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Abstract

I develop a model of financial networks where linkages not only spread contagion, but

also induce private-sector bailouts in which liquid banks bail out illiquid banks because of

the threat of contagion. Introducing this bailout possibility, I show that linkages may be

optimal ex-ante because they allow banks to obtain some mutual insurance even though

formal commitments are impossible. However, in some cases (for example, when liquidity

is concentrated among a small group of banks), the whole network may collapse. I also

characterize the optimal network size and apply the results to joint liability arrangements

and payment systems.
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Linkages among agents in financial markets are a concern because of the risk of financial

contagion, that is, the risk that a small shock to one agent will spread to other agents in a

domino effect. Whether we should worry about these linkages is an open question. The main

goal of this paper is to show that a network in which agents are closely interlinked may be

optimal because of and despite the potential for contagion. Another goal is to characterize

optimal networks, i.e., whether and how agents should be linked to one another.

The basic intuition is as follows: Linkages present the threat of contagion. To prevent

collapse of the whole network, agents who are lucky ex-post may be willing to “bail out”

those who are not. In this way agents obtain the benefits of mutual insurance even though

they cannot precommit to making payments. Linkages, however, may have a cost. In some

cases (e.g., when the aggregate endowment is not high enough), the whole network may

collapse in a contagious fashion.

The paper shares some common features with other papers that model financial con-

tagion. Examples are Allen and Gale (2000), Kiyotaki and Moore (1997), Lagunoff and

Schreft (2001), and Rochet and Tirole (1996). As in my paper, agents in these papers are

linked to one another through some financial network, and because of these linkages, shocks

can spread from one agent to another.1 In my model the threat of contagion may be part of

an optimal network design, while other papers focus on the negative aspects of contagion.

In addition, previous papers do not fully address the issue of an optimal network design

while this paper does.2

The main contribution is to show that linkages that create the threat of contagion may

be optimal. This idea can be applied, for example, to the design of payment systems.

Suppose we can choose between two stylized systems: gross, in which settlements occur as

soon as transactions are agreed upon, and net, in which settlements occur at the end of
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the day, so banks grant intraday credit to one another. Existing literature, such as Freixas

and Parigi (1998) and Kahn and Roberds (1998), shows that net payments systems may be

optimal because they reduce the costs of holding non-interest-bearing reserves. My theory,

on the other hand, implies that net payment systems can be optimal even if holding reserves

is not costly. Net systems induce linkages that create the threat of contagion. This, in turn,

can motivate banks to help one another, even where they could not precommit to do so.

Another contribution is the analysis of the tradeoff between risk sharing and the po-

tential for collapse in the design of optimal financial networks. Such an analysis can be

used, for example, to calculate the optimal number of groups and the optimal number of

agents within a group in joint liability arrangements such as the ones used by the Grameen

Bank.3 In particular, I show that the optimal group size may be finite, say five, even in

infinitely large economies with iid endowments. I do not need to assume that members

of small groups know more about one another, nor that large groups have free-rider and

coordination problems.4

To model linkages, I assume that the project of agent i can succeed only if he and all

the agents to whom he is linked make a minimum level of investment in their projects.

This setting is very simple, but it can be applied to more complex situations. For example,

in Allen and Gale’s setting, investing could mean meeting demand for liquidity by early

consumers, and success could mean not going bankrupt. Since endowments are random

variables, an agent may not have enough cash to make the necessary investment. In addition,

his inability to precommit to pay prevents him from borrowing against future cash flows

or from entering an insurance (forward) contract before endowments are realized. When

agents are not linked to one another, agents who realize high endowments have no incentive

ex-post to help out those who realize low endowments. Thus, some positive net present
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value investments do not take place (or in Allen and Gale’s setting, some banks that are

solvent but illiquid go bankrupt). On the other hand, when agents are linked to one another,

agents with high endowments are willing to bail out those with low endowments. The reason

is that if they do not, all projects fail by contagion.

I illustrate two cases in which a network in which all agents are linked to one another

can break down. The first case is obvious: the aggregate endowment is not high enough to

take all projects. The second case is less obvious: the aggregate endowment is high enough

but concentrated among a small number of agents. The intuition is that the threat of losing

future income may not be sufficient to induce an agent with a lot of cash to voluntarily hand

over his entire endowment. In other words, the amount that an agent may be willing to

contribute to a bailout cannot be more than what he loses by not participating. The paper,

therefore, implies that fluctuations in the distribution of endowments can cause collapse even

without fluctuations in the aggregate endowment. This adds to Rampini’s (forthcoming)

result that default correlation may be caused by fluctuations in the aggregate endowment.

To find optimal allocations capturing the idea that agents cannot precommit to pay out

of their endowments, I solve a planning problem, imposing a restriction that each agent

prefers the proposed allocation to autarky. One way to implement an optimal allocation is

as follows: Once endowments are realized, a central planner (or one of the agents) proposes

a bailout, and each agent can either accept or reject. A bailout takes place only if all agents

accept. Thus, a necessary condition for linkages to be optimal is the presence of some

coordinating mechanism. For example, if we allowed for coordination in the framework of

Allen and Gale, the threat of contagion could induce some banks to voluntarily liquidate

some of their long-term assets and transfer cash to banks with unusually high demand for

liquidity.
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The only role of the central planner here is to coordinate voluntary transfers. This is

different from other models of bailouts, such as Freixas’ (1999), in which the Fed injects

cash into a failing bank because of its obligations as a lender of last resort. One example

of a private-sector bailout, as in my model, is the case of Long Term Capital Management

(LTCM), where the New York Fed acted as a coordinator. The theory here implies that

the bailout of LTCM may have been optimal from an ex-ante point of view. It also gives

a different perspective on the Fed’s inability to commit not to bail out. Existing litera-

ture, e.g., Freixas (1999), Mailath and Mester (1994), and Rochet and Tirole (1996) has

focused on inefficiencies that arise when the Fed cannot commit to certain policies regarding

bank closure. In my paper, bailouts are optimal even from an ex-ante point of view, and

inefficiencies arise because the Fed cannot commit to help.5

The paper is organized as follows: In Section I, I present an example that relates my

paper to Allen and Gale’s, and in Section II, I present my model. In Section III, I state the

planning problem, and in Section IV, I show one way to implement an optimal solution.

In Section V, I compare two networks: one in which each agent is linked to every other

agent, and one in which each agent stands on his own. In Section VI, I characterize optimal

networks. One of the main results of this section is that a network in which each agent is

linked to every other agent may be optimal. In Section VII, I show how the theory can

apply to the design of payments systems and joint liability arrangements. I conclude in

Section VIII. There are also two appendices: The first shows that the nature of the results

does not change if endowments are private information, and the second contains proofs.

4



I. Example

In the next example, I use Allen and Gale’s (2000) model of financial contagion to illustrate

how financial linkages can stop contagion as they create the incentives for a healthy bank

to help a troubled bank once the threat of contagion arises. In particular, I show how a key

result of Allen and Gale is altered if financially linked banks can coordinate ex-post when

a threat of contagion arises.

There are n banks that are identical ex-ante. There is also a continuum of consumers

who are identical ex-ante and who have Diamond-Dybvig (1983) preferences

u(c1, c2) =

½
u(c1) with probability ω
u(c2) with probability 1− ω

(1)

where ci denotes consumption at date i and u(·) satisfies u0 > 0 and u00 < 0. The banks’

role is to make investments on behalf of consumers and to insure them against the risk of

not knowing when they will need to consume.

At date 0, each consumer deposits his initial endowment of one dollar in one of the

banks (deposits are evenly spread across banks). In exchange, he obtains a deposit contract

that allows him to withdraw either c1 dollars at date 1 or c2 dollars at date 2. Banks use

the money obtained from deposits to invest x dollars per capita in a long-term asset and

y dollars per capita in a short-term asset. The short-term asset is equivalent to storage:

each unit invested at date 0 yields one dollar at date 1. The long-term asset yields a higher

return: each unit invested at date 0 yields R > 1 dollars at date 2; it can also be liquidated

at date 1, but then it yields only r < 1 dollars. One can think of the short-term asset as

non-interest-bearing reserves and of the long-term asset as bank loans.

