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Abstract

We argue for a shift in the focus of modeling production from the traditional assumptions of profit

maximization and cost minimization to a more general assumption of managerial utility maximization that can

incorporate risk incentives into the analysis of production and recover value-maximizing technologies.  We

show how this shift can be implemented using the Almost Ideal Demand System.  In addition, we suggest a

more general way of measuring efficiency that can incorporate a concern for the market value of firms’ assets

and equity and identify value-maximizing firms.  This shift in focus bridges the gap between the risk-incentives

literature in banking that ignores the microeconomics of production and the production literature that ignores

the relationship between production decisions and risk.



Tufano (1996) reviews the literature on when trading expected profit for reduced risk is a value-1

maximizing investment strategy.

See, for example, Merton (1977), Marcus (1984), Grossman (1992), Demsetz, Saidenberg, and Strahan2

(1996), and Keeley (1990).

Recovering Risky Technologies Using the Almost Ideal Demand System:

An Application to U.S. Banking

Introduction

Risk is a fundamental calculation in production decisions, and as Modigliani and Miller (1958)

note, when risk matters, the objective of profit maximization fails to account for the riskiness of production

and the interest rate at which profit is discounted.  In contrast, the objective of value maximization ranks

production plans not just by their expected profitability but also by the discount rate on profit that is

required by their riskiness.  Consider two production plans, one more profitable and more risky than the

other.  If we rank these plans by their expected profit, we ignore the effect of their difference in risk on the

discounted value of their expected profit.  If the more risky plan requires a higher discount rate, the less

profitable but less risky plan may imply the higher market value.

Value-maximizing production plans can also differ from static profit-maximizing plans when

production involves the potential for costly episodes of financial distress.  In such cases trading current

expected profit for reduced risk may be a value-enhancing strategy.   Thus, the less profitable but less risky1

production plan may also imply a higher market value because it reduces the expected cost of financial

distress.

Risk is a fundamental calculation in commercial banking.  A large literature explores banks’

contrasting incentives for risk-taking.  On the one hand, safety-net subsidies such as mispriced deposit

insurance give banks the incentive to take extra risk while, on the other hand, the potential for costly

episodes of financial distress involving liquidity crises, regulatory interventions into bank operations, and

the possible forfeiture of a valuable charter gives banks the incentive to reduce risk.   While this literature2

explores the effect of these contrasting incentives on banks’ risk-taking, it generally ignores the

microeconomics of bank production.  An equally large literature uses dual cost and profit functions to
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See Berger and Mester (1997) for a review of the production literature.3

See Calomiris and Kahn (1991) and Flannery (1994) for an analysis of risk shifting in bank production.4

See, for example, Saunders, Strock, and Travlos (1990) for an analysis of ownership agency problems in5

banking.

See Gorton and Rosen (1995).6

investigate the microeconomics of bank production—to measure scale and scope economies and to gauge

managerial efficiency.   While this literature models production decisions, its reliance on the assumptions3

of cost minimization and profit maximization leaves it without an analytical framework to incorporate risk-

taking and such risk-related phenomena as diversification and moral hazard.

The standard production literature based on profit maximization and cost minimization also lacks a

logical apparatus to model inefficient production decisions.  Although it uses various techniques to

measure inefficiency—the failure to achieve maximum profit or minimum cost—its logical framework

cannot explain inefficiency.  This failure is related to its neglect of risk.

Risk is also a fundamental calculation in many agency relationships and agency problems that

result in managerial inefficiency.  For example, managers who act in the interests of shareholders may

make production decisions that entail extra risk not priced by debtholders and, in doing so, transfer value

from debtholders to shareholders.   Entrenched managers, whose firm-specific human capital leaves their4

wealth poorly diversified, may choose less risky production plans to avoid endangering their

jobs—enhancing their personal wealth at the expense of their employers’ wealth.   Less skilled managers5

who are not entrenched—whose jobs depend on a good realization of profit but whose lower skill reduces

the expected profit attained at any level of risk— may take extra risk to attain an acceptable expected value

of profit.  As long as the risk they take cannot be observed perfectly by the owners, their strategy can

maximize their own wealth at the expense of their employers.   In all these cases, inefficient production6

decisions involve risk calculations.  The standard analysis of production based on profit maximization and

cost minimization is logically unable to explain them.  Nor is it able to explain inefficiency due to

managerial shirking and expense preferences.
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A. Bridging the Gap Between the Risk-Incentives Literature and the

Microeconomics-of-Production Literature

The gap between the risk-incentives literature and the production literature can be bridged by

incorporating risk into models of bank production so that the fundamental explanatory framework is

logically able to analyze risk-based phenomena such as diversification and moral hazard.  Building this

bridge requires a generalization of the managerial objective function so that it can explain value-

maximizing production decisions as well as profit-maximizing decisions—and even decisions that fail to

maximize value or profit.  And if the generalization of the managerial objective function can explain

inefficient decisions, the analysis must also define an efficiency standard that identifies value-

maximizing production plans and gauges the opportunity cost of firms’ inefficiency.

B. Explaining Value Maximization and Inefficiency

In this paper we describe a research program that seeks to shift the focus in modeling bank

production from profit maximization to value maximization.  We review and synthesize the ideas from a

number of papers and present results from an application of some of these ideas to a sample of commercial

banks.  The research program investigates how to incorporate risk into the analysis of production so that it

can explain risk-related phenomena, which include phenomena that result in managerial inefficiency.  The

program consists of two basic components.

The first component builds a generalized managerial objective function so that managers can rank

production plans by higher moments of their implied probability distributions of profit to allow for risk and

agency issues to influence their decisions.  The goal of this generalization is to build a theoretically

consistent model that allows us to explain firms’ observed production decisions—even inefficient ones.  In

contrast, the commonly used maximum profit function explains decisions when risk and inefficiency play

no role.

The second component builds upon the infrastructure of the generalized managerial objective

function to address issues of firm inefficiency. This approach shifts the focus of efficiency measurement
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Hereafter, we shall use HLMM to designate these coauthors.7

from fitting maximum profit and minimum cost functions as frontiers to fitting frontiers that identify value-

maximizing firms.  This can be done directly with the market values of firms that are publicly traded, or it

can be done indirectly with the profit predicted by the generalized managerial objective function.  By

fitting a frontier of predicted profit, rather than fitting the profit function itself as a frontier, each firm’s

expected profitability can be compared to the expected profitability of firms in a varied set of peer groups. 

