our use of linear approximation methods makes it impossible for us to
explore the implications of nonlinearities.
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constant elasticity counterpart. Taking these two effects together, we find that the
variable demand elasticity model enhances persistence in a state-dependent pricing
environment.

3 DSGE models

We construct and study four models designed to be representative of much recent
work in New Keynesian macroeconomics: production is linear in labor input; con-
sumption and labor effort are separable in utility, and aggregate demand is governed
by the quantity theory of money.4 Thus, the only sophisticated element is the state-
dependent pricing mechanism. While use of such simple models is limiting on some
dimensions, it allows us to clearly illustrate the implications of state dependence for
standard modeling. The four related models are as follows. Model I assumes that
there is constant elasticity demand as in Dixit-Stiglitz [1977] and that there is a global
labor market, two assumptions that allow for ready aggregation.5 Model II allows for
a variable demand elasticity, structured so that there is a “smoothed off” kink in the
demand curve as suggested by Kimball [1995]. Models III and IV assume that there
is a local labor market, a device used by authors such as Ball and Romer [1991].

3.1 The demand aggregator

Firms facing a declining demand elasticity will be less aggressive in pricing, as in
the classic textbook discussion of a kinked demand curve. To develop a specific
aggregator of the class suggested by Kimball [1995], we consider a general expenditure
minimization problem facing households,

min
{c(i)}

Z 1

0

P (i)c(i)di subject to
Z 1

0

D(c(i)/c)di = 1, (1)

where c is the total consumption aggregator implicitly defined by the demand aggre-
gator D, which is an increasing concave function, and where P (i) is the nominal price
charged by the ith firm on the unit interval.
For any such aggregator, the aggregate price level, P, is implicitly defined byR 1

0
(P (i)

P
)( c(i)

c
)di = 1. Expenditure minimization requires that Λ

P
D0
³
c(i)
c

´
= P (i)

P
,where

Λ is the Lagrange multiplier on the constraint. For aggregators of the Kimball
class, the first order condition can be solved to yield demand curves of the form

4Relative to our work in Dotsey and King (2001), we therefore abstract from investment and
capital formation; from variable utilization; and features of household preferences and constraints
that rationalize separate choices of hours and employment or provide motivations for simultaneously
varying consumption and hours. We also abstract from the structural features that give rise to money
demand.

5This is a standard set of assumptions in work on quantitative dynamic models beginning with
King and Wolman [1996] and Yun [1996].
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c(i)/c = d(P (i)
Λ
), where Λ is determined by the condition

R 1
0
D(d(P (i)

Λ
)di = 1. Given

the demand curve and the multiplier, the aggregate price level index is determined
by
R 1
0
(P (i)

P
)( c(i)

c
)di = 1.

Our specific aggregator: We use a functional form for D that generates demand
curves that are more elastic for firms that adjust their price than for firms whose
relative price declines as a result of price fixity,

D(x) =
1

(1 + η)γ
[(1 + η)x− η]γ − [1 + 1

(1 + η)γ
].

One nice property of this specification is that the Dixit-Stiglitz aggregator is a special
case when η = 0. The relative demand curves are given by

c(i)

c
=

1

1 + η
[((

P (i)

P
)(
P

Λ
))1/(γ−1) + η]. (2)

i.e., they are the sum of a constant elasticity demand augmented by a constant. The
Lagrange multiplier is given byΛ

P
= [
R 1
0
(P (i)/P )γ/(γ−1)di](γ−1)/γ. Conveniently, the

aggregate price level index can be written as

P =
1

1 + η
[

Z 1

0

P (i)γ/(γ−1)di](γ−1)/γ +
η

1 + η

Z 1

0

P (i)di. (3)

so that it is the sum of a DS and linear aggregator.
Figure 1 displays examples of the type of demand curves that can be generated

with this aggregator. The benchmark case is a Dixit-Stiglitz specification with a
demand elasticity of 10 (this involves choosing η = 0 and 1

γ−1 = −10, so that γ = 0.9.
Over the range of demand plotted here, this curve appears nearly linear to the eye
in panel A, but panel C confirms that the demand elasticity is constant. To study
a variable elasticity demand curve, we choose the parameter η so that the demand
curve has elasticity 10 at c(i)/c = 1, with γ then controlling the shape of the curve
at other points.6 In the figure, we use a value of γ = 1.02, which means that a 1.5
percent increase in price yields a 20 percent decrease in demand, which is intermediate
between assumptions made by Kimball [1995] and Bergin and Feenstra [2000]. The
marginal revenue schedules are plotted in panel B. The elasticity implications are
shown in panel C: with γ = 1.02, a 20 percent decline in output means that the
elasticity rises from 10 to 25, while a 10 percent rise in output means that the demand
elasticity falls from 10 to 5. Finally, the profit implications at a marginal cost of 0.9
are shown in panel D.

3.2 Firms

We consider two labor market structures: one with global labor markets and the other
where labor is tied to a specific firm. In the latter case, we assume that firms are

6As γ approaches 1 from above, the demand curve becomes increasingly concave.
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small when it comes to assessing marginal cost but large when it comes to pricing.7

3.2.1 Factor demand and marginal cost

Production is linear in labor, y(i) = an(i), where y(i) is the output of an individual
firm, a is the level of technology, and n(i) is hours worked at a particular firm. Hence,
real marginal cost, ψt, is given by ψt = wt/a in the case of global factor markets or
by ψt(i) = wt(i)/a in the case of specific factor markets.

3.2.2 Price setting

Dotsey, King, and Wolman [1999] develop a model of dynamic pricing that can be
readily integrated into a general equilibrium model. It also contains time and state-
dependent pricing specifications as special cases. Basic features of our approach are:
(i) firms are monopolistic competitors, facing demand for their product given by (2);
(ii) within each period, some firms will adjust their price and all adjusting firms will
choose the same nominal price P ∗t ; (iii) the state of the economy includes a discrete
distribution of firms, with firms of type j having last set their price j periods ago at
the level P ∗t−j, so that we refer to j as the vintage of the price and denote the fractions
of firms with this price as θjt (j = 1, 2, .., J); and (iv) a fraction αjt of vintage j firms
decides to adjust its price and a fraction 1 − αjt decides not to adjust its price (all
vintage J firms choose to adjust).8

The fraction of firms, after adjustment, that have a vintage j price is denoted
ωjt and these fractions play an important role in our analysis because they serve as
weights in various aggregation contexts. The total fraction of adjusting firms (ω0t)
satisfies ω0t =

PJ
j=1 αjtθjt and fractions of firms ωjt = (1 − αjt) · θjt maintain the

price that they previously set in period t− j. Using these weights, for example, the
perfect price level index is given by

Pt =
1

1 + η
[
J−1X
j=0

ωjtPt(j)
γ/(γ−1)](γ−1)/γ +

η

1 + η

J−1X
j=0

ωjtPt(j).

Finally, the “beginning of period” fractions are mechanically related to the “end of
period” fractions via θj+1,t+1 = ωjt for j = 0, 1, ..., J − 1.
If the adjustment fractions αj are treated as fixed through time, then the model

collapses to Levin [1991], so that it contains Calvo [1983] and Taylor [1980] as special
cases. In this interpretation, αj plays two roles: it is the fraction of firms given the
opportunity to adjust within a period, and it is also the probability of an individual
firm being allowed to adjust after j periods, conditional on not having adjusted for
j − 1 periods. Under state-dependent pricing we employ randomized fixed costs of

7The local labor market is not quite the "yeoman farmer" setting, as we allow individual workers
to insure against the consumption risks associated with individual market conditions.

8Since all firms are in one of these situations,
PJ

i=1 θit = 1.

7



adjustment to induce discrete adjustment by individual firms, while allowing for an
adjustment rate that responds smoothly to the aggregate state of the economy.
In both the time-dependent and state-dependent settings, the firm’s optimal pric-

ing decision can be described using a dynamic programming approach. For example,
a firm that last changed its price j periods ago must choose between continuing with a
fixed nominal price, which implies a relative price of pjt, (pjt = P ∗t−j/Pt), and paying
a fixed cost of adjusting its price (ξ). Each j-type firm has a value function of the
form

v(pt, ξt, st) = max{vjt, v0t} (4)

with
vjt = z(pjt, st) + βEt

λt+1
λt

v(pj+1,t
Pt
Pt+1

, ξt+1, st+1)

v0t = maxp∗t [z(p
∗
t ) + βEt

λt+1
λt

v(p∗t
Pt
Pt+1

, ξt+1, st+1)]− wtξt

being, respectively, the values if the firm adjusts (v0t) or does not adjust (vjt). In
these functions and below, st is a state vector that governs the evolution of the firm’s
demand and costs and λt+1

λt
is the ratio of future to current marginal utility, which is

the appropriate discount factor. Real profits are given by z(pjt) = [pjt − ψjt]cjt.
The dynamic program (4) implies that the optimal price satisfies an Euler equation

that involves balancing pricing effects on current and expected future profits. That
is, as part of an optimal plan, firms that reset their price will choose a price that
satisfies

0 =
∂z(p∗t , st)

∂p∗t
+ βEt[

λt+1
λt

∂v(p∗t
Pt
Pt+1

, ξt+1, st+1)

∂p∗t
]. (5)

Furthermore, for any given state of the economy, there is a unique cutoff value of
the price-adjustment cost for each firm charging a relative price of p. All firms that
draw an adjustment cost lower than this cutoff will optimally choose to adjust their
price.9 The endogenous adjustment fraction is determined by the menu cost of the
marginal firm being just equal to the value gained, i.e.,

ξ(αjt)w0t = v0t − vjt.