At date 0, banks can create linkages among themselves through cross holdings of de-

posits. In Allen and Gale, they do so to insure themselves against idiosyncratic liquidity
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shocks. Banks with high demand for liquidity by early consumers liquidate their deposits

with other banks at date 1, while banks with low demand wait until date 2. This arrange-

ment works if there is no aggregate uncertainty in the fraction of early consumers. Other-

wise, a small increase in this fraction can generate financial contagion; in particular, Allen

and Gale show that for some parameter values, any equilibrium involves bankruptcy of all

banks because of spillover effects. This is the case I am interested in, but in my framework,

the ability to coordinate a bailout will sometimes prevent the spread of a crisis.

To focus on the role of linkages in enhancing commitment, I construct an example in

which linkages are unnecessary in Allen and Gale’s setting, and whose only role is to induce

banks to help one another. I assume that there are two possible scenarios: a good scenario

in which no bank realizes a liquidity shock, and a bad scenario in which some banks realize

a liquidity shock and some don’t. More specifically, I assume that the fraction of early

consumers in bank i is γ + eεi, where eεi is a random variable that can be either 0 or ε.

In the good scenario, eεi = 0 for i = 1, . . . , n, and in the bad scenario, one bank chosen

randomly realizes a liquidity shock (eεi = ε) while the other banks do not. By hoarding

reserves, the banking system can avoid costly liquidations in the bad scenario. However, if

the probability of the bad scenario is low enough and the potential for loss is bounded (e.g.,

u(0) has a lower bound), as is assumed here, it is optimal for the system as a whole to hoard

less reserves and invest more in high yield but less liquid instruments. More specifically, the

first best is to choose y = γc1. In the good scenario, banks can satisfy demand for liquidity

by early consumers using only the short-term assets, whereas in the bad scenario, banks

must liquidate some of their long-term assets to meet the extra demand.

Whether banks will achieve the first-best depends on the linkages they formed at date

0. Suppose first banks are not linked to one another. A bank that realizes a liquidity
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shock can meet the excess demand for liquidity by liquidating some of its long-term assets.

The problem is that the bank will not have enough cash to meet the demands of its late

consumers at date 2. In fact, if the liquidation value r is small enough, the bank may not be

able to pay the late consumers even c1. Then the late consumers will prefer to withdraw at

date 1 and store the cash until date 2, thus causing a bank run. Another potential solution

is to borrow from other banks. However, to come up with the funds, the other banks will

need to liquidate some of their assets. They will be willing to do so only if the interest rate

charged on the loans is high enough to compensate them for the cost of liquidation. But

then the cost of borrowing for the illiquid bank will be just as high as the cost of liquidating

its own assets and will not provide any additional help. More explicitly, I assume that

b(ε) < εc1, (2)

where b(ξ) is the maximum amount that a bank with eεi = ξ can raise at date 1 by liquidating

its long-term assets without inducing a run. The inequality says that this amount is not

high enough to meet the extra demand for liquidity. As in Allen and Gale, b(ξ) is given by

b(ξ) ≡ r[x− c1(1−γ−ξ)
R ] and is referred to as the buffer of bank i.

To have some benefits from mutual insurance, I also assume that by pooling resources,

the liquid banks can come up with the extra funds required for helping the illiquid bank,

so that in the first best no bank, whether liquid or illiquid, goes bankrupt. More explicitly,

I assume that

εc1 ≤ (n− 1)b(0) + b(ε), (3)

i.e., the aggregate buffer of the banking system as a whole is high enough to meet the

liquidity shock. This suggests that banks could benefit if at date 0 they entered insurance

contracts, according to which at date 1 the liquid banks transfer cash to the illiquid banks.
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However, in many cases such contracting may not be possible because it may be difficult

to ascertain with enough precision what is the liquidation value of the banks’ assets. Federal

Reserve Board Chairman Alan Greenspan captures this view, saying that “bank loans are

customized, privately negotiated agreements that, despite increases in availability of price

information and in trading activity, still quite often lack transparency and liquidity. This

unquestionably makes the risks of many bank loans rather difficult to quantify and to

manage” (Greenspan, 1996). Therefore, even though banks may know which banks are

liquid and which banks are not, a court may not be able to tell.6 In our example, this

friction can be modeled by assuming that the liquidation value is a random variable eri that
can take two values 0 and r, that only some of the liquid banks have a realization of eri = r,

and that eri is not verifiable in court.
Banks can still insure themselves in the bad scenario by creating linkages through the

(seemingly unnecessary) exchange of deposits. For example, at date 0 bank 1 deposits z

dollars in bank 2, bank 2 deposits z dollars in bank 3, . . . , and bank n deposits z dollars in

bank 1.7 The threat of contagion may then induce liquid banks to bail out illiquid banks. In

particular, suppose a central planner proposes that each of the liquid banks transfer εc1−b(ε)
n−1

dollars to the illiquid bank, so that it will have enough cash to avoid bankruptcy. If the

alternative is autarky, there exists an equilibrium in which all banks agree to participate

in the bailout. Bailing out is costly to the participating bank because it needs to liquidate

some of its long-term assets, but not participating is more costly because all banks will go

bankrupt in contagion, and the bank will need to liquidate all its assets.

Note that without linkages, the illiquid bank goes bankrupt, but the other banks survive.

On the other hand, with linkages but without coordination (as in Allen and Gale), all banks

go bankrupt in contagion; so in our example, they will not create the linkages in the first
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place.

To summarize, the example shows how linkages can induce banks to help one another in

situations where official contracts cannot do so. In practice, banks create linkages not only

through cross holdings of deposits but also through more complicated financial claims, such

as derivative contracts. Yet, the main point remains: these linkages and the potential for

contagion they create allow banks to obtain insurance for events that cannot be contracted

upon. The example also shows that private-sector bailouts may be a feature of an optimal

risk-sharing. If we changed the example to include potential realizations in which the

aggregate buffer is not sufficient to cover the liquidity shock, all banks could sometimes fail

in a contagious fashion, making linkages suboptimal ex-post. Nonetheless, if the benefits of

creating commitment to help one another are higher than the negative effects of contagion,

it may be optimal ex-ante to design a network that is fragile.

II. The model

There are three dates t = 0, 1, 2, one divisible good called “dollars” or simply cash, and

a set N = {1, ..., n} of risk-neutral agents who are identical ex-ante, obtain an expected
utility E(c1+ c2) from consuming c1 and c2 dollars at dates 1 and 2, respectively, and have

limited liability (i.e., ct ≥ 0 for t = 1, 2).
At date 1, agent i is endowed with eei dollars and access to a project that requires an

investment of one dollar. Project cash flows are realized at date 2. Each project can either

succeed and yield R dollars or fail and yield nothing. It is assumed that R > 1. Thus, a

project that succeeds with probability 1 has a positive NPV.

Linkages are formed at date 0. The project of agent i can succeed only if he and all the

agents to whom he is directly linked invest one dollar in their projects. More formally, let
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Ii ∈ {0, 1} denote the amount that agent i invests in his project, I = (I1, ..., In) the vector
of investments, and pi(I) the probability that the project of agent i will succeed. Then

pi(I) =

½
1 if Ij = 1 for every j ∈ Ki ∪ {i}
0 otherwise,

(4)

whereKi is the set of agents to whom agent i is directly linked.8 The vector (K1,K2, . . . ,Kn)

fully captures the interdependence among agents and is called the financial network.

It is assumed that there is a positive probability that eei is less than 1, so an agent’s
endowment may be less than what he needs to invest in his project. In addition, there is

a positive probability that eei is more than 1. This suggests potential benefits from trade.