These peer groups could be defined by a measure of risk that is a proxy for the discount rate or by a

measure of size or even by the arguments of the maximum profit function.  To the extent that the predicted

profit and a proxy for the discount rate can explain market value, this method incorporates market value in

its measure of efficiency and can identify firms whose production decisions approximate value-maximizing

decisions. 

 Thus, the explanatory goal of this research program involves not only incorporating risk and

inefficiency into firms’ decision-making but also developing empirical methods of measuring the efficient

frontier and inefficiency.  Since the standard profit function assumes that profit is maximized, its logic

potentially applies only to the behavior of the firms “close” to the frontier—the “efficient” firms.  In

contrast, the generalized managerial objective function is potentially able to explain the behavior of all

firms because it does not impose efficiency as its managers’ objective.  And by generalizing efficiency

measurement to incorporate market value, firms whose production decisions approximate the goal of value

maximization can be identified.

The theoretical framework and the empirical tools that constitute this program have been used to

investigate a variety of questions in bank production.  We review this literature and its evolution, and we

turn to an estimation, some of whose results appeared in an unpublished working paper (Hughes, Lang,

Mester, and Moon, 1995),  which launched these applications.  This empirical application differs from any7

of those that followed.  Here, we update the interpretation of its findings and present new empirical results

to show how our framework bridges the gap between the risk-incentives literature and the

microeconomics-of-production literature.
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This framework for modeling generalized managerial preferences draws on earlier work by Hughes (1989,8

1990) on hospitals and education that allows managers to choose production plans that trade profit for other
objectives.

I. Generalizing the Managerial Objective Function

A. Generalizing Managers’ Rankings of Production Plans

Our strategy to incorporate risk into the firm’s choice of production plans links the production plan

to a subjective, conditional distribution of profit.  The technology defines all feasible production plans. 

Each of these plans is linked to a subjective, conditional probability distribution of profit by managers’

beliefs about the probability distribution of future economic states and about how these states interact with

production plans to generate profit.  Given these beliefs, a firm’s choice of production plan is equivalent to

a choice of a conditional probability distribution of profit.

We attribute to the firm’s managers a ranking of production plans that reflects their objectives. 

Managers who maximize profit rank plans by their expected profitability—the first moment of their

conditional probability distribution of profit.  Managers who maximize the firm’s value, or who trade the

firm’s value for personal objectives, also consider higher moments of the plans’ conditional probability

distributions.

To identify the firm’s highest ranked production plan, we represent its ranking of plans by a

managerial utility function defined over the production plan and profit.  This allows managers to rank

plans based on expected profit and the variance of profit, the first two moments of the conditional

probability distribution of profit.  But it also allows for more general utility functions that include even

higher moments.  Firms maximize this utility function to obtain their most preferred production plan (for

inputs and outputs) and their most preferred profit function.   These choice functions are sufficiently8

general to subsume profit maximization as well as value maximization and to allow managers to trade

value or profit for personal objectives.  Hence, they can capture the effects of distress costs as well as

safety-net subsidies on banks’ production decisions, and they can explain inefficiency, too.  Since the logic

of the model permits managers to choose plans that do not maximize the value of the firm, a technique of
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efficiency measurement that identifies value-maximizing firms is required.

B. Specifying Banking Technology

We define a bank’s production plan by its output vector, y, which consists of asset categories, such

as commercial and industrial loans, consumer loans, real estate loans, and government securities.  The

production plan also includes the input vector, x, and equity capital, k.  Inputs comprise sources of

loanable funds, insured and uninsured deposits and other borrowed money, and the labor and physical

capital used in intermediating the loanable funds.  Thus, a production plan, (y, x, k), consists of the

portfolio of loans and securities and the inputs and financial capital used to produce the portfolio.  The

output price vector, p, represents the interest rates charged on the different components of the asset

portfolio, y.  The higher the interest rate charged, relative to the risk-free rate, r, the higher the asset’s risk

premium.  We use the average contractual return on assets, p, as a measure of ex ante asset quality and the

amount of nonperforming loans, n, as a measure of ex post asset quality.

Other components of the bank’s price environment include w, the input price vector; w , thek

required return on equity capital; and m, income from sources other than the output vector, y, which is

noninterest and fee income.  Letting t be the tax rate on profit and p  = 1/(1!t), the price of a dollar of
B

after-tax profit in terms of before-tax dollars, the before-tax accounting profit is defined as p B = p@y + m !
B

w x. 

We represent banking technology by a transformation function, T(y, x, n, p, r, k) # 0, which

defines the feasible production plans, augmented by the three variables (n, p, r) characterizing asset

quality. 

C. Maximizing a Generalized Managerial Utility Function

Managers of banks rank and choose production plans.  Profit-maximizing managers rank plans

only by the first moment of their implied probability distributions of profit.  Value-maximizing managers

and managers pursuing personal goals are influenced by higher moments as well.  To allow for the
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possibility that higher moments may influence rankings, we represent these generalized managerial

preferences by a utility function, U(B, y, n, p, r, x, k).  Managers’ beliefs about how states of the world, s,

interact with the production plan to determine a realization of profit, B = g(y, n, p, x, k, s), plus their beliefs

about the probability distribution of states of the world, determine a subjective distribution of profit, f(B; y,

n, p, r, x, k), that is conditional on the production plan.

Hughes and Moon (1995) demonstrate that this representation of the managerial utility function is

a more general way of representing preferences than utility defined over expected profit and profit risk,

U(E(B), S(B)). Only under certain restrictive conditions can the distributions f(B; y, n, p, r, x, k) be

represented by their first two moments, E(B; y, n, p, r, x, k) and S(B; y, n, p, r, x, k), and so managers’

rankings of production plans can be represented by a utility function defined over these moments, U(E(·),

S(·)).  A more general representation allows higher moments to influence preferences and is given by utility

defined over the distribution, f(·): U(B; y, n, p, r, x, k).

This generalized managerial utility function that ranks subjective conditional distributions of profit

is sufficiently general to allow managers to maximize profit, to maximize value, or to maximize some other

objective that results from agency problems.  When they maximize profit, only the first moment influences

the ranking or, equivalently, only B has marginal significance in the function.  Hence, the production plan

does not directly influence utility except through B.  When risk or, say, managerial expense preferences

influence rankings, higher moments matter, that is, the production plan influences utility directly and also

indirectly through its effect on B.