In the time dependent case, the fixed cost is either zero or infinite depending on when
the firm last changed its price.
Iterating the Euler equation (5) forward, the optimal relative price, p∗t , can be

related to current and expected future variables:

p∗t =

PJ−1
j=0 β

jEt{(ωj,t+,j/ω0,t) · (λt+j/λt) · ψj,t+j · �j,t+j · ct+j}PJ−1
j=0 β

jEt{(ωj,t+j/ω0,t) · (λt+j/λt) · (�j,t+j − 1) · (Pt+j/Pt) · ct+j}
, (6)

9As long as the inflation rate is nonzero and the maximum adjustment cost is finite, there will
be a maximum number of periods during which any firm will leave its price unchanged. Thus, the
state space for this problem is finite.
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where (ωj,t+,j/ω0,t) = (1− αj,t+j) · (1− αj−1,t+j−1) · ... · (1− α1,t+1) is the probability
of nonadjustment from t through t + j, and �j,t+j is the elasticity of demand facing
a firm with relative output of cj,t+j/ct+j.10 According to (6), the optimal relative
price is a fixed markup over real marginal cost (p∗ = ε

ε−1ψ) if real marginal cost, the
demand elasticity, and the price level are expected to be constant over time. More
generally, (6) illustrates that the optimal price varies with current and expected future
demands, aggregate price levels, real marginal costs, discount factors, the elasticity of
demand, and adjustment probabilities. Intuitively, firms know that the price they set
today may also apply in future periods, so the expected state of the economy in those
future periods affects the price that they choose today. If, for example, marginal
cost is expected to be high next period, a firm will set a high price in the current
period, so as not to sell at a loss next period. Similarly, if the elasticity of demand is
expected to be high next period, the firm will not raise its price as much in response
to a nominal shock because it will lose a lot of business in the future. The conditional
probability terms (ωj,t+,j/ω0,t) are present in time-dependent models, but they are
not time-varying. In our setup, these conditional probability terms effectively modify
the discount factor in a time-varying manner: a high probability of adjustment in
some future period leads the firm to set a price that heavily discounts the effects on
profits beyond that period.

3.3 The household

We want to have a household objective function that does not change radically when
we consider local labor markets. Therefore, as in Dotsey and King (2001), we assume
that idiosyncratic risks are pooled by households, so that they behave as if there
is a super-household that chooses consumption and labor for each of its members.
This avoids the potential complication of differential wealth among individuals that
would arise when workers are tied to specific firms. The unified household approach
conveniently provides full income insurance. Specifically, the household solves

max
cjt,njt

E0{
X
t

βt
X
j

ωjt[
1

1− σ
c1−σjt −

χ

1 + φ
n1+φjt ]}

subject to: [
X
j

ωjtcjt] ≤
X
j

ωjt[wjtnjt + zjt],

where cj and nj are the consumption and labor effort of a household member work-
ing for a type j firm, and zjt is the profits remitted to the household by a type j

10The pricing restriction (6) is a natural generalization of the type derived in time-dependent
settings with exogenous adjustment probabilities that are constant through time as in Calvo [1983]
(see, for example, King and Wolman [1996] and Yun [1996]). If the aggregator takes on a constant
elasticity of substitution form, then the optimal pricing (in equation (6)) becomes the familiar
expression found in Dotsey et al. (1999).

9



firm. In this setting—full insurance and utility that is separable in labor effort and
consumption—all households consume the same amount, ct. The first order condition
determining labor supply is

wjt = cσt n
φ
jt,

and, hence, φ−1 is the Frisch labor supply elasticity.
We further impose the money demand relationship Mt/Pt = ct. Ultimately, the

level of nominal aggregate demand is governed by this relationship along with the
central bank’s supply of money.

3.4 Monetary policy and market clearing

The model is closed by assuming that nominal money supply growth follows an au-
toregressive process,

∆Mt = ρ∆Mt−1 +mt,

where m is i.i.d. and normally distributed. Depending on the structure of factor
markets, equilibrium involves either a wage rate or a vector of wage rates that clear
the labor market while simultaneously implying utility maximization and cost min-
imization. Further, the aggregate price level is such that the money demand equals
money supply, and individual firms’ prices are value maximizing.11

4 Evaluating predictions about SDP

We now evaluate whether the predictions of the early 1990s literature carry over to
our dynamic general equilibrium setting. Throughout this section, we assume that
the adjustment cost parameters are such that there is an approximately quadratic
hazard function, in a sense made more specific below. In this section, we also restrict
attention to the models in which there is a global labor market, so that there is a
single real wage wt.
We choose preference parameter values that produce a low elasticity of marginal

cost with respect to real output, assuming that σ = 0.25 and φ = 0.05 implying
that the marginal cost elasticity is about 0.30.12 Many studies in the early 1990s
literature explicitly or implicitly assumed low elasticities of marginal cost with respect
to output. For example, in their analyses of real rigidity [1990] and multiple equilibria

11There is no barrier to considering alternative monetary policy rules, such as interest rate rules,
in our setting. However, we stick with the money supply rule for comparability with the results of
other studies.
12Given that the household efficiency condition is wt = cσt n

φ
t , given that consumption is equal to

output, and given that labor is approximately equal to output, the elasticity is approximately σ+φ..
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[1991], Ball and Romer assumed explicitly that utility was linear in consumption
(σ = 0) and that utility was close to linear in work (φ was small).13

4.1 Adjustment timing and the age distribution of prices

The first two predictions comes from Sheshinski-Weiss [1977, 1983]: (i) relatively
small menu costs may lead firms to adopt lengthy periods of price inactivity within an
inflationary steady state; and (ii) the shape of the firm’s demand and cost conditions
will be important for its frequency of price adjustment.
Figure 2 displays the hazard rates at an annual rate of 4 percent inflation for

model I (Dixit-Stiglitz demand) and model II (Kimball kinked demand).14 To begin,
note that the chosen adjustment cost structure indeed leads to steady-state hazard
functions that are roughly quadratic in the log relative price deviation, since log
(P ∗t ) − log(P ∗t−j) = j log(π), where π is the steady-state inflation rate. The figure
illustrates that the structure of demand and cost has a quantitatively important
effect on hazard rates. Firms choose to adjust more frequently if there is a kinked
demand curve. The average age of a price in the global DS model is 3.9 quarters and
it is 2.2 quarters in the global K model. The expected duration of price fixity is about
8 quarters in the global DS model and it is 4.8 quarters in the global K model.15

The maximum adjustment cost is about 7.5 percent of production time in both
of these economies, which is quite large (we call the fraction of total time devoted to
price adjustment B and set it to B = 0.015: since the steady-state fraction of time
that individuals devote to market work is n = 0.20, it follows that the adjustment cost
is 7.5 percent of production work). However, because the highest adjustment cost is
rarely paid, the average level of adjustment costs is only .42 percent of production
time in model I (DS-global) and it is 0.86 percent of production time in model II
(K-global), which are much smaller numbers. Another way of thinking about the
magnitude of these costs is to measure the resources spent adjusting prices relative
to sales, which is sometimes measured in the empirical literature on price adjustment
costs: these are 0.37 percent and0 .78percent, respectively, for the two economies.

13Additional calibration information is as follows. First, we assume that there is a demand elastic-
ity of 10 at the relative price of 1. With DS demand, this pins down ε = −10. With the K demand,
we assume that γ = 1.02, leading to the demand specification displayed in Figure 1.

14Both of the demand models we study in this section satisfy a condition developed by Sheshinksi
and Weiss, which is that p∂z∂p is decreasing in p. In their framework, this condition must be imposed
if a higher rate of inflation is to increase the frequency of price adjustment.
15The two features are calculated as follows. First, the average age of price is just

PJ−1
j=0 j ∗ ωj,

where we adopt a “start of period” age convention. Second, the expected duration of price fixity
is
PJ−1

j=1
ωj
ω0
= 1

ω0
. In this expression, the probability of a price “surviving” until age j is ωj

ω0
=

(1 − α1)(1 − α2)...(1 − αj) so that the expression is the sum of the survival probabilities times
the additional length of price fixity (1) that derives from each survival. But since the survival
probabilities sum to one, there is a particularly simple form of this expression.
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Figure 3 helps us understand why there is more rapid price adjustment in the
economy with K-demand than with DS-demand: as a function of the firm’s relative
price, profits decline much more sharply when there are deviations of price from the
p = 1 value that would be optimal in the absence of adjustment costs. The solid and
dashed lines in each respective case are the value for all possible prices, while the
stars and circles correspond to the prices actually chosen by the firm in the steady
state.