However, agents are unable to enter contracts because they cannot precommit to make

payments. More specifically, I assume that:

(A1) Agents cannot commit to pay out of their initial endowments.

(A2) Agents cannot commit to pay out of their projects’ cash flows.

The second assumption implies that agents who want to invest in their positive NPV

projects cannot borrow at date 1 against the date 2 cash flows from their projects. This

suggests that agents may want to share the risk associated with their date 1 endowments

by entering forward contracts at date 0, according to which agents with high realizations

of endowments transfer cash to those with low realizations. Such an arrangement is ruled

out, however, by the first assumption.

For simplicity, I consider an extreme situation where agents cannot precommit to pay

anything. However, the nature of the results would not change if I assumed the inability to

precommit was only partial. For example, I could assume that agents could borrow against

future cash flows but not against the full amount.
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One way to motivate the second assumption, following Hart and Moore (1994), is to

assume that the agent who owns a project (the entrepreneur) needs to provide his human

capital for the project to succeed. For example, the human capital of LTCM’s owners might

have been essential for implementing their sophisticated hedging techniques. Similarly, as

in Diamond and Rajan (2000, 2001), the human capital of a bank that monitors a loan may

be essential for collecting the loan. When the original owner cannot be replaced costlessly

because of special skills, he can always threaten to repudiate a loan contract by withdrawing

his human capital. To induce him to provide his human capital, outside investors must

promise him a portion of future cash flows meaning that he cannot borrow against the full

amount.

Another way to motivate the second assumption is to assume that cash flows are un-

certain and it is impossible to make financial contracts explicitly contingent on realized

cash flows (see, for example, Bolton and Scharfstein, 1990). One interpretation is that the

agent who runs the project observes realized cash flows privately and therefore can divert

resources away from other investors to himself. This interpretation is plausible, for exam-

ple, when we think of international crisis and foreign lending. Another interpretation is

that cash flows are observable but not verifiable. In other words, although the parties to a

contract can observe realized cash flows, a court cannot. This interpretation is plausible in

the case of domestic banking systems because banks by their very nature deal with projects

or borrowers that lack transparency and liquidity.

A company may also have problems borrowing against future cash flows when it is

hard to determine their present value. For example, for LTCM, borrowing against future

positions involved disclosure of what those positions were and the risk inherent in them.

And even if both were disclosed, different investors might have had different perceptions as
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to what the risk truly was.

The first assumption can be motivated by assuming that endowments are not verifiable.

This is plausible if we think of an agent’s endowment as the amount of cash he can raise on

short notice, possibly by liquidating some of his assets, and if we assume, as in the previous

section, that liquidation values are not verifiable in court.

To avoid problems of asymmetric information, I assume that endowments are observable,

but the main idea holds even if endowments are private information (see Appendix A).

Finally, I assume that the financial network is common knowledge and that:

(A3) Agents cannot commit to invest in their projects.

Thus, an agent invests only if his project can succeed, i.e., only if all the agents to whom

he is directly linked invest as well.

The following example illustrates the inefficiency that may arise from the inability to

precommit and shows how linkages can mitigate it.

Example 1 There are two agents. One agent (chosen randomly) has two dollars, and the

other agent has zero. Since each project requires exactly one dollar, the efficient allocation

requires each agent to end up with one dollar. This allocation is also Pareto optimal from

an ex-ante point of view.

Consider without loss of generality the realization in which agent 1 has two dollars and

agent 2 has nothing. To achieve the efficient allocation, agent 1 needs to transfer one dollar

to agent 2 without getting anything in return. The question is whether agent 1 will be

willing to do so.

Suppose the two agents are not linked. Since the probability of success of agent 1’s project

does not depend on whether agent 2 invests, agent 1 can invest one dollar, consume the
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second dollar he has, and obtain a utility 1 + R. If instead agent 1 transfers one dollar to

agent 2, agent 1’s utility is only R. Therefore, agent 1 is better off not bailing out agent 2.

Agent 2 then ends up with nothing to invest and with a utility of zero.

Suppose now the two agents are linked. Agent 1 can gain from investing only if agent 2

invests as well. If agent 1 keeps the two dollars for himself, he is better off consuming his

entire endowment, thereby obtaining a utility of 2. If instead he transfers one dollar to

agent 2, agent 1 can invest one dollar, thereby obtaining a utility R. The optimal action

for agent 1 depends on the value of R. When R ≥ 2, it is optimal to bail out agent 2;

otherwise, it is not.

To summarize, when R ≥ 2, being linked achieves an efficient allocation, while not being
linked doesn’t.

III. Planning problem

I characterize optimal risk sharing as a solution to a planning problem. Without loss

of generality, we can assume that the central planner can make transfers only at date 1

(Assumption A2). Thus, the sequence of events is as follows:

t = 0 : A financial network is chosen.

t = 1 : (a) Endowments are realized.

(b) Transfers are made.

(c) Investments are made.

t = 2 : Project cash flows are realized.
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Denote by e = (e1, e2, ..., en) the vector of realized endowments, and by Ti the net

transfer to agent i. Choosing a vector of transfers T = (T1, T2, . . . , Tn) is equivalent to

choosing an allocation x = (x1, x2, ..., xn) where xi = ei + Ti.

I rule out outcomes in which the choice of investment levels is not optimal given the

chosen allocation (this can be motivated by inability to precommit). Therefore, I solve the

problem of choosing an allocation and investment levels in two steps. First, I choose an

investment rule, that is, a vector of investments as a function of an allocation. Then I choose

an allocation rule, that is, an allocation as a function of the vector of realized endowments.

Let Ui(x, I) denote agent i0s utility given the allocation x and the vector of investments

I. Then

Ui(x, I) = xi − Ii + pi(I)R. (5)

Optimal investment rule. A vector of investments I = (I1, I2, . . . , In) is feasible given

the allocation x if

Ii ≤ xi for every i ∈ N. (6)

To capture the idea that agents cannot commit to invest in their projects (Assumption A3),

I also require that I form a Nash equilibrium. Formally,

For every i ∈ N and for every bIi ≤ xi, Ui(x, I) ≥ Ui(x, I−i, bIi), (7)

where (I−i, bIi) denote the vector I in which Ii is replaced with bIi.
Since agents are identical ex-ante, it is natural to assume that the planner’s objective

is to maximize the unweighted sum of expected utilities. Thus, to find an optimal invest-

ment rule, I(x) = (I1(x), I2(x), . . . , In(x)), we need to maximize
Pn

i=1 Ui(x, I) subject to

equations (6) and (7).
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Let Vi(x) = Ui(x, I(x)). Lemma 1 below characterizes I(x) and Vi(x). It shows that it

is optimal for agent i to invest if and only if all the agents to whom he is linked — either

directly or indirectly — have enough cash to invest in their projects. The set of these agents

is denoted by Li. In network terms, j ∈ Li if there exists a path that connects agent j to

agent i.9

Lemma 1 1. Ii(x) =
½
1 if xj ≥ 1 for every j ∈ Li ∪ {i}
0 otherwise.

2. Vi(x) = xi + (R− 1)Ii(x).

Optimal allocation rule. An allocation rule x(e) = (x1(e), x2(e), . . . , xn(e)) is feasible if

for every realization e, equations (8) and (9) hold.10

nX
i=1

xi(e) =
nX
i=1

ei (8)

xi(e) ≥ 0 for every i ∈ N. (9)

I refer to the benchmark in which agents can precommit to pay out of their endowments

as first best and to the case in which they cannot precommit to pay (Assumption A1) as

second best.

The first-best problem is to choose a feasible allocation rule x(e) that maximizes the

expected sum of utilities E
Pn

i=1 Vi(x(ee)) where ee denotes the vector of random variables

(ee1, ee2, ..., een) and E(·) denotes the expectation operator. One can view the first-best allo-
cation rule as a set of forward contracts that are entered at date 0 and specify payments at

date 1 as a function of the vector of realized endowments.