The generalized managerial objective function assumes that managers choose their most

preferred production plan or, equivalently, their most preferred subjective conditional probability

distribution of profit.  Hence, managers maximize the generalized utility function subject to the profit

identity and the transformation function:

(1a) max U(B, x; y, n, p, r, k)
B, x

(1b)               s.t. p B = p@y + m ! w x
B  
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(1c)      T(y, n, p, x, k) # 0. 

Note this problem is conditioned on the output vector, y, to facilitate the computation of scale economies

and on equity capital, k, to allow the profit demand function to be normalized by equity capital to obtain

the rate of return on equity.  The solution consists of the most preferred profit function, B* = B(y, n, v, m,

k), and the most preferred input demand functions, x* = x(y, n, v, m, k), where v = (w, p, r, p ).
B 

The profit function, B(y, n, v, m, k), is not necessarily the standard maximum profit function.  To

the extent that risk matters in production or that managers have expense preferences, it captures these

considerations.  In this sense, it is a generalized profit function.  Note, as well, that the tax rate on profit

can influence the solution, which is not consistent with profit maximization but can result from value

maximization.

II. Using the Almost Ideal Demand System to Recover Managers’ Rankings

To implement the model, we adapt the Almost Ideal Demand System developed by Deaton and

Muellbauer (1980) to estimate consumers’ demands and, hence, to recover their rankings of goods and

services from budget data.  By applying the AID System to estimate the most preferred profit and input

demand functions, we recover managers’ rankings of production plans.  As noted above, these rankings

may be influenced by risk.

A. Estimating the Share Equations and First-Order Condition for Equity Capital

We adapt the expenditure function of the AID System to represent generalized managerial

preferences and use it to derive the functional forms for the utility-maximizing demands for profit and the

production plan.  These demand functions take the form of share equations and are derived by applying

Shephard’s Lemma to the managerial expenditure function, which is dual to the utility maximization

problem (1a-1c).  The details of their derivation can be found elsewhere (e.g., HLMM 1996) so we do not

repeat them here.  Appendix 2 lays out the steps taken in the estimation of the model.  The theoretical



p
B
B

p @y % m
'

M ln P
M ln p

B

% µ [ ln(p @y % m) & ln P].

wi xi

p @y % m
'

M ln P
M ln wi

% <i [ ln(p @y % m) & ln P]

9

Although the translog functional form is nested in the ln P expression of the AID System, any other9

flexible functional form could be substituted for it.

derivation of the demands results in shares expressed in terms of total revenue, p·y + m:

(2a)

(2b)      æ i

 where ln P = "  + 3 "  ln z  + (½)3 3  "  ln z ln z , and z = (y, n, v, k), and v = (w, p, r, p ).  In addition to0 i i i i j ij i j B 

the share equations, a first-order condition defining the optimal level of equity capital, k, is added to the

equations to be estimated.  The first-order condition constitutes a restriction on the parameters. The details

of its derivation as well as the adding-up, homogeneity, and symmetry restrictions are found in HLMM

(1996).

In addition to these regularity conditions, HLMM (1996) derive conditions implied by the

comparative-statics of profit maximization that permit a test of whether the production data are

consistent with the assumption of profit maximization.  When these conditions are imposed or are

satisfied by the data, equation (2a) becomes identical to the translog profit function and equation (2b) is

transformed into the associated translog share equations.9

Just as consumers’ preferences change over time, managers’ beliefs that constitute their rankings

of production plans can be expected to change, too.  To minimize this problem, cross-sectional data are

used, and the production system is estimated using nonlinear two-stage least squares, a generalized method

of moments.

B. Applying the AID System to Estimate Scale Economies

The AID System constituted by equations (2a) and (2b) and by the first-order condition defining

the optimal demand for equity capital has been used several times to estimate scale economies in U.S.

commercial banking.  Again, we refer the reader to HLMM (1996) for the details of how scale economies
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We measure scale economies by the inverse elasticity of cost with respect to the outputs.  Hence, values10

greater than one imply scale economies while values less than one, diseconomies of scale.

Some of the empirical results discussed below are also found in our unpublished working paper HLMM11

(1995).

are computed from the profit share equation (2b).  These applications all find large scale economies that

increase with the size of the bank—evidence consistent with the view that historical restrictions on

branching in the U.S. created a disequilibrium that the recent wave of mergers is resolving.  HLMM (1996)

estimated scale economies for highest-level U.S. bank holding companies (BHCs) in 1994.  These BHCs

ranged in asset size from $33 million to $250 billion.  They found statistically significant mean scale

economies of 1.14 that ranged from 1.12 for the smallest size group to 1.25 for BHCs that exceed $50

billion.   They tested the restrictions implied by profit maximization and rejected them.  DeYoung,10

Hughes, and Moon (forthcoming) estimated the AID System with 1994 data on U.S. national banks to

study the relationship of banks’ CAMEL ratings to their production decisions.  This data set included

smaller banks than those in HLMM (1996).  Although they did not report their estimates of scale

economies, they found statistically significant mean scale economies of 1.12 that ranged from 1.08 for the

smallest banks to 1.21 for banks larger than $50 billion in assets.

III. Assessing the Effect of Risk on Production Decisions

We now discuss a particular estimation of the AID System.   This empirical application differs11

from any of those that followed in its focus on how risk affects production decisions—in particular, levels

of capitalization and volatile funding.  We update its findings and their interpretation to show how our

framework bridges the gap between the risk-incentives literature and the microeconomics-of-production

literature.  Our application uses 1990 data on U.S. banks with assets exceeding $1 billion.  Compared to

samples used by the studies described above, this sample has no small banks, and because of the earlier

year and the use of individual banks rather than holding companies, it has no banks larger than $70 billion. 

Appendix 1 gives the definitions of the variables used; Appendix 2 lays out the empirical model that was

estimated; Tables 1 and 2 summarize the data; Table 3 reports the estimates of scale economies and
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See Hughes, Mester, and Moon (2000) for a detailed analysis of this issue and a review of studies that12

have included equity capital in bank technology.

elasticities of cost with respect to output and equity capital, elasticities of equity capital with respect to

output price and nonperforming loans, and elasticities of volatile funds (i.e., fed funds, repos, and other

borrowed money) with respect to equity capital and nonperforming loans.  We consider how these input

demand elasticities are influenced by risk-taking.