4.2 Dynamic effects of monetary shocks

In the early 1990s literature on state-dependent pricing, Caplin and Leahy [1991]
suggested that there would be strikingly different dynamics with endogenous timing
of adjustment, in which the evolving distribution would play a critical role. In this
section, we look at the dynamic response of output to an increase in the level of the
money stock, which rises on impact by 1 percent and then gradually increases to 2
percent above its initial value.16

4.2.1 Model I: SDP dynamics with constant elasticity demand

The tendency for “front-loading” of price adjustments has been a much-discussed
feature of sticky price models: if a firm expects the price level to increase in the
future and if the firm expects to hold its nominal price fixed for a substantial time,
then it will aggressively adjust its price in response to the expected future inflation. In
Figure 4, it is clear that front-loading carries over to an SDP environment: the “reset
price,” which is the price set by adjusting firms, increases more than one-for-one with
both the money stock and the price level.17

The SDP environment also involves dynamics that are very different from those
in time-dependent models of the Taylor-Calvo-Levin form. Notably, there are com-
plicated oscillatory dynamics in the price level, output, labor, marginal cost, and
inflation. In fact, a fair reaction to these dynamics is that they are very far from any
estimates that derive from vector autoregressions or other methods of tracing out
empirical responses to monetary changes. But just as with the dynamic responses
derived analytically by Caplin-Leahy [1991], which were also far from such empirical
estimates, they illustrate that SDP models can deliver dramatically different dynam-
ics for output and other variables than those in standard time-dependent models.

4.2.2 Model II: SDP dynamics with kinked demand

We next consider the effect of the same monetary shock in a setting with a “smoothed
off kinked-demand curve” along the lines suggested by Kimball [1995]. There are

16That is, there is a value of ρ = 0.5 in the money supply specification.
17The reset price can increase by substantially more than the price level because only a fraction

of the firms are adjusting prices.
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very different dynamic responses displayed in Figure 5. Notably, in contrast to the
DS model of the last subsection, the reset price is much less responsive under this
specification: there is no “front-loading” of price adjustments. There are two very
intriguing features. First, the stimulation of real activity lasts for about 10 quarters,
but is now followed by a period of real contraction, which lasts for a substantial
period but does not undo the effect of the initial stimulation. Second, while the real
expansion of economic activity peaks after four quarters, the peak effect on inflation
occurs much later.
These dynamics are not so evidentially at variance with various kinds of macro-

economic evidence.18 First, in a critique of TDP sticky price models, Mankiw [2001]
has argued that any macroeconomic model of the Phillips curve must produce a de-
layed surge in inflation that follows an initial real stimulation of economic activity. He
uses this set of observations to critique standard New Keynesian sticky price models
with Calvo price-setting. However, our simple state-dependent pricing model out-
comes are reminiscent of Friedman’s [1992] description of the dynamic effects of a
change in money growth and they are also broadly consistent with Mankiw’s descrip-
tion. Specifically, in response to a monetary shock, Friedman stressed that output
responds before inflation. He also suggested that the output response is delayed by
about six to nine months and is distributed over time.
In model II, the response of inflation is also distributed over time, but it occurs

with more of a lag — up to 12 to 18 months. With respect to output, we do not pro-
duce the real activity delays that Friedman describes, although output in our model
does take two to three quarters before achieving its maximal response. Significantly,
however, the response of model inflation is delayed and does not peak until about six
quarters.

4.2.3 Contrasting SDP with TDP in the kinked demand case

We now contrast the SDP model with a very specific TDP alternative, which we think
is a natural benchmark: we use a TDP model that has exactly the same steady-state
as the SDP model studied in Figure 5, but we freeze the adjustment rates at their
steady state values. Differences between the dynamic responses, as reported in Figure
6, then are attributable to whether adjustment rates vary in the face of a monetary
shock. First, the price level increases at about the same rate in the TDP (solid
line) and SDP (dashed line) models during the first year, but then it increases more
rapidly in the SDP model, leading to a surge in inflation during the second year. (The
‘reset price’ under TDP is marked with a ‘♦’, while that under SDP is marked with
an ‘¤’). Second, the oscillatory dynamics are attributable to changes in the rate of
adjustment, since they are not present in the TDP variant.

18Anyone who has estimated vector autoregressions knows that there are many specifications that
show monetary disturbances having an initial positive effect on real economic activity and then a
negative one (although specification selection means that fewer of these are reported than estimated).
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4.2.4 Understanding the incentives for adjustment

What are the incentives for price adjustment in the dynamic models? At one level,
the answer is easy: there is a greater rate of adjustment if there is a greater value to
adjusting. However, the determinants of v0t − vjt are complicated, within and across
the DS and K-demand models. Accordingly, we start here by focusing directly on a
measure of one-period profit, which is revealing about the difference in adjustment
incentives. We then discuss aspects of a dynamic decomposition for the K-demand
case. Finally, we consider the evolution of the price level once again, displaying the
importance of adjustment timing quantitatively.

Contrasting adjustment incentives: a static perspective To begin, we note
that a rise in output and an associated increase in marginal cost are important features
of Figure 5. We therefore start by looking at a measure of the static gain to price
adjustment in the face of a 1 percent rise in real marginal cost, defined as

z(p∗, ψ)− z(p, ψ)

z

where z(p, ψ) = pd(p)−ψd(p); z(p∗, ψ) is the level of profits at the statically optimal
price; and z = z(1, ψ = ε−1

ε
) is the level of profit under fully flexible prices.

We begin by graphing this measure as the dashed line in Figure 7 for the K-
demand model. First, the price p∗ is just above one because the firm faces the
rapidly declining profit illustrated in Figure 3, and thus, a firm that is free to raise its
price will not do so by very much in the face of the increase in marginal cost. Second,
given the desirability of a small adjustment, it is intuitive that there is also a small
loss of maintaining price p = 1, the price that would be optimal in the absence of
the rise in marginal cost. Hence, in the kinked demand world, a firm with p = 1 also
has only a small incentive to pay a fixed cost to adjust its price. However, should
its price deviate significantly from p = 1, then the firm facing a kinked demand has
a large incentive to adjust: this was the feature that led to more rapid steady-state
adjustment under K-demand in Figure 2 above.
We also find the figure helpful in thinking about why there are larger incentives for

price adjustment in response to a rise in marginal cost with DS-demand rather than
K-demand: the DS model leads to larger desired price adjustments and therefore
larger gains to adjustment near p = 1. But it leads to relatively smaller effects
with large departures from p = 1, so that it is also compatible with more extended
stickiness in the steady state.

A dynamic perspective on the adjustment with kinked demand The ad-
justment rate for a firm of vintage j is implicitly given by ξ(αjt)w0t = v0t − vjt.
Accordingly, we can take a first order approximation to this expression and deduce
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that

ξα(αj)(αjt − αj) = −[pj∂vjt/∂pjt
w0

] ∗ [log(pjt)− log(pj)] + other terms

so that it is possible to explore the effects of the price level on adjustment incentives,
holding fixed other factors. Specifically, we take the equilibrium solution for log(pjt)−
log(pj) and then construct a synthetic series eαjt−αj using the equation above. Given
these synthetic series, we can also construct a synthetic series for the vintages, eωjt−ωj,
which is a dynamic simulation of sorts since it obeys the dynamic equations

eωjt − ωj = (1− αj)(eωj−1,t−1 − ωj)− ωj−1(eαjt − αj)

eω0t − ω0 =
J−1X
j=0

[αj(eωj−1,t−1 − ωj) + ωj(eαjt − αj)].

That is, the synthetic series for eωjt is constructed solely on the basis of variations
in the synthetic adjustment rates {eαjt}j,t, so that it too involves only the effects of
pjt. We have undertaken this decomposition and have found that effects of pjt are
dominant on αjt — in the sense of high R2 — except for those firms that just adjusted.
The price effects capture variations in vintage fractions (ωjt) virtually completely.19

The evolution of the price level once again Caballero and Engel [1993] em-
phasized that the behavior of the price level would be influenced by the interaction of
the evolving distribution of prices and the evolving probability that individual price
adjustments would take place. To explore this channel within our model, we consider
the movement of a linear aggregate of the price level, P t =

PJ−1
j=0 ωjtPjt. This price

level can be decomposed directly into a part
PJ−1

j=0 ωjPjt that is the effect of price
stickiness when steady-state weights are maintained and an additional componentPJ−1

j=0 (ωjt−ωj)Pjt that derives from the interaction of evolving adjustment rates and

19See Appendix D, for these simulations.The adjustment rate for a firm of vintage j is implicitly
given by ξ(αjt)w0t = v0t − vjt, which we can write as

w0tξ(αjt) = −zjt + (v0,t − βEt[
λt+1
λt

v0,t+1])

+βEt[
λt+1
λt

(1− αj+1,t+1)(w0,t+1ξ(αj+1,t+1) + w0,t+1Ξ(αj+1,t+1)]

Accordingly, it is more generally possible to link variations in adjustment rates to three factors:
profits (zjt); a measure of the urgency of adjustment (v0,t−βEt[

λt+1
λt

v0,t+1]); and an “option value"
of adjustment term that involves future adjustment costs. Further, the effects of profitability can
be decomposed into consequences of relative price variations; marginal cost variations; and aggre-
gate demand variations. We have undertaken some exploration of the analytics and quantitative
performance of such measures in our model, but these experiments are not reported because of the
dominance of the effect of the price level on relative prices.
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past prices. That is, a useful decomposition of the price level suggested by this model
is

P t =
J−1X
j=0

ωjtPjt =
J−1X
j=0

ωjPjt +
J−1X
j=0

(ωjt − ωj)Pjt (7)

In our framework, we want to calculate a linear decomposition that captures the
elements highlighted by (7). To develop such a linear decomposition, we begin by
noting that the linear aggregate is related to the perfect (exact, nonlinear) price index
(3) according to P t