Since agents are identical ex-ante, the first-best allocation rule satisfies

EVi(x(ee)) ≥ EVi(ee) for every i ∈ N. (10)
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In other words, ex-ante all agents prefer the first-best allocation to autarky. However, once

endowments are realized, some agents might be better off if no transfers are made.

I say that an allocation rule satisfies the interim participation constraint if agents prefer

the allocation to autarky even after endowments are realized, that is, if

Vi(x(e)) ≥ Vi(e) for every i ∈ N and for every e. (11)

The second-best problem is to choose a feasible allocation rule x(e) that maximizesE
Pn

i=1 Vi(x(ee))
subject to equation (11). This constraint captures the idea that agents cannot precommit

to pay, and since it does not necessarily imply equation (10), some first-best allocations

may be ruled out.

Optimal networks. Let ψ denote a financial network, let x(e, ψ) denote the second-best

allocation rule given ψ, and let F (ψ) = E[ 1n
Pn

i=1 Vi(x(ee, ψ)].
Definition 1 1. A financial network ψ1 ex-ante Pareto dominates a financial network ψ2

if F (ψ1) ≥ F (ψ2) (it strictly dominates if there is a strict inequality).

2. A financial network ψ∗ is optimal if F (ψ∗) ≥ F (ψ) for every financial network ψ.

IV. Implementation

Suppose x∗ is an optimal allocation given some realization e. One way to implement x∗ is

as follows:

1. A central planner (or one of the agents) proposes x∗ and the optimal vector of invest-

ments I(x∗) from Lemma 1.

2. Agents 1, . . . , n can either accept or reject sequentially after observing the responses

of previous agents.
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3. If all agents accept, the necessary transfers to implement x∗ take place. Otherwise,

agents remain in autarky.11

To rule out outcomes in which all agents reject, I use subgame perfection as the equi-

librium concept. Then, under the assumption that an agent who is indifferent between

accepting and rejecting accepts, we obtain the next proposition.12

Proposition 1 If x∗ and I(x∗) are offered, there is a subgame perfect equilibrium whose

outcome is that all agents accept. In addition, this equilibrium is unique.

V. Being linked versus not being linked

This section focuses on two special networks: one in which each agent stands on his own

(Ki = ∅ for i = 1, . . . , n), and one in which each agent is directly linked to all other agents
(Ki = N \ {i} for i = 1, . . . , n). The first network is referred to as unlinked, and the second
network is referred to as fully linked. Proposition 2 below expands the set of networks that

can be thought of as fully linked by showing that the only thing that matters for second-best

outcomes is the collection of sets [L1, ..., Ln], which specify to whom each agent is linked

(either directly or indirectly).13 In particular, the outcome of a fully linked network can be

obtained even if some agents are not directly linked to all other agents. The next example

demonstrates this.

Example 2 Suppose n = 4, and consider the financial network K1 = {2}, K2 = {3},
K3 = {4}, K4 = {1}. Since every agent is linked to all other agents either directly or
indirectly, the second-best outcome given this network is identical to the one obtained

given a fully linked network.
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Proposition 2 Financial networks that induce the same sets [L1, ..., Ln] have the same

second-best outcome (or outcomes).

Using part 2 in Lemma 1 and equation (8), we obtain

nX
i=1

Vi(x(e)) =
nX
i=1

ei + (R− 1)
nX
i=1

Ii(x(e)). (12)

Therefore, maximizing the expected sum of utilities is equivalent to maximizing the expected

aggregate level of investment. Also, to find an optimal allocation rule we can solve the

planning problem pointwise, that is, solve many problems in which we choose an optimal

allocation taking the realization e as given.

First best. An upper bound on
Pn

i=1 Ii(x(e)) ismin(n, b
Pn

i=1 eic) where b·c indicates the
integer less than or equal to. If the network is unlinked, this upper bound can be achieved

for each realization of e through a set of transfers. If the network is fully linked, the upper

bound can be achieved only if there is enough cash to take on all projects, that is, only ifPn
i=1 ei ≥ n; otherwise, no agent invests.

Second best. The next proposition shows that if the network is unlinked, it is not possible

to do better than autarky. The inability to precommit to help one another eliminates the

potential gains from mutual insurance.

Proposition 3 If the financial network is unlinked, the only feasible allocation rule that

satisfies the interim participation constraint is xi(e) = ei for every i ∈ N .

Denote an optimal allocation rule by x∗(e). The following conclusion follows from Propo-

sition 3 and Lemma 1.

Conclusion 1 If the financial network is unlinked, Ii(x∗(e)) =
½
1 if ei ≥ 1
0 otherwise.
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If the network is fully linked, we may sometimes achieve the upper bound on
P

i Ii(x(e)).

In other words, it may be possible to obtain the benefits of mutual insurance.

Proposition 4 If the financial network is fully linked, the aggregate level of investment

(given an optimal allocation rule) is n if
Pn

i=1min(ei, R) ≥ n, and zero otherwise.

To get the intuition behind the condition in Proposition 4, recall that in Example 1,

agent 2 was willing to transfer cash to the other agent only if R ≥ 2; that is, only if the return
on his project was at least as much as he could obtain by consuming his entire endowment.

More generally, the amount of cash agent i may be willing to give to the central planner

is min(ei, R); so the total amount available for investment is
Pn

i=1min(ei, R). If this is

more than n, all agents can invest. Otherwise, because of linkages, no agent invests. In the

latter case, if there exists an agent with ei > 1, a fully linked network is ex-post strictly

worse than an unlinked network. A fully linked network leads to no investment, whereas

an unlinked network leads to some investment. The next proposition summarizes this.

Proposition 5 A fully linked network is ex-post strictly worse than an unlinked network if

and only if the realization of e is such that
Pn

i=1min(ei, R) < n and there exists an agent

with ei > 1.

Example 3 below illustrates two cases in which the condition
Pn

i=1min(ei, R) < n in

Proposition 5 holds. In the first case the aggregate endowment is not high enough to take all

projects. In the second case the aggregate endowment is high enough, but it is concentrated

among a small set of agents.

Example 3 Two cases in which linkages are suboptimal ex-post:

1.
Pn

i=1 ei < n.
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2. e1 = n > R but ej = 0 for j = 2, .., n . (note
Pn

i=1 ei = n).

It remains to compare the two networks from an ex-ante point of view. It follows from

Proposition 4 that if the network is fully linked, the expected aggregate investment is given

by

E(
nX
i=1

Ii(x
∗(ee))) = nProb(

nX
i=1

min(eei, R) ≥ n) (13)

where Prob(·) denotes the probability of an event. If the network is unlinked, it follows
from Conclusion 1 that E(Ii(x∗(ee))) = Prob(eei ≥ 1) and

E(
nX
i=1

Ii(x
∗(ee))) = nX

i=1

E(Ii(x
∗(ee))) = nProb(eei ≥ 1). (14)

This leads us to Theorem 1.

Theorem 1 1. If Prob(
Pn

i=1min(eei, R) ≥ n) > Prob(eei ≥ 1), a fully linked network ex-
ante Pareto dominates an unlinked network.

2. If Prob(
Pn

i=1min(eei, R) ≥ n) < Prob(eei ≥ 1), an unlinked network ex-ante Pareto

dominates a fully linked network.

3. If Prob(
Pn

i=1min(eei, R) ≥ n) = Prob(eei ≥ 1), both a fully linked network and an

unlinked network give the same expected utilities (from an ex-ante point of view).

VI. Optimal networks

A. Characterization

I now characterize optimal networks within a larger set of networks. The only restriction

I impose is that agent i is linked to agent j if and only if agent j is also linked to agent i.