Figure 1 plots each bank’s estimated scale economies versus its asset size.  As shown in Table 3,

the estimates of scale economies are statistically significant: the sample mean is 1.15 and the estimates

range from 1.10 in the smallest asset-size quartile to 1.21 in the largest.  These results are consistent with

those of other studies using the AID System.

A unique feature of the AID System is that it allows derivation of the utility-maximizing level of

equity capital.  Including equity capital in the modeling of bank technology is becoming more common,

but it is usually treated as a conditioning argument.   When the maximization problem is conditioned on12

the level of equity capital, the sensitivity of input demands and output supplies to variations in equity

capital can be calculated.  In the formulation of the AID System in (2a) and (2b), the levels of assets

(outputs) are also conditioning arguments.  Hence, a variation in equity capital, holding the levels of assets

constant, constitutes a variation in the bank’s capital-to-asset ratio, an important component of the bank’s

riskiness.  Thus, conditioning the demands on equity capital allows the researcher to investigate the

marginal effects of this component of risk.  And when equity capital is made endogenous, an important

component of risk-taking can be explained, which is the purpose of including the first-order condition

defining the utility-maximizing capitalization in the model to be estimated.

Table 3 reports the sensitivity of the utility-maximizing demands of equity capital to changes in the

ex ante and ex post measures of asset quality.  Remember that the asset levels are conditioning arguments

so that the response of equity capital to variations in asset quality is equivalent to the response of the

capital-to-asset ratio.  Table 3 also reports the sensitivity of the demand for volatile funding, x , to asset 4

quality, which can be interpreted as the sensitivity of an important component of liquidity risk.  The

sensitivity of the demand for volatile funds to a variation in equity capital (Mln x /Mln k) is negative and 4 
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statistically significant for banks in all four size groups.  Thus, a decrease in capital or, equivalently, in the

capital-to-asset ratio is associated with an increase in the demand for volatile funds.  Apparently, banks that

accept more insolvency risk from a reduced capital ratio are also likely to accept more liquidity risk. 

However, in all size groups except the smallest, banks with a higher level of nonperforming loans, n, or,

equivalently, a higher ratio of nonperforming loans to total assets rely less on volatile funds.  Apparently,

the difference in insolvency risk posed by a decrease in equity capital and by an increase in nonperforming

loans is not symmetric.   Perhaps the realization of nonperformance is more threatening to short-term

creditors who supply volatile funds.

Table 3 also reports that, for the smallest banks, the utility-maximizing level of capital responds

positively to the level of nonperforming loans.  These banks may be acting to protect their solvency from

the ex post realization of poor loan quality by increasing their capitalization, or their regulators may be

requiring these banks to increase their capital levels.

IV. Assessing the Effect of Risk on Scale Economies

Most studies of banks’ scale economies find either constant returns or slightly decreasing returns

for large banks—a result that contradicts the usual rationale given for the megamergers of banks.  Why

does the AID System so consistently uncover the evidence of scale economies that has eluded so many

studies that use the standard cost function?  Hughes (1999) and Hughes, Mester, and Moon (2000)

(hereafter denoted HMM) contend that banks’ elusive scale economies are found on the utility-maximizing

expansion path. The key difference between the utility-maximizing expansion path of the AID System

and the cost-minimizing expansion path of the standard cost function is that the AID System allows risk

to influence production decisions.  If risk influences banks’ production decisions, as the risk-incentives

literature emphasizes, then the cost-minimizing expansion path misspecifies the bank’s equilibrium

expansion path.  And this point is confirmed by the AID System’s consistent rejection of the conditions for

profit maximization. 

We return to the empirical application of the previous section—the estimation of the AID System
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with 1990 data on large U.S. banks—and we apply a Wald test to the restrictions implied by the

assumption of profit maximization.  If banks maximize profit, a variation in the tax rate, t, and therefore,

p , will not affect the bank’s choice of before-tax profit.  In addition, the revenue and risk characteristics of
B

production, represented by output prices, p, will not influence the bank’s cost-minimizing production plan,

nor will income from sources other than the output vector, m.  In all, there are 31 restrictions. (However,

two restrictions are redundant because of the adding-up conditions these parameters satisfy.)  The

restrictions are strongly rejected by the data: the value of the test statistic, which is distributed P , is2

294.01 with 29 degrees of freedom.  Thus, the behavior of banks in the sample is not consistent with profit

maximization.

Next, we ask what measures of scale economies we would obtain if we imposed these restrictions. 

We answer this question by comparing the results of the AID System with those obtained from the

standard cost function estimated with the same data.  For this standard cost function model, we drop equity

capital and the measures of asset quality, and we use the standard translog cost formulation, including

input share equations.  We find that the estimated scale economies over asset-size categories of banks are

all significantly different from one but are considerably smaller and remarkably familiar: ranging from

1.022 for the smallest asset-size quartile, 1.029 for the second quartile, 1.035 for the third quartile, and

1.050 for the largest quartile.

HMM, using 1994 BHC data from HLMM (1996), also present evidence showing that the first-

order conditions defining the cost-minimizing demands for insured deposits, uninsured deposits, and

equity capital are violated.  Notably, most smaller banks overemploy equity capital while many larger

banks underemploy capital—a result consistent with the contrasting incentives for risk-taking emphasized

in the risk-incentives literature.  Larger banks may, on balance, be exploiting safety-net subsidies by

reducing their capital ratios while smaller banks may be protecting their charter values with higher capital

ratios.

The evidence from all of these studies strongly suggests that risk-taking incentives influence

banks’ optimal expansion path and that the strategy of measuring scale economies along the cost-
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minimizing expansion path fails to capture the empirically relevant equilibrium expansion path.  What

is the empirically relevant equilibrium path?  This path should be able to explain firms’ decisions that

respond to incentives for risk-taking.  These incentives reflect the influence of risk on the market value of

firms’ equity and debt and on the personal wealth and utility of its managers.  HMM contend that the AID

System’s utility-maximizing expansion path captures these effects when it measures scale economies,

because it allows risk and expense preference to influence managers’ rankings of production plans.  They

provide empirical evidence showing how risk, diversification, and inefficiency affect scale economies.

Thus, we contend that measuring bank technology requires a shift in the focus from the

assumption of profit maximization and cost minimization to a focus on a more powerful explanatory

framework based on managerial utility maximization.  Rather than impose profit-maximizing efficiency on

the data, we want to allow the data to speak more generally about the objectives of managers.