Pt
= [
PJ−1

j=0 ωjt
Pjt
Pt
],. Differentiating this expression, we find that we

can express the motion of the linear aggregate as follows,

dP t

P t

=
dPt

Pt
+

1PJ−1
j=0 ωjpj

{[
J−1X
j=0

ωjpj
dpjt
pjt
] + [

J−1X
j=0

pjdωjt]}

=
1PJ−1

j=0 ωjpj
{[

J−1X
j=0

ωjpj(
dpjt
pjt

+
dPt

Pt
)] + [

J−1X
j=0

pjdωjt]}.

i.e., as the sum of a term that captures the effect of nominal price adjustments at fixed
weights and a term that captures the effects of changes in adjustment probabilities.
Applying this decomposition to the K-demand model, we produce Figure 8.
The top panel of this figure shows that the exact price level (3) and the linear

aggregator are indistinguishable to the eye in this economy, but that there is an
important difference between these and the fixed hazard part of the price level, which
is 1

J−1
j=0 ωjpj

{[PJ−1
j=0 ωjpj(

dpjt
pjt
+ dPt

Pt
)]}. Interestingly, this difference is minuscule during

the first few quarters after the monetary shock hits, but it becomes important later
on, rising with inflation, as the second panel shows. The background to this panel is
Figure 2, which shows that 22 percent of the firms in the economy are adjusting each
period in steady-state. The second panel of the figure shows that this fraction rises by
about 3 percent during the second year after the shock, which is when inflation peaks
(adjustment rates here are measured as a deviation from the steady-state level).
On the basis of this analysis, we conclude that this case has strong effects of the

type identified by Caballero and Engel [1993]: the interaction of the nearly quadratic
hazard, sticky nominal prices, and the price level is at the heart of understanding the
dynamics of inflation. Concretely, the delayed response in inflation shown in Figure
5 arises because there is initially little movement in the price level, so that firms have
little incentive to pay to adjust prices. However, as the price level continues to rise,
more firms have this incentive and their collective action produces a further rise in
the price level, which additionally reinforces the extent of adjustment.
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4.3 Multiplicity and nonexistence

Ball and Romer [1991] highlight the possibility of multiple equilibria in basic SDP
models, stressing that changes in the price level can alter the privately optimal pat-
tern of price adjustment for firms. In our DSGE model, we have found that there
apparently is a substantial part of the parameter space in which there are both multi-
plicity and nonexistence according to the criteria of Blanchard and Kahn [1980]. That
we find these regions in the K-demand case is perhaps not too surprising, given the
central role that the price level played in triggering adjustment in the prior section.
In Figure 9, for the K-demand model, we calculate the number of stable eigenval-

ues of the dynamic model at each point in a grid of the adjustment cost parameter
B — which is the largest value the adjustment cost can be — and the labor utility
parameter φ. If there is a ‘*’ in the figure, it means that there is a unique, stable
rational expectations solution: the number of stable eigenvalues is equal to the num-
ber of predetermined variables. Since we are studying B = 0.015 and φ = 0.05 in the
figures above, we start by noting that there is a ‘*’ in that location. We also note
that there is a region around this point in which there is uniqueness, but that it is
close to the border with a region of nonexistence. At other points in the figure, there
are fewer stable eigenvalues than predetermined variables, which implies nonexistence
according to Blanchard-Khan, so that we put an ‘o’ in that location. Finally, there
are points in which there are more stable eigenvalues than predetermined variables,
which implies multiplicity (nonuniqueness) according to Blanchard-Khan, so that we
put a ’♦’ in that location. John and Wolman [2004] have begun the important work
of exploring the conditions under which dynamic multiple equilibria occur in SDP
models, together with providing economic interpretation about these findings. Their
analysis suggests that this is a complex and subtle topic.
It is important to stress that nonexistence and nonuniqueness do not always arise.

For one example, if we were to produce a version of this figure for the comparable TDP
model, then all points would be a unique equilibrium: this buttresses the Ball-Romer
idea that multiplicity is related to state dependence. For another, a version of this
figure for the DS model examined above (demand elasticity =10) would also lead to
uniqueness for all parameter values in this grid. Finally, in exploring both K and DS
models with a global labor market, a higher elasticity of marginal cost to output (over
one) and the adjustment cost distribution similar to that used in DKW [1999], we
also did not find nonexistence or nonuniqueness. But in some investigations, nonex-
istence and nonuniqueness can arise for precisely the parameter values that interest
a researcher. For example, we would like to look at adjustment cost specifications
with a B smaller than 0.015, so as to reduce the extent of steady-state stickiness.
But we cannot because this moves us out of the region of solvability. Moreover, in
exploring SDP model dynamics in the current investigation, we have encountered
— particularly in models with local factor markets — many cases in which there are
apparently multiple equilibria or there is nonexistence. In our experience, Figure 9
is representative in that it suggests that there is indeed a complicated relationship,
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since the relevant regions are discontinuous.

5 Specific factors and persistence

An important line of macroeconomic research has explored the implications of the
various sticky-price model features for the time paths of real and nominal variables,
with one particular topic being the persistence of real effects in the wake of Chari,
Kehoe and McGrattan [2000]. Work by Kimball [1995] and Rotemberg [1996] viewed
each firm as having a pool of workers to draw from as opposed to buying labor in a
competitive market. Hence, even if the firm purchases labor competitively, it knows
that an increase (decrease) in its demand will raise (lower) the wage rate and it
takes this into account in pricing its product. The intuition behind this result is as
follows. An increase in the current price cuts demand, which lowers marginal cost
when factors are specific. In turn, the lower marginal cost makes it efficient to price
less aggressively. For this reason, Kimball [1995] and Rotemberg [1996] suggested
there would be increased price sluggishness and persistence if one switches from a
global to local view of factor markets. They also discuss the fact that in setting a low
price, the firm must balance the fact that there will be high demand in the future and
that this output must be produced at high cost, but they conclude that the overall
effect is to make firms price less aggressively and to increase price level sluggishness.
We use different parameter values to explore this idea. First, we assume that there

is a higher elasticity of marginal cost with respect to output and in particular that
it is about 1.5 (we do this by assuming σ = 1 and φ = 0.5). Second, since Kimball
and Rotemberg both used Calvo-like models, we assume that there is an adjustment
cost structure that makes the DS-global version into an “approximate Calvo” model
within the steady-state, having an adjustment hazard of about 0.2 for eight quarters
before complete adjustment occurs.20

5.1 The promise

We begin by illustrating the promise of the specific factors mechanism, calculating the
output impulse responses for an approximate Calvo model and displaying it in Figure
10.21 The dramatic returns to the introduction specific factors appears in the output
responses of models III and IV, with specific factors alone (model III) producing
virtually the same persistence as the variable elasticity of demand specification (II).22

20We also choose these parameter values — more in line with values used in the real business cycle
literature such as King, Plosser, and Rebelo [1988] — because there is no endogenous persistence in
this case, as emphasized by Chari, Kehoe, and McGrattan [2000]. Hence, any increase in persistence
will be attributable to specific factors. The choice also allows us to evaluate whether, as is sometimes
suggested, local factor markets substitute for a low marginal cost elasticity in generating persistence.
21The weights are those from the global DS model developed in the next section.
22In his conference comments, Susanto Basu stressed the symmetry of specific factors and variable

demand elasticity under Calvo pricing. Thus, our parametric specification — although not designed
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The combination of the two New Keynesian mechanisms, as originally suggested by
Kimball, yields a great deal of persistence.

5.2 Approximate Calvo

We want to explore the effects of state dependence within a battery of models that
have an approximate Calvo form, i.e., a steady-state hazard that is roughly constant
for a number of periods. Accordingly, we select the parameters of our cost function
so that there is a flat hazard for the DS-global setting for eight quarters, which is
a “truncated Calvo” steady state. The necessary cost function, ξ(α), is one that is
fairly flat until α = .2 then rises very sharply to close to the maximum cost. Faced
with this adjustment cost, firms with a range of different values of (v0 − vj)/w0 will
all choose α = 0.2. When (v0 − vj)/w0 ≥ B = 0.015, then all firms will choose to
adjust (α = 1).
With this cost structure in hand, we can explore the effect of changing the struc-

ture of demand and the effect of localizing factors on hazard rates and vintage frac-
tions, as we did previously for the alternative cost specification. Figure 11 displays
the results, revealing some worth highlighting. First, as suggested above, the figure
displays an “approximate Calvo” form of adjustment: the optimal hazard is about 0.2
until full adjustment occurs. Second, in the global factor market setting, as above,
the shift from DS-demand to K-demand lowers the number of periods over which
there is incomplete adjustment by firms, cutting it from eight in the DS case to four
in the K-demand case. Third, for both of the local market cases, the results are dra-
matic: moving from global to local markets cuts the interval of partial adjustment to
just one period. To understand this, we return to the original intuition from Kimball
[1995] and Rotemberg [1996]: with a fixed hazard, a firm sets its price relatively less
aggressively than under global markets because it wants to take advantage of low
current marginal cost, which occurs when price is raised above the benchmark value
of one. In doing so, as discussed above, it must balance the fact that there will be
high demand in the future and that this output must be produced at high cost. But
these future periods of low profits — resulting from high demand and high cost occur-
ring together — can be avoided through payment of an adjustment cost, so that the
firm makes aggressive use of this option in both local market settings. In fact, under
the current parameterization, it keeps prices fixed for only two periods (including the
initial period of price adjustment).
This dramatic implication of very short intervals of price fixity for the DS-local

and K-local models could be altered by assuming larger values of the maximum price
adjustment cost (which is here set equal to 0.015). But, then, the conclusion would be
that models with local factor markets require substantially higher adjustment costs
to obtain a specified pattern of “near Calvo” adjustment. In fact, in order to produce
price fixity of four periods in the DS case, we must ramp up adjustment costs so that

for this purpose — corresponds to essentially equivalent strength of these two mechanisms.
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5.85 percent of labor effort is devoted to price changes at a cost of 5.5 percent of
sales. Thus, a TDP pricing model with local labor markets and four vintages of firms
is ignoring tremendous incentives that firms have for adjusting their price. This level
of menu costs strikes us as implausible.