More formally,

For every i 6= j, i ∈ Lj if and only if j ∈ Li. (15)

20



Note that I do not require that i ∈ Kj implies that j ∈ Ki. Thus, agent i can be directly

linked to agent j even though agent j is not directly linked to agent i. Financial networks

that satisfy the restriction above specify groups of agents such that agents within a group

are linked to one another. More formally, they induce a partition N1, ..., Nκ.14 The same

partition may be induced by more than one network, but Proposition 2 says that all these

networks are equivalent in terms of optimal allocations and investments. Therefore, the

problem of finding an optimal network reduces to finding an optimal partition of N .

I assume that date-1 transfers can occur within groups, but not across groups. Therefore,

I find a second-best allocation rule for each group separately. This restriction can arise if we

assume that communication at date 1 is easier for those who formed linkages at date 0. But

it can also arise endogenously by applying Ray and Vohra’s (1997) notion of “equilibrium

binding agreements” — a refinement of the standard core concept — to our setting.15

Denote the number of agents in group k by nk, and the aggregate level of investment in

the group by Ik. Proposition 4 implies that

Ik =

½
nk if

P
i∈Nk

min(ei, R) ≥ nk
0 otherwise,

(16)

and

E(Ik) = nk Prob(
X
i∈Nk

min(eei, R) ≥ nk ). (17)

Either everyone in the group invests, or no one invests. In the first case I say that the group

survives and in the second case I say the group collapses.

Since E(
Pn

i=1 Ii) = E(
Pκ

k=1 I
k) =

Pκ
k=1E(I

k), we obtain Theorem 2.16

Theorem 2 If the financial network ψ specifies the partition N1, ..., Nκ, ψ is optimal if and
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only if the partition N1, ..., Nκ maximizes the expression

κX
k=1

nk Prob(
X
i∈Nk

min(eei, R) ≥ nk ). (18)

Since agents are identical ex-ante, we can simplify the maximization problem in Theorem

2. Let f(υ) denote the probability that a group of υ agents linked to one another will survive.

That is,

f(υ) = Prob(
υX
i=1

min(eei, R) ≥ υ). (19)

Note that f(υ) is also the expected per capita investment in the group. We can find an

optimal network by solving the following problem:

max
κ,n1,...,nκ

κX
k=1

nkf(nk) (20)

subject to
κX

k=1

nk = n. (21)

Let n∗ = argmaxυ∈N f(υ). If n∗ = 1, an optimal solution is to have n groups with one

agent in each group; so an unlinked network is optimal. If n∗ = n, an optimal solution

is to have one group of n agents; so a fully linked network is optimal. In some cases,

however, optimal networks are neither fully linked nor unlinked. I use the term partially

linked to refer to such networks and illustrate in Example 5 below. Before that I show how

to calculate f(υ) when endowments are iid Bernoulli.

Example 4 Suppose endowments are iid, and eei can take two values: H with probability

p and 0 with probability 1− p. Then

min(eei, R) = ½ min(H,R) with probability p
0 with probability 1− p,

(22)
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and since the sum of iid Bernoulli random variables has a binomial distribution, we obtain

f(υ) = Prob(Zυ ≥ υ

min(H,R)
) (23)

where Zυ is a random variable that is distributed Binomial(υ, p).

Example 5 Suppose N = {1, 2, 3} and endowments are as in Example 4 with H = R = 2.

There are five partitions: p1 = ({1, 2, 3}), p2 = ({1, 2}, {3}), p3 = ({1}, {2, 3}), p4 =
({1, 3}, {2}) and p5 = ({1}, {2}, {3}). p1 specifies a fully linked network; p2, p3 and p4

specify a partially linked network, and p5 specifies an unlinked network. Denote by Qi the

value of (18) given the partition pi. Using equation (23), we obtain

f(1) = Prob(Z1 ≥ 1
2
) = Prob(Z1 = 1 ) = p (24)

f(2) = Prob(Z2 ≥ 2
2
) = Prob(Z2 = 1 ) + Prob(Z2 = 2 ) = 2p(1− p) + p2 (25)

f(3) = Prob(Z3 ≥ 3
2
) = Prob(Z3 = 2 ) + Prob(Z3 = 3 ) = 3p

2(1− p) + p3, (26)

and using (20), we obtain

Q1 = 3f(3) = 3[3p
2(1− p) + p3] (27)

Q2 = Q3 = Q4 = 2f(2) + f(1) = 2[2p(1− p) + p2] + p (28)

Q5 = f(1) + f(1) + f(1) = 3p. (29)

The optimal partition depends on the value of p. If the choice is only between p1 and p5,

then p1 is optimal when p > 0.5, and p5 is optimal when p < 0.5. If it is also possible to

choose p2, p3, and p4, these partitions are optimal when p < 0.83. This is illustrated in

Figure 1.

********** Insert Figure 1 about here. **********
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B. When is it optimal to add an agent to an existing group?

To get more intuition regarding optimal network design, it is useful to think of the con-

ditions under which adding an agent to an existing group is beneficial for existing group

members. The advantage is better risk-sharing due to diversification: a new agent may

provide insurance when the existing group is low on cash. The disadvantage is that a new

agent may increase the probability of bad outcomes: when the new agent is low on cash, he

may become the “weakest link,” thereby bringing the whole group down. The next theorem

formalizes this tradeoff. The left-hand side of the inequality captures the advantage and

the right-hand side captures the disadvantage.

Theorem 3 Adding an agent to an existing group of n agents is (strictly) optimal if and

only if Z
y<n

Prob(Yn+1 ≥ n+ 1− y |
nX
i=1

Yi = y)dGn(y)

>

Z
n≤y<n+1

Prob(Yn+1 < n+ 1− y |
nX
i=1

Yi = y)dGn(y), (30)

where Yi = min(eei, R) and Gn(y) ≡ Prob(
Pn

i=1 Yi ≤ y).

When endowments are iid Bernoulli, we obtain:

Corollary 1 If endowments are iid Bernoulli (eei equals H with probability p and zero

otherwise), it is (strictly) optimal to add an agent to an existing group if and only if

(p)Prob(n+ 1− h ≤
nX
i=1

Yi < n) > (1− p)Prob(n ≤
nX
i=1

Yi < n+ 1) (31)

where h = min(H,R).

The intuition is as follows: A new agent can benefit the existing group if 1) he does not

suffer from a liquidity shock, and 2) the aggregate endowment of the existing group is less
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than n, so they do not have enough cash for all their projects, but high enough so that the

new agent can help. If the endowment is too low, the group cannot survive even if the new

agent helps. The probability these two events will happen is captured by the expression

(p)Prob(n+ 1− h ≤Pn
i=1 Yi < n). In contrast, a new agent can become the weakest link

if 3) he realizes a liquidity shock, and 4) the aggregate endowment of the existing group

is more than n, so they can survive without the additional agent, but less than n + 1, so

they cannot support both themselves and the additional agent. The probability of these

two events is captured by the expression (1− p)Prob(n ≤Pn
i=1 Yi < n+ 1).

The two expressions above are not monotonic in p. Thus, it is possible, for example,

that when the probability of a liquidity shock increases (and everything else remains the

same), the disadvantage of adding an agent actually decreases. The group need not become

more worried about a new agent becoming a weakest link because the group is more likely

to fail even without him.17

C. Large economies with iid endowments

In the special case of iid endowments (not necessarily Bernoulli), we can use the weak law

of large numbers to prove the following lemma.

Lemma 2 If ee1, ..., een are iid, then,
lim
n→∞ f(n) =

½
0 if E[min(eei, R)] < 1
1 if E[min(eei, R)] > 1. (32)

Combining the results in Lemma 2 and Theorem 1, we obtain:

Theorem 4 If endowments are iid, there exists an integer n such that if the economy

consists of more than n agents, the following two statements hold:

1. If E[min(eei, R)] > 1, a fully linked network Pareto dominates an unlinked network.
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2. If E[min(eei, R)] < 1, an unlinked network Pareto dominates a fully linked network.
In addition, if eei is bounded, and the riskiness of eei increases in the sense of mean preserving
spread,18 the threshold E[min(eei, R)] is weakly decreasing.