Allowing the data to speak generally about the objectives of managers does not mean that

the concept of efficiency is discarded—only that standards of efficiency are used to evaluate the

predicted behavior of the utility-maximizing equilibrium rather than imposed on the equilibrium

itself.  This principle stands in contrast to the practice of estimating a maximum profit function as a

frontier to identify efficient practice.  The behavioral function itself cannot explain inefficient production

decisions and may not even be consistent with the production decisions of the firms it labels as relatively

efficient.

V. Gauging Efficiency and Identifying Value-Maximizing Production Plans

HMM note that the empirically relevant expansion path, then, is not necessarily the efficient

expansion path.  How do we identify the efficient expansion path?  What standard of efficiency do we use? 

We may be interested in measuring scale economies along the expansion path that maximizes the value of

banks’ equity.  But if the managers, acting in the interest of the owners of their banks, shift risk to

debtholders, they reduce the value of the debt and increase the value of the equity.  Hence, we may instead

be interested in measuring scale economies along the expansion path that maximizes the value of the
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These two techniques were developed by Hughes, Lang, Moon, and Pagano (1997) and applied by13

HLMM (1999) to study the efficiency effects of bank consolidation.

banks’ assets.  And, of course, we may be interested in measuring scale economies along the cost-

minimizing expansion path.  Any of these standards could be designated as X-efficiency.  Once an

efficiency standard is chosen, the question is, how can we identify the X-efficient expansion path?

A traditional answer has been to estimate the managers’ objective function as a frontier, but this

solution, we have argued, may not identify an empirically relevant expansion path—certainly not for the

firms that are relatively inefficient by the standard of its objective function.  On the other hand, the utility-

maximizing expansion path is more likely to be empirically relevant but not necessarily X-efficient (unless

efficiency is defined by the managers’ own utility).  Since we are not interested in defining efficiency by

managers’ personal welfare, it makes no sense to estimate the generalized profit function of the AID

System as a frontier.

We describe the strategy proposed by HMM.  HMM identify X-efficient firms by fitting a frontier

to the X-measure of performance.  They use three measures of efficiency related to the market value of

banks.  For publicly trade BHCs, one efficiency measure is derived from a stochastic frontier relating the

market value of assets to the book value of assets; another efficiency measure is derived from a stochastic

frontier relating the market value of equity to the book value of equity.   A third efficiency measure can be13

computed for the full sample of BHCs, regardless of whether they are publicly traded.  This measure is

derived from a stochastic frontier relating expected profit based on the generalized profit function to

market-priced risk.  Thus, this efficiency measure indicates the BHC’s lost potential profit given its level of

profit risk.  HLMM (1999) show that the profit predicted by the generalized profit function and a

production-based measure of risk (the econometric prediction risk of this profit) are systematically related

to the market value of equity for the subsample of publicly traded banks.  Hence, this third measure of

efficiency is an empirically good measure of market-value efficiency.  HMM identify the most efficient

quarter of their BHCs using each of these efficiency measures.  The utility-maximizing expansion paths of

these BHCs are used to approximate the value-maximizing expansion path, and mean scale economies are

estimated for these efficient BHCs by asset-size group.
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A. An Application

We return now to our empirical application—the estimation of the AID System with 1990 data on

large U.S. banks—and apply the methodology of HMM to measure mean scale economies on the value-

maximizing expansion path.  First, we compute the third efficiency measure described above for our

sample of banks.  For each bank we compute its expected return by dividing the profit predicted for the

bank from the estimated generalized profit function (2a) by its capital level, k.  So ER = E(p B)/k.  The
B

bank’s risk is proxied by the standard error of predicted profit divided by k, i.e., RK = S(E(p B))/k.  Then a
B

stochastic frontier is estimated regressing ER on RK and RK :2

(3) ER  = (  + ( RK  + ( RK  +  ,i 0 1 i 2 i i
2

where ,  / <  ! µ  is a composite error term, with <  normally distributed with a zero mean, and µ  positivei i i i i

and half-normally distributed.  Bank i’s inefficiency is measured by the conditional mean of µ  given , ,i i

E(µ*, ).i i

Once bank efficiency is measured, we identify the quarter of banks that are most efficient in the

sample and in each of the four asset-size quartiles of banks.  As in HMM, these banks’ utility-maximizing

expansion path is considered to approximate the value-maximizing expansion path, and the mean of the

estimated scale economies of these banks is considered to approximate scale economies along the value-

maximizing expansion path.  As shown in Table 4, the results for the value-maximizing expansion path

remain qualitatively similar to the results for the utility-maximizing expansion path, with banks in all size

quartiles exhibiting strong scale economies.

VI. Generalizing Efficiency Measurement

Each of the efficiency techniques described in the previous section has a common general form. 

Letting X  denote a measure of the financial performance of the i-th firm, such as the market value of itsi

assets or its profit predicted by the generalized profit function, and G  denote a measure defining the peeri

group used to compare the i-th firm’s financial performance, such as risk or the replacement cost of assets,

we can represent this general form by the definition of the stochastic frontier that gives the highest
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potential value of X  given G :i i

(4) X   =  "  + "  G  + "  (G )  + ,i 0 1 i 2 i i
2

where ,  / <  ! µ  is an error term composed of two terms: < , which is normally distributed with a zeroi i i i

mean, and µ , which is positive and half-normally distributed when the frontier is fitted as an upperi

envelope.  The deterministic kernel of the stochastic frontier is ["  + "  G  + "  (G ) ].  The i-th bank’s0 1 i 2 i 
2

inefficiency is measured by the conditional mean of µ  given , , E(µ*, ).i i i i

For example, we can measure banks’ financial performance, X, by their profit predicted by the

estimated generalized profit function.  The frontier gives the upper envelope of X, profit, relative to the

peer grouping G.  What is the appropriate peer grouping?  A measure of risk is one candidate, say, for

example, the econometric prediction risk of X, a measure of the bank’s market beta and perhaps its interest

rate beta, or a historical measure of the risk of X.  Since X in this case is defined as accounting profit,

another peer group could be the level of equity or the level of assets.  In the latter case, the frontier defines

the maximum potential profit for any given size of the bank, and in the former case, the maximum given

the equity investment.  If risk defines the peer group, the choice of risk is excluded from the gauge of

efficiency.  Similarly, if the investment in assets or equity defines peers, their optimality is not taken into

account.