5.3 Consequences of endogenous adjustment

With exogenous adjustment timing, there were large gains in persistence from moving
from global to local markets. We now explore the implications of moving from global
to local factor markets with endogenous adjustment timing, using the same cost of
adjustment structure discussed above. Figure 12 displays the effect of moving from a
global to local market under state-dependent pricing with the DS-demand structure
and Figure 13 displays the effect with the K-demand structure: each indicates that
the persistence gain suggested by Figure 10 also turns into a persistence loss under
state-dependent pricing.
Looking across this pair of figures, it is clear that there is more persistence with

model IV (K-local) than with model III (DS-local). However, more importantly,
this pair of figures illustrates a principle: economic mechanisms that have one set of
consequences under time-dependent pricing (as in Figure 10) can have a very different
set of consequences under state-dependent pricing (as in Figure 12 and 13) because
the mechanisms alter the incentives agents have to adjust the timing of their price
changes.

5.4 The effect of K-demand on dynamics once again

It is important to stress that persistence is not necessarily reduced when a model
feature lowers the number of periods of price-fixity in the steady-state, which we
illustrate by considering the global market case under "approximate Calvo" cost
structure of this section. As background, Figure 11 shows that the number of periods
of price-fixity is roughly halved when DS-demand is replaced by K-demand. Figure 14
shows the effects of moving from DS-demand to K-demand on the dynamic response
to a monetary shock (in this diagram, a solid line refers to the K-demand model and
a dashed line refers to the DS model). Despite the smaller number of price vintages,
the K-demand model continues to have the important implication discussed above:
the K-demand makes firms less aggressive on the pricing front, converting the more
than 2 percent change in the reset price on impact to about a 0.8 percent change in
the reset price on impact. That is, even though the current framework is one with
a higher elasticity of marginal cost to output and a different structure of adjustment
costs, the price level still is initially more sluggish than under DS-demand, which
brings about both a larger real output response and a more persistent one.
In terms of the dynamics of the inflation rate, the K-demand model also leads to

a peak inflation rate that lags the output peak, although it does so only by one or
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two quarters in this case. However, the change in the adjustment cost function from
one involving a nearly quadratic hazard to one involving a nearly constant hazard
does mean that there is a quite different decomposition of the sources of variations
in the price level. If we were to reproduce Figure 8 for the current adjustment cost
structure, then we would find that there was only a minuscule difference between the
various price level measures and a very small change in the fraction of firms altering
the timing of their price adjustment in the face of the monetary shock.

6 Summary and conclusions

What are the implications of state-dependent pricing models for dynamic macroeco-
nomic modeling? In this paper, we showed that these are rich and varied, working
within a battery of quantitative dynamic general equilibrium models.
We began by investigating whether some of the results of the 1990s literature on

state-dependent pricing carried over to our models, which are constructed along the
lines proposed by Dotsey, King, and Wolman [1999]. This earlier literature reached
the general conclusion that SDP models were very different from the more commonly
employed time-dependent pricing models (TDP models). More specifically, it sug-
gested the following ideas: (1) the steady-state pattern of price adjustment depends
importantly on the nature of the demand and cost functions of the firm; (2) the
dynamic effect of money on output within state-dependent pricing models is dramat-
ically different from that in time-dependent models, possibly involving complicated
cyclical adjustment processes and nonlinear responses; (3) the evolution of the price
level is substantially affected by the adjustment strategies of firms interacting with
heterogeneous prices; and (4) multiple equilibria can readily arise in state-dependent
pricing models, because of complementarities in price-setting, even with the type of
exogenous money stock rule that nearly always guarantees a unique equilibrium in
time-dependent models. Working with assumptions characteristic of that literature,
specifically that there is a low elasticity of marginal cost with respect to output and
that there is a hazard function that rises quadratically in a measure of price gaps,
we found support for all of these ideas, except that our use of linear approximation
methods precluded studying nonlinear dynamics. Exploring the dynamic response
of output and inflation to monetary shocks in a model with a “smoothed off kinked
demand curve,” we unexpectedly found a pattern of output and inflation dynamics
that has been suggested to be inconsistent with sticky price models: output peaking
after four quarters, and inflation peaking nearly a year later.
In evaluating the implications of state-dependent pricing for dynamic macroeco-

nomic models, we also considered issues related to ongoing research into model fea-
tures that can lead to larger persistence of output responses to monetary shocks.
Working with an adjustment cost structure that was designed to produce a relatively
flat hazard function over eight quarters in the reference case of a constant elasticity
demand curve and a global labor market, we found that two model modifications — a
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variable demand elasticity and a local labor market — led to sharply reduced intervals
of stickiness. The kinked demand curve model had a flat hazard over four quarters
rather than eight; the local labor market models had only one period of incomplete
price adjustment. For this reason, it turned out that the local labor market friction
lowered persistence under SDP rather than raising persistence as it does under TDP.
However, the result for the kinked demand curve was that there was larger persistence
(relative to constant elasticity demand) even though the steady-state duration of price
fixity was smaller under kinked rather than constant elasticity demand. Taken to-
gether, these examples show that state-dependent pricing may alter the conclusions
that a researcher would draw about the effect of structural elements of a model.
In closing their 1989 discussion of state-dependent pricing and time-dependent

pricing, Blanchard and Fischer considered the types of economic exchanges that might
be best modeled using either approach, but they could only summarize a few empiri-
cal studies about price adjustment dynamics (notably Cecchetti [1986] and Kashyap
[1995]). 23 , 24 Recent work by Bils and Klenow [2004] and Klenow and Kryvtsov
[2004] is providing valuable new information about the behavior of consumer goods
prices in the U.S., both in terms of the timing and magnitude of adjustments, and
many studies are underway for other countries.25 It is clear from this ongoing work
that the average duration of price fixity differs substantially across industries and
that there are important period-to-period changes in the fractions of goods whose
prices are changed. It is also clear that aspects of this work raise challenges for exist-
ing models of price adjustment, both time-dependent and state-dependent. Learning
further about the general implications of these pricing models for macroeconomic
dynamics, as we have here, will be a central component of the important project of
taking SDP models to data.

23See Willis [2001] for an interesting modern reworking of Cecchetti’s analysis of magazine prices.
24See Wolman [2003] for a comprehensive survey and critical appraisal of a variety of evidence on

duration of price fixity and the magnitude of price adjustment costs.

25Notably, the cooperative project being sponsored by the European Central Bank on Inflation
Persistence.
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Appendices

A State-dependent pricing models

State-dependent pricing models view the timing of adjustment as endogenous, rather
than as a parametric feature of a model economy. Following the early work of
Barro [1972], state-dependent pricing models attracted the attention of a number
of researchers through the early 1990s. But since the models were mathematically
challenging, individual studies chose simplifying assumptions to make the problem
tractable.

A.1 Steady-state adjustment

A pair of influential studies by Sheshinski and Weiss [1977,1983] provided a detailed
partial equilibrium analysis of the effect of inflation on price adjustment in the pres-
ence of fixed costs, working within an economic environment that was otherwise
stationary. Their analyses drew on prior work on optimal discrete adjustment poli-
cies in the presence of fixed costs that began with Scarf’s [1959] work on inventory
adjustment and is sometimes described as the S,s adjustment literature.
In their analyses, a key reference point was the constant relative price — which

we will call p∗— that the firm would set in the absence of fixed costs of adjustment.
Analyzing the effects of certain inflation within a continuous time framework, SW
[1977] showed that a firm would adopt a strategy of adjusting its price periodically,
starting at a relative price p > p∗ and adjusting when inflation eroded the relative
price to a value p < p∗. That is: it would set a nominal price that implied a path of
the real price that was initially high in comparison to the frictionless price and then
declined through time as the real value of the nominal price was eroded by inflation.
Their analysis showed that an increase in the rate of inflation would unambiguously
raise the size of nominal price adjustments (the ratio p/p) and that larger adjustment
costs would also raise p and lower p. However, somewhat surprisingly, their analysis
showed that there must be a restriction on the shape of the profit function for higher
inflation to increase the frequency of price adjustment. If z(p, ...) is the profit function,
they showed that p∂z(p,...)