While the theorem above says that when n is large enough and E[min(eei, R)] > 1,

a fully linked network Pareto dominates an unlinked network, I am not sure whether a

fully linked network must be optimal. This is because the convergence of f(n) to 1 is not

necessarily monotone. However, it is not difficult to prove that a fully linked network is

“almost optimal.”

Definition 2 A financial network ψ∗ is “ε−optimal” if F (ψ∗) ≥ F (ψ)− ε for every finan-

cial network ψ.

Theorem 5 If endowments are iid, then for every ε > 0, there exists an integer n such

that if the economy consists of more than n agents, the following two statements hold:

1. If E[min(eei, R)] > 1, a fully linked network is ε−optimal.
2. If E[min(eei, R)] < 1, a fully linked network is not optimal.

When a fully linked network is not optimal, the optimal network can be either unlinked

or partially linked. In particular, even if n is very large, it may be optimal to have subgroups

of agents who are linked to one another. The next example illustrates this.

Example 6 Go back to Example 4, and consider the following three cases:

1. p = 0.75 and min(H,R) = 1.6

2. p = 0.6 and min(H,R) = 1.5

3. p = 0.75 and min(H,R) = 1.2

Figures 2-4 graph f(n) as a function of n for each case. In case 1, E[min(eei, R)] =
26



1.2 > 1, f(n) converges to 1, and a fully linked network is ε−optimal. In cases 2 and
3, E[min(eei, R)] = 0.9 < 1 and f(n) converges to 0. In case 2, n∗ = 3 and it is optimal to

have groups of three agents (because of integer problems, we may have one group of one or

two agents). In case 3, n∗ = 1, so an unlinked network is optimal.

********** Insert Figures 2-4 about here. **********

VII. Applications

A. Payment systems

To apply the results to payment systems, I extend the setting in Section I to allow for

consumption in different locations, as in Freixas and Parigi (1998). Each bank is in a

different location. Late consumers consume in their original location, but early consumers

may need to switch location. An early consumer learns between date 0 and date 1 in what

location he would like to consume. If he learns that he wants to consume in a different

location, he has two alternatives: The first is to withdraw his deposit in the bank in the

old location and take the cash with him to the new location. This corresponds to a gross

system. The second is to get a guarantee from the bank in the old location that says that

if he withdraws cash from the bank in the new location, the bank in the old location will

transfer the funds. This corresponds to a net system.

These bank guarantees, which represent intraday credits, create linkages among banks

in the same way that interbank deposits do in the setting of Allen and Gale. Thus, the

same arguments used in Section I imply that a net payment system may be optimal. This

27



is despite the fact that the money needed to satisfy the liquidity needs of early consumers

is already in storage, so there is no cost of holding reserves.

B. Joint liability arrangements

With the interpretation that Ii in the basic model denotes whether agent i repays his loan

(Ii = 1) or defaults (Ii = 0), and R denotes the return on a non-transferable asset (e.g.,

benefits from future loans) that an agent loses if he defaults, the theory can apply to joint

liability arrangements, such as the ones used by the Grameen Bank. The theory suggests

that group punishments may be effective because they induce voluntary transfers from

successful agents to agents who are about to default.19 It can also be used to calculate

the optimal number of groups and the optimal number of agents within a group (different

groups may have different sizes).

VIII. Discussion

The main point of this paper is that linkages that help spread contagion may be optimal

because the threat of contagion can motivate agents to help one another, even when they

cannot precommit to do so. This result seems robust. It can be applied, for example, to

the design of payment systems showing that net payment systems can be optimal even if

holding reserves is not costly.

I also characterize optimal networks, focusing on the tradeoff between risk sharing and

the potential for extreme outcomes that result in a collapse of the whole network. Doing

so, I ignore other issues that may be important in optimal network design, such as moral

hazard, coordination problems, and free-riding problems. In some sense, this makes some

of the results more interesting, in particular, the result on the optimal group size.
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A crucial assumption is the availability of some coordinating device when the threat of

contagion arises. Without coordination the results do not hold. This suggests that whether

agents should be linked or whether contagion is bad may partially depend on whether it is

possible to coordinate.

The paper offers a new perspective on private-sector bailouts: these voluntary transfers

may be a form of achieving mutual insurance and may be optimal from an ex-ante point

of view. I also demonstrate the role of government: it can increase welfare by coordinating

voluntary transfers. In future research, it remains to be explored whether coordination may

occur also in decentralized environments.

An open question is whether agents will form optimal networks. The existing literature

shows that this may not always be the case. For example, in a related paper, Acharya (2001)

shows that banks may choose projects with correlated payoffs in order to fail together. This

may not be optimal for the economy, however. In a more general framework, Jackson and

Wolinsky (1996) study stable networks, in which a link between a pair of agents exists only

if both agents agree to it. They show that a stable network that is also efficient does not

always exist .20 The conclusion is that in some cases there may be room for endogenous

institutions or rules by regulators that are created in order to help implement efficient

networks.

29



Appendix A Unobservable endowments

When endowments are private information, allocations cannot be contingent on endowments

directly, but they can be contingent on announcements agents make. By the revelation

principle, we can assume without loss of generality that the announcement space is the

space of realized endowments, and we can focus on allocation rules that implement truth

telling. Let Fi(bei | ei, x(e)) denote the expected utility for agent i if given the allocation
rule x(e), he announces bei instead of ei. Then

Fi(bei | ei, x(e)) = ei − bei +X
e−i

Vi((x(bei, e−i)) Prob(ee−i = e−i). (A1)

x(e) induces truth telling if for every i ∈ N, for every e, and for every bei,
Fi(ei|ei, x(e)) ≥ Fi(bei|ei, x(e)). (A2)

The planning problem is as in Section III, but we need to add the truth telling constraint.

The next example illustrates that a fully linked network can still be optimal, but for a

smaller set of parameters.

Example 7 Suppose n = 2, endowments are iid, and each eei can take two values: 2
with probability p and 0 with probability 1 − p. Consider the following allocation rule: If

e1 + e2 ≥ 2, then x1(e) = x2(e) =
e1+e2
2 ; otherwise, xi(e) = ei for i = 1, 2. If agents

make truthful announcements, x(e) achieves the second best. In addition, it follows from

Example 1 that the participation constrain holds when R ≥ 2. I will show that the truth
telling constraint holds when R ≥ 2−p

1−p which implies R ≥ 2.
Consider without loss of generality agent 1. If e1 = 0, he must announce be1 = 0. If e1 = 2,
he can choose to announce either 0 or 2. Suppose the other agent announces truthfully. If

agent 1 announces truthfully, his utility is R if e2 = 0, and 1+R if e2 = 2. If he announces
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be1 = 0, his utility is 2 if e2 = 0, and 2+R if e2 = 2. Thus, agent 1 will announce truthfully

if

(1− p)R+ p(1 +R) ≥ (1− p)2 + p(2 +R). (A3)

This is equivalent to R ≥ 2−p
1−p .

Appendix B

Proof of Lemma 1. To prove the first part, we need to show that Ii(x) = 1 if and

only if xj ≥ 1 for every j ∈ Li ∪ {i}.
First direction: Suppose xj ≥ 1 for every j ∈ Li ∪ {i}. Assume by contradiction that

Ii(x) = 0, and consider the investment rule I(x) given by

Ij(x) =

½
1 if j ∈ Li ∪ {i}
Ij(x) if j /∈ Li ∪ {i}. (A4)

I(x) satisfies equation (6). Since Kj ⊂ Li for every j ∈ Li∪{i}, it follows that pj(I(x)) = 1
for every j ∈ Li∪{i}; and since R > 1, it follows that I(x) satisfies equation (7). In additionPn

i=1 Ui(x, I(x)) >
Pn

i=1 Ui(x, I(x)). This contradicts the optimality of I(x).