The choice of the appropriate measure of financial performance and of peer groupings depends on

the objective of the investigation.  To measure scale economies along the value-maximizing expansion

path, HMM contend that the  market-value measure of asset efficiency is well suited to the task because it

accounts both for discounted profit as well as size of the bank.  It answers the question, given the asset size

of the bank, what is its highest potential discounted profit?  Hence, it measures inefficiency due to

suboptimal risk as well as suboptimal profit.  Its failure to account for inefficiency due to a suboptimal size

is no drawback when the objective is to measure scale economies at any given size.

In summary, the AID System and its generalized profit function afford a high level of explanatory

generality in modeling production decisions.  Although this generality requires the scrapping of the

traditional profit function and its associated efficiency techniques, it does not require abandoning
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For details of the nonstandard profit function, see Humphrey and Pulley (1997).14

efficiency analysis.  Instead, it offers a far richer set of efficiency concepts that include a concern for

market values of assets and equity.  In fact, it allows the same definition of peer groups as the standard

maximum profit function fitted as a frontier.

Instead of using the profit predicted by the generalized profit function to fit (4), consider fitting (4)

as a maximum profit function.  The peer grouping, G, is a vector of the usual arguments of the maximum

profit function.  If we use the arguments of the nonstandard maximum profit function, the peer grouping

controls for the output vector, y, and the input price vector, w.   In this case, peers are defined by the14

composition of their output vector as well as their input prices, and profit inefficiency due to suboptimal

choices of outputs is excluded from the measure of inefficiency.  In contrast, if we fit (4) using the profit

predicted by the generalized profit function and if we use the same peer grouping as the nonstandard profit

function, we obtain a measure of profit efficiency that differs conceptually from that obtained by the

maximum profit function in a critically important way: both banks’ predicted profit and the frontier

fitted to it are derived from a model of managerial behavior that can potentially explain all

observations–inefficient as well as efficient.

VII. Conclusions

We have argued for a shift in the focus of modeling production from the traditional assumptions of

profit maximization and cost minimization to a more general assumption of managerial utility

maximization, and we have suggested more general ways of measuring efficiency that can incorporate a

concern for the market value of firms’ assets and equity.  This shift in focus bridges the gap between the

risk-incentives literature in banking that ignores the microeconomics of production and the production

literature that ignores the relationship between production decisions and risk.
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Appendix 1

Data and Definitions of Variables

We estimate the AID System using data on U.S. banks that reported at least $1 billion in assets as

of the last quarter of 1998.  The data are taken from the Consolidated Reports of Condition and Income for

the fourth quarters of 1989 and 1990.  Banks in unit banking states and special-purpose banks chartered

under Delaware’s Financial Center Development Act and Consumer Credit Bank Act are excluded from

the sample.  A total of 286 banks, ranging in size from $1.025 billion to $69.612 billion, are included in

the data set.  The data are summarized in Tables 1 and 2.

We specify five outputs, each measured as the average dollar amount in the fourth quarters of

1989 and 1990: y , real estate loans, including commercial as well as non-commercial; y , commercial and1 2

industrial loans, lease financing receivables, and agricultural loans; y , loans to individuals for household,3

family, and other personal expenditures; y , other loans (such as loans for purchasing and carrying4

securities, unplanned overdrafts to deposit accounts, loans to nonprofit institutions, and loans to

individuals for investment purposes); y , securities, assets in trading accounts, federal funds sold, securities5

purchased under agreement to resell, and total investment securities.

Equity capital, k, is the average amount of equity capital, loan-loss reserves, and subordinated debt

in 1990.  Hence, it consists of Tier 1 and Tier 2 capital.  In addition to equity capital, five other inputs are

incorporated into the model: x , labor, whose price, w , is measured by salaries and benefits paid in 19901 1

divided by the average number of employees in 1990; x , physical capital, whose price, w , is proxied by2 2

the ratio of occupancy expense in 1990 to the average dollar value of net bank premises in 1990; x ,3

insured deposits, whose price, w , is computed as the ratio of interest paid in 1990 on deposits under3

$100,000, net of service charges received by the bank, to the average dollar amount of interest-bearing

deposits net of CDs over $100,000; x , other borrowed money, whose price, w , is the ratio of the total4 4

expense of federal funds purchased, securities sold under agreement to repurchase, obligations to the U.S.

Treasury, and other borrowed money in 1990 to the average amount of these funds in 1990; and x ,5
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Hughes and Mester (1993) show that when deposits are inputs (outputs), variable cost (i.e., the cost of all15

nondeposit inputs) will be decreasing (increasing) in the level of deposits.

uninsured deposits, whose price, w , is the ratio of the interest expense in 1990 of deposits over $100,0005

to the average amount of those deposits.

Although some formulations have assumed that deposits are outputs, Hughes and Mester (1993)

derive a test for determining whether deposits are inputs or outputs.   In their data set, which is very15

similar to the one here, they conclude that insured and uninsured deposits are inputs.  Hughes, Mester, and

Moon (2000) reach the same conclusion with later data on highest-level BHCs.  Thus, we treat them as

inputs here as well.

The amount of nonperforming loans, n, is measured by the sum of the average level of loans past

due 90 days or more and still accruing interest and the average level of nonaccruing loans.  The price or

yield, p , on the i-th output is measured by the ratio of total interest income from the i-th output to thei

average amount of the i-th output that is accruing interest.  This price is not just a component of revenue. 

Its magnitude relative to the risk-free rate indicates the risk premium incurred by the output and, hence,

suggests the average quality of the asset.  To reduce the number of parameters to be estimated, the vector 

of output prices is replaced by the weighted average of output prices, p̃  = G  p  (y /G  y ).i i i j j

The variable, m, is measured by the amount of noninterest income received in 1990.  Revenue is

the sum, p·y + m.  The variable, t, is the tax rate on profit.  For each bank, It is the sum of the federal tax

rate, which does not vary across banks and the state tax rate in the state in which the bank is headquartered. 

The federal tax rate is 34% and state tax rates are obtained from The Book of the States, published by the

Council of State Governments, and from Significant Aspects of Fiscal Federalism, published by the U.S.