∂p
must be decreasing in price for higher inflation to have the

expected effect.26 Finally, they reported simulation analyses indicating that — with
a quadratic profit function — small fixed costs can lead to price fixity on the part of
firms of one to two years, a finding that they attributed to the profit effects of p = p∗

being small in the neighborhood of p∗.
Working within a setting in which inflation was either zero or increased by a

random amount, SW [1983] explored the effect of uncertain inflation on the optimal

26The demand specifications used in our analysis satisfy these conditions.
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pricing problem, showing that it again took the (S,s) form. They then looked at the
implications of inflation uncertainty for the timing and magnitude of price adjust-
ment. The main finding of the paper was developed by a clever certainty equivalence
argument: the optimal policy under uncertain inflation would be of the same form
as under certain inflation. All that was necessary to study the effects of uncertain
inflation was to determine the particular “certainty equivalent” inflation rate, which
they showed depended on the parameters of the stochastic process for inflation and
the real interest rate, but not on the shape of the firm’s profit function. Using this
apparatus they explored the effects of increasing the mean and variance of the infla-
tion rate on the values of p and lower p, as well as the expected duration of price
fixity.

A.2 State-dependent pricing and dynamics

While the SW studies focused on the behavior of an individual firm, the analyses of
Caplin and Spulber [1987] and Caplin and Leahy [1991] focused on the real effects of
money on output within basic general equilibrium models. Delicately balancing rigor
and tractability, CS built a continuous time general equilibrium model that would
maintain the optimality of the (S,s) policies as developed by SW and yet allow for
analysis of aggregates. The CS model involved (i) a demand curve for the firm’s
output that depended on its relative price and aggregate real balances; (ii) a cost
function for the firm that depended on the volume of its output; (iii) a price level
that was an aggregate of the prices of individual firm prices; (iv) a money supply
rule that specified that the money supply could not decline, but could increase by
a stochastic amount; and (v) an initial uniform distribution of prices relative to the
money stock. Taken together, these ingredients led to a striking result: increases in
the money stock were neutral even though prices were sticky. In essence, this result
occurred because an increase in money would lead the firms with the lowest relative
prices to re-set their prices at the highest level, causing the price level to rise one-for-
one with the money stock and hence leaving real aggregate demand unaffected. This
finding was dramatically different from those arising in time-dependent models.
Caplin and Leahy [1991] reexamined the interaction of money, output, and the

price level within a model that made two important modifications in the prior analy-
sis of Caplin and Spulber [1987]. CL assumed that the (log) money supply was a
driftless random walk, so that it could either rise or fall. CL also assumed that
firms followed two-sided adjustment strategies, adjusting their price — normalized by
the money stock— upward if it fell sufficiently and reducing it if it became too high.
Assuming that there was a uniform distribution of initial prices, they were able to
develop a simple relationship between money, prices, and output, which again dif-
fered substantially from the TDP case and also preserved the uniform distribution.
In essence, there were three regimes. First, if the lowest normalized price was at the
level that triggered an adjustment, then a money supply increase would trigger an
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increase in the price level and be neutral, just as in CS. But if there was a decrease in
the money supply, then all nominal prices would remain unchanged and there would
be a negative effect on real output. Second, if the highest normalized price was at
the level that triggered an adjustment, then a money supply decrease would trigger a
decrease in the price level and be neutral, just as in CS. But if there was a increase in
the money supply, then all nominal prices would remain unchanged and there would
be a positive effect on real output. Third, if neither of the above conditions were
satisfied, then no nominal price adjustments would occur and there would be a direct
effect of money on output. The Caplin and Leahy [1991] analysis implied that the
effects of money would depend strongly on the state of the economy, again suggesting
dramatically different linkages than in time-dependent pricing models. They stressed
that the evolving distribution of relative prices was a key determinant of the effect of
monetary disturbances and they concluded that it was important to systematically
investigate how such evolving distributions contributed to macroeconomic phenom-
ena. Finally, they also constructed some suggestive sample paths of money, output,
and prices that suggested that SDP dynamic responses would look quite different
from the standard responses in TDP models.

A.3 The dynamics of the price level

Caballero and Engel [1993] focused attention on the implications of state-dependent
pricing for the behavior of the price level, working within a simple and yet empirically
rich framework that they applied to U.S. inflation data. The upshot of the CE analysis
was two-fold. First, they suggested that price adjustment hazards should be best
viewed as an approximately quadratic function of price gaps.27 Second, they suggested
that the dynamics of the price level would be materially affected by tracking aspects
of the distribution of prices through time owing to the incentives for price adjustment
that this distribution implied for individual firms. At an annual data frequency, their
estimates suggested that the fraction of firms adjusting ranged between 49 percent
and 59 percent during the 1960-1990 interval, increasing substantially during the high
inflation period in the middle of the sample and particularly in response to changes
in oil prices.

A.4 Multiple Equilibria

Ball and Romer [1991] demonstrated that state-dependent pricing models could dif-
fer significantly from time-dependent models in terms of uniqueness of equilibria. In
particular, there was a new possibility of multiple equilibria due to a basic comple-
mentarity in the price-adjustment decisions of firms: an increase in a given firm’s
price raises the price level (perhaps only by a very small amount if it acts alone)

27A view that has been implemented in some later work on the evolution of inflation in Spanish
sectoral data (Estrada and Hernando [1999]).
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which in turn makes it desirable for other firms to raise their price because their
relative prices have fallen. Considering a monetary shock, they showed it could be
individually rational in the presence of a fixed menu cost for a firm not to adjust price
if all others did not adjust and the price level therefore remained constant. They also
showed it could be individually rational for a firm to change price one-for-one with the
monetary shock if all others did as well. Because such a multiplicity depends critically
on a firm choosing whether or not to adjust price, it was precluded in time-dependent
models.

B Stochastic adjustment costs

Costs of price adjustment play an important role in our analysis, so that this ap-
pendix discusses aspects of the DKW modeling of these costs and the relationship
to conventional modeling of nonstochastic adjustment costs in models of investment,
labor demand, and so on. It is convenient to start by thinking about the adjustment
process as though there were just one vintage, with a firm considering whether to
stay with its preset price and earn v or to adjust and earn v0.

B.1 A direct adjustment cost interpretation

Panel A of Figure 15 displays one vision of the adjustment cost structure: it displays
the costs to the owner of a portfolio of firms, under the assumption that a fraction
of firms α adjust. As is conventional, there are positive, increasing, and convex labor
costs of adjustment, which we call Ξ(α).
If the portfolio owner is equating the marginal cost of increasing the rate of ad-

justment α by a small amount, faces a wage rate of w, and has a gain of v0 − v,
then

wξ(α) = [v0 − v] (8)

is the relevant efficiency condition, where ξ(α) = Ξα is the marginal labor cost of
adjustment. This marginal adjustment cost is shown in panel B of Figure 15.
Linear approximation of the condition ξ(α) = v0−v

w
then indicates that the slope

of the marginal adjustment cost curve is relevant for the response of the adjustment
rate, since

ξα[dα] = d[
v0 − v

w
]

Thus, as is conventional in adjustment cost settings, it is Ξαα = ξα, which is relevant
for the local behavior of adjustment rate response, i.e., the second derivative of costs
is important for adjustment because the adjustment cost function is locally quadratic.
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B.2 Stochastic adjustment costs based on a cdf

Next, suppose that adjustment costs are stochastic and idiosyncratic across firms,
being governed by a cumulative distribution function G(x) on the interval 0 ≤ x ≤ B
and suppose also that the density function is g(x). The truncated mean level of
adjustment costs plays a central role in our analysis. It is defined as

Ξ(ξ) =

ξZ
0

xg(x)dx

This measure has two interpretations. First, as in the previous section, it can be
interpreted as the adjustment costs paid by a holder of a portfolio of firms if the
largest adjustment cost is ξ. Second, it gives the expected value of an individual
firm’s adjustment costs if there is an adjustment rule that specifies that ξ is the highest
adjustment cost paid by any adjusting firm. This is an unconditional expectation,
in the sense that it does not take into account information about whether the firm
adjusts or not, but simply recognizes that adjustment costs are paid only in some
situations (i.e., the form of the adjustment rule that truncates the distribution).
Under this adjustment rule, a firm’s probability of adjustment is

α(ξ) = G(ξ) =

ξZ
0

g(x)dx

so that the expectation of any individual firm’s costs conditional on adjustment is
given by

Ξ(ξ)

α(ξ)

From the standpoint of the adjustment cost distribution, efficient adjustment requires
that

α = G(ξ) = G(
v0 − v

w
)

Further, the sensitivity of the response of the adjustment rate to v0−v
w
is determined

by density of adjustment costs, i.e.,

dα = g(ξ) ∗ d(v0 − v

w
)

This is the vision of adjustment costs developed in Caballero and Engel [1999] and
Dotsey, King, and Wolman [1999]. Both of these analyses specify a distribution of
"fixed costs of adjustment" and develop the implications for that assumed distribu-
tion. However, there are considerable differences in the assumed distributions, with
Caballero and Engel [1999] using a distribution close to that shown in Figure 15 and
DKW using one that is closer to Figure 16 below.
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B.3 Stochastic adjustment via the cost function

We now consider the relationship between these two approaches. In line with Figure
15, we could specify an inverse cdf

ξ = F (α)

and associated function f(α) = Fα(α). Since the inverse cdf (or marginal adjustment
cost function) is defined by the requirement that

ξ = F (G(ξ))

and its derivative thus satisfies 1 = FαGξ = f(α)g(ξ).
Above, we discussed the total adjustment cost function in Figure 15. We also said

that the truncated mean was

Ξ(ξ) =

ξZ
0

xg(x)dx.