Second direction: Suppose that Ii(x) = 1, and assume by contradiction that there exists

k ∈ Li ∪ {i} such that xk < 1. Equation (6) implies that Ik(x) = 0, and equation (4)

implies that pz(I(x)) = 0 for every z ∈ Kk. Equation (7) then implies that Iz(x) = 0 for

every z ∈ Kk. We can continue to show that Ii(x) = 0, thereby obtain a contradiction, by

induction on the distance (i.e., the length of the shortest path) between k and i.

To prove the second part, note that equation (7) implies that Ii(x) = 1 only if pi(I(x)) =

1, and equation (4) implies that pi(I(x)) = 1 only if Ii(x) = 1. Thus, pi(I(x)) = Ii(x), and

it follows that Vi(x) = xi + (R− 1)Ii(x).
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Proof of Proposition 1. Let σi denote whether agent i accepts (σi = 1) or rejects

(σi = 0). A (pure) strategy for agent i specifies whether to accept or reject as a function

of (σ1, . . . , σi−1). I will show by a backward induction that if x∗ is offered, any equilibrium

strategies are such that agent 1 accepts, and agent i ∈ {2, . . . , n} accepts if agents 1, . . . , i−1
have accepted. Thus, the unique outcome is that all agents accept.

Start with agent n. Suppose that agents 1, . . . , n − 1 have accepted. If he accepts, he
obtains Vn(x∗). If he rejects, he obtains Vn(e). Since x∗ satisfies Vn(x∗) ≥ Vn(e), and an

agent who is indifferent accepts, agent n accepts.

Assume now that agents i + 1, . . . , n accept if all agents who responded before them

accept. Consider agent i, and suppose agents 1, . . . , i− 1 have accepted. If agent i accepts,
the induction assumption implies that agents i+ 1, . . . , n will accept as well; thus, agent i

ends up with Vi(x
∗). If agent i rejects, he ends up with Vi(e), no matter what the other

agents do. Since Vi(x∗) ≥ Vi(e), it is optimal for him to accept.

Proof of Proposition 2. Consider the second-best problem. Lemma 1 implies that

pi(I) does not appear in the constraints nor in the objective function; only L1, ..., Ln appear.

Therefore, only L1, ..., Ln matter.

Proof of Proposition 3. Lemma 1 implies that for an unlinked network, Vi(x)

depends only on xi and is increasing in xi. Thus, the interim participation constraint is

satisfied only if xi ≥ ei for every i ∈ N . Equation (8) then implies that xi = ei for every

i ∈ N .

Proof of Proposition 4. Assume first that
Pn

i=1min(ei, R) ≥ n. If ei ≥ 1 for

every i ∈ N , the allocation rule xi(e) = ei is feasible and satisfies the interim participation

constraint; in addition,
Pn

i=1 Ii(x(e)) = n; so the allocation is optimal. Assume now that

ei < 1 for some i, and consider the allocation rule x(e) where xi(e) = ei − min(ei, R) +
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Pn
i=1min(ei,R)

n . Since ei ≥ min(ei, R) and
Pn

i=1min(ei, R) ≥ n, it follows that xi(e) ≥ 1. In
addition,

Pn
i=1 xi(e) =

Pn
i=1 ei; so x(e) is feasible. Now, Lemma 1 implies that for every

i ∈ N , Ii(x(e)) = 1, Vi(x(e)) = xi(e)− 1 +R and Vi(e) = ei. Thus,

Vi(x(e))− Vi(e) = −min(ei, R) +
Pn

i=1min(ei, R)

n
− 1 +R ≥ 0

and the interim participation constraint is satisfied. Finally,
Pn

i=1 Ii(x(e)) = n; so x(e) is

optimal.

Assume now that
Pn

i=1min(ei, R) < n. Suppose x(e) is an optimal allocation rule.

Lemma 1 implies that
Pn

i=1 Ii(x(e)) equals either n or zero. Assume, by contradiction, thatPn
i=1 Ii(x(e)) = n; that is, Ii(x(e)) = 1 for every i ∈ N . Let ti = −Ti be the net amount

taken from agent i, i.e., ti = ei − xi(e). Then, xi(e) = ei − ti. Since R > 1 and Ii ∈ {0, 1},
Lemma 1 implies that xi(e) ≤ Vi(x(e)) ≤ xi(e)+R−1. Thus, Vi(x(e)) ≤ ei−ti−1+R, and

Vi(e) ≥ ei. To satisfy equation (11), we must have ei − ti − 1 +R ≥ ei, which implies that

ti ≤ R − 1. To have Ii(x(e)) = 1, we must have xi(e) ≥ 1, which implies that ti ≤ ei − 1.
Therefore, ti ≤ min(R−1, ei−1). Summing over i, we obtain

Pn
i=1 ti ≤

Pn
i=1min(R, ei)−n.

But then, since
Pn

i=1min(ei, R) < n, it follows that
Pn

i=1 ti < 0. This is equivalent toPn
i=1 xi(e) ≥

Pn
i=1 ei, which violates equation (8). Hence, there is no feasible allocation in

which
Pn

i=1 Ii(x(e)) = n; so we must have
Pn

i=1 Ii(x(e)) = 0.

Proof of Theorem 1. The results follow from equations (13), (14), and the fact that

maximizing the expected sum of utilities is equivalent to maximizing the expected aggregate

investment.

Proof of Theorem 3. Adding an agent is optimal if and only if f(n+1)− f(n) > 0.

This is because f(n) is the expected per capita investment in a group of n agents, and

maximizing the expected sum of utilities is equivalent to maximizing the expected aggregate

33



investment. Denote Fn(n+1− y|y) ≡ Prob(Yn+1 ≥ n+1− y|Pn
i=1 Yi = y), and note that

Fn(n+ 1− y|y) = 1 if y ≥ n+ 1. The result then follows from:

f(n+ 1)− f(n) = Prob(
n+1X
i=1

Yi ≥ n+ 1)− Prob(
nX
i=1

Yi ≥ n) (A5)

=

Z
y
Prob(

nX
i=1

Yi + Yn+1 ≥ n+ 1|
nX
i=1

Yi = y)dGn(y)−
Z
y≥n

dGn(y)

=

Z
y
Fn(n+ 1− y|y)dGn(y)−

Z
y≥n

dGn(y)

=

Z
y<n

Fn(n+ 1− y|y)dGn(y) +

Z
n≤y<n+1

Fn(n+ 1− y|y)dGn(y)

+

Z
y≥n+1

dGn(y)−
Z
y≥n

dGn(y)

=

Z
y<n

Fn(n+ 1− y|y)dGn(y) +

Z
n≤y<n+1

Fn(n+ 1− y|y)dGn(y)

−
Z
n≤y<n+1

dGn(y)

=

Z
y<n

Fn(n+ 1− y|y)dGn(y)−
Z
n≤y<n+1

(1− Fn(n+ 1− y|y))dGn(y)

Proof of Lemma 2. Denote Yi = min(eei, R), Mn = | 1n
Pn

i=1 Yi − E(Yi) |, and let
ε = |1−E(Yi)|. Then

f(n) = Prob(
1

n

nX
i=1

Yi ≥ 1) = (A6)

Prob(
1

n

nX
i=1

Yi ≥ 1 |Mn < ε )Prob(Mn < ε ) + Prob(
1

n

nX
i=1

Yi ≥ 1 |Mn ≥ ε )Prob(Mn ≥ ε )

By the weak law of large numbers,

lim
n→∞Prob( Mn < ε) = 1. (A7)

Thus,

lim
n→∞ f(n) = lim

n→∞Prob(
1

n

nX
i=1

Yi ≥ 1 |Mn < ε ). (A8)
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Mn < ε is equivalent to E(Yi) − ε < 1
n

Pn
i=1 Yi < E(Yi) + ε. When E(Yi) < 1, we obtain

ε = 1−E(Yi), and 1
n

Pn
i=1 Yi < E(Yi) + ε = 1. Thus, limn→∞ f(n) = 0. When E(Yi) > 1,

we obtain ε = E(Yi)− 1, and 1
n

Pn
i=1 Yi > E(Yi)− ε = 1. Thus, limn→∞ f(n) = 1.