Advisory Commission on Intergovernmental Relations.  Once t is constructed, we construct the price of a

dollar of after-tax profit in terms of before-tax dollars as p  = 1/(1!t).
B
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Appendix 2

Empirical Model and Estimation

The model we estimate comprises the profit share equation (2a), the input share equations (2b),

and the first-order condition for the optimal level of equity capital, k, which is a conditioning argument in

the share equation.  The profit and input demand functions are shares expressed as shares of total revenue,

p@y + m, and sum to one.   They are derived by applying Shephard’s Lemma to the managerial expenditure

function, which is dual to the utility maximization problem (1a-1c).  Thus, the model to be estimated is:

(A2.1)

(A2.2)                                 æ i

(A2.3)

 where ln P = "  + 3 "  ln z  + (½)3 3  "  ln z ln z , and z = (y, n, v, k), and v = (w, p, r, p ), and0 i i i i j ij i j B 

(A2.4) .

As discussed in Appendix 1, to save on degrees of freedom, we replaced the vector of output

prices, p, with the weighted-average output price, p̃  = G  p  (y /G  y ).  The risk-free rate, r, is the same fori i i j j

all banks, so it is not included is the estimating equations.  Thus, written out, the equations to be estimated

are:
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(A2.1N)

(A2.2N)

(A2.3N) 
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and    p  = 1/(1!t).
B

We impose several conditions on the parameters of the model.  Symmetry requires that

(S1) *  = *   æ i,j, (S2) T  = T   æ s, and  (S3) T  = T   æ s,i.ij ji sB Bs si is

(S1) must be imposed in the estimation of the share equations, since the constituent coefficients cannot be

separately identified.  However, (S2) and (S3) involve coefficients of prices that are used by Shephard’s

lemma to obtain the share equations.  Consequently, they appear in separate share equations and are, thus,

identifiable.  It is a judgment call as to whether one imposes these symmetry conditions or not.  In the

consumer demand literature they are typically not imposed, and we follow that tact here.

The input and profit revenue share equations sum to one, which implies the following adding up

conditions:

(A1) G  T  + 0  = 1, (A2) G  T  + T  = 0, æ s,i i B i si sB

(A3) G  N  + R  = 0, (A4) G  (  + (  = 0 æ j,i pi pB i ji jB

(A5) G  T  + 0  = 0, (A6) G  T  + 0  = 0,i Bi BB i ir Br

(A7) G  T  + 0  = 0, (A8) G  T  + 0  = 0, andi ik Bk i in Bn

(A9) G<  + µ = 0.j
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Notice that (A6) contains coefficients on variables involving the risk-free rate, r.  These coefficients are not

estimated, since r does not vary across banks, so condition (A6) is not imposed in the estimation.

The input and profit share equations are homogeneous of degree zero in (w, p̃, r, p ), which
B

implies the following conditions:

(H1)  G<  + µ = 0, (H2)  "  + GT  + 0  + J = 1,j p j B

(H3)  "  + G  N  + R  + R  = 0, (H4)  N  + G  T  + T  + T  = 0 æ t,pp t pt pr pB pt s st tr Bt

(H5)  J  + R  + G  T  + 0   = 0, (H6)  2  + G  (  + (  + (   = 0 æ j,rr pr s sr Br pj t jt jB jr

(H7)  0  + R  + G  T  + 0   = 0 (H8)  R  + G  T  + J  + 0   = 0,
BB pB s sB Br pn s sn rn Bn

(H9)  R  + G  T  + J  + 0   = 0, and (H10) ½"  + ½G  G  T  + G  N  + ½Jpk s sk rk Bk pp s t st t pt rr

+ ½0  + R  + R  + G  T
BB pB pr s sr

+ ½G  T  + ½G  T  + 0  = 0.s sB s Bs Br

Note that the only homogeneity condition imposed in the estimation is (H1), which is equivalent to

the adding-up condition (A9).  The other homogeneity conditions contain coefficients on variables

involving the risk-free rate, r.  These coefficients are not estimated, since r does not vary across banks, but

the homogeneity conditions can be used to recover these coefficients.

To summarize: in estimating the model, we imposed (S1), (A1)-(A5), (A7)-(A8), and (A9) / (H1). 

The adding-up constraint (A6) amends the homogeneity constraint (H5), so that the last two terms of (H5)

drop out.  The homogeneity conditions (H2)-(H10) are then used to recover the parameters on variables

involving the risk-free rate, r, which does not vary over the cross-section of banks.

We estimated the model using nonlinear two-stage least squares, a generalized method of

moments.  Starting values were obtained by setting the constant terms, T , in the input share equations ati

the average value of the input share across banks in the sample, the constant term, 0 , in the profit share
B

equation at the average value of the profit share across banks in the sample, and all other parameters in the

input share, profit share, and equity capital demand equation equal to zero. 
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Table 1: Summary Statistics of the Data

variable sample mean sample std. dev. minimum  maximum

y †1 1490521.75 2739095.05 1038.50 26541000.00

y †2 1606152.95 3114969.78 15956.00 23962500.00

y †3 672172.08 1070269.29 8762.50 11781500.00

y †4 470269.42 1486811.00 713.00 11868570.50

y †5 1326574.19 2232463.87 13549.50 20454834.50

p ‡1 0.109 0.017 0.026 0.205

p ‡2 0.107 0.020 0.022 0.187

p ‡3 0.123 0.027 0.028 0.279

p ‡4 0.085 0.065 0.001 0.533

p ‡5 0.088 0.014 0.055 0.174

p̃‡ 0.104 0.011 0.064 0.161 

w ¶1  33.092 9.857 18.140 92.178

w ‡2 0.396 0.178 0.116 1.378

w ‡3 0.060 0.009 0.028 0.108

w ‡4 0.087 0.033 0.039 0.350

w ‡5 0.081 0.017 0.027 0.233

p ‡
B

1.664 0.112 1.515 1.871

s1 0.146 0.041 0.043 0.309 

s2 0.050 0.018 0.011 0.141

s3 0.277 0.095 0.010 0.542

s4 0.101 0.076 0.004 0.469

s5 0.314 0.128 0.109 1.208

s
B

0.337 0.071 0.122 0.749

p B†
B

223763.03 360436.38 17125.04 3116164.55

p@y + m† 667979.16 1020863.51 90000.55 8419110.74

n† 157495.47 387914.46 1254.00 3629843.00

k† 561765.95 1069979.99 69516.50 8787000.00

m† 124239.66 277310.33 488.00 2060000.00

total assets† 5865120.40 8037258.81 1025143.00 69611500.00

† in thousands of dollars ‡ in dollars per dollar   ¶ in thousands of dollars per employee