We now show that these two alternative definitions of total cost Ξ are the same as
a function of α. To begin, use the change of variables x = F (a); g(x) = 1

F 0 ; and
dx = F 0(a)da so that

Ξ(α) =

αZ
0

F (a)da

That is: the truncated mean is just the area under the inverse cdf function and the
truncated mean is also the relevant measure of total adjustment costs.
Further, as above, efficient adjustment implies that ξ(α) = v0−v

w
so that the

slope of the marginal adjustment cost curve relevant for the dynamic response of
the adjustment rate is ξ(α) = f(α), the reciprocal of the density function (since
1 = FαGξ = f(α)g(ξ)).

ξ(α)[dα] = d[
v0 − v

w
]

Again, the interpretation is that the adjustment rate responds most strongly when
the density of adjustment costs is largest.
Given the above, we look again at Figure 15, emphasizing four aspects of the

figure. First, panel A shows the level of adjustment costs, the truncated mean Ξ(α).
Second, the rate of adjustment is determined by the inverse cdf, F (α). Hence, since
efficient adjustment involves ξ(α) = v0−v

w
, this involves variations along the inverse

cdf. Third, the extent of response to variations in v0−v
w

is governed by the slope of
the inverse cdf (or cost function). Fourth, the cdf itself is shown in panel D.28

28For any cdf, the associated “adjustment cost function” Ξ(α) is positive, increasing and convex
for α > 0. That is: Ξ > 0, Ξα> 0, and Ξαα > 0, with the third condition being guaranteed by the

fact that Ξαα = 1/g > 0.
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B.4 Extension to multiple vintages

Now, as in our main analysis, we consider the extension to multiple periods of price
fixity. The results above enter our analysis in two ways. First, the expected value of
a firm depends on its expected future adjustment costs,

vj = πj + βE{λ
0

λ
[α0j+1v

0
0 − w0Ξ0j+1}+ (1− α0j+1)v

0
j+1]}. (9)

Second, the labor devoted to price adjustment in a particular bin is given by

Ξjθj

and total adjustment costs are np =
JX

j=1

Ξjθ. Third, the possibility that there are

multiple bins now raises a new set of issues concerning the interaction between the
steady-state and the nature of adjustment. In a stationary state, there must be
increasing adjustment rates, such as illustrated in Figure 15, which are consistent
with the requirements ξ(αj) =

v0−vj
w

and the value function recursions (9) above.
Accordingly, the variation in adjustment rates is related to the slope of the cost
function,

[dαj] =
1

ξα(αj)
d[
v0 − vj

w
] = g(ξj)d[

v0 − vj
w

]

which is also the density of adjustment costs, as the final equality stresses. In a
multiple vintage approach, it is accordingly the case that the properties of the cdf
matter at various points: it is g(ξj) that enters in the response above rather than
g(ξ).

B.5 Approximate Calvo

In the test, we want to explore the effects of state dependence within a battery
of models that have an approximate Calvo form, i.e., a steady-state hazard that is
roughly constant for a number of periods. Accordingly, we select the parameters of
our cost function so that there is a flat hazard for the DS-global setting for eight
quarters, which is a “truncated Calvo” steady-state. Figure 16 displays the nature
of the adjustment costs necessary for this result. In panel B, we see that the necessary
cost function, ξ(α), is one that is fairly flat until α = o.2 then rises very sharply to
close to the maximum cost. Faced with this adjustment cost, firms with a range of
different values of (v0−vj)/w0 will all choose α = o.2. When (v0−vj)/w0 ≥ B = 0.015,
all firms will choose to adjust (α = 1).

B.6 Functional form

The inverse tangent (or arctangent) is a monotonically increasing function that maps
the real line into the interval (−π, π). It has concave, convex, nearly linear, and s-
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Figure 16: Adjustment costs leading to near constant hazard (α ≈ 0.2).
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shaped pieces. Hence, an inverse cdf that selects part of this function can be used to
explore a variety of different assumptions about the cost function within a common
functional form.
We proceed as follows. First, we select a part of the standardized arctangent

s(x)— shown in Figure A1—that we would like to use, i.e., an interval (x,x). Then, we
assume that

x(α) = (x− x) ∗ α+ x

where α is restricted to range 0 ≤ α ≤ 1. Finally, we assume that the inverse CDF
takes the form

ξ(α) = K1s(x(α)) +K2

We further assume that the inverse CDF takes on a zero value at α = 0 and a value
of B at α = 1. That is:

0 = K1s(x) +K2

B = K1s(x) +K2

so that the values of the parameters are given by

K1 =
B

s(x)− s(x)

K2 = − Bs(x)

s(x)− s(x)

B.6.1 Evaluating the conditional mean

To evaluate Ξ, we proceed as follows. First, the fact that
Z
tan−1(z)dz = z ∗

tan−1(z)− 1
2
ln(1 + z2) implies thatZ

s(z)dz = z ∗ s(z)− 1

2π
ln(1 + z2)

Second, using the change of variables y = (x− x) ∗ a+ x = ba+ x, we can determine
that

αZ
0

[K1s(a ∗ b+ x) +K2]da

=
K1

b

αb+xZ
x

s(y)dy +K2

αZ
0

da

=
K1

b
[(αb+ x)s(αb+ x)− xs(x)]

−K1

2πb
[ln(1 + (αb+ x)2)− ln(1 + (x)2)] +K2α

We use this to compute the extent of adjustment costs Ξ.
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B.6.2 Marginal adjustment costs

The linearizations require the derivatives of the adjustment cost functions above. The
derivative of the conditional mean is

d

dα
Ξ(α) =

d

dα

αZ
0

F (a)da = ξ(α)

for all cost functions. The derivative of the specific inverse CDF is

d

dα
ξ(α) =

d

dα
[
K1

π
tan−1(α ∗ b+ x) +K2] = b

K1

π

1

1 + (α ∗ b+ x)2

using the fact that d
dx
tan−1(x) = 1/[1 + x2].

B.6.3 Calculating the CDF

The form of the inverse CDF or cost function makes it easy to determine the form of
the CDF. That is:

α = G(ξ) =
1

b
tan(

ξ −K2

K1/π
)− x

b

The density can be readily calculated using d
dx
tan(x) = (cos(x))−2, so that it takes

the form

g(ξ) =
1

bK1/π
[cos(

ξ −K2

K1/π
)]−2

B.6.4 Some selections

By appropriate choices of the range of the parameters above, we can replicate a variety
of cdfs or cost functions. Figure 17 displays three selections (the parameter choices
for “nearly Calvo” fall outside of the plotted range, with x = −50 and x = 205).
The implied adjustment cost functions (with B=0.15) are plotted next: the hori-

zontal axis is α and the vertical axis is ξ(α).
For additional details on adjustment cost selection, see the replication materials

for this project, which are available at http://people.bu.edu/rking/, specifically
the documentation on adjustment cost utilities.

C Dynamics of adjustment rates

The adjustment rate for a firm of vintage j is implicitly given by ξ(αjt)w0t = v0t−vjt.
Accordingly, we can take a first order approximation to this expression and deduce
that

ξα(αj)(αjt − αj) = −[pj∂vjt/∂pjt
w0

] ∗ [log(pjt)− log(pj)] + other terms

50



-10 -8 -6 -4 -2 0 2 4 6 8 10
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

s(
x)

x

Nearly linear
Nearly Quadratic
Nearly Taylor

Figure 17: Standardized arc tangent function and some segments

51



0 0.5 1
0

0.005

0.01

0.015
Nearly Linear

0 0.5 1
0

0.005

0.01

0.015
Nearly Quadratic

0 0.5 1
0

0.005

0.01

0.015
Nearly Taylor

0 0.5 1
0

0.005

0.01

0.015
Nearly Calvo

Figure 18: Alternative adjustment cost functions (inverse CDFs)
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Figure 19: Effects of relative price on adjustment rates

so that it is possible to explore the effects of the price level on adjustment incentives,
holding fixed other factors. Specifically, we take the equilibrium solution for log(pjt)−
log(pj) and then construct a synthetic series eαjt−αj using the equation above. Given
these synthetic series, we can also construct a synthetic series for the vintages, eωjt−ωj,
which is a dynamic simulation of sorts, since it obeys the dynamic equations

eωjt − ωj = (1− αj)(eωj−1,t−1 − ωj)− ωj−1(eαjt − αj)

eω0t − ω0 =
J−1X
j=0

[αj(eωj−1,t−1 − ωj) + ωj(eαjt − αj)].

That is, the synthetic series for eωjt is constructed solely on the basis of variations in
the synthetic adjustment rates {eαjt}j,t, so that it too involves only the effects of pjt.
The striking results of this analysis are reported in Figures 19 and 20. Figure

19 shows that the effects of pjt are dominant on αjt except for those firms that just
adjusted, with this exception seeming plausible on the basis of our prior analysis of
static profit gain in the main text. The price effects capture variations in vintage
fractions (ωjt) virtually completely.
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Figure 20: Effects of relative prices on vintage fractions

D Computation

There are two parts to the computation of the model. Consider that the model is a
set of equations of the form

EtF (Yt+1, Yt,Xt+1,Xt) = 0

where Yt is a vector of endogenous variables and Xt is a vector of exogenous variables.

D.1 Computation of stationary point

The stationary point of the model involves finding a vector Y , given a vector X, such
that

F (Y, Y,X,X) = 0

Additional discussion to be added.