Proof of Theorem 4. If E[min(eei, R)] > 1, then limn→∞ f(n) = 1 (Lemma 2); and

since f(1) < 1, there exists n such that f(n) > f(1) for every n > n. If E[min(eei, R)] < 1,
then limn→∞ f(n) = 0; and since f(1) > 0, there exists n such that f(n) < f(1) for every

n > n. The first two statements then follow from Theorem 1. The last result follows since

min(x,R) is concave in x and since the statement “A is more risky than B in the sense of

mean preserving spread” is equivalent to “EU(A) ≤ EU(B) for all concave functions U.”

See Rothschild and Stiglitz (1970) for a proof of this fact.

Proof of Theorem 5. To prove the first part, denote by G(ψ) the value of the

objective function in equation (20) given a network ψ. Let ε > 0, and let ψ1 be a fully linked

network. Lemma 2 implies that there exists n such that for every n > n, G(ψ1) ≥ 1− ε
R−1 .

Since an upper bound on G(ψ) is 1, it follows that G(ψ1) ≥ G(ψ)− ε
R−1 for every ψ. Since

F (ψ1)−F (ψ) = (R− 1)[G(ψ1)−G(ψ)], it follows that F (ψ1) ≥ F (ψ)− ε for every ψ. The

second part follows from part 2 of Theorem 4.
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Notes

1In a different framework, Kyle and Xiong (2001) and Goldstein and Pauzner (forthcom-

ing) model contagion across two asset markets that propagates through wealth effects.

2In different contexts, Diamond and Rajan (2001) and Calomiris and Kahn (1991) show

that a fragile capital structure for banks is optimal; Rampini (forthcoming) shows that sub-

stantial correlation of default may be a result of optimal risk sharing; and Bond (forthcom-

ing) analyzes joint liability among borrowers that results from optimal contractual arrange-

ments.

3Besley and Coate (1995) analyze a similar tradeoff in a different theoretical framework

in a model of joint liability between two borrowers. Rai and Sjöström (2004) show that

this tradeoff disappears once we allow for cross reporting; in other words, when one agent

cannot pay, the other agent is being punished only if he could have helped out, but chose

not to.

4See Ghatak and Guinnane (1999) for discussion and empirical evidence regarding group

size in joint liability arrangements.

5In a different context, Dewatripont and Maskin (1995) focus on the inefficiencies that

arise from an inability to commit to stop bad projects (i.e., not to bail out). They show that

decentralization can sometimes mitigate these inefficiencies because it creates coordination

problems.

6See Morgan (2002) for empirical evidence consistent with the view that bank loans are

opaque.

7Since all banks are identical ex-ante, all deposits have the same value at date 0.

39



8Another way to write equation (4) is as follows: pi(I) =
Q

j∈Ki∪{i} Ij . This is similar

to the O-Ring production function in Kremer (1993).

9More formally, Li = {j ∈ N : there exist a positive integer m and agents i1, ..., im such

that ik ∈ Kik−1 for k = 1, ..,m+ 1 where i0 = i and im+1 = j}.
10With no private information, the results will stay the same if we replace equation (8)

with the constraint
Pn

i=1 xi(e) ≤
Pn

i=1 ei.

11Footnote 15 proposes an equilibrium concept where a bailout takes place even though

some banks, such as Bear Stearns in LTCM’s bailout, choose not to participate.

12Using a similar logic, Farrell and Saloner (1985) show that if each firm prefers to switch

to a new standard given that all other firms switch, the unique subgame perfect equilibrium

outcome is that all firms switch.

13To apply Proposition 2 to Allen and Gale’s setting, you need to make sure that the

amount bank i deposits in other banks does not depend on the number of banks to which

bank i is directly linked. Allen and Gale obtain a different result because they assume that

the total exposure of each bank remains constant; so if a bank is directly linked to more

banks, the exposure between any two banks becomes smaller, and contagion is less likely to

happen.

14N1, ..., Nκ is a partition of N if ∪κk=1Nk = N and if for every k0 6= k00, Nk0 ∩Nk00 = ∅.
15I thank the referee for motivating me to think along these lines. Loosely speaking, an

allocation x is an equilibrium binding agreement given a coalition structure ℘ (a coalition

structure is a partition of N , not necessarily the one induced by the linkages) if (1) each

coalition in ℘ implements the best allocation for them taking as given the allocations agreed

upon by the other coalitions; and (2) taking into account the resulting equilibrium actions

of the residual members of the coalition, no subgroup of agents can gain by breaking up
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a coalition. In our setting, for any ℘, if x is an equilibrium binding agreement given ℘,

then
P

i∈Nk
xi =

P
i∈Nk

ei, for every k = 1, . . . , κ. In addition, there exists a second-best

allocation bx and a coalition structure b℘, such that bx is a binding agreement given b℘. Using
the core concept can also help to rule out transfers across groups, but it may also raise a

free-rider problem: anticipating that the other agents will coordinate a bailout without him,

an agent may be better off separating from the group. The notion of equilibrium binding

agreements overcomes this problem by allowing us to break each Nj into more than one

coalition, so that all members within a coalition are essential to the bailout.

16Since R > 1 implies that (ei, R) ≥ 1 iff ei ≥ 1, Theorem 1 is a special case of Theorem

2 (κ = n and nk = 1).

17More generally, denote the first expression (advantage) by α(p) and the second one

(disadvantage) by β(p). As in Example 4, α(p) = Prob(n+1−hh ≤ Zn < n
h) and β(p) =

Prob(nh ≤ Zn < n+1
h ), where Zn is a random variable that is distributed Binomial(n, p).

Since the length of the interval [n+1−hh , n+1h ) is 1, there is exactly one integer, say k, that

falls in that interval. If k ∈ [n+1−hh , nh), then α(p) =
¡n
k

¢
pk+1(1− p)n−k > 0, β(p) = 0, and

there exists p such that α(p) is increasing if p < p and decreasing if p > p. If k ∈ [nh , n+1h ),

then α(p) = 0, β(p) =
¡n
k

¢
pk(1−p)n+1−k > 0, and there exists p such that β(p) is increasing

if p < p and decreasing if p > p.

18Let A be a random variable with a distribution function FA and let B be a random

variable with a distribution function FB, such that both take values on the interval [0, y].

A is more risky than B in the sense of mean preserving spread if E(A) = E(B) and

S(y) ≡ R y0 (FA(z)− FB(z))dz ≥ 0 ∀y ∈ [0, y].
19An alternative explanation is that group members impose additional penalties on a

defaulting member, thereby increasing his ability to commit. This is referred to in the
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literature as social collateral. See, for example, Besley and Coate (1995).

20See also Bala and Goyal (2000), who study a model in which one agent can impose links

on other agents, and Corbae and Duffy (2003), who do some experiments with network

formation.
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Figures

Figure 1. Optimal networks (An example). The figure plots the expected aggre-

gate investment for three different networks. There are three agents, and endowments are

iid: either zero or two. When p < 0.83, it is optimal to have two groups: one with one agent

and one with two agents. When p > 0.83, it is optimal to have the three agents linked to

one another.

Figure 2. An example in which a fully linked network is “ε-optimal.” The

figure plots the probability that a group of agents linked to one another will survive as a

function of the group size. Endowments are iid Bernoulli: 1.6 with probability 0.75 and

zero otherwise.

Figure 3. An example in which a partially linked network is optimal. The

figure plots the probability that a group of agents linked to one another will survive as a

function of the group size. Endowments are iid Bernoulli: 1.5 with probability 0.6 and zero

otherwise. The optimal group size is three.

Figure 4. An example in which being unlinked is optimal. The figure plots the

probability that a group of agents linked to one another will survive as a function of the

group size. Endowments are iid Bernoulli, 1.2 with probability 0.75 and zero otherwise.
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