y  = real estate loans; y  = C & I loans; y  = loans to individuals; y  = other loans (to purchase securities, overdrafts,1 2 3 4

etc.); y  = securities, fed funds sold, repos, assets in trading accounts; p  = price of output i; p˜ = weighted average of5 i

output prices; w  = price of labor; w  = price of physical capital; w  = price of insured deposits; w  = price of other1 2 3 4

borrowed money (repos, fed funds purchased, etc.); w  = price of uninsured deposits; p  = price of real after-tax5 B

profit; s  = input i share; s  = profit share; pB = nominal before-tax accounting profit; p@y + m = expected revenue;i B B

n = nonperforming loans; k = equity capital; m = noninterest income.
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Table 2: Means of the Variables by Asset-Size Quartiles

variable 1st quartile 2nd quartile 3rd quartile 4th quartile

y †1 357760.68 657490.28 1281000.08 3680519.81

y †2 249271.21 467700.81 952710.22 4780167.50

y †3 188318.96 326874.65 639945.94 1538866.02

y †4  32843.49  80126.14     157397.63    1620612.07  

y †5 325200.96 552054.45 964296.82 3480755.74

p ‡1 0.108 0.111 0.112 0.105

p ‡2 0.115 0.106 0.109 0.098

p ‡3 0.124 0.119 0.125 0.125

p ‡4 0.083 0.095 0.082 0.082

p ‡5 0.086 0.085 0.086 0.093

p̃‡ 0.105 0.103 0.105 0.101

w ¶1  29.372  30.886  33.052  39.090

w ‡2 0.382 0.387 0.393 0.421

w ‡3 0.060 0.060 0.059 0.060

w ‡4 0.080 0.080 0.086 0.102

w ‡5 0.080 0.081 0.084 0.081

p ‡
B

1.651 1.662 1.669 1.675

s1 0.141 0.144 0.144 0.157

s2 0.047 0.050 0.048 0.053

s3 0.316 0.309 0.271 0.211

s4 0.072 0.072 0.107 0.155

s5 0.289 0.293 0.297 0.376

s
B

0.333 0.337 0.342 0.337

p B†
B

47708.37 84558.38 169048.99 596467.64

p@y + m† 140029.89 249238.77 489462.14 1801597.91

n† 18162.45 49266.10 84958.04 480141.30

k† 106021.51 187606.21 359011.36 1602550.27

m† 18240.58 33365.32 68254.24 379166.96

total assets† 1335138.53 2393107.19 4607230.76 15191623.49

† in thousands of dollar ‡ in dollars per dollar ¶ in thousands of dollars per employee

y  = real estate loans; y  = C & I loans; y  = loans to individuals; y  = other loans (to purchase securities, overdrafts,1 2 3 4

etc.); y  = securities, fed funds sold, repos, assets in trading accounts; p  = price of output i; p˜ = weighted average of5 i

output prices; w  = price of labor; w  = price of physical capital; w  = price of insured deposits; w  = price of other1 2 3 4

borrowed money (repos, fed funds purchased, etc.); w  = price of uninsured deposits; p  = price of real after-tax5 B

profit; s  = input i share; s  = profit share; pB = nominal before-tax accounting profit; p@y + m = expected revenue;i B B

n = nonperforming loans; k = financial capital; m = noninterest income.
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Table 3: Scale Economies and Other Elasticities

measure whole sample 1st quartile 2nd quartile 3rd quartile 4th quartile
SCALE 1.146*** 1.101*** 1.128*** 1.146*** 1.208***

(0.02) (0.03) (0.02) (0.02) (0.03)

0.317*** 0.343*** 0.343*** 0.355*** 0.261***
(0.01) (0.01) (0.01) (0.01) (0.01)

0.197*** 0.192*** 0.177*** 0.192*** 0.227***
(0.01) (0.01) (0.01) (0.01) (0.01)

0.120*** 0.122*** 0.122*** 0.131*** 0.107***
(0.01) (0.01) (0.01) (0.01) (0.01)

0.031*** 0.025*** 0.029*** 0.028*** 0.042***
(0.01) (0.01) (0.005) (0.01) (0.01)

0.225*** 0.252*** 0.231*** 0.205*** 0.213***
(0.01) (0.01) (0.01) (0.01) (0.01)

!0.032** !0.033** !0.033** !0.032** !0.032**
(0.01) (0.01) (0.01) (0.01) (0.01)

0.054 0.262* 0.089 !0.010 !0.124
(0.11) (0.14) (0.11) (0.11) (0.16)

!1.624 !2.681 !1.605 !1.072 !1.148
(1.44) (1.95) (1.55) (1.30) (1.31)

!1.612 !6.125* !0.823 0.102 0.363
(1.56) (3.22) (1.87) (1.00) (0.64)

!0.328*** !0.513*** !0.382*** !0.246*** !0.173***
(0.09) (0.15) (0.11) (0.07) (0.05)

!0.111 0.212 !0.250** !0.199*** !0.204***
(0.10) (0.24) (0.13) (0.07) (0.07)

Standard errors in parentheses; *significant at the 0.10 level, **significant at the 0.05 level, ***significant at the 0.01

level, asymptotic two-tailed t-tests.

Note: SCALE’s significance is measured against 1; the other statistics’ significance levels are measured against 0. 

Each entry is an average of individual elasticities of the whole sample or of the quartile subsamples.  (See van

Wissen and Golob (1992) for the rationale of using the average of the elasticities rather than the elasticity evaluated

at the means of the data.)
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Table 4: Scale Economies Along the Value-Maximizing Expansion Path

 whole sample 1st quartile 2nd quartile 3rd 4th quartile
quartile

Scale economies on
the utility-maximizing
expansion path

1.146 1.101 1.128 1.146 1.208

Scale economies on
the value-maximizing
expansion path

1.138 1.111 1.110 1.174 1.185

Scale economies on the utility-maximizing expansion path are those based on the estimated generalized managerial
production model.  Each entry is the average scale estimate for all banks in the whole sample or in each asset-size
quartile subsample.

Scale economies on the value-maximizing expansion path are also based on the estimated generalized managerial
production model for efficient banks in the sample.  Each entry is the average scale estimate for the quarter most
efficient banks in the whole sample or in each asset-size quartile subsample.
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Figure 1: Scale Economies Against Total Assets