D.2 Computation of local approximation

The local approximation takes the form

F1 ∗Et(Yt+1 − Y ) + F2(Yt − Y ) + F3Et(Xt+1 −X) + F4(Xt −X) = 0

where the Fi are matrices of partial derivatives. We compute those matrices analyti-
cally and numerically, offering a cross-check on the dynamic system’s approximation.
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E Model equations

This appendix spells out the complete set of equations of our model. The discussion
is divided into seven blocks of equations governing: (1) the dynamics of the price
distribution; (2) the behavior of relative prices, relative demand and the price level;
(3) cost, profit, and labor demand; (4) consumption demand and labor supply; (5)
firm value, efficient pricing, and efficient adjustment; (6) definitions and aggregate
consistency conditions; (7) decomposition of price adjustment dynamics.

E.1 Dynamics of the price distribution

The first block of model equations describes the evolution of the price distribution,
including the dynamics of lagged relative prices; the dynamics of the "end of period"
distribution (ω); and (iii) the start of period distribution (θ).

1A. Evolution of lagged relative prices

pj+1,t+1 = pj,t (1.A)

1B. Restrictions on omegas

1 =
J−1X
0

ωjt (1.B)

1C. Relate omegas to thetas and alphas

ωjt = (1− αjt) · θjt for j = 1 to J − 1 (1.C)

1D. Next period thetas in terms of current omegas

θj+1,t+1 = ωjt j = 1 to J − 1 (1.D)
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E.2 Relative demand, relative prices, and the price level

The second block determines the current relative prices, current relative demands, the
price level, and a related demand multiplier. Given the lagged relative prices, many
current relative prices evolve based on the extent of inflation. Relative demands
depend on these current relative prices in ways that are governed by the aggrega-
tor specification, which also imposes restrictions on the price level and the related
multiplier.

2A. Current relative prices

pjt =
P ∗t−j
Pt

=
pj−1,t−1

πt
j = 1 to J − 1 (2.A)

2B. Define relative demand

yt(i) = xt(i) · yt j = 0 to J − 1 (2.B)

2C. Determinants of demand fractions

The demand structure stems from the specification of the aggregator

1 =

Z 1

0

φ (xi) di

where φ(xi) takes the specific functional form

φ(x(i)) =
1

(1 + η) γ
[(1 + η)x (i)− η]γ + 1

If we minimize the nominal cost

P =

Z 1

0

P (i)x(i)di

of a package of x(i) consistent with the constraint, then we have a first order condition
of the form

−P (i) + Zφ0(x(i))

where Z is the multiplier on the constraint.

Using the efficiency condition, the demand function is
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xt(i) =
1

1− η

"µµ
Pt (i)

Pt

¶µ
Pt

Zt

¶¶ 1
γ−1
+ η

#
=

1

1− η

"µ
pt(i)

ζt

¶ 1
γ−1
+ η

#

We then apply this specification to each of the bins,

xjt =
1

1− η

"µ
pjt
ζt

¶ 1
γ−1
+ η

#
(2.C)

2D. Price level restriction

The price level is defined as

P =

Z 1

0

P (i)x(i)di

Pt =
J−1X
0

ωjtPjtxjt

Hence, it implies a restriction on relative prices and demands, which is followed by

its loglinear counterpart,

1 =
J−1X
0

ωjtpjtxjt (2.D)

2E. Aggregate multiplier restriction

From the aggregator constraint

1 =
J−1X
0

ωjtφ (xjt) (2.E)
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E.3 Cost, profit, and labor demand

The third block involves production, cost, profit and labor demand specifications

3A. Production fuction/labor demand

The prodution function is a simple linear expression, which also governs labor
demand when prices are sticky,

y(i) = an(i) for j = 0 to J − 1 (3.A)

3B. Marginal cost

Given the production function, real marginal cost is the wage rate divided by
productivity,

ψt(i) =
wt(i)

at
for j = 0 to J − 1 (3.B)

3C. Profits

Profits can be expressed in a number of different ways,

zjt =
¡
pjt − ψjt

¢
yjt =

¡
pjt − ψjt

¢
xjtyt = pjtyjt − wjtnjt (3.C)

for j = 0 to J − 1

3D. Marginal profit equations

Marginal profits enter in pricing efficiency conditions and these take the form

mzjt = yjt +
¡
pjt − ψjt

¢
sjtyt (3.D)

where sjt is the slope of the demand curve. This expression involves only one marginal
cost term if the factor market is global, since ψjt = ψt in this case.

3E. Demand slopes

One element of marginal profits is the demand slope,

sjt =
1

1− η

1

γ − 1
·
(pjt)

γ−2
γ−1 ζ

1
γ−1
t

¸
(3.E)
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E.4 Consumption demand and labor supply

The fourth block involves consumption demand, labor supply, and various labor ag-
gregations.

The household solves the following problem:

max

(X
t

βt
X
j

ωjt

·
1

1− σ
c1−σjt −

χ

1 + φ
n1+φjt

¸)

subject to :

"X
j

ωjtcjt

#
≤
X
j

ωjt [wjtnjt + zjt]

4A. Marginal utility of consumption

c−σjt = λt = c−σt (4.A)

4B. Total labor

nt = nPt + nyt (4.B)

4C. Labor supply

If the market is global, then

wt =
1

λt
nφt (4.C global)

where labor supply is the sum of labor in production and labor in price adjustment.
If there is a local labor market, then there is a labor supply equation that is

pertinent for each "bin" j = 1, 1., , , J − 1,

wjt =
1

λt
nφjt (4.C local)

Adjusting firms must hire labor to adjust prices, so that the labor supply specifi-
cation is a little different for the residents of "bin 0," who are paying the adjustment
costs.

wt =
1

λt
(n0t +

npt
ω0t
)φ (4.C local, bin 0)

4D. Labor in price adjustment
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npt =
JX

j=1

θjtΞjt = ΞJt +
J−1X
j=1

θjt (Ξjt − ΞJt) (4.D)

By way of backgound, the derivation of (4.D) is

using 1 =
JX

j=1

θjt

then θJt = 1−
J−1X
j=1

θjt

and consequently npt =
J−1X
j=1

θjtΞjt + θJtΞJt

npt =
J−1X
j=1

θjtΞjt +

Ã
1−

J−1X
j=1

θjt

!
ΞJt

npt = ΞJt +
J−1X
j=1

θjt (Ξjt − ΞJt)

4E. Labor in production

nyt =
J−1X
j=0

ωjtn
y
jt (4.E)

E.5 Firm value, efficient pricing, and efficient adjustment

The fifth block involves firm value functions, marginal conditions for pricing and
efficient adjustment, and a defintion of the marginal value of having a higher price.

5A. Value function recursions

The value function recursions are defined in marginal utility units to make them
easier to approximate.

vj = λzj + βE
©£
α0j+1v

0
0 − w0Ξ0j+1λ

0 +
¡
1− α0j+1

¢
v0j+1

¤ª
(5.A standard)
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vJ−1 = λzJ−1 + βE {[v00 − w0Ξ0Jλ
0]} (5.A last)

5B. Marginal value recursions

The marginal values are also denominated in marginal utility units, so that pricing
efficiency requires

0 = λt
∂z (p0t, st)

∂p0t
+ βEt

(1− α1,t+1)
∂v1

³
p0t

Pt
Pt+1

, st+1

´
∂p0t

 (5.B first)

∂vj (pjt, st+1)

∂pjt
= λt

∂z (pjt, st)

∂pjt
+ βEt

(1− αj+1,t+1)
∂vj+1

³
pj,t

Pt
Pt+1

, st+1
´

∂pjt

 (5.B)

∂vJ−1 (pJ−1,t, st+1)
∂pJ−1,t

= λt
∂z (pJ−1,t, st)

∂pJ−1,t
(5.B last)

5C. Optimal adjustment

The efficiency condition for optimal adjustment is

ξ (α) =
v0 − vj
λw

(5.C )

5D. Expected adjustment costs

As discussed in appendix B of the working paper,

Ξ(α) =

αZ
0

F (a)da (5.D.)
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E.6 Aggregate definitions and consistency conditions

6A. Aggregate demand

ct = yt (6.A )

6B. Monetary equilibrium
Mt

Pt
= ct (6.B)

6C. Monetary rule
∆ lnMt = ρ lnMt−1 +mt (6.C)

6D. Inflation

πt =
Pt

Pt−1
(6.D)

6E. Lagged price level
The accounting relationship is

PL
t+1 = Pt (6.E)

6F. Linear Aggregate Output

ylt =
J−1X
0

θjtyjt =
J−1X
0

θjtxjtyt (6.F)

E.7 Decomposition of adjustment dynamics

The equations in this section are based on various analytical approximations described
in appendix D.

7A. Linear price level

As its name suggests, the linear price level is a linear aggregation of the existing
prices in the economy
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P t =
J−1X
j=0

ωjtPjt (7.A)

7B. Price level without changing adjustment rates

P t =
J−1X
j=0

ωjPjt (7.B)

7C. The effects of relative price on adjustment rates

ξα(αj)(eαjt − αj) = −[pj∂vjt/∂pjt
w0

] ∗ [log(pjt)− log(pj)] + other terms (7.C)

7D. Restriction on the synthetic ex post fractions

J−1X
j=0

(eωj,t − ωj) = 0 (7.D)

7E. Evolution of the synthetic ex post fractions

eωjt − ωj = (1− αj)(eθj−1,t−1 − θj−1)− θj−1(eαjt − αj) (7.E)

7F. Evolution of the synthetic ex ante fractions

eθjt − θj = eωj−1,t−1 − ωj−1 (7.F)
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